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Abstract In this article, a new extension of the one parameter Xgamma distribution has been proposed. Also the associated
different statistical properties are derived. The unknown parameter of the proposed distribution is estimated by using different
classical estimation methods and by using Bayesian estimation method. Under classical methods of estimation, we briefly
describe the method of moment estimators, maximum likelihood estimators, maximum product of spacing estimators, least
squares and weighted least squares estimators and Cramer-von-Mises estimators. The Bayesian estimation using gamma
prior under squared error loss function has been discussed and computed via Lindley’s approximation and Markov Chain
Monte Carlo techniques. Furthermore, the 100(1− α)% asymptotic confidence interval and credible interval along with the
coverage probability are also discussed. The obtained classical and the Bayesian estimators are compared through Monte
Carlo simulations. Next, we construct a modified Chi-squared goodness of fit test based on the Nikulin-Rao-Robson (NRR)
statistic in presence of censored and complete data. The applicability of our proposed model has been illustrated for both
complete data and right censored data by using two real data sets for each.
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1. Introduction and genesis

In statistics, many probability distributions are available to model the time to event data. Statistical distributions are
often employed to characterize real world phenomena. For characterization,, one parameter exponential distribution
is one of the widely used model. The probability density function (PDF) and the cumulative distribution function
(CDF) of a random variable (RV) X with exponential (E) distribution is

gλ(x) = λe−λx | (x>0,λ>0) and Gλ(x) = 1− e−λx.

The features of one parameter exponential distribution has been broadly described on the basis of hazard rate
and lack of memory property and purposely used by several researchers of the medical sciences/engineering
sciences/actuarial sciences to model the data and validate their findings. However, the use of exponential
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distribution is restricted to the constant hazard rate thus, statisticians strive continuously for exploring more flexible
models. Therefore, many generalized classes of distributions are proposed to illustrate various lifetime phenomena,
namely, Weibull, gamma, generalized exponential distribution and many more. The generalization using mixture
of two probability distributions is also of deep interest for applied statisticians. In this paper, a new alternative of
one parameter E model has been proposed using the approach suggested by Alzaatreh et al. [4].

Let R(t) be the CDF of a rv T ∈ [a, b] for −∞ < a < b <∞ and let W [G(x)] be a function of a baseline CDF
G(x) of a rv X , which satisfies the following conditions:

(i) W [G(x)] ∈ [a, b];
(ii) W [G(x)] is differentiable and monotonically non-decreasing;
(iii) limx→−∞W [G(x)] = a and limx→∞W [G(x)] = b.
Alzaatreh et al. [4] defined the CDF of the T–X family by

F (x) = R (W [G(x)]) , (1)

where W [G(x)] satisfies the conditions (i), (ii) and (iii). Let G(x) = 1−G(x).

To implement the approach in our study, Xgamma (Xg) distribution, a mixture of exponential and gamma
distribution, proposed and studied the Xg distribution by Sen et al. [42], is used. Xg distribution possess many
interesting properties, hence it might be a better alternative choice of E model. The CDF and the PDF are,
respectively, given as

Fθ (x) = 1−
1 + θ + θx+ 1

2θ
2x2

1 + θ
e−θx | (x>0,θ>0), (2)

and

fθ (x) =
θ2

1 + θ

(
1 +

θ

2
x2

)
e−θx, (3)

By taking R(x) = Fθ (x) and W [G(x)] = [− logGλ(x)] in (3), where Gλ(x) = 1−Gλ(x) =e−λx, we define the
CDF of the Xgamma-E (Xg-E) model by

FXg-E(x;λ) = 1− 1

2
e−λx

[
2 + λx+

1

2
(λx)

2

]
| (x>0,λ>0), (4)

The PDF corresponding to CDF, given in Equation (4), reduces to

fXg-E(x;λ) =
1

2
λe−λx

[
1 +

1

2
(λx)

2

]
. (5)

Equations (4) and (5) can be also derived according to Cordeiro et al. [13]. Many useful probability distributions
were presented based on Cordeiro et al. [13] such as Yousof et al. [50]) and Ibrahim et al. ([25]). The hazard
function for the proposed distribution is given as

HXg-E(x;λ) =
λ
[
1 + 1

2 (λx)
2
]

2 + λx+ 1
2 (λx)

2 .

The shape of the density function and hazard function for different choices of the parameter λ are presented
in Figure 1. From Figure 1, we note that the proposed model is positively skewed and the hazard rate function
H (x, λ) exhibit many important shapes such as the increasing, decreasing, bathtub and the approximately constant
shapes. The shape of the hazard rate can also be traced mathematically [see, Glaser [15]]. For this purpose, let us
define the function as; g(t) = 1

h(t) , η(t) = −f ′(t)
f(t) . Now, in case of the Xg-E model
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Figure 1. Density and hazard functions plot.

g(t) =
2 + λt+ 1

2 (λt)
2

1 + 1
2 (λt)

2 , η(t) = λ− (λt)
2

1 + 1
2 (λt)

2 .

the, it may be easily verified that

η′(t) =


= 0 t =

√
2
λ

< 0 t ε
(

0,
√

2
λ

)
> 0 t >

√
2
λ

, (6)

where

η′(t) =
−λ2

[
1− 1

2 (λt)
2
]

[
1 + 1

2 (λt)
2
]2 .

From Equation (5), it can be evidently stated that the shape of hazard rate is either bathtub or increasing. Further,
to get a more clear picture of the hazard rate we go on analyzing the behaviour of g(t) η(t) by defining

δ = lim
t→0

g(t) η(t) = 2λ

and obtained that;

δ =


< 1 |(λ< 1

2 )

= 1 |(λ= 1
2 )

> 1 |(λ> 1
2 )

, (7)

the above expression clearly elucidate that for λ < 1
2 we have increasing hazard rate and for λ > 1

2 it is bathtub.
Now, to comment on the shape of hazard at λ = 1

2 , we studied the nature of second derivative of g(t) near zero, i.e,

lim
t→0

g′′(t) = −2λ2(1 + λ) < 0,
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indicating that at λ = 1
2 hazard rate initially decreases.

The objective of the article is four fold: First, we have introduced a new extension of Xg distribution named as
one parameter Xg-E distribution and studied its related distributional properties such as moments, mean deviation,
generating functions, mean residual life, reliability curve, entropy, stochastic ordering, stress-strength reliability
and order statistics. The proposed distribution admits the shape of increasing (λ ≤ 0.5) and bathtub (λ > 0.5)
hazard rate. Also, for λ = 1, mean is lesser than variance and it is vice versa for all choices of λ ≥ 2. All these
characteristics of the newly developed model provide a flexible approach to analyze several reliability/survival data
sets. Second, we consider different classical methods of point estimation, namely method of moment estimator
(MME), maximum likelihood estimator (MLE), maximum product spacing estimator (MPSE), ordinary least
and weighted least squares estimator (LSE & WLSE) and Carmer-Von Mises estimator (CVME) to estimate
the unknown parameter λ based on complete sample information. Next, Bayesian estimation method for the
unknown parameter under gamma prior has also been discussed using two Bayesian computational techniques.
Third, the asymptotic confidence interval (ACI) and Bayesian credible interval (BCI) of the parameter λ based
on asymptotic theory of MLE and posterior distribution have also been constructed. The performances of these
methods of point estimation are assessed on the basis of average mean square error (MSE) by using Monte Carlo
simulations. However, the interval estimation are compared in terms of average widths and corresponding coverage
probabilities. Fourth, the MLE for right censored sample for the proposed model is also discussed for different
variation of sample size. Also, the validity of Xg-E model for complete and censored reliability/ survival data has
been explained through goodness of fit test. We have also constructed a modified Chi-square goodness-of-fit test
based on the Nikulin-Rao-Robson (NRR) statistic for censored and complete data. The theory and the mechanism
of the Y 2

n test statistic is discussed as well. To the best of our knowledge, many literature are available to introduce
new probability distribution but no attempt has been made to introduce an alternative of exponential distribution
by using Xg distribution as base line distribution. Therefore, the present work aims to fill the gap in the light of
this model.

The remainder of the present article is unified as follows. In Section 2, we describe the different distributional
properties such as moments, generating functions, reliability curve, stochastic ordering, entropy, stress-strength
reliability, order statistics of the new distribution. Different methods of estimation, including classical and Bayesian
for the complete sample have been discussed in Section 3 and compared in Section 4. MLE for the censored sample
is discussed in Section 4 and corresponding simulation result is presented in its subsection. Section 5, describes
MLE and corresponding simulation result for the right censored case. Section 6, 7, describe the goodness of fit
test using NRR statistic for complete sample. Application based on censored data using modified NRR statistic has
been discussed in Section 8. Finally, concluding remarks are given in Section 9.

2. Distributional properties

2.1. Moments and related measures

Let a RV X follows Xg-E(λ). The rth raw moments about origin is µ
′

r = E(xr) and is obtained as

µ
′

r =
λ

2

∫ ∞
x=0

xre−λx
[
1 +

1

2
(λx)2

]
dx

=
1

2
λ−r

[
Γ(r + 1) +

1

2
Γ(r + 3)

]
.

In particular, the first four moments are

µ
′

1 =
2

λ
, µ
′

2 =
7

λ2
, µ
′

3 =
33

λ3
and µ

′

4 =
192

λ4
.

Stat., Optim. Inf. Comput. Vol. 10, March 2022



A. S. YADAV, S. SHUKLA, H. GOUAL, M. SAHA AND H. M. YOUSOF 461

Making use of these raw moments, the first four central moments are obtained as follows

µ2 =
3

λ2
, µ3 =

7

λ3
and µ4 =

48

λ4
.

The coefficent of variation (CV) is calculated as

CV =

√
µ2

µ
′
1

= 0.86.

The coefficient of skewness (β1) and kurtosis (β2) based on central moments are computed by using the following
relations;

β1 =
µ2

3

µ3
2

= 1.81 and β2 =
µ4

µ2
2

= 5.33.

From above, it is clear that µ3, β1 > 0 and β2 > 3 which indicates that the proposed distribution is positively
skewed and nature of curve is leptokurtic. Hence, the proposed model may adequately fit the lifetime data and
sometimes taken as an alternative to one parameter family of distributions.

2.2. Mean deviations

Here, we have derived the expressions of mean deviations about mean (µ) and median (M) for the proposed model.
The mean deviation about mean is defined as;

MD(µ) =

∫ ∞
x=0

|x− µ|f(x) dx =

∫ ∞
µ

(x− µ)f(x)dx−
∫ µ

0

(x− µ)f(x)dx

= 2µF (µ)− 2µ+ 2

∫ ∞
µ

xf(x)dx.

(8)

Now, we evaluated the value of integral∫ ∞
µ

λ

2
xe−xλ

[
1 +

1

2
(λx)2

]
dx = 11λ−1e−2,

using the CDF at the point µ and integral value, we get

MD(µ) = 10λ−1e−2.

The mean deviation about median (M ) is calculated by;

MD(M) =

∫ ∞
x=0

|x−M |f(x) dx =

∫ ∞
M

(x−M)f(x)dx−
∫ µ

0

(x− µ)f(x)dx

= −µ+ 2

∫ ∞
M

xf(x)dx

= −mu+ 2

∫ ∞
M

xλ

2
e−xλ

[
1 +

1

2
(λx)2

]
dx

= −µ+ e−λM
[
4M +

4

λ
+
λ2M3

2
+

3

2
λM2

]
.

(9)

2.3. Generating functions

The moment generating function MX(t) for the Xg-E(λ) is calculated by

MX(t) = E(etx) =

∫ ∞
x=0

etxf(x, λ) dx =
λ

2

∫ ∞
x=0

e−x(λ−t)
[
1 +

1

2
(λx)2

]
dx, (10)
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after simplification

MX(t) =
λ

2(λ− t)

[
1 +

λ2

(λ− t)2

]
.

The cumulant generating function (CGF) can be expressed as

KX(t) = logM(t) = log λ− log(2)− log(λ− t) + log

[
1 +

λ2

(λ− t)2

]
.

Proceeding on same lines as in mgf and replacing t by it we get characteristic function as follows

φX(t) = E(eitx) =
λ

2(λ− it)

[
1 +

λ2

(λ− it)2

]
,

where i2 = −1.

2.4. Mean residual life

Mean residual life (MRL) m(x) is an important characteristic of any lifetime distribution to study the expected
remaining life. Mathematically, it is obtained by

m(x) =
1

1− F (x)

∫ ∞
t=x

[1− F (t)] dt, (11)

using the CDF of the Xg-E in above equation

m(x) =

∫∞
t=x

e−λ t
[
2 + λ t+ 1

2 (λx)
2
]
dt

e−λx
[
2 + λx+ 1

2 (λx)
2
]

=
6 + λ2 x2 + 4λx

4λ+ 2λ2 x+ λ3 x2
.

(12)

2.5. Reliability curves

Reliability curve is also called the Bonferroni and Lorenz curves. These curves have vital application in economics
and are used to study the income and poverty level, but now a days these are frequently used in reliability,
demography, insurance, and medical sciences. The Bonferroni and Lorenz curves are defined by

Bc(p) =
1

pµ

∫ q

x=0

xf(x)dx, (13)

and

Lc(q) =
1

µ

∫ q

x=0

xf(x)dx, (14)

where µ is mean of the distribution. After putting the f(x) in above two equations, the Bonferroni and Lorentz
curves are computed as follows

Bc(p) =
1

pµ

∫ q

x=0

x

2
λe−λx

[
1 +

1

2
(λx)

2

]
dx

=
1

p
− λe−qλ

2p

(
2q +

2

λ
+
λ2p3

4
+ 3λp2

)
, (15)

and

Lc(q) =
1

µ

∫ q

x=0

x

2
λe−λx

[
1 +

1

2
(λx)

2

]
dx

= 1− λe−qλ

2

(
2q +

2

λ
+
λ2q3

4
+ 3λq2

)
. (16)
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2.6. Entropies

The entropy of a RV X measures the level of uncertainty associated with the distribution of X . A popular entropy
measure is Renyi entropy. If RV X has the probability density function f(x), then Renyi entropy is defined by

Re(τ) =
1

1− τ
log

[∫
x

f(x)τ dx

]
, (17)

where τ > 0 and τ 6= 1. Thus the Renyi entropy for the proposed model is calculated as;

Re(τ) =
1

1− τ
log

[∫
x

{
1

2
λe−λx

[
1 +

1

2
(λx)

2

]}τ
dx

]
=

1

1− τ
log

[(
λ

2

)τ ∫ ∞
x=0

e−τλx
τ∑
κ=0

(
τ

κ

) (
λ2 x2

2

)κ
dx

]
,

(18)

after simplifying the above expression, we get

Re(τ) =
1

1− τ
log

[
τ∑
κ=0

λτ−1

2τ+κ

(
τ

κ

)
Γ(2κ+ 1)

τ2κ+1

]
.

Another particular form of stated entropy, obtained through simple algebraic manipulation is called as Shannon
entropy and is defined by

Se = e(− log f(x)) = −E(log f(x)) = −
∫ ∞
x=0

log f(x) f(x) dx,

after putting the value of density function,

Se = −
∫ ∞
x=0

 log
{[

1
2λe−λx

[
1 + 1

2 (λx)
2
]]}

× 1
2λe−λx

[
1 + 1

2 (λx)
2
]  dx

= −
∫ ∞
x=0

log

(
λ

2

)
λe−λx

2

[
1 +

1

2
(λx)

2

]
dx

+
λ2

2

∫ ∞
x=0

xe−λx
[
1 +

1

2
(λx)

2

]
dx

− λ

2

∫ ∞
x=0

log

[
1 +

1

2
(λx)

2

]
e−λx

[
1 +

1

2
(λx)

2

]
dx,

(19)

after simplifying the above integral, the Shanon entropy is given by

Se = 2− log

(
λ

2

)
−
∞∑
n=1

Γ(1 + 2n)

2n+1n

[
1 +

(1 + 2n)(2 + 2n)

2

]
.

2.7. Stochastic ordering

Stochastic ordering is very useful property of a rv to study the ordering relations between them. Let X1 and X2

are the two rv having CDF F1(x) and F2(x) respectively. Then X1 is said to be stochastically greater than X2 iff
F1(x) ≥ F2(x) for all x. At first this criterion was used by Shaked and Shanthikumar [41] and latter-on Mann et
al. [30] proposed it for estimator comparison criterion.

Theorem 1
Let X1 and X2 be the two RVs from the Xg-E distribution, with parameter λ1 and λ2 respectively, then X1 is
stochastically greater than X2 iff λ1 > λ2.
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Proof
Form Equation (3), we have

F1(x, λ1)

F2(x, λ2)
=

[
1− 1

2e−λ1 x
(

2 + λ1 x+ 1
2 (λ1 x)

2
)]

[
1− 1

2e−λ2 x
(

2 + λ2 x+ 1
2 (λ2 x)

2
)] . (20)

which will be always greater than 1, showing that X1 is stochastically greater than X2 for λ1 > λ2.

Theorem 2
Let X1 and X2 are the two continuous rv with densitie functions f(λ1) and g(λ2) respectively. Then X1 ≤lr X2,
iff Ψ =

[
f(x)
g(x)

]
is decreasing function in x. Shaked and Santhikumar [41] have mentioned that the ordering in

likelihood ratio implies ordering in hazard rate and stochastic ordering i.e.

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y.

Proof
Since, X1 ∼Xg-E(λ1) and X2 ∼Xg-E(λ2), then

Ψ =
λ1e(λ2−λ1) x

[
1 + 1

2 (λ1 x)
2
]

λ2

[
1 + 1

2 (λ2 x)
2
] , (21)

and
dΨ

dx
=

(
λ1

λ2

)
(λ2 − λ1)e(λ2−λ1)x

[
2 + 1

2λ
2
1 x

2

2 + 1
2λ

2
2 x

2
− 4(λ2 + λ1)x(

2 + 1
2λ

2
2 x

2
)2
]
, (22)

if λ1 > λ2, dΨ
dx < 0. Hence Ψ is a decreasing function of x which implies X1 ≤lr X2. Similarly, the other ordering

relations can be prove.
X1 ≤lr X2 ⇒ X1 ≤hr X2 ⇒ X1 ≤st X2.

2.8. Stress-strength reliability

In mechanical engineering, stress-strength reliability is very frequently used to measure the performances of the
equipment in use. Let X and Y denote the strength-stress RVs observed from the population Xg-E(λ1) and Xg-
E(λ2), respectively. Then the probability P [Y < X] is called as stress-strength reliability parameter. It is denoted
by R. The same is evaluated for the proposed model and is given by;

R = Pr[Y < X] =

∫ ∞
x=0

∫ x

y=0

f(x, λ1) f(y, λ2)dx dy

=

∫ ∞
x=0

f(x, λ1)F (x, λ2)dx,

(23)

using the PDF and CDF of the proposed model, R is calculated as;

R =
1

2
λ1

∫ ∞
x=0


e−λ1 x

[
1 + 1

2 (λ1 x)
2
]

×
[
1− 1

2e−λ2 x

(
2 + λ2 x

+ 1
2 (λ2 x)

2

)]  dx

= 1− λ1

2(λ1 + λ2)

[
1 + λ2

2(λ1+λ2) +
2λ2

1+λ2
2

2(λ1+λ2)2

+
3λ2

1λ2

2(λ1+λ2)3 +
3λ2

1λ
2
2

(λ1+λ2)4

]
.

(24)
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2.9. Order statistics

Let X1, X2, . . . , Xn are the random sample of size n taken from the Xg-E(λ). Then, the observations X1:n <
X2:n < · · · < Xn:n constitute the order statistics. Let fr(x), Fr(x) be the PDF and CDF of rth order statistics Xr:n

and are given as

fr(Xr = t) =
n!

(r − 1)!(n− r)!
F r−1(t)[1− F (t)]n−rf(t). (25)

Fr(x) =

n∑
i=r

n−i∑
j=0

(
n

i

)(
n− i
j

)
(−1)jF i+j(x).

respectively. Now by using equations (2) and (3) in above expression, we get

fr(Xr = t) =
n!

(r − 1)!(n− r)!

(
1

2

)n−r+1 [
1− 1

2
e−λ t

(
2 + λ t

+ 1
2 (λ t)

2

)]r−1

×
[(

2 + λ t

+ 1
2 (λ t)

2

)]n−r
1

2
λe−λ t(n−r+1)

[
1 +

1

2
(λ t)

2

]
,

(26)

and

Fr(Xr = t) =

n∑
i=r

n−i∑
j=0

(
n

i

)(
n− i
j

)
(−1)j

{
1− 1

2
e−λ t

[
2 + λ t

+ 1
2 (λ t)

2

]}i+j
(t),

respectively. Further the density and distribution function of min(X1, X2, · · · , Xn) order statistics and largest
order statistics max(X1, X2, · · · , Xn) are obtained by putting r = 1 & r = n in above equations. Also, the joint
distribution of rth and sth order statistics is computed by using the following relation.

fr,s(Xr = t1, Xs = t2) =
n!F r−1(t1)[f(t2)− F (t1)]s−r−1

(s− r − 1)!(n− s)!
×[1− F (t2)]n−sf(t1) f(t2),

(27)

now by putting the value of PDF and CDF, we get

fr,s[Xr = t1, Xs = t2] =
n!
(

1
2

)n−s+2

(s− r − 1)!(n− s)!

{
1− 1

2
e−λ t

[
2 + λ t

+ 1
2 (λ t)

2

]}r−1

×
{(

2 + λ t1 +
1

2
(λ t1)

2

)
−
[

2 + λ t2
+ 1

2 (λ t2)
2

]}s−r−1

×
[(

2 + λ t2 +
1

2
(λ t2)

2

)]n−s
λ2e−λ (t1+t2+(n−s)t2)

×
[
1 +

1

2
(λ t1)

2

] [
1 +

1

2
(λ t2)

2

]
.

(28)

The joint distribution of (X1, Xn) is obtained by putiing r = 1, s = n in above equation.

3. Different method of estimation

In this section, the different classical methods of estimation, namely, method of moment, the method of maximum
likelihood, the method of product spacing, least squares, Crammer Von-Mises method of estimation and the
Bayesian estimation have been discussed. A brief description of these methods is detailed in the following sub-
sections.
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3.1. Method of moment

Method of moment estimate for the proposed one parameter model can be obtained by equating the first theoretical
moment with the sample moment m1 = 1

n

∑n
i=1 xi. The theoretical moment for (1) is obtained as µ = 2

λ .
Therefore, the moment estimate is obtained by

λ̂m =
2

m1
.

3.2. Method of maximum likelihood estimation

The most efficient and widely used method of estimation for the parameter is the method of maximum likelihood.
The estimator obtained by this method possess many desirable properties such as consistency, asymptotic
efficiency, and invariance. Let x1, x2, · · · , xn be a random sample of size n from Equation (5), then it’s the log-
likelihood function of Equation (5) without constant term is given by;

log L = n log λ− λ
n∑
i=1

xi +

n∑
i=1

log

[
1 +

1

2
(λx)2

]
. (29)

The maximum likelihood estimate of the parameter λ is obtained by solving the following non-linear equation.

n

λ
−

n∑
i=1

xi +

n∑
i=1

λx2

1 + 1
2 (λx)2

= 0, (30)

from above equation it is clear that the direct solution for λ cannot be obtained; thus here we use nlm() function to
extract the solution. Also, due to the implicit form of the likelihood equation, the exact distribution of MLE is not
obtainable. Therefore the asymptotic theory of MLE is used to compute 100(1− α)% confidence interval for the
parameter λ are obtained by following;

[λL, λU ] ∈ λ̂ml ∓ Zα/2
√

Var(λ̂),

where; λml is the MLE of λ, Var(λ̂) = I−1(λ̂) and Zα/2 is the upper (α/2)th quantile of standard normal variates.

3.3. Method of maximum product spacing estimation

An alternative method of estimation to method of maximum likelihood estimation is the MPS method which
possess similar property as former. The MPS method was discussed by Cheng and Amin [9]. It has been proven
by Coolen and Newby [12] under certain regularity conditions MPS estimators seem to be as efficient as MLE.
Recently, Singh et al. [43] used this method and illustrated its beauty. In this method, the likelihood function is
defined as the differences between two consecutive CDFs and is given by;

L
′
(λ) = n+1

√√√√n+1∏
i=1

∆i |(∑n
i=1 ∆i=1), (31)

and

ln L
′
(λ) =

1

n+ 1

n+1∑
i=1

ln ∆i

=
1

n+ 1

[
ln ∆1 +

n∑
i=2

ln ∆i + ln ∆n+1

]
,

(32)
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where

∆1 = 1− 1

2
e−λx(1)

[
2 + λx(1) +

1

2

(
λx(1)

)2]
,

∆i =
1

2
e−λx(i−1)

[
2 + λx(i−1)

+ 1
2

(
λx(i−1)

)2 ]− 1

2
e−λx(i)

[
2 + λx(i)

+ 1
2

(
λx(i)

)2 ]
and

∆n+1 =
1

2
e−λx(n)

[
2 + λx(n) +

1

2

(
λx(n)

)2]
.

The MPSE of λ is obtained by maximizing the above Equation with respect to the parameter.

3.4. Method of ordinary least squares estimation

In the theory of classical estimation method, LSE and WLSE are also a conventional estimator to obtain the estimate
of the parameter and was introduced by Swain et al. [45]. They used LSE and WLSE to estimate the parameters
of a Beta distribution. The LSEs of the unknown parameter of Xg-E has been obtained by minimizing the residual
sum of the square; where residual is defined as the differences of theoretical CDF and empirical CDF.

L
′′

=

n∑
i=1

[
FXg-E(xi, θ)−

i

n+ 1

]2

, (33)

substituting Equation (4) above, we get

L
′′

=

n∑
i=1

(
1− 1

2
e−λx(1)

{
2 + λx(1)

+ 1
2

[
λx(1)

]2 }− i

n+ 1

)2

. (34)

The LSE of the parameter λ is obtained by minimizing above with respect to λ and WLSE is obtained by
minimizing the following;

L
′′′

=

n∑
i=1

W
′

i

(
1− 1

2
e−λx(1)

{
2 + λx(1)

+ 1
2

[
λx(1)

]2 }− i

n+ 1

)2

, (35)

where, W
′

i is the weight function at the point i and is taken as

W
′

i = Var−1 [(F (xi)] =
(n+ 1)2(n+ 2)

i(n− i+ 1)
.

3.5. Cramer-von-Mises estimation

CVME was proposed and used by MacDonald [29]. This method is based on the minimum difference between
empirical and cumulative distribution functions. For λ it is obtained by minimizing

M
′

=
1

12n
+

n∑
i=1

[
F (x(i))−

2i− 1

2n

]2

. (36)

Hence, from equation (4) and (36), we get

M
′

=
1

12n
+

n∑
i=1

[
1− 1

2
e−λx(1)

[
2 + λx(1) +

1

2

(
λx(1)

)2]− 2i− 1

2n

]2

. (37)

Now, differentiating Equation (36) respect to λ and equating to zero we get;
n∑
i=1

[
Wi(θ)−

2i− 1

2n

]
W
′

i (θ) = 0. (38)

Since this equation cannot be solved analytically hence we use some numerical technique.
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3.6. Bayesian estimation

In this subsection, we discuss the Bayesian procedure to estimate the unknown parameter of the proposed
distribution. It is to be noted that the Bayesian estimation is posterior based inference and hence for the parameter λ
it is derived under the assumption of gamma prior. Since no conjugate prior exist for Xg-E distribution; thus gamma
prior is taken under consideration. The considered prior is very flexible and also converted to the non-informative
prior. The prior density for λ is given by;

g(λ) ∝ λr−1e−sλ |(λ>0), (39)
where r, s are the hyper-parameters of the considered prior and are assumed to be known. Now, using likelihood
equation and prior, the posterior distribution is obtained by

p(λ|x) =
L(x|λ) g(λ)∫∞

λ=0
L(x|λ) g(λ) dλ

=
λn+r−1e−λ(s+

∑n
i=1 xi)

∏n
i=1

[
1 + 1

2 (λx)2
]∫∞

λ=0
λn+r−1e−λ(s+

∑n
i=1 xi)

∏n
i=1

[
1 + 1

2 (λx)2
]
dλ
.

(40)

Here, we assume the squared error loss function (SELF) to obtain the Bayesian estimate of the parameter λ. Let θ̂
is the estimate of θ, then SELF is defined as

Lf (θ, θ̂) = (θ̂ − θ)2.

It is mentioned that under SELF, posterior mean is the Bayesian estimate of the parameter.

λ̂b = Eλ(λ|x) =

∫∞
λ=0

λn+re−λ(s+
∑n

i=1 xi)
∏n
i=1

[
1 + 1

2 (λx)2
]
dλ∫∞

λ=0
λn+r−1e−λ(s+

∑n
i=1 xi)

∏n
i=1

[
1 + 1

2 (λx)2
]
dλ
, (41)

provided the above expectation exist. The above expression involves the ratio of two integrals; thus the explicit
solution is not possible. Therefore, we use Lindley’s approximation method to obtain the Bayesian estimates of the
parameter λ.

3.6.1. Lindley’s approximation method Lindley suggested one of the most efficient technique to extract the
Bayesian estimate from the ratio of the two integral in the year of 1988 [see, Lindley [28]]. Applying this
approximation, the Bayesian estimator of λ is obtained by

λ̂bl = λ̂ml + τ̂λσ̂λλ +
1

2
σ̂2
λλL̂λλλ, (42)

where

∂2

∂λ2
L = Lλλ = − n

λ2
+

n∑
i=1

x2

[1 + 1
2 (λx)2]

− λ2
n∑
i=1

x4

[1 + 1
2 (λx)2]2

,

∂3

∂λ3
L = Lλλλ =

2n

λ3
− 3λ

n∑
i=1

x4

[1 + 1
2 (λx)2]2

+ 2λ3
n∑
i=1

x6

[1 + 1
2 (λx)2]3

,

σλλ = −
(

1

Lλλ

)
,

and
τλ =

a− 1

λ
− b,

all the above derivatives are evaluated at the point λ̂ml. If n is sufficiently large then λ̂bl → λ̂ml. One of the biggest
drawback of this approximation method is that we can not construct the credible interval using it. Therefore, here
we also consider Markov Chain Monte Carlo (MCMC) method to extract the sample from the respective posterior
distribution.
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3.6.2. Markov Chain Monte Carlo method MCMC method is the most widely used technique to draw the posterior
samples whenever the marginal posterior distributions do not yield explicit form. Since the proposed distribution
belongs to one parameter exponential family of distributions; thus the implementation of the stated method is
straightforward. Several application of this technique is available in every area of applied sciences. The Bayesian
estimate of the parameter is obtained using generated posterior samples. Further, the credible intervals is also
reported based on the same sample. The posterior distribution by ignoring the constant terms is given by;

p1(λ|x) ∝ λn+r−1e−λ(s+
∑n

i=1 xi)
n∏
i=1

[
1 +

1

2
(λxi)

2

]

∝ Gλ|x

(
n+ r, s+

n∑
i=1

xi

)
φ(λ),

(43)

where

φ(λ) =

n∏
i=1

[
1 +

1

2
(λxi)

2

]
.

The following steps may be considered to extract the sample from above equation.

• Draw λ from Gλ|x (•, •)
• Repeat step 1, κ times to obtain λ1, λ2, · · · , λκ.
• Now, the Bayesian estimate of λ under SELF is obtained by

λ̂mc =

∑κ
j=1 λjφ(λj)∑κ
j=1 φ(λj)

,

• Using the idea of Chen and Shao (1999), we can obtain the BCI for the unknown parameter.

4. Simulation study: case of complete data

In this section, Monte Carlo simulation study has been perform to assess the performances of the proposed
classical and Bayesian estimators. The study is carried out for the different variation of sample size and
parameter. In particular, we have taken n = 10, 20, 30, 50, 100, 200 for different variation of the parameter value
λ = 0.5, 0.85, 1.0, 2.0, 3.0. In classical method of estimation, MME (λ̂m), MLE (λ̂ml), MPSE (λ̂mp), LSE (λ̂ls),
CVME (λ̂cv) are considered and under Bayesian estimation the estimate is obtained using Lindley’s method
(λ̂bs1) and MCMC method (λ̂bs2) using informative prior and non-informative prior (λ̂bs3). The values of hyper-
parameters are such chosen that the prior mean accurately matches with true beliefs with minimum variability.
The average estimates of the parameter and corresponding mean square errors (MSEs) are reported based on 3000
replications in Table 1. Further, the ACI and BCI are also computed for the same variation of the parameters and
sample size. The coverage probabilities and average width of the interval based on ACIs (CPA, ACL) and BCIs
(CPB , BCL) for the considered design are also computed and reported in Table 2. From this extensive simulation
study, it is examined that under informative gamma prior the Bayesian estimators are less penalize as compared to
the other classical estimators, while the performance of classical and Bayesian estimators are almost same under
non-informative. The obtained estimators also ensure the consistency of the estimators, i.e., the MSE of each
estimator decreases when n increases. In case of large sample all estimators are more or less the same. Further,
among the classical estimation methods (MOM, MLE, MPS, LSE & CVME), the MPS estimation method provides
the more efficient result as compared to others. Further, the width of the ACIs and BCIs are reported for same setup
and observed that the width of the intervals decreases by increasing the sample size while no specific trend has been
obtained in coverage probabilities. The width of BCIs are smaller than the ACIs for all setup and consequently the
coverage probability of Bayesian interval estimation is lesser than the ACIs.
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Table 1. Average estimates of the parameter and corresponding MSEs (in each second row) for small sample.

n λ λ̂m λ̂ml λ̂mp λ̂ls λ̂cv λ̂bs1 λ̂bs2 λ̂bs3

10

0.5 0.5484 0.5578 0.4969 0.5399 0.5506 0.4242 0.4262 0.5434
0.0297 0.0287 0.0199 0.0545 0.0556 0.0196 0.0204 0.0249

0.85 0.9292 0.9453 0.8424 0.9094 0.9288 0.7130 0.7224 0.9176
0.0827 0.0780 0.0541 0.1364 0.1427 0.0515 0.0572 0.0624

1 1.0917 1.1086 0.9876 1.0780 1.0995 0.8310 0.8471 1.0732
0.1268 0.1240 0.0883 0.2193 0.2259 0.0738 0.0893 0.0918

2 2.2178 2.2506 2.0057 2.1989 2.2435 1.5832 1.7209 2.1329
0.5019 0.4970 0.3440 0.9186 0.9449 0.2245 0.3327 0.2347

3 3.3168 3.3571 2.9871 3.2972 3.3918 3.1172 3.1264 2.5677
1.1382 1.0794 0.7435 2.1084 2.4500 0.2692 0.2796 0.7475

20

0.5 0.5292 0.5358 0.4995 0.5187 0.5245 0.4721 0.4726 0.5297
0.0128 0.0118 0.0089 0.0192 0.0197 0.0088 0.0090 0.0110

0.85 0.9028 0.9134 0.8514 0.8846 0.8946 0.8031 0.8056 0.9019
0.0331 0.0327 0.0247 0.0449 0.0464 0.0230 0.0243 0.0293

1 1.0440 1.0552 0.9834 1.0230 1.0346 0.9273 0.9308 1.0417
0.0463 0.0437 0.0349 0.0655 0.0673 0.0339 0.0365 0.0388

2 2.0994 2.1144 1.9675 2.0786 2.1015 1.8375 1.8654 2.0764
0.1778 0.1682 0.1320 0.2725 0.2802 0.1030 0.1189 0.1211

3 3.1752 3.2031 2.9798 3.1343 3.1693 2.7160 2.8257 3.1157
0.4621 0.4401 0.3392 0.6760 0.6982 0.1719 0.2161 0.2306

30

0.5 0.5213 0.5267 0.5003 0.5102 0.5142 0.4851 0.4853 0.5228
0.0069 0.0066 0.0053 0.0089 0.0091 0.0052 0.0052 0.0063

0.85 0.8854 0.8917 0.8468 0.8733 0.8800 0.8207 0.8218 0.8847
0.0227 0.0207 0.0168 0.0338 0.0346 0.0163 0.0170 0.0193

1 1.0449 1.0539 1.0008 1.0251 1.0331 0.9693 0.9712 1.0452
0.0297 0.0283 0.0226 0.0396 0.0406 0.0212 0.0224 0.0259

2 2.0782 2.0958 1.9891 2.0472 2.0629 1.9174 1.9312 2.0724
0.1142 0.1055 0.0850 0.1748 0.1781 0.0701 0.0827 0.0847

3 3.1237 3.1472 2.9857 3.0818 3.1053 2.8505 2.9001 3.0979
0.2901 0.2680 0.2177 0.4229 0.4326 0.1342 0.1599 0.1767

5. Estimation with censored data

5.1. Maximum likelihood estimation

Here, we consider the case of right censored data and obtained MLE of the parameter. Let T be a rv distributed
according to a Xg-E distribution with θ = λ. For ith (individual); Ti is the lifetime and Ci is the censorship time,
where Ti and Ci are independent rvs. Suppose the data consists of n independent observations

ti = min(Ti, Ci) for i = 1, ..., n.

Censorship is assumed to be non-informative (the distribution of Ci does not depend on the unknown parameters
of Ti). The likelihood function in the case of censored data can be given by:

L(t,θ) =

n∏
i=1

λδi(ti,θ)S(ti,θ); θ = λ, δi = 1{Ti≤Ci}.

In our case, let Ti be a rv distributed with the parameter θ = λ, so the likelihood function reduces to
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Table 2. Average estimates of the parameter and corresponding MSE’s (in each second row) for large sample.

n λ λ̂m λ̂ml λ̂mp λ̂ls λ̂cv λ̂bs1 λ̂bs2 λ̂bs3

50

0.5 0.5140 0.5182 0.5009 0.5045 0.5069 0.4937 0.4938 0.5160
0.0043 0.0042 0.0035 0.0055 0.0055 0.0035 0.0035 0.0040

0.85 0.8805 0.8878 0.8580 0.8654 0.8695 0.8454 0.8459 0.8836
0.0127 0.0122 0.0100 0.0170 0.0173 0.0096 0.0098 0.0116

1 1.0288 1.0370 1.0021 1.0112 1.0159 0.9873 0.9880 1.0321
0.0164 0.0158 0.0133 0.0213 0.0216 0.0128 0.0132 0.0150

2 2.0633 2.0758 2.0043 2.0361 2.0457 1.9721 1.9781 2.0628
0.0660 0.0637 0.0530 0.0909 0.0924 0.0466 0.0531 0.0559

3 3.1111 3.1303 3.0232 3.0642 3.0786 2.9600 2.9829 3.1025
0.1662 0.1556 0.1271 0.2201 0.2241 0.0921 0.1263 0.1303

100

0.5 0.5115 0.5149 0.5053 0.5034 0.5046 0.5027 0.5028 0.5138
0.0023 0.0023 0.0020 0.0029 0.0030 0.0019 0.0020 0.0022

0.85 0.8686 0.8740 0.8578 0.8560 0.8581 0.8533 0.8534 0.8720
0.0057 0.0055 0.0048 0.0074 0.0075 0.0046 0.0047 0.0053

1 1.0217 1.0293 1.0101 1.0049 1.0073 1.0048 1.0051 1.0270
0.0082 0.0081 0.0071 0.0105 0.0106 0.0069 0.0070 0.0079

2 2.0465 2.0614 2.0222 2.0138 2.0186 2.0107 2.0128 2.0554
0.0311 0.0314 0.0268 0.0382 0.0386 0.0248 0.0265 0.0293

3 3.0565 3.0758 3.0138 3.0132 3.0204 2.9971 3.0034 3.0650
0.0746 0.0719 0.0610 0.0974 0.0980 0.0546 0.0631 0.0632

200

0.5 0.5117 0.5149 0.5097 0.5039 0.5046 0.5088 0.5088 0.5143
0.0013 0.0013 0.0012 0.0015 0.0015 0.0012 0.0012 0.0013

0.85 0.8649 0.8709 0.8622 0.8512 0.8522 0.8606 0.8606 0.8699
0.0033 0.0035 0.0031 0.0039 0.0039 0.0031 0.0031 0.0034

1 1.0194 1.0263 1.0160 1.0044 1.0056 1.0141 1.0142 1.0251
0.0046 0.0048 0.0043 0.0058 0.0058 0.0042 0.0042 0.0047

2 2.0406 2.0528 2.0301 2.0122 2.0146 2.0278 2.0286 2.0500
0.0171 0.0168 0.0142 0.0216 0.0217 0.0140 0.0145 0.0161

3 3.0494 3.0644 3.0294 3.0104 3.0140 3.0259 3.0283 3.0593
0.0377 0.0375 0.0321 0.0466 0.0468 0.0311 0.0334 0.0350

L(t,θ) =

n∏
i=1

− (λ2t+ λ
)

+ λ
(
λ2t2

2 + λt+ 2
)

[
2 + λ t+ 1

2 (λ t)
2
]

δi

×
[

1

2
e−λ t

[
2 + λ t+

1

2
(λ t)

2

]]
,

and the log likelihood function is given by

`(t,θ) = ln

(
1

2
e−λ t

[
2 + λ t+

1

2
(λ t)

2

])

+

n∑
i=1

δi
 ln

[
−
(
λ2t+ λ

)
+ λ

(
λ2t2

2 + λt+ 2
)]

− ln
[
2 + λ t+ 1

2 (λ t)
2
]  ,
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Table 3. Interval estimation of the parameter along with its coverage probabilities (CPs).

n λ λ̂L λ̂U CPA ACL λ̂
L

λ̂
U

CPB BCL

10

0.5 0.2718 0.8438 0.9690 0.5720 0.2957 0.8024 0.9480 0.5066
0.85 0.4608 1.4298 0.9630 0.9690 0.5046 1.3494 0.9460 0.8447

1 0.5394 1.6778 0.9670 1.1384 0.5926 1.5752 0.9480 0.9826
2 1.0966 3.4046 0.9680 2.3079 1.2469 3.0568 0.9670 1.8099
3 1.6337 5.0804 0.9650 3.4467 1.9613 4.3433 0.9840 2.3819

20

0.5 0.3409 0.7307 0.9690 0.3897 0.3582 0.7071 0.9390 0.3488
0.85 0.5811 1.2457 0.9690 0.6646 0.6118 1.2019 0.9530 0.5900

1 0.6711 1.4394 0.9650 0.7683 0.7070 1.3871 0.9350 0.6801
2 1.3432 2.8856 0.9620 1.5423 1.4359 2.7380 0.9550 1.3021
3 2.0359 4.3702 0.9540 2.3343 2.2101 4.0504 0.9600 1.8403

30

0.5 0.3701 0.6832 0.9610 0.3131 0.3839 0.6654 0.9370 0.2815
0.85 0.6264 1.1570 0.9650 0.5306 0.6501 1.1246 0.9440 0.4744

1 0.7406 1.3672 0.9680 0.6266 0.7697 1.3283 0.9380 0.5586
2 1.4723 2.7193 0.9740 1.2470 1.5399 2.6175 0.9570 1.0776
3 2.2104 4.0839 0.9580 1.8736 2.3343 3.8797 0.9480 1.5454

50

0.5 0.3988 0.6377 0.9530 0.2389 0.4093 0.6246 0.9370 0.2152
0.85 0.6832 1.0924 0.9520 0.4092 0.7015 1.0691 0.9350 0.3676

1 0.7978 1.2761 0.9580 0.4784 0.8198 1.2486 0.9370 0.4288
2 1.5968 2.5549 0.9580 0.9581 1.6451 2.4882 0.9440 0.8430
3 2.4082 3.8525 0.9560 1.4443 2.4909 3.7265 0.9490 1.2355

100

0.5 0.4309 0.5989 0.9340 0.1680 0.4384 0.5902 0.9060 0.1518
0.85 0.7314 1.0167 0.9470 0.2853 0.7444 1.0014 0.9350 0.2570

1 0.8615 1.1972 0.9510 0.3357 0.8767 1.1792 0.9250 0.3025
2 1.7251 2.3977 0.9490 0.6726 1.7570 2.3575 0.9330 0.6005
3 2.5739 3.5778 0.9570 1.0039 2.6267 3.5105 0.9360 0.8838

200

0.5 0.4555 0.5743 0.9120 0.1188 0.4610 0.5683 0.8820 0.1073
0.85 0.7704 0.9713 0.9320 0.2009 0.7798 0.9610 0.9030 0.1812

1 0.9079 1.1448 0.9240 0.2369 0.9186 1.1325 0.8990 0.2139
2 1.8159 2.2898 0.9490 0.4739 1.8382 2.2643 0.9210 0.4260
3 2.7106 3.4182 0.9330 0.7076 2.7452 3.3766 0.9120 0.6314

then

`(t,θ) = r

[
ln

(
1

2

)]
− λ

∑
i∈C

ti +
∑
i∈C

ln

[
2 + λ ti +

1

2
(λ ti)

2

]
+
∑
i∈F

ln

[
−
(
λ2ti + λ

)
+ λ

(
λ2t2i

2
+ λti + 2

)]
−
∑
i∈F

ln

[
2 + λ ti +

1

2
(λ ti)

2

]
,

where r is the number of failures, F and C denote the sets of uncensored and censored observations, respectively.
The maximum likelihood estimator θ̂ for θ can be find by solving the system formed by equalizing the following
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score functions to zero

∂`(t,θ)

∂λ
= −

∑
i∈C

ti +
∑
i∈C

2 + ti + λ t2i

2 + λ ti +
1
2 (λ ti)

2

+
∑
i∈F

−2λ ti +
3λ2t2i

2 + ti

− (λ2ti + λ) + λ
(
λ2t2i

2 + λti + 2
)

−
∑
i∈F

2 + ti + λ t2i

2 + λ ti +
1
2 (λ ti)

2
.

To solve the system of score functions which is quite complicated we use numerical methods such as the Monte
Carlo method, the Barzilai-Borwein (BB) algorithm or others.

5.2. Simulations: case of censored data

We consider the Xg-E model. The data were simulated N = 10000 times (with sample sizes n = 30, n = 100,

n = 200, n = 500) and parameter value λ = 0.6. The averages of the simulated values of MLE λ̂ of the parameter,
and it’s MSE are calculated and presented in Table 4. From Table 4, we can notice that the mean squared errors are
very small, which confirms the convergence of MLE.

Table 4: Maximum likelihood estimators λ̂ of the parameter and its mean squared errors (censored data)
N = 10000 n = 30 n = 100 n = 200 n = 500

λ̂ 0.6143 0.6127 0.6112 0.6029
MSE 4.28× 10−03 3.51× 10−03 2.09× 10−03 1.58× 10−03

6. Goodness-of-fit test

In case of complete data, various techniques are used to verify the adequacy of mathematical models to data from
observation. The most common tests are those based on Pearson’s Chi-square statistics. Nevertheless, these can not
be applied in all situations, especially when the parameters of the model are unknown or when the data is censored.
Since the middle of the last century, researchers have begun to propose modifications of existing statistics to take
into account unknown parameters on the one hand and censorship on the other. For the complete data, Nikulin [33],
Nikulin [34], Nikulin [35] and Rao and Robson [39] separately proposed a statistic known today as the Nikulin-
Rao-Robson (NRR) statistic. This statistical test, which follows a Chi-square distribution, is a natural modification
of the Pearson statistic.

If, in addition to the unknown parameters, the data are censored, the classical tests are inadequate to verify
a hypothesis H0 according to which a series of observations comes from a parametric family F (t). Habib and
Thomas [23] considered the natural modifications of the NRR statistic. These tests are based on the differences
between two probability estimators, one based on the Kaplan-Meier estimator, the other based on the MLE of
the unknown parameters of the cumulative distribution function of the Kaplan-Meier estimator. Bagdonavicius and
Nikulin [7] and Bagdonavicius et al. [5] proposed a modification of the NRR statistic that takes into account random
right censorship. This statistic, based on the MLLE on the initial data, also follows a Chi-square distribution at the
limit. For more details on the construction of these statistics, we can see Voinov et al. [46]. These techniques were
used to adjust observations to the generalized inverse Weibull model ( see Goul and Seddik [16]), the distribution
of Birbaurm Saunders (Nikulin et al. [37]), the kumaraswamy generalized inverse Weibull distribution (see Gaul
and Seddik [17]), Bertholon model (see Chouia and Seddik [11]), a new Burr type XII distribution (see Ibrahim
et al. ([24] and [26])), the odd Lindley exponentiated exponential distribution (see Goual et al. [19]), the Topp-
Leone-Lomax model (see Yadav et al. [48]), Lomax inverse Weibull model (see Goual et al. [20]), Burr XII inverse
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Rayleigh model (see Goual and Yousof [18]), in some new G families and its applications (see Abouelmagd et
al. ([1],[2] and [3])) and finally xgamma reciprocal Rayleigh extension (see Yousof et al. [49]). In this work we
construct a modified chi-square type tests for the Xg-E model in case of complete and censored data. The NRR
statistic is used in case of complete data. In presence of censorship, we work with the modification of the N.R.R.
statistic proposed by Bagdonavicius and Nikulin [7].

6.1. NRR statistic test

To test the hypothesis H0 according to which T1, T2, · · · , Tn, an n-sample comes from a parametric family F (t;θ)

H0 : Pr {Ti ≤ t} = F (t,θ), t ∈ R, θ = (θ1,θ2, · · · ,θs)T ,

where θ represents the vector of unknown parameters, Nikulin [33], Nikulin [34], Nikulin [35] and Rao and Robson
[39] proposed Y 2 the N.R.R. statistic defined as following:

Observations T1, T2, · · · , Tn are grouped in r subintervals I1, I2, · · · , Ir mutually disjoint Ij2 =]aj2 − 1; aj2 ];
where j2 = 1; r.

The limits aj2 of the intervals Ij2 are obtained such that

pj2(θ) =

∫ aj2

aj2−1

f(t,θ)dt |( j2=1,2,··· ,r),

so

aj2 = F−1

(
j2
r

)
|(j2=1,··· ,r−1).

If
νj2 = (ν1, ν2, · · · , νr)T

is the vector of frequencies obtained by the grouping of data in these Ij2 intervals

νj2 =

n∑
i=1

1{ti∈Ij2} |(j2=1,...,r).

The N.R.R. statistic is given by

Y 2(θ̂n) = X2
n(θ̂n) +

1

n
LT (θ̂n)(I(θ̂n)− J(θ̂n))−1L(θ̂n),

where

X2
n(θ) =

(
ν1 − np1(θ)√

np1(θ)
,
ν2 − np2(θ)√

np2(θ)
, · · · , νr − npr(θ)√

npr(θ)

)T
,

and J(θ) is the information matrix for the grouped data defined by

J(θ) = B(θ)TB(θ),

with

B(θ) =

[
1
√
p
i

∂

∂µ
pi(θ)

]
r×s
|(i=1,2,··· ,r and κ=1,··· ,s),

then

L(θ) = (L1(θ), ...,Ls(θ))T with Lκ(θ) =

r∑
i=1

νi
pi

∂

∂θκ
pi(θ),

where In(θ̂n) represents the estimated Fisher information matrix and θ̂n is the MLE of the parameter vector. The
Y 2 statistic follows a distribution of chi-square χ2

r−1 with (r − 1) degrees of freedom.

Stat., Optim. Inf. Comput. Vol. 10, March 2022



A. S. YADAV, S. SHUKLA, H. GOUAL, M. SAHA AND H. M. YOUSOF 475

6.2. NRR statistic for the Xg-E model

Consider a sample T = (T1, T2, · · · , Tn)
T . To verify if these data are distributed according to the Xg-E model,

P {Ti ≤ t} = FXg-E(t,θ); with unknown parameters θ = λ, a chi-square goodness-of-fit test is constructed by
fitting the N.R.R. statistic developed in the previous section. The maximum likelihood estimator θ̂n of the unknown
parameter of the Xg-E distribution is computed on the initial data. The statistic Y 2 does not depend on the
parameter, we can therefore use the Fisher information matrix estimated In(θ̂n). All the components of the statistic
Y 2, for the distribution Xg-E are provided, therefore Y 2 can be deduced easily.

6.3. Simulation studies (N.R.R. statistics Y 2)

To support the results obtained in this work, we conduct an intensive study by numerical simulations. Thus, to
test the null hypothesis H0 that a sample belongs to the Xg-E model, we calculate Y 2 the NRR statistic of 10000
simulated samples with sizes n = 30, n = 50, n = 100, n = 200 and n = 500, respectively. For different theoretical
levels (ε = 0.02, 0.05, 0.01, 0.1); we calculate the average of the non-rejection numbers of the null hypothesis, when
Y 2 ≤ χ2

ε (r − 1) then, we present the results of the corresponding empirical and theoretical levels in Table 5. As
can be seen, the values of the empirical levels calculated are very close to those of their corresponding theoretical
levels. Thus, we conclude that the proposed test is well suited to the Xg-E distribution.

Table 5: Empirical levels and corresponding theoretical levels (ε = 0.02, 0.05, 0.01, 0.1)

N = 10000 ε = 0.02 ε = 0.05 ε = 0.01 ε = 0.1

n = 30 0.9841 0.9521 0.9946 0.9032
n = 50 0.9830 0.9517 0.9930 0.9024
n = 100 0.9819 0.9515 0.9915 0.9019
n = 250 0.9806 0.9508 0.9906 0.9008
n = 500 0.9802 0.9503 0.9902 0.9001

7. Simulated distribution of Y2 statistic for Xg-E model

For demonstrating that the Y 2 statistic follows in the limit; a chi-squared distribution with κ = r − 1 degrees of
freedom; we compute N = 10000 times, the simulated distribution of Y 2(θ̂) under the null hypothesis H0 with
different values of parameters Xg-E(λ), and r = 12 intervals, versus the chi-squared distribution with κ = 11
degree of freedom. Their histograms are represented in Figure 3 versus the chi-squared distribution with κ degree
of freedom.

From Figure 3, we can observe that the statistical distribution of Y 2 with different values of parameter and
different numbers κ of grouping cells; in the limit follows a chi-squared with κ degrees of freedom within the
statistical errors of simulation. The same results is obtained for different number of equiprobable grouping intervals
and different value of parameter. It is means that the limiting distribution of the generalized chi-squared Y 2 statistic
is distribution free.

7.1. Applications to real data

7.1.1. Breaking stress of carbon fibres (in Gba) data To test the null hypothesis H0 that these data are adjusted by
a Xg-E distribution, we use the NRR statistic obtained previously. Using the R software and the BB algorithm (see
Ravi and Gilbert [40]), we compute the maximum likelihood estimators (MLE) λ̂ = 7.1985. Then we deduce the
value of

Y 2 = 19.167408.

For significance level ε = 0.01, the critical value is

χ2
0.01(10− 1) = 21.66599,
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Figure 2. Simulated distribution of the Y 2 statistic under the null hypothesis H0,with different parameters of θ̂ versus the
chi-squared distribution with 11 degrees of freedom, with n = 150, N = 10000.

then, the NRR Y 2 statistic is less than the critical value, this allows us to say that these data correspond
appropriately to the Xg-E model.

7.1.2. Strengths of 1.5 cm glass fibres Assuming that the Strengths of 1.5 cm glass fibres data (see [44]) can be
fitted by our Xg-E model, we can find (using the BB algorithm) the MLE’s of the θ parameter as:

θ̂ = λ̂ = 1.884931.

After calculate, we give the NRR statistic test and the critical value as

Y 2 = 12.27954

and
χ2

0.05(7− 1) = 12.59159,

respectively. We can affirm that data of 1.5 cm glass fibres can be modeled by our Xg-E model with a satisfactory
manner.
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8. Goodness-of-fit test for right censored data

To verify the adequacy of the Xg-E model when the parameters are unknown and the data censored, we use
the approach proposed by Bagdonavicius and Nikulin [7] and Bagdonavicius et al. [5] that we develop in this
paragraph. It is a chi-square type test based on a modification of the NRR statistic. We adapt this test for a Xg-E
model. Let us consider the composite hypothesis

H0 : F (t) ∈ F0 =
{
F0(t,θ), t ∈ R1, θ ∈ Θ ⊂ Rs

}
,

where
θ = (θ1, θ2, ..., θs)

T ∈ Θ ⊂ Rs,

is an unknown m-dimensional parameter and F0 is a differentiated completely specified CDF with the support
(0,∞). Let us consider a finite time interval only say [0, τ ], where τ is the maximum time of the study, and divide
it into κ > s smaller intervals Ij2 = (aj2−1, aj2 ], where

0 =< a0 < a1... < aκ−1 < aκ = +∞.

In this case the estimated âj2 is given by

âj2 = Λ−1

(Ej2 −
i−1∑
j1=1

Λ(T(j1), θ̂))/(n− i+ 1), θ̂

 , âκ = T(n)|(j2=1,...,κ),

where θ̂ is the MLE of the parameter θ, Λ−1 is the inverse of cumulative hazard function Λ, T(i) is the ith element
in the ordered statistics (T(1), T(2), ..., T(n)) and

Ej2 = (n− i+ 1)Λ(âj2 , θ̂) +

i−1∑
j1=1

Λ(T(j1), θ̂),

and aj2 are random data functions such as the κ intervals chosen have equal expected numbers of failures ej2 .
Usually in real application we fix κ. Bagdonavicus et al. [6], Greenwood and Nikulin [21], Gupta et al. [22] and
Habib and Thomas [23] give some recommendations for the choice of intervals. The test is based on the vector

Z = (Z1, Z2, ..., Zκ)T , Zj2 =
1√
n

(Uj2 − ej2)|(j2=1,2,...,κ),

where Uj2 represent the numbers of observed failures in these intervals. The test for hypothesis H0 can be based
on the statistic

Y 2
n = ZT Σ̂−1Z,

where
Σ̂−1 = Â−1 + Ĉ−1ÂT Ĝ−1ĈÂ−1

and
Ĝ = î− ĈÂ−1ĈT .

The test statistic can be written in the following form

Y 2
n =

κ∑
j2=1

(Uj2 − ej2)2

Uj2

+ Q,
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where

Âj2 = n−1Uj2 ,Uj2 =
∑

(i:Xi∈Ij2)

δi,

Ĝ = [ĝj1j′1 ]s×s,Q = ŴT Ĝ−1Ŵ,

Ĉj1j2 =
1

n

∑
i:Xi∈Ij2

δi
∂

∂θ
ln
[
λi(ti, θ̂)

]
,

Ŵj1 =

κ∑
j2=1

Ĉj1j2Â
−1
j2

Zj2 , j1, j
′
1 = 1, ..., s,

Ŵ = (Ŵ1,Ŵ2, ....,Ŵs)
T ,

ĝj1j′1 = îj1j′1 −
κ∑

j2=1

Ĉj1j2Ĉj′1j2
Â−1

j2
,

îj1j′1 = n−1
n∑
i=1

δi
∂

∂θj1

ln
[
λi(ti, θ̂)

] ∂

∂θj′1

ln
[
λi(ti, θ̂)

]
and

Ĉj1j2 =
1

n

∑
i:Xi∈Ij2

δi
∂

∂θ
lnλi(ti, θ̂),

calculation of the matrices Ŵ and Î are given in the Appendix C. The limit distribution of the statistic Y 2
n is chi-

square with r = rank(Σ) = tr(Σ−1Σ) degrees of freedom. If G is non-degenerate then r = κ. The hypothesis
is rejected with approximate significance level ε if Y 2

n > χ2
ε(r) where χ2

ε(r) is the quantile of chi-square with r
degrees of freedom.

8.1. Goodness-of-fit test for the Xg-E model in case of censored data

In this section, we study the validity of the Xg-E model, by a goodness-of-fit test based on Y 2
n , the modified NRR

statistic presented in the previous section. Suppose H0 is checked, that is, the failure rate Ti follows an Xg-E
distribution, the survival function is:

S(t,θ) = 1− F (t;α, β, a) =
1

2
e−λ t

[
2 + λ t+

1

2
(λ t)

2

]
.

The choice of âj2 when the baseline distribution is the Xg-E model, is obtained as follow:
First, we have

ΛXg−E(t,θ) = − lnS(t,θ) = λ t− ln

(
1

2

)
− ln

[
2 + λ t+

1

2
(λ t)

2

]
Ej2 =

∑
i:Xi>aj2

(Λ(aj2 ∧ ti, θ̂)−Λ(aj2−1, θ̂) and Eκ =

n∑
i=1

Λ(ti, θ̂).

Under such choice of intervals we have a constant value of ej2 = Eκ/κ for any j2. There is no explicit form of the
inverse hazard function of Xg-E distribution, so we can estimate intervals by iterative method.

8.2. Simulation study

To test the null hypothesis H0 that a sample comes from a Xg-E model, we calculate Y 2
n the NRR statistic

of 10000 simulated samples with sizes n = 30, n = 150, n = 200, n = 500, respectively. For different levels of
meaning (ε = 0.02, 0.05, 0.01, 0.1); we calculate the mean of the number of no rejections of the null hypothesis
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when Y 2
n ≤ χ2

ε(r), then we present the results of the empirical values and the corresponding theoretical values in
Table 6.

Table 6: Empirical levels and corresponding theoretical levels (ε = 0.02; 0.05; 0.01; 0.1).

N = 10000 ε = 0.02 ε = 0.05 ε = 0.01 ε = 0.1

n = 30 0.9840 0.9521 0.9919 0.9024
n = 150 0.9822 0.9513 0.9911 0.9015
n = 200 0.9810 0.9509 0.9906 0.9008
n = 500 0.9804 0.9503 0.9901 0.9002

According to this results, we find that the empirical signification levels of the Y 2
n statistic coincide with those

corresponding to the theoretical levels of the chi-square distributions at r degrees of freedom. Therefore, we can
say that the proposed test can properly fit censored data from the Xg-E distribution.

8.3. Application to real data

8.3.1. Aluminum reduction cells data The data of Whitmore [47], who considered the times of failures for 20
aluminum reduction cells, and the numbers of failures in 1, 000 days units are : 0.468, 0.725, 0.838, 0.853, 0.965-
1.139, 1.142, 1.304, 1.317, 1.427, 1.554, 1.658, 1.764, 1.776, 1.990, 2.010, 2.224, 2.279*, 2.244*, 2.286*. (*
censoring). Assuming that these data are distributed according to the Xg-E distribution, the maximum likelihood
estimator θ̂ of the parameter θ is:

θ̂ = 0.99574

We choose r = 4 as number of classes. The element of the statistic test Y 2
n are presented as:

âj2 0.9430 1.2106 1.6682 2.2949

Ûj2 4 3 5 8

ej2 1.9455 1.9455 1.9455 1.9455

Ĉ1j2 0.6241 0.34577 0.31589 0.02846

Then, we can calculate the value of the statistic test

Y 2
n = 9.4435.

The critical value is
χ2

0.05(4) = 9.4877 > Y 2
n ,

we conclude that the data of Aluminum reduction cells is in concordance with the Xg-E model.

8.3.2. Arm-A head and neck cancer data The data considered below (was conducted by northern California
oncology group) was used by Efron [14] for logistic distribution. Nikulin and Haghighi [36] reanalyzed the same
data and give the acceptable fit (chi-square type test) to the generalized Weibull distribution model. The survival
times in days for the patients (n = 51) were as below (δ = 42). 7, 34, 42, 63, 64, 74*, 83, 84, 91, 108, 112, 129, 133,
133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 173, 176, 185*, 218, 225, 241, 248, 273, 277, 279*, 297,
319*, 405, 417, 420, 440, 523*, 523, 583, 594, 1101, 1116*, 1146, 1226*, 1349*, 1412*, 1417. * censoring We use
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the data after transforming the survival times in months (1 month=30.438 days). The maximum likelihood estimator
θ̂ of the parameter vector θ is, if we suppose that this data are distributed according to the Xg-E distribution :

θ̂ = 2.15246

We choose r = 7 as a number of classes. The elements of the test statistic Y 2
n was presented as follow :

âj2 2.739 4.548 9.512 21.015 37.0095 44.491 47.021

Ûj2 7 7 20 10 2 3 2

ej2 2.9475 2.9475 2.9475 2.9475 2.9475 2.9475 2.9475

Ĉ1j2 0.2709 0.31963 0.34751 0.0413 0.19245 0.4084 0.19125

after calculate, we find

Y 2
n = 14.00945.

The critical value

χ2
0.05(7) = 14.06714 > Y 2

n = 14.0094,

we can say that this data can be well modelised by the our Xg-E model.

9. Concluding remarks

In this article, a new version of the exponential distribution is proposed, studied, estimated and validated. Different
statistical properties for the new model are derived. The unknown parameter of the proposed distribution has
been estimated using different classical estimation method and Bayesian estimation method. Under classical
estimation method, we briefly describe the method of moment, maximum likelihood estimators, maximum product
of spacings estimators, least squares and weighted least squares estimators, Cramer-von-Mises estimators. The
Bayesian estimation using gamma prior using squared error loss function has been discussed and computed
using Lindley’s and Markov Chain Monte Carlo techniques. The 100(1− α)% asymptotic confidence interval
and credible interval along with the coverage probability are also discussed. The obtained classical and Bayesian
estimators are compared through Monte Carlo simulations and noted that the Bayesian procedure is more efficient
than the corresponding classical estimators. We describe the theory and the mechanism of the test statistic. The
maximum likelihood estimators is employed based on the initial non grouped data sets. Then, A numerical
simulations is performed to validate the results. Next, we construct a modified Chi-squared goodness-of-fit test
based on the NRR statistic in presence of two censored and two complete data sets to illustrate the applicability of
our model in various fields.
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Appendix

Calculation of the matrix Ŵ
The elements of the estimated matrix Ŵ defined by

Ŵj1 =

κ∑
j2=1

Ĉj1j2 Â−1
j2

Zj2 |( j1=1,2,3. and j2=1,...,κ),

are obtained as follow

Ĉj1j2 =
1

n

∑
i.ti∈Ij2

δi
∂

∂θ
lnλ(ti, θ̂),

lnλ(ti, θ̂) = ln

[
−
(
λ2ti + λ

)
+ λ

(
λ2t2i

2
+ λti + 2

)]
− ln

[
2 + λ ti +

1

2
(λ ti)

2

]
The expressions of the element of the matrix Ĉj1j2 is given as follows

Ĉ1j2 =
1

n

∑
i.ti∈Ij2

δi

(
3λ2 t

2
i

2
+ 1− ti − λ t2i

)
,

Calculation of the matrix Î
The formulas of the element of the Fisher’s information matrix Î = (̂ij1j′1)1×1 is

îj1j′1 =
1

n

∑
i.ti∈Ij2

δi
∂ lnλ(ti, θ̂)

∂θj1

∂ lnλ(ti, θ̂)

∂θj′1

.

In our case we have:

î11 =
1

n

∑
i.ti∈Ij2

δi

(
3λ2 t

2
i

2
+ 1− ti − λ t2i

)2

,

Notice that, the components of the information matrix Î are required for computation of the statistic Y 2
n .
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