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Mobile applications have become amust in every user’s smart device, andmany of these applicationsmake use of the device sensors’
to achieve its goal. Nevertheless, it remains fairly unknown to the user to which extent the data the applications use can be relied
upon and, therefore, to which extent the output of a given application is trustworthy or not. To help developers and researchers and
to provide a common ground of data validation algorithms and techniques, this paper presents a review of the most commonly
used data validation algorithms, along with its usage scenarios, and proposes a classi
cation for these algorithms. 	is paper also
discusses the process of achieving statistical signi
cance and trust for the desired output.

1. Introduction

	ere has been an increase of the number of mobile applica-
tions that make use of sensors to achieve a plethora of goals.
Many of these applications are designed and developed by
amateur programmers, and that in itself is good as it con
rms
an increase in the overall set of skills of the developer
community. Nevertheless, and evenwhen the applications are
developed by professionals or by companies, there are not
many applications that publicize or disclose how the sensors’
data is processed. 	is is a problem, in particular when these
applications are meant to be used in a scenario where they
can in�uence their users’ lives, as for example, when the data
is expected to be used to identify Activities of Daily Living
(ADLs) or, to an extreme, when the applications are used in
medical scenarios.

Due to the nature of the mobile device itself, multi-
processing, with limited computational power and limited

battery life, the data that is collected from the sensors is o�en
unusable in its primary form, requiring further processing
to allow it to be representative of the event or object that it
is supposed to measure. 	e recording of sensor data and
the sequent processing of this data need to include validation
subtasks that guarantee that the data are suitable to be fed into
the higher-level algorithms.

Moreover, the use of the sensors’ data to feed higher-
level algorithms needs to guarantee a minimum degree of
error, with this error being the di
erence between the output
of these applications, built on limited computational mobile
platforms, and the output of a golden standard. To achieve
a minimum degree of error, statistical methods need to be
applied to ensure that the output of the mobile application is
tomaximumextent similar to the output given by the relevant
golden standard, if and when this is possible.

To mitigate this problem, this paper presents and
discusses the most used data validation algorithms and
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techniques and their usage in a mobile application that relies
on the sensors’ data to give meaningful output to its user.	e
algorithms are listed and their use is discussed.	ediscussion
of the statistical process to ensure maximum reliability of the
results is also presented.

	e remainder of this paper is organized as follows: this
paragraph concludes Section 1, where a short introduction
to the problem and a proposal to achieve its mitigation are
disclosed; Section 2 presents the most commonly found data
validation methods, along with a critical comparison of its
usage scenarios; Section 3 deepens the analysis presenting
a classi
cation of the data validation methods; Section 4
discusses the applicability of these methods, including the
discussion of the degree of trust the data can be expected to
provide; 
nally, Section 5 presents relevant conclusions.

2. Data Validation Methods

Sensor data validation is an important process executed
during the data acquisition and data processing modules of
the multisensor mobile system. 	is process consists of the
validation of the external conditions of the data and the
validity of the data for speci
c purpose, in order to obtain
accurate and reliable results. 	e sequence of this validation
may be applied not only in data acquisition but also in data
processing since increase, as these increase the degree of
con
dence of the systems, with the con
dence in the output
being of great importance, especially for systems involved in
medical diagnosis, but also for the identi
cation of ADLs or
sports monitoring.

In addition, data validationmethodsmust be used during
the di
erent phases of the conception of a new system,
such as design, development, tests, and validation.	erefore,
the data validation methods with veri
ed reliability during
the conception should be also used to validate the data
automatically during the execution time.

One of the causes for the presence of incorrect val-
ues during the data acquisition process may be existence
of environmental noise. Even when the data is correctly
collected, the data may still be incorrect because of noise.
	erefore, very o�en the data captured or processed has to
be cleaned, treated, or imputed to obtain better and reliable
results. Following the existence of missing values at random
instants of time, the causes may be the mechanical problems
or power failures of sensors. At this case, data correction
methods should be applied, including data imputation and
data cleaning. 	e data validation process may be simpli
ed
as presented in Figure 1.

	e selection of the best technique for sensor data
validation also depends on the type of data collected, the
purpose of its application, and the computational platform
where the algorithm will be run. Data validation techniques
are commonly composed by statistical methods. Due to the
characteristics of mobile devices, data validation techniques
can be executed locally in the mobile device or at the
server-side, depending on the amount of data to validate
simultaneously, the frequency of the validation tasks, and
the computational, communication, and storage resources
needed for the validation. 	e characteristics of the sensors

are also important for the selection of the best techniques,
which may be separated in three large groups, which are
sensor performance characteristics, pervasive metrics, and
environmental characteristics [1].

While data validation is important for improving the
reliability of a system, it also depends on other factors, such
as power instability, temperature changes, out-of-range data,
internal and external noises, and synchronization problems
that occur when multiple sensors are integrated into a
system [2]. However, the reconstruction of the data and
correction for the correct measurement is also important,
and several research studies have proposed systems,methods,
models, and frameworks to improve the data validation and
reconstruction [3, 4].

Sensor data validation methods can be separated in three
large groups, such as faulty data detection methods, data
correction methods, and other assisting techniques or tools
[5].

Firstly, faulty data detection methods may be either
simple test based methods or physical or mathematical
model based methods, and they are classi
ed in valid data
and invalid or missingness data [6, 7]. For the detection
of faulty data, the authors in [7] presented an order of
methods that should be applied to obtain better results,
which are as follows: zero value detection, �at line detection,
minimum and maximum values detection, minimum and
maximum thresholds based on last values, statistical tests
that follow certain distributions, multivariate statistical tests,
arti
cial neural networks (ANNs) [8], one-class support
vector machine (SVM) [9], and classi
cation and physical
models. On the one hand, simple test based methods include
di
erent techniques, such as physical range check, local
realistic range detection, detection of gaps in the data, con-
stant value detection, the signals’ gradient test, the tolerance
band method, and the material redundancy detection [7,
10, 11]. On the other hand, physical or mathematical model
based methods include extreme value check using statistics,
dri� detection by exponentially weighted moving averages,
the spatial consistency method, the analytical redundancy
method, gross error detection, the multivariate statistical test
using Principal ComponentAnalysis (PCA), and datamining
methods [7, 12, 13].

Secondly, data correction methods can be carried out by
interpolation, smoothing, data mining, and data reconcilia-
tion [10, 12, 14]. For the application of the interpolation, the
authors of [11] proposed the use of the value measured from
the last measurement or the use of the trend from previous
sets of measurements. 	e smoothing methods, for example,
moving average and median, may be used to 
lter out the
random noise and convert the data into a smooth curve that
is relatively unbiased by outliers [10]. 	e application of data
mining techniques allows the replacement of the faulty values
by the measurements performed with several methods, for
example, ANNs [14]. 	e data reconciliation methods, for
example, PCA, are used for the calculation of a minimal
correction to themeasured variables, according to the several
constraints of the model [13].

	irdly, the other assisting techniques or tools are,
namely, the checking of the status of the sensors, the checking



Journal of Sensors 3

Data cleaning/noise removal

Origin: data acquisition/data processing

Data is
valid?

Next stages: data processing/data fusion

Yes

Data is
complete?

No
Discard the dataYes

Data imputation

No

Data is
valid?

No

Yes

Sensors So� sensors

Data discarded

Figure 1: Sequence of activities performed during the data validation process.

of the duration a�er sensor maintenance, data context clas-
si
cation, the calibration of measuring systems, and the
uncertainty consideration [6, 7, 10].

Several research studies have been performed, using data
validation techniques. In [15], PCA is used for the compres-
sion of linearly correlated data. 	e authors compared the
Auto-Associative Neural Network (AANN) and the Kernel
PCA (KPCA) methods for data validation, creating a new
approach named asHybridAANN-KPCA that uses these two
methods. When compared with AANN and KPCA meth-
ods, the Hybrid AANN-KPCA achieves better performance
results for the prediction or correction of inconsistent data.

In [16], the authors proposed that the data validation
may be performedwithKalman 
ltering and linear predictive
coding (LPC), showing that the results using Kalman 
ltering
are better than LPC using several types of data, but the LPC
reported a smaller energy consumption.

Several studies proposed the use of ANNs, for example,
the Multilayer Perceptron (MLP), that can be trained to
perform the identi
cation of faulty sensors using prototype
data and used to determine the near optimal subset of sensor
data to produce the best results [2, 17–19]. Besides, the sensor
data validation may be performed with other probabilistic
methods, such as Bayesian Networks, Propagation in Trees,
Probabilistic CausalMethods, and Learning Algorithms [20].
	e authors of [20] proposed the anytime sensor validation
algorithms that combine several probabilistic methods. On
the contrary, [21] proposed the validation of data using the
Sparse Bayesian Learning and the Relevance Vector Machine
(RVM), which are an specialization of SVM.

For the estimation of the values during data validation,
the authors of [22] analysed the use of the Kalman 
lter,

which was implemented in twomethods: Algorithmic Sensor
Validation (ASV), and Heuristic Sensor Validation (HSV).
	e ASV method implements di
erent statistical methods,
for example, mean, standard deviation, and sensor con
-
dence that represent the uncertain nature of sensors. HSV
identi
es faulty sensor readings as attributable to a sensor or
system failure. As an example, the authors of [23] proposed
the use of the Kalman 
lter for the validation of the GPS
data.

Other used methods are the grey models, which consists
of di
erential equations describing the behaviour of an
accumulated generating operation (AGO) data sequence. As
an example, [4] presented a novel self-validating strategy
using grey bootstrap method (GBM) for data validation and
dynamic uncertainty estimation of self-validating sensor.	e
GBM can evaluate the measurement uncertainty due to poor
information and small sample.

In [2], the Autoregressive Moving Averages (ARMA)
transform the process for determining the validity of the
acquired data, evaluating the levels of noise and providing
a timely warning from the expected signals. 	e model
created for ARMA includes linear regression techniques to
predict the invalid values with Autoregressive (AR) and
Moving Average (MA) models. Sensor Data Validation in
Aeroengine Vibration Tests also implements the Autoregres-
sive (AR) Model, complemented with the Empirical Mode
Decomposition (EMD) [24]. Another method presented is
the sensor validation and fusion of the Nadaraya-Watson
statistical estimator [25], using a Fuzzy Logic model [26].
	ese methods and others, including the use of Gaussian
distributions and error detection methods, may be also used
to improve the quality of the measurements [27, 28].
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Intelligent sensor systems are able to perform the capture
and validation of the sensors’ data. Staroswiecki [29] argues
that the data validation is important to increase the con
-
dence level of these systems, proposing two types of vali-
dation, such as technological and functional. Technological
validation consists on the analysis of the conditions of the
hardware resources of the sensors, but it does not guarantee
that the estimation produced by the sensor is correct, but
only that the operating conditions were not against possible
correctness. On the contrary, functional validation consists
of Fault Detection and Isolation (FDI) procedures, which
consists of the use of algorithms to complement the Tech-
nological Validation. 	e authors of [30] also agreed with
Staroswiecki in the separation of the data validation in two
types, presenting a real time algorithm based on probabilistic
methods. Other studies have been researched and developed,
including the data validation techniques using intelligent
sensor systems [31].

Another powerful technique for data validation consists
of the use of self-validating (SEVA) sensors, which provide an
estimation of the error bounds during themeasurements [32].
SEVA are widely researched in literature. An example, using
a Back-Propagation (BP) model, is applied into a system to
obtain an estimated value and then a fault detection method
called SPRT (sequential probability ratio test), identifying the
validity of the system [33]. For the use of SEVA technologies,
the authors of [34] also proposed the validated random fuzzy
variable (VRFV) based uncertainty evaluation strategy for
the online validated uncertainty (VU) estimation. In [35],
the authors presented a novel strategy of using polynomial
predictive 
lters coupled with VRFV which is proposed for
the online measurements validation and validated uncer-
tainty estimation of multifunctional self-validating sensors.
	ese authors also performed a research about the use of
some fuzzy logic rules, comparing the predicted values with
the actual measurements to obtain the con
dence evaluation
[36]. In [37], the authors proposed an approach of sensor data
validation using self-reporting, including the measurement
based on the data quality, that is, validating the data loss
measured by periodic sensors, the timing of data collection,
and the accuracy of the detection of changes. ANNs may
be used for SEVA with self-organizing maps (SOM) [38],
which are trained using unsupervised learning techniques to
produce a low-dimensional, discretized representation of the
input space of the training samples [39].

	e use of valid data is important for the developments
of intelligent sensor systems, which may be used for health
purposes and, consequently, for the detection of the ADLs
[40–45].	e use ofmobile devices allows the data acquisition
anywhere and at anytime, but these devices have several con-
straints, such as low memory, processing power, and battery
resources, but data validation may help for increasing of the
performance of the measurements, reducing the resources
needed [46–48]. In general, these systems use probabilistic
methods to detect the failures at real-time to obtain better
results.

Table 1 presents a summary of the data validation
methods included on each category. 	e methods that are
mainly implemented use statistical and arti
cial intelligence

techniques, such as PCA, RVM,ANNs, and others, increasing
the reliability of the data acquisition and data processing
algorithms. In spite of the SVM and the ANN working in a
slightly di
erent manner, their foundations are quite similar.
In fact the SVM without kernel is a single neural network
neuron with a di
erent cost function. Congruently, when the
SVM has a kernel it is comparable with a 2-layer ANN.

Following the methods presented at Table 1, the most
studied scenarios for data validation are mainly related to
health sciences, laboratory experiments, and other undif-
ferentiated tasks. However, only a minor part of studies is
related to the use of mobile devices, smart sensors, and other
devices used daily. Besides, the development of healthcare
solutions based on the sensors available on the mobile
devices increases the requirement of the validation of the
data collected by the sensors available on the mobile devices.
Depending on the types of the data, for some complex data
acquired, such as images, videos, GPS signal, and other
complex types of data, the validation of the data should be
accomplished by other auxiliary systems working at the same
time, validating the data at the server-side, but a constant
network connection must be available. Other topologies of
systems may be susceptible for the implementation of data
validation techniques. 	eWireless Sensor Networks (WSN)
are an example of systems where the di
erent nodes of the
network may perform the validation of the data collected for
the neighbourhood nodes, and these nodesmay be composed
of di
erent types of sensors. However, the main topology for
the implementation with mobile devices is the self-validation
using only the sensors and the data available on the mobile
device.

	e data validation may be executed automatically and
transparently for the mobile devices’ user and, commonly,
at least one of the methods for each stage should be imple-
mented in a system to perform the validation of the sensors’
data. Firstly, for faulty data detection methods, the ANNs
are the most used methods for the training of the data
and for the detection of the inconsistent values. Secondly,
for data correction methods, the most used method is the
Kalman 
lter. 	irdly, the other assisting techniques that
are commonly applied are the data context classi
cation,
the checking of the status of sensors, and the uncertainty
considerations. Applying the data validation techniques cor-
rectly, the reliability and acceptability of the systems may be
increased.

3. Classification of Data Validation Methods

Data validation methods may be classi
ed in three large
groups [5] as follows: faulty data detection methods, data
correction methods, and other assisting techniques or tools.

	e faulty data detectionmethods and the data correction
methods may be executed sequentially in a multisensor
system in order to obtain the results based on valid data. 	e
other assisting techniques or tools mainly consist of the vali-
dation of the working state of the sensors, and this validation
may be executed at the same time of the execution of faulty
data detection and data correction methods, because these
types of failures invalidated the results of the algorithms.
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Table 1: Classi
cation of the data validation methods by functionality.

Groups of data validation methods Methods included Description

Faulty data detection methods

ANNs
(i) MLP; AANN; BP algorithm; SVM;

Instance based
(i) SOM

Gaussian distributions
Statistical methods

(i) ASV; HSV
Probabilistic methods

(i) Bayesian Networks; Propagation in Trees;
Probabilistic Causal Methods; Learning Algorithms;
Sparse Bayesian Learning; RVM; SPRT

Dimensionality Reduction
(i) Fuzzy logic; PCA; KPCA;

others
(i) Hybrid AANN-KPCA

Consisting of the detection of faulty or
incorrect values discovered during the
data acquisition and processing stages

Data correction methods

Kalman 
lter
LPC
ARMA

(i) AR; MA; EMD
Nadaraya-Watson statistical estimator
Interpolation
Smoothing
Data mining techniques
Data reconciliation techniques

Consisting of the estimation of faulty or
incorrect values obtained during the data
acquisition and processing stages

Other assisting techniques or tools

Checking of the status of the sensors
Checking of the duration a�er sensor maintenance
Data context classi
cation
Calibration of measuring systems
Uncertainty consideration
Grey models

(i) GBM; dynamic uncertainty estimation of
self-validating sensor

VRFV method

	ese are di
erent approaches created for
the correct validation of the data

	ese di
erent approaches are based on either mathematical
methods, for example, statistical or probabilistic methods, or
complex analysis, for example, arti
cial intelligencemethods.
According to [49], the data validation methods may be
classi
ed in several types of methods, which are presented in
Figure 2.

As depicted in Figure 2, the faulty data detection meth-
ods, used to detect failures on the sensors’ signal, may
include ANNs, dimensional reduction methods, instance
based methods, probabilistic and statistical methods, and
Bayesian methods. On the contrary, the data correction
methods include the following methods: 
ltering, regression,
estimation, interpolation, smoothing, data mining, and data
reconciliation. 	ese methods work speci
cally with the
sensors’ data and the selection of the methods that can
be applied by a system should consider the system’s usage
scenarios.

Finally, the other assisting techniques or tools are mainly
related to detection of problems originated by either hard-
ware components or its working environment. In addition,
on real-time systems, these problems should be veri
ed
constantly to prevent the existence of failures in the data
captured.

4. Applicability of the Sensor Data
Validation Methods

Mobile devices have a plethora of sensors available for the
measurement of several parameters, including the identi
-
cation of the ADLs. Examples of these sensors include the
accelerometer, the gyroscope, the magnetometer, the GPS,
and the microphone.

	e data acquisition using accelerometers may fail
because of several problems, including problems related with
the internal electronic ampli
er of the Integrated Electronic
Piezoelectric (IEPE) device, the exposure to temperatures
beyond the accelerometer working range, failure related with
electrical components, capture of environmental noise, the
multitasking and multithreading capabilities of the mobile
devices that may cause irregular sampling rates, the position-
ing of the accelerometer, the low processing and memory
power, and the battery consumption [50]. 	e causes of
failure of an accelerometer are similar to the causes of the
failure of a gyroscope, a magnetometer, or a microphone [51].
In addition, the GPS has another failure cause, which consists
of the low connectivity of satellites in indoor environments
[52].
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Figure 2: Di
erent categories of the data validation methods.

	e validation of the data is important, but, for critical
systems, for example, clinical systems, not only should the
input data be validated, but also the results should be vali-
dated to guarantee the reliability, accuracy and, consequently,
acceptance of the system. 	e validation of the system may
consist of the detection of failures and the methods that may

be applied are the faulty detection methods. As presented
in Section 3, the methods that may be included in this
category are probabilistic and statistical methods, among
others, which may be used to validate the results of the
system. 	is validation can be performed by comparing the
results obtained by an equivalent system which is considered
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to be a gold standard [53] with the results obtained by
the developed methods implemented by di
erent sensors or
devices, for example, a mobile device.

Once estimated the initial error of the system, that is, how
di
erent the obtained results are from the results obtained
by the gold standard system, the validation of the results of
the system consist of three steps, such as the de
nition of
the con
dence level needed for the acceptance of the system,
the determination of the minimum number of experiments
needed to validate the application with con
dence level
de
ned, and the validation of the results when compared
to a golden-standard [54]. 	e de
nition of the degree of
con
dence of the system is a choice of the development
team. 	e system design leader may de
ne what system
needs to have a maximum 5% error 95% of the times.
Using these parameters, a minimum number of calibration
experiments need to be performed to allow the 
ne tuning
of the algorithm.	e minimum number of experiments may
be measured by several statistical tests, for example, Student’s
�-test [55].

A�er the calibration of the algorithms in the system,
further tests and comparison with golden-standard systems
can be done to insure that the results reported by the
system have a 5% maximum error when compared to the
golden standard results, for 95% of the time. Note that
the 5% and 95% values are merely indicative. Moreover,
the data collection stage must hold into consideration the
limits for the optimal functioning of the sensors. As these
limits are extremely dependent on the task the sensors must
perform, we do not discuss them in this paper, for example,
if the application is supposed to track the movements of a
sportsperson in an open environment, it is possible that a
thermal sensor reports an environment temperature of −5∘C,
yet, for an application that tracks the indoor activity of an
elder, such value should raise an alarm. In this extreme case,
it is even possible that more robust systems need to contain
di
erent types of sensors.

5. Conclusion

	e validation of the data collected by sensors in a mobile
device is an important issue for two main reasons: the 
rst
one is the increasing number of devices and the applications
that make use of the devices’ sensors; the other is that also
increasingly users rely on these devices and applications to
collect information and make decisions that may be critical
for the user’s life and well-being.

Despite the fact that there is a wide array and types of
data validation algorithms, there is also a lack of published
information on the validity of many mobile applications.
Also, it is impossible to present a critical comparison of the
discussed methods, even within their respective categories,
as their e�ciency is extremely dependent on their particular
usage; for example, the e�ciency of a speci
c method may
be very dependent on the number and type of features
the algorithm selects on the signal to be processed, and of
course these features are chosen in view of the intended
purpose of the application. Additionally, it is possible that
evenwith the same chosenmethod and the same chosen set of

features, di
erent authors report di
erent e�ciency ratios; for
example, their base population sample varies in size and/or
type using di
erent population sizes or using populations that
are homogenous in age (elders or youngsters).

	is paper has presented a discussion on the di
erent
types of data validationmethods such as faulty data detection,
data correction, and assisting techniques or tools. Further-
more, a classi
cation of these methods in accordance with
its functionalities was provided. Finally, the relevance of the
data validation methods for critical systems in terms of its
reliability, accuracy and acceptancewas highlighted. Comple-
mentary studies should be addressed aiming at providing an
overview on the use of valid data for the identi
cation of the
ADLs.
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