
VALIDITY AND FAILURE OF THE BOLTZMANN APPROXIMATION
OF KINETIC ANNIHILATION

KARSTEN MATTHIES AND FLORIAN THEIL

Abstract. This paper introduces a new method to show the validity of a continuum
description for the deterministic dynamics of many interacting particles. Here the many
particle evolution is analyzed for a hard sphere flow with the addition that after a col-
lision the collided particles are removed from the system. We consider random initial
configurations which are drawn from a Poisson point process with spatially homogeneous
velocity density f0(v). Assuming that the moments of order less than three of f0 are
finite and no mass is concentrated on lines, the homogeneous Boltzmann equation with-
out gain term is derived for arbitrary long times in the Boltzmann-Grad scaling. A key
element is a characterization of the many particle flow by a hierarchy of trees which en-
code the possible collisions. The occurring trees are shown to have favorable properties
with a high probability, allowing to restrict the analysis to a finite number of interacting
particles, enabling us to extract a single-body distribution. A counter-example is given
for a concentrated initial density f0 even to short-term validity.
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The derivation of the continuum models of mathematical physics from atomistic descrip-
tions is a longstanding and fundamental problem. This includes e.g. the emergence
of irreversible macroscopic behavior generated by deterministic reversible Hamiltonian
micro-evolution.
An illustration of this question is provided by deterministic hard ball dynamics with ran-
dom initial states. For high particle numbers and suitably scaled diameters it is expected
that the time-evolution of the density is close to the solution of the Boltzmann equation

(1) ∂tf + v · ∂uf =

∫

Rd×Sd−1

(f(u, ṽ)f(u, ṽ′)− f(u, v)f(u, v′))((v − v′) · ν)+ dv′ dν,

where g+ = max(g, 0) is the positive part, ṽ, ṽ′ are obtained from v, v′ by exchanging the
respective components of v and v′ in direction ν, that is

ṽ = v + (v′ − v) · ν ν, ṽ′ = v′ + (v − v′) · ν ν,

and ft(u, v) is the density of presence at time t of particles at locations u with velocity v,
see [Spo91].
An important concept which sheds some light on the connection between the Boltzmann
equation and hard ball dynamics is the propagation of chaos. Though the distribution
pN(u1, v1 . . . , uN , vN , t) of N particles loses its product structure for nonzero time t, the
marginal distribution of the first k particles should be very close to a product measure
when the total number of particles N is large. A classical method to establish propagation
of chaos is to express the evolution of k-particle marginals in terms of the k + 1-particle
marginals. This strategy is implemented in the BBGKY hierarchy. The weakness of this
approach consists in the fact that establishing convergence of the resulting series is hard
in many cases. O. Lanford succeeded in proving that in the case of hard ball dynamics the
series that corresponds to the BBGKY hierarchy converges for small times to a solution of
the Boltzmann equation [Lan75]. Unfortunately it cannot be shown that the time interval
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where the series is known to converge is larger than a small fraction of the mean free flight
time, regardless of the initial data. This problem was partially overcome by [IP89] who
managed to obtain a global result if the positions are in Rd and the initial density is
sufficiently small. Other related results can be found in [Gal70, Lan75, Spo78, BBS83,
Spo91, CIP94] and references therein. However, currently there is no result which covers
the case where both data and time are large. It is arguable that the justification of the
Boltzmann equation (1) as a scaling limit of deterministic evolution constitutes a part of
Hilbert’s sixth problem [Hil00].
In [LN80] the same strategy is applied to the simpler problem of coagulation. Here
the spheres move along Brownian paths and two intact spheres annihilate each other if
the distance between the centers drops below a. Although the series generated by the
BBGKY hierarchy does not converge globally in time, Lang and Nguyen were able to
give a rigorous justification of the corresponding Boltzmann equation by restarting the
procedure at small positive time.
In this paper we consider kinetic annihilation, another simplification of hard ball dynamics
which keeps two central features of the original evolution: The initial state is random, the
evolution is deterministic. We assume that the initial configuration ω is a finite subset of
the phase space Td×Rd (Td is the unit torus) and is drawn from a Poisson point process
with some intensity µ ∈ M+(Td×Rd). As long as they are intact the centers of the spheres
move along straight lines with constant velocity. When the centers of two spheres, which
are still intact, come within distance a, then both spheres are destroyed. Another term
for this type of evolution is ”ballistic annihilation”.
We will consider the asymptotic behavior of the system in the limit where the diameter
a of the particles tends to 0 and the total intensity n = µ(Td × Rd) is linked to a by the
Boltzmann-Grad relation

(2) nad−1 = 1.

The central question in this paper is whether for small values of a the many-body evolution
can be described by the gainless Boltzmann equation

(3) ∂tf + v · ∂uf = Q−[f, f ],

where f(u, v) is the distribution function for (u, v) ∈ Td×Rd; the expression Q−[f, g](v) =
−κdf(v)

∫
Rd dg(v′) |v− v′| is the loss term of the hard-sphere collision kernel of the Boltz-

mann equation (1) and κd is the volume of the d− 1 dimensional unit-ball. For the sake
of simplicity we will restrict ourselves to the case where the initial density f0 does not
depend on u, in this case the transport term v ·∂uf in eq. (3) vanishes and ft(u, v) = ft(v).
We will establish the validity of the Boltzmann equation (3) in the following, probabilistic
sense: Let (u(t), v(t)) be the position and velocity of a tagged particle at time t, then for
A ⊂ Td × Rd Borel.

lim
a→0

Prob((u(t), v(t)) ∈ A and the particle is intact at time t)

=
1

f0(Rd)

∫

A

du dft(v).(4)

Since the distribution of the N particles is invariant under permutation it is irrelevant
which particle index we use to define the validity. Following standard proofs of strong
laws of large numbers, see e.g. [Dur], simple bounds on correlations which are beyond the
scope of this paper, can be used to deduce that the validity of the Boltzmann equation in
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the sense of eq. (4) implies that the solution f can also be interpreted as a density, i.e.

lim
a→0

Prob

(∣∣∣∣ 1
n
#{i | (ui(t), vi(t)) ∈ A and particle i is intact at time t}

−
∫

A

du dft(v)}
∣∣∣∣ > ε

)
= 0

for all ε > 0 and all A ⊂ Td × Rd Borel.
Kinetic annihilation dynamics can be used to model growth and coarsening of surfaces,
see [KS88], and has been studied extensively in the physics literature, see [EF85, Pia95,
DFPR95, PTD02, CDPTW03].
The main result of this paper is a rigorous proof that the gainless Boltzmann equation
(3) is valid in the sense of eq. (4), provided that f0 ∈ M+(Td × Rd) is homogeneous (i.e.
f0(u, v) = f0(v) for all u), has finite total mass and kinetic energy

(5)

∫

Rd

(1 + |v|)2 df0(v) = Kini < ∞
and does not concentrate mass on single velocity directions, i.e.

(6)

∫

ρ(v,ν)

df0(v
′) = 0 for all v ∈ Rd, ν ∈ Sd−1,

where ρ(v, ν) = v + R ν is a line.
The results were announced –without proof– in [MT08]. The assumption that f0 is ho-
mogeneous will be dropped in a forthcoming publication. Bounds on the moments of f0

are standard in the literature, but assumption (6) appears to be new. In Section 3 we
will discuss an example which shows that this assumption cannot be dropped without
losing the approximation property of the Boltzmann equation. We demonstrate that for
arbitrarily short but finite times the limit of the empirical density is not consistent with
the mean-field theory. This shows that further assumptions are needed in the informal
justification of the gainless Boltzmann equation in [PTD02].
In the proof we insert an additional layer between the single-body densities and the N -
body evolution: The probability distribution of trees which encode the collision history
of the individual particles. A very similar approach has been used previously in [Sz91]
in connection with coagulation dynamics. We introduce two separate distributions, the
empirical tree distribution P̂ which is extracted from the many body evolution and an
idealized distribution P which is postulated and ignores correlations caused by rare events
such as recollisions.
The main steps of the proof are concerned with clarifying the relation between trees, the
single-body evolution and the many-body evolution:

(1) We construct explicit expressions for the empirical tree distribution P̂ and the
idealized distribution P .

(2) The convergence of the empirical distribution P̂ to the limiting distribution P can
be established within the set of good trees G. Together with the proof that the
complement of G is small, this amounts to establishing convergence of P̂ to P in
the total-variation sense.

(3) We show that ft, the single body marginal of P , satisfies the gainless, homogeneous
Boltzmann equation.

In section 4, we collect some proofs, which are not immediately needed in the under-
standing and the development of the concepts of this article. In section 5, we discuss
conclusions, variants and extensions. An appendix with a list of frequently used notation
is included.
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1. Main result

On the atomistic level we consider N particles with initial values (u0(i), v0(i)) ∈ Td×Rd,
i = 1, . . . , N , which evolve by force-free Newtonian dynamics

u(i, t = 0) = u0(i), v(i, t = 0) = v0(i),

u̇(i, t) = v(i, t), v̇(i, t) = 0.(7)

For each t ∈ [0,∞), i ∈ {1, . . . , N} there exists a unique scattering state β(a)(i, t) ∈ {0, 1}
which indicates whether the i-th particle has already collided (β(i) = 0) or not (β(i) = 1).
We assume that particles that overlap initially do not collide, and obtain that β satisfies
the implicit relation

β(a)(i, t) =

{
1 if dist(zi, zi′ , s) ≥ aβ(a)(i′, s) for all s ∈ [0, t), i′ 6= i,

0 else
(8)

with a modified distance function to ignore initial intersections
(9)

dist((u, v), (u′, v′), t) =





2a if |u− u′|Td < a and

|u− u′ + s(v − v′)|Td ≤ a for all s ∈ [0, t),

|u− u′ + t(v − v′)|Td else.

Here |.|Td is the distance on the torus, i.e. |ũ|Td = infk∈Zd |ũ − k|Rd . We are interested
in the evolution of a tagged particle when the initial configuration is drawn according to
a modified Poisson-point process. The modification accounts for the fact that the total
number of particles in the system exceeds or equals 1. This concept is related to Palm
measures of Poisson processes, see e.g. [Kal05, Sec 2.7].

Definition 1 (Tagged Poisson point processes). Let Ω be a locally compact metric space.
The tagged particle z1 is an independent random variable with law µ/µ(Ω). The random
variable z̃ ∈ ⋃∞

r=0 Ωr forms a Poisson point process with density µ ∈ M+(Ω) (non-negative
Radon measures, i.e. positive elements of (C0

c (Ω))∗) if

Prob(z̃ ∈ Ωr) = e−µ(Ω)µ(Ω)r

r!
, law(z̃i) = µ/µ(Ω),

and z̃1, . . . , z̃r are independent. Now letting N = r + 1 ∈ {1, 2, . . .}, realizations of the
tagged Poisson point process (tppp) are obtained by letting z = (z1, . . . , zN) = (z1, z̃), i.e.
one obtains for symmetric A ⊂ ⋃∞

N=1 ΩN that

Probtppp((z1, . . . , zN) ∈ A) =
1

µ(Ω)eµ(Ω)

∞∑
N=1

1

(N − 1)!

∫

A∩ΩN

dµ(z1) . . . dµ(zN).

Theorem 2. (Validity of the gainless Boltzmann equation) Let the probability measure
f0 ∈ PM(Rd), d ≥ 2, be a momentum density that satisfies (5, 6). Let ω ⊂ Td × Rd be a
realization of the tagged Poisson point process with intensity µ = n (1Td ⊗ f0), where 1Td

is the standard Lebesgue measure restricted to the unit-torus, and n is determined by a
and the Boltzmann-Grad scaling (2). If N = #ω particles with initial values in ω evolve
by (7), then for each t ∈ [0,∞)

lim
a→0

sup
A⊂Td×Rd Borel

∣∣∣∣Probtppp

(
z(1, t) ∈ A and β(a)(1, t) = 1

)
−

∫

A

du dft(v)

∣∣∣∣ = 0(10)
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where f : [0,∞) → M+(Rd) is the unique solution of the homogeneous, gainless Boltzmann
equation

(11) ḟ = Q−[f, f ], ft=0 = f0,

with Q−[f, f ](v) = − ∫
Rd df(v′) κd|v − v′| f(v), and κd the volume of d − 1 dimensional

unit-ball, in particular κ2 = 2, κ3 = π.

Corollary 3. The measures 1Td ⊗ ft and

df̂
(a)
t (u, v) = Probtppp(z(1, t) ∈ [u, u + dv)× [v, v + dv) and β(a)(1, t) = 1)

are both absolutely continuous with respect to 1Td ⊗ f0. Furthermore

(12) lim
a→0

f̂
(a)
t = 1Td ⊗ ft

in the L1(1Td ⊗ f0) norm.

The proof of the theorem and the corollary can be found at the end of Section 2.

Remark 4. (1) Note that the tagged Poisson point process is a symmetric point process.
The motivation for working with this process is that the realizations of the tagged
ppp without the tagged particle form a ppp and we obtain a very simple explicit
formula for the distribution of trees, see (61), hence the complexity of the proof can
be reduced. On the other hand, it seems that the formulae for the joint distribution
of two trees are much more complicated, therefore we will only make statements
which concern the law of a single, tagged particle.

(2) The assumption
∫
Rd df0(v) = 1 is a standard normalization, but it is not necessary.

(3) Assumption (6) does not exclude the possibility that f0 is concentrated on lower
dimensional subsets, for example the uniform distribution on the sphere Sd−1 is
admissible, i.e. f0 satisfies

(13)

∫
ϕ(v) df0(v) :=

1

Hd−1(Sd−1)

∫

Sd−1

ϕ(v) dHd−1(v),

for all testfunctions ϕ ∈ Cc(Td × Rd), where Hd is the d-dimensional Hausdorff-
measure.

(4) We will analyze effects due to concentration by a Taylor expansion in time of ft

in Section 3.

2. Proof of theorem 2

2.1. The hierarchy of evolutions. We replace the initial value problem (11) by an
infinite system using general initial distribution without concentrations

(14) ḟk = Q−[fk−1, fk], ft=0,k = f0.

Since Q− is quadratic, for fixed k the integro-differential equation (14) is in fact linear and
non-autonomous. The differential equation completely decouples in v and the equation
for each v is a scalar linear non-autonomous ODE, which can be directly integrated to

(15) ft,k = exp(−∫ t

0
L[fs,k−1] ds)f0,

where L[f ](v) = κd

∫
df(v′) |v − v′|. We observe that dft,k(v) is absolutely continuous

with respect to df0(v) due to the decoupling in v.

Lemma 5. Let f0 ∈ M(1+|v|)2 then fk converges in C0
ρ([0,∞),M1+|v|) to f for some ρ > 0

and f ∈ C1([0,∞),M1+|v|) is the unique solution of (11). Furthermore ft ∈ M(1+|v|)2 for
all t ∈ [0,∞).
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By M1+|v| and M(1+|v|)2 we mean the set of Radon measures on Rd with first and second
moments, Cρ denotes the continuous functions which grow not faster than eρt. The proof
of Lemma 5 together with a precise definition of the function spaces can be found in
Section 4.
Now we have to translate this idea into the context of deterministic many-body dynamics.
To limit the complexity of the notation we will from now on assume that everything except
the constants depends on a without displaying the dependency. For every realization of
the N -body evolution the random variable β(i, t) ∈ {0, 1}, which encodes the scattering
state of particle i ∈ {1 . . . N} at time t ∈ [0,∞), satisfies the implicit relation (8). The
computation of β can be simplified by introducing a hierarchy of artificial evolutions
indexed by k ∈ N. We assume that the initial values of the particles at all levels are
identical. The particles at level k = 1 are simply transported and do not interact with
anything. The particles at level k > 1 interact only with the particles at level k−1, but not
with each other. For each k ∈ N and i ∈ {1, . . . , N} the scattering state βk(i, t) ∈ {0, 1}
is defined in the following way

βk(i, t) =

{
1 if dist(zi, zi′ , s) ≥ aβk−1(i

′, s) for all s ∈ [0, t), i′ 6= i,

0 else,
(16)

β1(i) ≡ 1,(17)

with dist as in (9).

Remark 6. While the determination of the collision-state β(i, t) is a complicated problem,
the state βk(i, t) emerges via a very simple calculation from βk−1(·, t).
Lemma 7. For all realizations of the processes of the initial conditions (u0, v0) ∈

⋃∞
N=0(Td×

Rd)N both βk(i, t) and β(i, t) are well defined and

(18) lim
k→∞

βk(i, t) = β(i, t)

pointwise in i and uniformly in t.

Proof. See section 4. ¤

2.2. The concept of marked trees. The translation of the N -body evolution into
scattering states β is greatly facilitated by the concept of trees. In the collision tree with
root (u, v) we will collect information of collisions and potential collisions up to time t for
a particle with initial data (u, v).
As an example assume that N = 4 and consider the scenario in Fig. 1 where the letters
A,B,C,D are the labels of the four particles, the empty circles are the initial positions and
the arrows are the initial velocities. Consequently the arrow-tips indicate the positions of
the particles at time t = 1.
To determine whether a certain particle has been scattered before time t = 1 it suffices
to analyze the associated collision tree which is constructed as follows: The particle of
interest is the root with initial data (u, v). The particles which are potentially scattered
by the root are added as nodes, i.e. a particle with initial data (u′, v′) is added, if
dist((u, v), (u′, v′), s) ≤ a for some s ∈ [0, t]. This procedure is recursively applied to every
node but we consider only potential scattering events which are upstream, i.e. before the
event which is responsible for adding the node. The four collision trees associated to
the scenario in Fig. 1 are shown in Fig. 2. The extraction of the collision trees amounts
to a significant reduction of the complexity of the problem. In general, the number of
potential scattering events (bullets) grows with n. But thanks to the Boltzmann-Grad-
scaling (2) the number of nodes in the individual trees is a random number related to a
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C

A

Figure 1. Initial positions and velocities of four particles. The bullets
indicate the positions where the particles are potentially scattered. There
is no bullet at the crossing of A and B as the particles would pass this point
at different times. Given the high number of potential collisions, the shown
configuration is not very likely and consequentially the collision trees are
quite complex.

D
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D A

C

B

D

C A

C

D

D

BC

C

CD
C

D

D

C

BA

ADAC

C

Figure 2. Collision trees of the four particles with initial positions and
collision structure given in Fig. 1. At time t = 1 particles C and D have
been scattered, particles A and B have not. The particle of interest is at
the root. On the next level particles appear that (potentially) scatter the
root particle. Particles are on the third level, if they (potentially) scatter
particles on level two in the time of interest (until their collision with the
root particle). This is iterated recursively. Note that the labels of the
particles which generate the potential scattering events are only included
in the picture in order to illustrate the translation of Fig. 1 into collision
trees.

Poisson process with a distribution which is asymptotically independent of n and grows
exponentially with t, see Lemma 13. In a physical interpretation this implies a constant
”mean free path” in the scaling.
We convert now the example into a general concept.
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Definition 8. Let N = {1, 2, . . .}. The height of a node (or multi-index) l ∈ Ni is defined
by |l| := i, the parent node of l ∈ Ni is l̄ = (l1, . . . , li−1). Let F = ∪∞i=1Ni be the set of
multi-indices. We say that m ⊂ F is a tree skeleton with root (m ∈ T ), if

(1) #m < ∞,
(2) m ∩ N = {1},
(3) l̄ ∈ m for all l ∈ m \ {1},
(4) l − 1 ∈ m for all l ∈ m such that l 6= (∗, . . . , ∗, 1),

where l − 1 = l − (0, . . . , 0, 1). We say that a tree m has at most height k (m ∈ Tk) if
m ∩ Nk+1 = ∅.
Let Y = {(u, v, s, ν) ∈ Td×Rd× [0,∞)×Sd−1} be the space of initial values and collision
parameters. The set of marked trees is given by

MT =

{
(m,φ)

∣∣∣∣ m ∈ T , φ : m → Y with the property sl ∈ [sl−1, sl̄]

and νl = 1
a
(ul̄ − ul + sl(vl̄ − vl)) for all l ∈ m \ {1}

}
,

where s(∗,...∗,0) = 0. MT k is obtained if T is replaced with Tk. For each skeleton m ∈ T
we define the set of marked trees with skeleton m

(19) E(m) = {(m̃, φ) ∈MT | m̃ = m}.
The assumption sl ∈ [sl−1, sl̄] implies that for all nontrivial permutations π ∈ S#m \ Id
(the set SN contains the permutations of N symbols) and all trees Φ = (m,φ) ∈MT the
permuted tree Φπ = (m,φπ) with φπ

l = φπ(l) is not a tree in the sense of Definition 8.
The value ν1 has no relevance. To circumvent this problem we fix a point ν∗ ∈ (Sd−1),
define

MT ∗ = {Φ ∈MT | ν1 = ν∗1}.
We will in future denote MT ∗ by MT . As an example consider the tree with A at its
root in Fig. 2. The initial conditions are denoted by uA, vA, uB, vB etc. Then the marked
tree is given by

m ={1, (1, 1), (1, 2), (1, 1, 1), (1, 2, 1)}
φ ={(1, (uA, vA, t, ν∗)), ((1, 1), (uC , vC , s11, ν11)), ((1, 2), (uD, vD, s12, ν12)),

((1, 1, 1), (uD, vD, s111, ν12)), ((1, 2, 1), (uC , vC , s121, ν121))}(20)

where

s11 = min{s ∈ [0, t] | dist((uA, vA), (uC , vC), s) = a} ν11 = 1
a
(uA − uC + s11(vA − vC))

s12 = min{s ∈ [0, t] | dist((uA, vA), (uD, vD), s) = a} ν12 = 1
a
(uA − uD + s12(vA − vD))

s111 = s121 = min{s ∈ [0, t] | dist((uC , vC), (uD, vD), s) = a} ν111 =− ν121

= 1
a
(uD − uC + s111(vD − vC))

and dist is defined in eq. (9).
It is clear from the definition that for each tree m ∈ T there exists a function r : m →
N ∪ {0} which counts the number of direct successors, i.e. for l ∈ m

(21) rl = #{l′ ∈ m | l̄′ = l}.
Remark 9. Graph theoretical descriptions of collisions in a hard-sphere gas can lead to
many different graphs, which are not necessarily trees. The advantage of our definition
is that this graph will always be a tree. Particles might appear several times in a tree, as
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in Fig. 2. This will not destroy the tree structure, as these are due to different collision
events. Multiple collisions, which are well-defined in our setting, can lead to identical
branches within the tree, but the definition of T will discriminate between these and the
graph of collisions is still a tree.

Important information about the collisions of the root particle are encoded in the tree.
In particular, a scattering state in {0, 1} is given by the tree. The scattering state of
each node l ∈ m, which we also denote by β : m → {0, 1}, assigns to each node l the
label 1 if it is unscattered by particles in the tree at time sl and 0 if it was scattered
before sl. It is important to note that the scattering states of all particles described by
nodes in the tree depend only on tree structure m, i.e. the scattering state is independent
of the collision data φ, furthermore the scattering information relevant in the graph is
completely determined by the state of the nodes on the higher levels: All leaves (nodes
with no further successors/children (rl = 0)) are assigned 1, as there are no collision
events before sl. Other nodes are assigned 0, if there exists at least one cild (l′ such that
l̄′ = l) with scattering state 1, i.e. there is real collision before sl. The label 1 is assigned
if all children have scattering state 0. Thus we define the scattering state β : m → {0, 1}
as follows.

(22) βl =
∏

l′∈m,l̄′=l

(1− βl′).

This definition rephrases the original definition of the scattering state in (16), adapting
it to the tree structure. Here we drop the dependence on time as it is fixed for a tree
and particles are replaced by nodes of a tree. In light of Lemma 15 below, we do not
distinguish between the two notions.
We will construct now two families of probability measures Pt,k, P̂t,k ∈ PM(MT k). The

empirical distributions P̂t,k describe the deterministic many-body dynamics with random
initial data and will be constructed recursively in Section 2.4. The idealized distribu-
tion Pt,k corresponds to the idealized statistical behavior as predicted by the Boltzmann

equation (3). It is given by an explicit formula (24). The link between Pt,k and P̂t,k is
provided by the set of good trees G(a) ⊂ MT (Definition 18) which has the properties

that restriction of P̂t,k on G(a)∩MT converges to Pt,k and Pt,k(G(a)) goes to 1 as a tends
to 0 (Proposition 22).
This is the crucial step which eventually yields the justification of the idealized theory. In
other words, the main task consists in analyzing the idealized measure Pt,k, the empirical

distribution P̂t,k enters only when we prove that Pt,k is consistent with P̂t,k.

2.3. The idealized distribution Pt,k. We construct now the idealized distribution of

trees Pt,k ∈ PM(MT ). Viewing E(m) ⊂ (Td × Rd × R+) × (
Rd × Sd−1 × R+

)#m−1
as a

manifold, Borel sets Ωm ⊂ E(m) are well-defined. A set Ω ⊂MT is Borel, if

(23) Ω =
⋃

m∈T
Ωm, Ωm ⊂ E(m) Borel.

Let Ω ⊂MT be a Borel set and t ∈ [0,∞). The idealized probability that the observed
tree is in Ω is given by

Pt,k(Ω) =
∑
m∈Tk

∫

Ω∩E(m)

e−
P

j<k Γj(Φ) dλm(φ)(24)
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where E(m) was defined in (19)

Γj(Φ) =
∑

l∈m,|l|=j

γl(Φ),(25)

γl(Φ) =

∫ sl

0

L[f0](vl) ds′ = sl L[f0](vl) ≥ 0 is the integrated collision(26)

rate of the particle at node l,

λm(φ) =1Td(u1)⊗ f0(v1)⊗ δ(s1 − t)(27)

⊗
∏

l∈m\{1}

[
((vl − vl̄) · νl)+ χ[sl−1,sl̄]

(sl) df0(vl) dνl dsl

]
.

Remark 10. (1) Note that the positions ul are completely determined by (u1, v1) and
(vl, sl, νl)l∈m\{1}. Since we have assumed that (ν1) is fixed, the value of Pt,k(Ω) is
well-defined.

(2) In (26) we assign to each node l a particle, this map might not be injective, e.g.
in the example (20) both (1, 1) and (1, 2, 1) would refer to the same particle but
different times.

(3) It is noteworthy that the measures Pt,k depend on time only via the parameter t.
In other words, time plays the role of a parameter which propagates through the
tree and qualifies the local branching structure.

(4) For some event Ω ⊂ MT k the probability Pt,k′(Ω) is independent of k′ if k′ > k.
Equivalently, Pt,k1(Ω ∩ E(m)) = Pt,k2(Ω ∩ E(m)), if the height of m is strictly
smaller than min{k1, k2}.

(5) Clearly Pt,1 is a probability measure. It follows from Lemma 12 below with x(m) =
1 that Pt,k is a probability measure for all (t, k).

We can simplify the measure Pt,k by integrating over the collision parameters νl ∈ Sd−1,

l ∈ m. Let Ŷ = Rd×[0,∞) be the reduced set of collision data and M̂T the corresponding

marked trees. For every Ω ⊂ M̂T we find that when still denoting the collision data as φ

P̄t,k(Ω) =
∑
m∈Tk

∫

Ω∩E(m)

e−
P

j<k Γj(Φ)df0(v1)⊗ δ(s1 − t)⊗
∏

l∈m\{1}
dλ̄l(φ)(28)

with

dλ̄l(φ) =κd |vl − vl̄|χ[sl−1,sl̄]
(sl) df0(vl) dsl.(29)

The measures Pt,k have the remarkable property that the expectation of certain random
variables can be computed efficiently.

Definition 11. A random variable x : T → R is said to be recursive if there exists a
family of functions hb : Rb → R, b ∈ N, which are invariant under permutations of the b
components in Rb, such that for all m ∈ T with b = r1 as defined in (21) the equation

x(m) = hr1(x(m1), . . . , x(mr1))

holds, where
mj = {(1, l3, . . . , l|l|) | l ∈ m such that l2 = j} ∈ T

is the j-th subtree of m.

Examples of recursive random variables which are relevant for our purposes are

x#(m) = #m (number of nodes),

xβ(m) = β1(m) (scattering state of the root).
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It is easy to see that if m ∈ T

x#(m) = 1 +

r1∑
j=1

x#(mj),(30)

xβ(m) =

r1∏
j=1

(1− xβ(mj)) with the convention
0∏

j=1

(1− xβ(mj)) = 1,(31)

which both depend on the tree structure m alone. Hence the functions hb are given by

h#
b (x1, . . . , xb) = 1 +

b∑
j=1

xj,

hβ
b (x1, . . . , xb) =

b∏
j=1

(1− xj)

which are clearly invariant under permutations of x1, . . . , xb. The expectation of recursive
random variables with respect to the probability measure Pt,k can be computed with a
simple recurrence relation.

Lemma 12. Let x be a recursive random variable with recurrence functions hb. Then

∫
dP̄t,k(Φ) x(m)

(32)

=

∫
df0(v) e−Γ1

∞∑
r=0

∫ t

0

ds1

∫
dP̄s1,k−1(Φ1) κd|v − v1|

∫ t

s1

ds2

∫
dP̄s2,k−1(Φ2) κd|v − v2|

. . .

∫ t

sr−1

dsr

∫
dP̄sr,k−1(Φr) κd|v − vr|hr(x(m1), . . . , x(mr))

=

∫
df0(v) e−Γ1

∞∑
r=0

1

r!

∫ t

0

ds1

∫
dP̄s1,k−1(Φ1) κd|v − v1|

∫ t

0

ds2

∫
dP̄s2,k−1(Φ2) κd|v − v2|

. . .

∫ t

0

dsr

∫
dP̄sr,k−1(Φr) κd|v − vr|hr(x(m1), . . . , x(mr))

where for r = 0 we assign 1 to the empty product, v is the velocity of the root parti-
cle, vj denotes the velocity of the root particle of the subtree Φr = (mr, φ) and Γ1 =
κd

∫
df0(v

′) |v − v′|t.
Proof. As x(m) does not depend on the collision parameter νl, we can restrict our attention

to P̄t,k and M̂T . For each Φ ∈ M̂T (Ŷ = Rd × [0,∞)) we define nonnegative Radon
measures λ̄l ∈ M+(Rd × [0,∞)) as in (29)

dλ̄l(v, s) = df0(v) κd|vl̄ − v|χ[sl−1,sl̄]
(s)ds.

Let now m ∈ T . The definition of P̄t,k in (28) yields

∫

E(m)

dP̄t,k(Φ) x(m) =

∫

E(m)

e−
P

j<k Γj(Φ) df0(v1)

r1∏
i=1


dλ̄1i(φ1i)

∏

l∈m\({1}∪N2)
l2=i

dλ̄l(φl)


 x(m),

11



We use now the assumption that x is recursive and find
∫

E(m)

dP̄t,k(Φ) x(m)

=

∫
df0(v) e−Γ1

r1∏
i=1




∫

E(mi)

e−
P

j<k Γ
(i)
j (Φ)

∏

l∈mi\{1}
dλ̄l(φl)


 hr1(x(m1), . . . , x(mr1)),

where Γ
(i)
j (Φ) =

∑
l∈m,|l|=j,l2=i

γl(φ). A simple rearrangement yields that

∑
m∈T

∫

E(m)

dP̄t,k(Φ) x(m) =

∫
df0(v) e−Γ1

∞∑
r=0

∫ t

0

ds1

∫
dP̄s1,k−1(Φ1) κd|v − v1|

. . .

∫ t

sr−1

dsr

∫
dP̄sr,k−1(Φr) κd|v − vr|hr(x(m1), . . . , x(mr)) ,

where vj denotes the velocity of the root particle of the subtree Φr = (mr, φ). This
demonstrates the first part of (32), to show the second part we observe that

{(s1, . . . , sr) ∈ [0, t]r | sj 6= si for i 6= j}
=

⋃
π∈Sr

{(s1, . . . , sr) ∈ [0, t]r | sπ(1) < sπ(2) < . . . < sπ(r)},

where Sr denotes the symmetric group on r elements, such that the union is disjoint. As
the set, where sj = si for some i 6= j, is of measure zero with respect to Lebesgue measure
on [0, t]r, we obtain

∫

[0,t]r
g(s1, . . . , sr) ds1 . . . dsr =

∑
π∈Sr

∫

0≤sπ(1)<sπ(2)<...<sπ(r)≤t

g(s1, . . . , sr) ds1 . . . dsr

for any g ∈ L1([0, t]r). Now we define

g(s1, . . . , sr) =

∫
dP̄s1,k−1(Φ1) κd|v−v1| . . .

∫
dP̄sr,k−1(Φr) κd|v−vr|hr(x(m1), . . . x(mr)).

We observe that

P̄s1,k−1(Φ1) κd|v − v1| . . . P̄sr,k−1(Φr) κd|v − vr|(33)

=P̄sπ(1),k−1(Φπ(1)) κd|v − vπ(1)| . . . P̄sπ(r),k−1(Φπ(r)) κd|v − vπ(r)|
for all permutations π ∈ Sr. Next using (33) and the invariance of h under permutations,
we obtain ∫

0≤s1<s2<...<sr≤t

∫
dP̄s1,k−1(Φ1) κd|v − v1|

. . .

∫
dP̄sr,k−1(Φr) κd|v − vr|hr(x(m1), . . . x(mr)) ds1 . . . dsr

=

∫

0≤sπ(1)<sπ(2)<...<sπ(r)≤t

∫
dP̄sπ(1),k−1(Φπ(1)) κd|v − vπ(1)|

. . .

∫
dP̄sπ(r),k−1(Φπ(r)) κd|v − vr|hr(x(mπ(1)), . . . x(mπ(r))) ds1 . . . dsr.

12



As there are r! different permutations in Sr we finally have
∫

0≤s1<s2<...<sr≤t

∫
dP̄s1,k−1(Φ1) κd|v − v1|

. . .

∫
dP̄sr,k−1(Φr) κd|v − vr|hr(x(m1), . . . x(mr)) ds1 . . . dsr

=
1

r!

∫

[0,t]r

∫
dP̄s1,k−1(Φ1) κd|v − v1|

. . .

∫
dP̄sr,k−1(Φr) κd|v − vr|hr(x(m1), . . . x(mr)) ds1 . . . dsr.

Summing over r and m completes the proof of (32). ¤

As an application of Lemma 12 we obtain an explicit bound on the expected number of
nodes in trees.

Lemma 13. For a tree m ∈ T the number of non-root nodes is given by X(m) = #m−1.
The expected value of X with respect to measure Pt,k satisfies the estimate uniformly in k

(34) E(X) ≤ Kini exp(κdKinit),

with Kini =
∫
Rd df0(v) (1 + |v|)2 as in (5).

Proof. Let Ft,k(v) = E(X | v1 = v,m ∈ Tk) be the conditional expectation of X if we
know that the velocity of the root is v and that the tree is in Tk. Clearly E(X) ≤
supk∈N

∫
Rd df0(v) Ft,k(v). Now we use the self-similarity relation (32) with x(m) = X(m)

and hr(X(m1), . . . , X(mr)) = r +
∑r

i=1 X(mi). The velocity of the root particle of mi is

denoted by v
(i)
1 and we let as in (25)

(35) Γ1(v1) = γ1(v1) = L[f0](v1)t = κdt

∫

Rd

df0(v
′) |v1 − v′|.

Then

Ft,k(v1)

=e−Γ1

∞∑
r=1

1
r!

∫ t

0

ds1

∫
dP̄s1,k−1(m1, φ1) κd|v1 − v

(1)
1 |

. . .

∫ t

0

dsr

∫
dP̄sr,k−1(mr, φr) κd|v1 − v

(r)
1 |

(
r +

r∑
i=1

X(mi)

)

=e−Γ1

∞∑
r=1

(
r
Γr

1

r!
+

Γr−1
1

r!

r∑
i=1

∫ t

0

dsi κd

∫

Rd

df0(v
(i)
1 ) |v1 − v

(i)
1 |Fsi,k−1(v

(i)
1 )

)

=Γ1 +

∫ t

0

ds κd

∫

Rd

df0(v
′) |v1 − v′|Fs,k−1(v

′),

where we used the product structure of the integrals and (35) to obtain e.g.
∫ t

0

dsj

∫
dP̄sj ,k−1(mj) κd|v1 − v

(j)
1 |X(mj)

∏

i=1,...,r;i6=j

∫ t

0

dsi

∫
dP̄si,k−1(mi) κd|v1 − v

(i)
1 |

=Γr−1
1

∫ t

0

dsj κd

∫

Rd

df0(v
(j)
1 ) |v1 − v

(i)
1 |Fsj ,k−1(v

(j)
1 ).
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We define now the norm ‖F‖1 := supv∈Rd
F (v)
1+|v| and the integral operator Af0 by

(Af0F )(v) = κd

∫

Rd

df0(v
′) |v − v′|F (v′),

so that

(36) Ft,k = Γ1 +

∫ t

0

dsAf0Fs,k−1.

We find the estimates

‖Af0F‖1 ≤ sup
v

κd‖F‖1

1 + |v|
∫

Rd

df0(v
′) |v − v′| (1 + |v′|) ≤ κdKini‖F‖1,

and

‖Γ1‖1 = t sup
v

κd

∫
Rd df0(v

′) |v − v′|
1 + |v| ≤ tκd

∫

Rd

df0(v
′) (1 + |v′|) ≤ tκdKini.

Furthermore Ft,k(v) is monotone in k, as Pt,k assigns the probability of trees of height
greater than k + 1 to trees of height k, reducing the number of expected nodes. Hence
eq. (36) implies that

‖Ft,k‖1 ≤ κdKini

(
t +

∫ t

0

ds ‖Fs,k‖1

)
.

Gronwall’s inequality together with the previous estimate implies that

‖Ft,k‖1 ≤ eκdKinit,

where we used that F0,k = 0. Since

Ek(X) =

∫

Rd

df0(v) Ft,k(v) ≤ ‖Ft,k‖1

∫

Rd

df0(v) (1 + |v|) ≤ Kinie
κdKinit

this implies (34) and the proof of the lemma is finished. ¤
We now turn our attention to the determination of the scattering state of the particle at
the root of the tree. For a tree m ∈ T the scattering state β : m → {0, 1} is defined
recursively by (22). It is more convenient in our analysis than the ad-hoc definition,
which required already some work to show existence, see the first part of Lemma 7. The
important simplification is that scattering state in (22) only depends on the structure m
but is independent of the data φ.
We define the single-particle density gt,k(·) ∈ M+(Rd) via

∫

A

dgt,k(v) = Pt,k(β1 = 1 and v1 ∈ A),

for all A ⊂ Rd Borel. The density gt,k is closely related to the root marginal of Pt,k and
provides the link between the Boltzmann equation (11) and the idealized distribution of
the trees Pt,k. Due to the simplicity of the distribution Pt,k it is possible to characterize
the root-marginal of Pt,k explicitly.

Proposition 14. Let σ ∈ {0, 1}, Ω ⊂ Rd Borel, t ∈ [0,∞) and k ∈ N ∪ {0}. Then the
equation

Pt,k+1 (v1 ∈ Ω and β1 = σ1) =

∫

Ω

[(1− σ1) (df0(v)− dft,k(v)) + σ1 dft,k(v)](37)

holds, where ft,k is the solution of system (15).

This formula shows that in particular gt,k = ft,k−1.
14



Proof. The proposition is proven using induction over k, the case k = 0 is just the defi-
nition. In the induction step it is demonstrated that Pt,k+1 satisfies formula (37) if Pt,k

does. Since the collision parameters ν are irrelevant we can integrate them out and work
with the simplified version (28) of the measure Pt,k instead of (24).
We define the set of scattering states of trees up to height 2 that are compatible with
σ ∈ {0, 1},

A(σ) =

{
(m,σ′)

∣∣∣∣∣ m ∈ T2, σ
′ : m → {0, 1} such that

∏

l′∈m∩N2

(1− σ′l) = σ

}
,(38)

with the standard convention
∏0

j=1 aj = 1 for empty products, i.e.

A(0) =
{
(m,σ′)

∣∣ m ∈ T2, σ
′ : m → {0, 1} such that σ′l = 1 for some l ∈ m ∩ N2

}
,

A(1) =
{
(m,σ′)

∣∣ m ∈ T2, σ
′ : m → {0, 1} such that σ′l = 0 for all l ∈ m ∩ N2

}
.

The induction assumption and eq. (32) implies that

Pt,k+1(v1 ∈ Ω and β1 = σ)

=
∑

(m,σ′)∈A(σ)

∫

v1∈Ω

(
e−Γ1

r1!
df0(v1)

∏

l′∈m∩N2

[
(1− σ′l′)

∫ s1

0

ds

∫

v′∈Rd

κd|v1 − v′| (df0(v
′)− dfs,k−1(v

′))

+ σ′l′

∫ s1

0

ds

∫

v′∈Rd

dfs,k−1(v
′) κd|v1 − v′|

])

=

∫

v1∈Ω

∑

(m,σ′)∈A(σ)

df0(v1) Ik(m, σ′, v1),

where

Ik(m,σ′, v1)

= e−Γ1

r1!

∏

l′∈m∩N2

[
(1− σ′l′)

∫ t

0

ds

∫

v′∈Rd

κd|v1 − v′|(df0(v
′)− dfs,k−1(v

′))

+ σ′l′

∫ tl

0

ds

∫

v′∈Rd

dfs,k−1(v
′) κd|vl − v′|

]

= e−Γ1

r1!

∏

l′∈m∩N2

[
(1− σ′l′)

(
Γ1 −

∫ t

0

ds L[fs,k−1](v1)

)
+ σ′l′

∫ t

0

dsL[fs,k−1](v1)

]
.

We rewrite Pt,k+1(. . .) as follows:

Pt,k+1(v1 ∈ Ω and β1 = σ) =

∫

v1∈Ω

df0(v1) [(1− σ)Jk(0, v1) + σJk(1, v1)],(39)

with Jk(σ, v1) =
∑

(m,σ′)∈A(σ) Ik(m,σ′, v1). By definition A(1) assigns to each skeleton

m ∈ T2 a unique σ′ which assumes the value 1 on the root and 0 on all nodes on the
second level (this includes the special case m′ = (1) ∈ T2, that has no nodes on the second
level). This shows that

Jk(1, v1) =
∞∑

j=0

e−γ

j!

(
γ −

∫ s

0

ds′ L[fs′,k−1](v1)

)j

= e−
R s
0 ds′ L[fs′,k−1](v1),(40)
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with γ = sL[f0](v1). As∫

Ω

df0(v) = Pt,k(v1 ∈ Ω and β1 ∈ {0, 1})
= Pt,k(v1 ∈ Ω and β1 = 0) + Pt,k(v1 ∈ Ω and β1 = 1)

=

∫

Ω

df0(v1) Jk(0, v1) +

∫

Ω

df0(v1) Jk(1, v1),

we have

∫

v1∈Ω

df0(v1) Jk(0, v1) =

∫

v1∈Ω

df0(v1) (1− Jk(1, v1)) =

∫

v1∈Ω

df0(v1)
(
1− e−

R s
0 ds′ L[fs′,k−1]

)
.

(41)

Plugging the formulas (40) and (41) into eq. (39) yields that

Pt,k+1(v1 ∈ Ω and β1 = σ1)

=

∫

v1∈Ω

[
(1− σ1) df0(v1)

(
1− e−

R t1
0 ds L[fs,k−1]

)
+ σ1 df0(v1) e−

R t1
0 ds L[fs,k−1]

]

(15)
=

∫

v1∈Ω

(1− σ1) (df0(v1)− dft1,k(v1)) + σ1 dft1,k(v1)

and formula (37) has been established. ¤

2.4. The empirical distribution P̂t,k. We return now to the hierarchy of many body
evolutions described in Section 2.1. The initial values of the particles form a random set
ω ⊂ Td×Rd and it is assumed that the law of ω is the Poisson point process with density
µ = n(1Td ⊗ f0), where 1Td ⊗ f0 ∈ PM(Td × Rd). Hence, the size N = #ω is Poissonian
random variable with intensity n. As explained in Section 2.2, the family of probability
measures P̂t,k ∈ PM(MT ) is the empirical distribution of the tree Φ which is generated
by the many-body evolution and has a randomly chosen (tagged) particle as its root. The
scattering state of the root gives the connection between (16) and (22).

Lemma 15. Let Φ = (m,φ) ∈ MT k and i∗ is the index the root particle in (16) then
β1 = βk(i

∗, s1).

Proof. See section 4. ¤
The method of sampling from this distribution consists in drawing a realization of ω ac-
cording to the unconditioned Poisson point process, and an independent random variable
z ∈ Td × Rd with law 1Td(u)⊗ f0(v) which is the initial value of the tagged particle.
The trees generated by this procedure are denoted by Φ(t, k) = (m(t, k), φ) ∈ MT k,
where m(t, k) ∈ Tk is the skeleton and φ : m(t, k) → Y specifies the initial values, the

collision times and the impact parameters. The measures P̂t,k are the image measure of
Probtppp induced by the many-particle flows so that for each Borel set Ω ⊂ MT in the
sense of (23) we obtain

(42) P̂t,k(Ω) := Probtppp((m(t, k), φ) ∈ Ω).

By construction, for fixed ω the skeleton m is monotonously increasing in t and k, and
for fixed l ∈ m the data φl does not depend on t or k. This implies that the j-marginal
of P̂t,k (trees of height j ≤ k) is given by P̂t,j, i.e.

P̂t,k

((
m(t, k) ∩ (∪j

i=1Ni), (φl)|l|≤j

) ∈ Ω
)

= P̂t,j((m(t, j), (φl)|l|≤j) ∈ Ω)(43)

for all Ω ⊂MT j, k ≥ j.
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We will use formula (43) to construct an alternative characterization of P̂t,k which reflects
the iterative process that underlies the definition of m(t, k). Using this alternative char-

acterization one can easily establish total-variation bounds for Pt,k − P̂t,k. Since the time

t is arbitrary but fixed we will often write P̂k instead of P̂t,k.

Let (m′, φ′) ∈ MT k−1 and let P̂k( · | (m′, φ′)) ∈ PM(MT k) be the conditional distribu-

tion of P̂k in the sense that

P̂k(Ω | (m′, φ′)) := P̂k

(
(m(k), φ) ∈ Ω | m ∩ Nj = m′ ∩ Nj for all j ∈ {1 . . . k − 1}

and φl = φ′l for all l ∈ m such that |l| < k
)
.

Formula (43), which characterizes the j-marginals of P̂t,k, yields the following recurrence

relation for P̂k:

(44) P̂k(Ω) =

∫

MT k−1

dP̂k−1(Φ
′) P̂k(Ω |Φ′).

Repeating this step k − 1 times we obtain the following iterative representation of P̂k:

P̂k(Ω) =

∫

MT
dP1(Φ1)

∫

MT 2

dP̂2(Φ2 |Φ1) . . .

∫

MT k−1

dP̂k−1(Φk−1 |Φk−2) P̂k(Ω |Φk−1),

(45)

where

(46) P1(z1) = (1Td ⊗ f0)(z1) ∈ PM(Td × Rd)

is the distribution of initial values.

Remark 16. Equation (45) shows that df̂
(a)
t,k (u, v) = P̂t,k

(
z(1, t) ∈ [u, u + du) × [v, v +

dv) and β(a)(1, t) = 1
)

is absolutely continuous with respect to 1Td ⊗ f0.

2.5. Representation of P̂k−Pk. Having constructed an iterative characterization of P̂k

we will now show that it is very similar to the idealized measure Pk in a precise way. The
key is to identify the mechanisms by which the two probability distributions fail to be
equal. In this part of the paper we will work with the phase-space representation of the
trees: zl = (ul, vl) ∈ Td × Rd.

Remark 17. There are only two reasons why P̂k fails to coincide with Pk in the limit
a → 0:

(1) The cylinders which are covered by the paths of the particles might contain self-
intersections due to the periodic boundary conditions: v − v′ ∈ R(t, a) with

(47) R(t, a) =
{
v ∈ Rd | min{|s v − ξ| | s ∈ [0, t], ξ ∈ Zd \ {0}} ≤ a

}
.

(2) One particle might appear at different positions in the tree, i.e. the map z : m →
Td × Rd might be not injective.

The set R(t, a), which can easily seen to be nonempty, is relevant due to periodic boundary
conditions, which will lead to self-intersections of the cylinders. This happens, if v − vj

is sufficiently close to a velocity v∗, where the components of v∗1, . . . , v
∗
d are rationally

dependent and ηv∗ ∈ Zd with η ∈ [−t, t]\{0}. The effect is not present in a setting where
(u, v) ∈ Rd × Rd.
The second effect is caused by the notorious recollisions. Both effects disappear for finite
t as the diameter a tends to zero.
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a

Figure 3. Cl ∩ Td × {v′}: The set of colliding initial data Cl ⊂ Td × Rd

consists for given v′ ∈ Rd of a cylinder in Td in direction v′ − vl of length
sl|v′ − vl| and diameter 2a.

We stipulate now a strict order of the set of nodes m:

l < l′ if either |l| < |l′| or (|l| = |l′| and l̄ < l̄′) or (l̄ = l̄′ and l|l| < l′|l|).(48)

This order is induced by the link between the collision time and the indices l ∈ m in
Definition 8.
Motivated by Remark 17 we define the set of “good” trees.

Definition 18. For each a0 > 0 the set of “good” trees G(a0) ⊂ MT consists of those
trees (m,φ) ∈MT with the property that for all 0 < a ≤ a0 and all l ∈ m

vl − vl̄ ∈ Rd \R(t, a) (all parent-child-pairs are non-resonant),(49)

zl 6∈ ∪ l′<l
l′ 6=l̄

Cl′ (no particle appears twice in the tree),(50)

where we associate to each node l ∈ m the set of colliding initial values

(51) Cl =

{
z′ ∈ Td × Rd

∣∣∣∣ min
s′∈[0,sl]

dist(zl, z
′, s′) ≤ a

}
,

and dist as in (9) ignores overlap in the initial data.

Note that G(a0) ⊂ MT is a family of sets which decreases with a0. An elementary
calculation yields that for all v′ ∈ Rd \ (vl + R(t, a))

(52) Hd
(
Cl ∩ (Td × {v′})) =

κd

n
|vl − v′|sl.

The concept of good trees will now be used to derive a more explicit characterization of
the distributions P̂k(· |Φk−1).
As an intermediate step we recall a formula which yields the probability of certain complex
events with respect to Poisson-point processes. Let A ⊂ ∪∞N=0(Td×Rd)N be a symmetric
set, i.e. z ∈ A ∩ (Td × Rd)N if and only if (zπ(1), . . . , zπ(N)) ∈ A ∩ (Td × Rd)N for all
permutations π ∈ SN , where SN is the symmetric group. We use the convention that
(Td × Rd)0 is a single point. For each realization ω ⊂ Td × Rd of the point process we
chose an arbitrary enumeration of the elements of ω such that ω = {z1, . . . , zN}. We say
that ω ∈ A if (z1, . . . , zN) ∈ A; the choice of the enumeration is irrelevant since A is
symmetric. It can be checked that if ω is a realization of the Poisson-point process with
intensity µ ∈ M+(Td × Rd), then

(53) Probppp(ω ∈ A) = e−µ(Td×Rd)

∞∑
N=0

1

N !

∫

A∩(Td×Rd)N

dµ(z1) . . . dµ(zn),

where the value of integral for N = 0 is 1 if (Td ×Rd)0 ⊂ A and 0 else. By the definition
of Poisson-point processes each set C ⊂ Td×Rd defines a projection denoted by C∩ω. We
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recall the following fundamental independence-principle of Poisson-point processes which
asserts that even if we have obtained a certain amount of information over a realization ω
of a Poisson-point process it is still possible to use a suitably modified version of formula
(53).

Lemma 19. Let the random set ω ⊂ Td×Rd be distributed according to a Poisson point-
process with density µ, C̄, C ⊂ Td × Rd and A ⊂ ∪∞r=0(C \ C̄)r be symmetric. Then we
obtain the following formula for the conditional probability of the event A:

Probppp

(
ω ∩ C ∈ A

∣∣ ω ∩ C̄ = ∅)
= exp

(−µ(C \ C̄)
) ∞∑

r=0

1

r!

∫

A∩Cr

dµr(z),(54)

where µr = µ⊗ . . .⊗ µ︸ ︷︷ ︸
r terms

.

Proof. See section 4. ¤
To apply Lemma 19 we have to work with the phase space representation of trees. We

use the decomposition Ω =
⋃̇

m∈T E(m) ∩ Ω and restrict our attention to Ω ⊂ E(m) for
some m ∈ T . When we will apply eq. (54) to a given tree m ∈ T , the number of points
in ω∩C will be determined by m. Hence A ⊂ (C \ C̄)r for one r only which simplifies (54)
to a single nontrivial term.
Note that for a general tree Φ = (m,φ) ∈ MT the number of nodes #m can be bigger
than the number of particles involved in the collisions, i.e. it is possible that the map
z : m → Td × Rd is not injective and zl = zl′ for some pair l, l′ ∈ m, l 6= l′. This scenario
corresponds to a bad tree where two nodes represent the same particle, see (50). For this
reason we restrict our attention to sets Ω which are subsets of G(a). The excluded set has
nonzero probability, however we will show that the probability of MT \ G(a) tends with
a to 0. By construction for all trees in Ω ⊂ G(a) the map l 7→ zl is injective.
The order defined by (48) for the nodes l ∈ m induces a representation of the events
Ω ⊂ E(m) in phase-space coordinates, by

(zl)l∈m = (zl1 , . . . , zl#m
)l1,...,l#m∈m such that l1 < l2 < . . . < l#m in the order (48).

These events are denoted as

A(Ω) = {(zl)l∈m|(m,φ) ∈ Ω} ⊂ (Td × Rd)#m.

In the same spirit one obtains a one-to-one correspondence between the initial values of
particles associated with the tree-nodes at height k and subsets of (Td × Rd)#m∩Nk

:

Zk = (zl)|l|=k ∈ (Td × Rd)#(m∩Nk).

We will also need the conditional events

Ak(Ω, Φ) =
{

Zk ∈ (Td × Rd)#(m∩Nk) | (Zk, Φ) ∈ Ω
}

,

where Φ ∈ MT k−1 and (Zk, Φ) ∈ MT k is the tree obtained by attaching the leaves Zk

to the topmost nodes of Φ.
Recall that the density of the Poisson-point process which generates the initial positions
of the particles is given by µ where∫

dµ(z) ϕ(z) = n

∫

Rd

df0(v)

∫

Td

du ϕ(u, v)

for every testfunction ϕ ∈ Cc(Td × Rd).
Before applying Lemma 19 we have to specify the sets C and C̄. Fix a0 > 0 and let
Φ ∈MT ∩G(a0). We are interested in the distribution of those trees which coincide with
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Φ up to level k. Clearly, the initial positions of the particles at height k +1 are contained
in the set (compare Fig. 3)

(55) Ck(Φ) :=
⋃

l∈m∩Nk

Cl(φ) ⊂ Td × Rd,

with Cl(φ) = Cl as in (51) and with Φ = (m,φ). In order to apply formula (54) we have to
identify the conditioning of the distribution ω ∩ Ck(Φ). Define the collection of cylinders

(56) C̄k(Φ) :=
⋃

|l|<k

Cl(φ) ⊂ Td × Rd

which contains those initial values that would affect the lower nodes. By construction the
information on the point process ω that we have accumulated so far is given by ω∩ C̄k(Φ) =
{zl | |l| ≤ k}. Furthermore, since Φ ∈ G(a0) we have that ω ∩ Ck(Φ) ∩ C̄k(Φ) = ∅. This
implies that for each Ω ⊂MT ∩ G(a0) and Φ ∈MT k ∩ G(a0)

P̂k+1(Ω |Φ) = Probtppp(Ck(Φ) ∩ ω ∈ sym(Ak(Ω, Φ)) | Ck(Φ) ∩ C̄k(Φ) ∩ ω = ∅).
where sym(A) is the symmetrization of the set A, i.e. (z1, . . . , zN) ∈ sym(A) if there
exists a permutation π ∈ SN such that (zπ(1), . . . , zπ(N)) ∈ A; in particular A ⊂ sym(A).
This is the crucial step where the complicated dependency on the past of the many-body
evolution is reduced to a simple conditional expectation of the Poisson point process.
Since A(Ω, Φ) ∩ C̄k(Φ)× . . .× C̄k(Φ)︸ ︷︷ ︸

r terms

= ∅ for each r we can use formula (54) and deduce

that

P̂k+1(Ω |Φ) = e−Γ̂k(Φ) 1

r!

∫

sym(Ak+1(Ω,Φ))

dµr(Zk+1),

where

(57) Γ̂k(Φ) = µ(Ĉk(Φ))

and

(58) Ĉk(Φ) = Ck(Φ) \ C̄k(Φ).

We use the convention that the value of the integral over (Td × Rd)0 is 1.
As explained directly after Definition 8, each permutation of the labels l ∈ m destroys
the tree structure. Hence we obtain that if zπ ∈ A and z ∈ A, then necessarily π is the
identity transformation, i.e. zπ = z. This implies that if we replace in the above formula
sym(A) by the non-symmetric uniquely ordered set A we have to drop the term 1

r!
.

P̂k+1(Ω |Φ) = e−Γ̂k(Φ)

∫

Ak+1(Ω,Φ)

dµr(Zk+1).(59)

Plugging the expression (59) for the conditional expectation P̂k+1(· |Φ) into eq. (45) yields

a representation of P̂k

Lemma 20. Let Ω ⊂ G(a) ∩ Tk be a Borel set, then

P̂k(Ω) =
∑
m∈Tk

∫

A(Ω)

dµ#m(z) e−
P

j<k Γ̂j(Φ(z)).(60)
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The proof is given in section 4.
We return now to the collision representation of the trees. This means that the variables
(zl)l∈m in the integration are replaced by (u1, v1) × (sl, νl, vl)l∈m\{1}. The determinant of
the derivative of this transformation is given by

det DΦz(Φ) =
∏

l∈m\{1}

(
ad−1(νl · (vl − vl̄))+

)
.

Thus changing coordinates in the integrals we obtain that for each m ∈ T∫

A(Ω)

e−
P

j<k Γ̂j(Φ(z)) dµ#m(z)

=

∫

Ω

dP1(z1) e−
P

j<k Γ̂j(Φ)
∏

l∈m\{1}

(
n df0(vl) dνl dsl χ[0,sl̄]

(sl) ad−1 [(vl − vl̄) · νl]+
)

(2)
=

∫

Ω

dP1(z1) e−
P

j<k Γ̂j(Φ)
∏

l∈m\{1}

(
df0(vl) dνl dsl χ[0,sl̄]

(sl) [(vl − vl̄) · νl)]+
)

=

∫

Ω

dλm(φ) e−
P

j<k Γ̂j(Φ).

Thus we have shown that for all Ω ⊂ G(a)

(61) P̂k(Ω) =
∑
m∈Tk

∫

Ω∩E(m)

e−
P

j<k Γ̂j(Φ) dλm(φ).

and

(62) Pk(Ω) = P̂k(Ω) + ek(Ω),

where by eq. (24) the error has the form

ek(Ω) =
∑
m∈Tk

∫

Ω∩E(m)

dλm(φ)
(
e−

P
j<k Γj(Φ) − e−

P
j<k Γ̂j(Φ)

)
.(63)

Lemma 21. The error function ek(Ω) in (63) is a non-negative measure.

Proof. With (25), we first observe because Ω ⊂ G(a)

Γk(Φ) =
∑

l∈m,|l|=k

γl(Φ) =
∑

l∈m,|l|=k

µ(Cl).

Then (55) and (58) imply

Γj(Φ) ≥ µ(Ck(Φ)) ≥ µ(Ĉk(Φ)) = Γ̂k(Φ),

which implies the lemma. ¤
The last lemma shows that the finite size effects in the empirical distribution are due to
intersections of the cylinders of colliding initial data. These effect can only decrease the
collision rate. Formula (63) is the key for quantifying the difference between Pk and P̂k.

2.6. Total variation estimate of Pk − P̂k.

Proposition 22 (Tightness). Let G(a) the set of good trees from Definition 18, and
Ω ⊂ G(a0). Then the following equations are true:

lim
a0→0

inf
k

Pk(G(a0)) = 1,(64)

lim
a→0

(
sup

{∣∣∣P̂k(Ω)− Pk(Ω)
∣∣∣
∣∣∣ k > 0, Ω ⊂ G(a0) Borel

})
= 0 if a0 is fixed.(65)
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The assertions of the proposition amount to establishing convergence of P̂k to Pk in the
total-variation sense uniformly in k.
The proof relies on several simple, but somehow technical estimates and can be found at
the end of the subsection. We will first estimate the size of the set R(t, a).

Lemma 23. Under the assumption of theorem 2

(66) lim
a→0

∫

R(t,a)

(1 + |v|) df0(v) = 0.

The proof can found in section 4.
For technical reasons we decouple the dependency of G and P̂k on the scaling parameter a.
We will construct a family of sets of trees Ĝ(a) ⊂ G(a) with the following two properties

lim
a0→0

inf
k

Pk

(
Ĝ(a0)

)
= 1,

lim
a0→0

lim
a→0

sup
Ω⊂MT ,k≥1

∣∣∣P̂k

(
Ω ∩ Ĝ(a0)

)
− Pk

(
Ω ∩ Ĝ(a0)

)∣∣∣ = 0.

The limit a → 0 is relevant in the second formula through the dependence of P̂k on a.
The idea is that the trees in the sets Ĝ(a0) have additional good properties which are

controlled by a0. It is quite clear that for our choice of Ĝ(a0) (see (67)) eq. (69) holds
even for fixed a0 but without the limit the proof becomes more complicated.
Now we construct Ĝ. It is the intersection of good trees for various a. To compare these
we only consider the collision representation Rd×Sd−1×R+ of trees, which is independent
of a, while the initial position of the colliding particles ul varies with a.

Definition 24. Let ε(a) and V (a) be monotone positive functions of a such that lima→0 ε(a) =
0 and lima→0 V (a) = +∞. We define the set

Ĝ(a0) =
⋂

0<a<a0

{
(m,φ) ∈ G(a)

∣∣∣∣ min
l∈m

|vl − vl̄| ≥ ε(a)and|v| ≤ V (a)(67)

and min
l∈m

min
l′<l,l′ 6=l̄

(
1−

∣∣∣ vl−vl̄

|vl−vl̄| ·
vl′−vl̄

|vl′−vl̄|

∣∣∣
)
≥ ε(a)

}
.

Lemma 25. For any monotone V (.) and ε(.) in the definition 24 of Ĝ(a0), we have

(68) lim
a0→0

inf
k

Pk

(
Ĝ(a0)

)
= 1.

Proof. The functions ε(.) and V (.) are monotone in a with lima→0 ε(a) = 0 and lima→0 V (a) =

∞. The set Ĝ(a0) is monotonously decreasing in a0, as we are using the collision data
only in the nodes for the intersection of all a < a0 and as ε ↘ 0 and V ↗ ∞. By the
monotone convergence theorem for sets, we obtain

lim
a→0

Pt(Ĝ(a)) = Pt(∪a>0Ĝ(a)),

then (m,φ) ∈ ∪a>0Ĝ(a) if for all l ∈ m:

vl − vl̄ 6∈ R(t, 0),

zl 6∈ ∪ l′<l
l′ 6=l̄

Cl′(a = 0).

Using (6), we see that for any given skeleton m the probability of violating these conditions

is zero. Thus we obtain Pt(E(m) ∩ ∪a>0Ĝ(a)) = Pt(E(m)). Hence

lim
a→0

Pt(Ĝ(a)) =
∑
m∈T

Pt(E(m) ∩ ∪a>0Ĝ(a)) =
∑
m∈T

Pt(E(m)) = 1.
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¤
Lemma 26. Let V (.) and ε(.) be monotone functions in the definition 24 of Ĝ(a0), then

(69) lim
a0→0

lim
a→0

sup
Ω⊂MT Borel,k≥1

∣∣∣P̂k

(
Ω ∩ Ĝ(a0)

)
− Pk

(
Ω ∩ Ĝ(a0)

)∣∣∣ = 0.

Proof. Fix a0 and let Ω ⊂ Ĝ(a0). We first split off the contribution of the trees with
many nodes. By Lemma 13, the expected value of the number of nodes #m in a tree m
is bounded by Kini exp(κdKinit) + 1. As #m is a positive function, we can use Markov’s
inequality and the estimate on the expected value of nodes to obtain the estimate

(70)
∑

#m−1>r

Pk(E(m)) = Pk(X(m) > r) <
E(X)

r
≤ Kini

r
exp(κdKinit).

This estimate gives us control over the error which arises if we ignore all trees with more
than r nodes:

1 =
∑
m∈T

Pk(E(m)) =
∑
m∈T

#m−1≤r

Pk(E(m)) +
∑
m∈T

#m−1>r

Pk(E(m))

≤
∑
m∈T

#m−1≤r

Pk(E(m)) + Kini

r
eκdKinit.(71)

In particular, if r ≥ Kini

δ
eκdKinit + 1, then

(72)
∑
m∈T
#m≤r

Pk(E(m)) ≥ 1− δ.

Denoting

I1 = sup
k

∑
m∈T
#m≤r

∣∣∣P̂k(Ω ∩ E(m))− Pk(Ω ∩ E(m))
∣∣∣ ,

I2 = sup
k

∑
m∈T
#m>r

P̂k

(
Ĝ(a) ∩ E(m)

)
,

I3 = sup
k

∑
m∈T
#m>r

Pk

(
Ĝ(a) ∩ E(m)

)
,

then for each r > 0 one obtains that

lim
a→0

sup
k

∣∣∣P̂k(Ω)− Pk(Ω)
∣∣∣ ≤ lim

a→0
(I1 + I2 + I3).

We will show that lima→0 I1 = 0 and lim supa→0(I2 + I3) = o(1) as δ tends to 0 (cf.
eq. (72)).
First we consider I1. Since there is only a finite number of tree skeletons with at most r
nodes it suffices to show that

lim
a→0

sup
k

∣∣∣P̂k(Ω ∩ E(m))− Pk(Ω ∩ E(m))
∣∣∣ = 0

for each m ∈ T such that #m ≤ r. We have seen earlier (eq. (62)) that Pk(Ω ∩ E(m)) =

P̂k(Ω ∩ E(m)) + e(Ω ∩ E(m)) where

0 ≤ e(Ω ∩ E(m)) =

∫

Ω∩E(m)

dλm(φ)
(
e−

P
j<k Γ̂j(Φ) − e−

P
j<k Γj(Φ)

)
.
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Since Γj(Φ) ≥ Γ̂j(Φ) (cf. Lemma 21) one obtains

e(Ω ∩ E(m)) ≤
∫

Ĝ(a)∩E(m)

dλm(φ) e−
P

j<k Γj(Φ)
(
e
P

j<k(Γj(Φ)−Γ̂j(Φ)) − 1
)

.

We will demonstrate that there is a number K(a0, a) > 0 such that lima→0 K(a0, a) = 0

and for all Φ ∈ E(m) ∩ Ĝ(a0) and all j ∈ N the estimate

(73) 0 ≤ Γj(Φ)− Γ̂j(Φ) ≤ K(a0, a)

holds. Since
∫
E(m)

dλm(φ) e−
P

j<k Γj(Φ) ≤ 1, and
∑

j<k 1 ≤ #m ≤ r this yields the bound

0 ≤P (Ω ∩ E(m))− P̂ (Ω ∩ E(m)) ≤ rK(a0, a)erK(a0,a).(74)

Thus estimate (73) implies lima→0 I1 = 0. To prove (73) we recall that by definition (57),
see also (55), (56) and (58)

Γ̂j(Φ) =n

∫

Rd

df0(v
′)Hd

(
Ĉj(Φ) ∩ (Td × {v′})

)

≥n
∑

|l|=j

∫

Rd

df0(v
′)Hd

(
Cl(φ) ∩ (Td × {v′}))− e1

=n
∑

|l|=j

∫

Rd\(vl+R(t,a))

df0(v
′)Hd

(
Cl(φ) ∩ (Td × {v′}))− e1 + e2

=
∑

|l|=j

∫

Rd\(vl+R(t,a))

df0(v) κd|vl − v|t− e1 + e2 = Γj(Φ)− e1 + e2 + e3,

where the error terms are defined as follows

e1 = n

∫

Rd

df0(v
′)Hd

(
(Cj(Φ) ∩ C̄j(Φ)) ∩ (Td × {v′})) ,

e2 = n
∑

|l|=j

∫

vl+R(t,a)

df0(v
′)Hd

(
Cl(φ) ∩ (Td × {v′})) ,

e3 =
∑

|l|=j

∫

R(t,a)

df0(v) κd|v|t.

We set K(a0, a) = e1 − e2 − e3 and show that lima→0 ej = 0 for j = 1, 2, 3. For all
v′ ∈ Rd one obtains that nHd

(
Cl(φ) ∩ (Td × {v′})) ≤ κd|vl − v′|t irrespective whether

v′ ∈ vl+R(t, a) or not, since it can be bounded by the length of the path, and intersections
will only reduce the measure.
Hence, using that

∑
|l|=j 1 ≤ #m ≤ r

e2 + e3 ≤ 2 κd r t

∫

R(t,a)

|v| df0(v)

and eq. (66) yields that lima→0(e2 + e3) = 0.
It remains to estimate e1. This is the only part where estimates are not uniform and
depend on the constants ε(a0) < 1 and V (a0).
To bound Hd

(
Cl̄(φ) ∩ Cl′(φ) ∩ (Td × {v′})), we define for |v′| ≤ V̄ the number c(a0, a, v′)

to be the maximum volume contained within the intersection of two cylinders of diameter
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a and axes v − v′ and v − v′′ if v, v′ and v′′ are constrained in a certain geometrical way:

c(a0, a, v′) = sup

{
ζ(u′, u′′, v, v′, v′′, a)

∣∣∣∣ u′, u′′ ∈ Td, v, v′′ ∈ Rd, |v′ − v′′| ≥ ε(a0)

and |v|, |v′′| ≤ V (a0) and
∣∣∣ v−v′
|v−v′| · v′′−v′

|v′′−v′|

∣∣∣ ≤ 1− ε(a0)

}
,

where

ζ(u, u′, v, v′, v′′, a) = Hd

({
u ∈ Td

∣∣∣∣ inf
s∈[0,t]

|u− u′ + s(v − v′)|Td ≤ a

and inf
s∈[0,t]

|u− u′′ + s(v − v′′)|Td} ≤ a

})
.

The cylinders can intersect at most ((V̄ + V (a0))t + 1)2 times. The volume of each
intersection is bounded from above by (2a)d−1` where ` is the maximal length of a line
segment which is parallel to v − v′ and is contained in the cylinder with axis parallel to
v′′ − v′. A simple geometric consideration yields that ` = 2a

| sin ψ| , where ψ is the angle

enclosed by the vectors v − v′ and v′′ − v′. The law of sines implies that sin(ψ) =
|v′−v′′|
|v−v′| sin(ψ0), where ψ0 is the angle enclosed by v− v′′ and v′− v′′. Since cos(ψ0) ≤ 1− ε

and |v′ − v′′| ≥ ε we obtain that | sin(ψ)| ≥ 1
|v−v′|ε

3
2 and thus

Hd
(
Cl̄(φ) ∩ Cl′(φ) ∩ (Td × {v})) ≤ 2dad−1 a ε(a0)

− 3
2 (V̄ + V (a0))((V̄ + V (a0))t + 1)2.

Using (2) and that there are less than r2/2 possible pairs (l̄, l′) we find that

e1 =n

∫

Rd\BV̄ (0)

df0(v
′)Hd

(
(Cj(Φ) ∩ C̄j(Φ)) ∩ (Td × {v′}))

+ n

∫

BV̄ (0)

df0(v
′)Hd

(
(Cj(Φ) ∩ C̄j(Φ)) ∩ (Td × {v′}))

≤2d r2 a ε(a0)
− 3

2 (V̄ + V (a0))((V̄ + V (a0))t + 1)2 +

∫

BV̄ (0)

df0(v
′)κd(|v′|+ V (a0)),

by choosing V̄ large, the last term is arbitrarily small uniformly in a. In particular
lima→0 e1 = 0 if a0 is kept fixed. Thus we have shown that lima→0 K(a0, a) = 0 and
thereby lima→0 I1 = 0, i.e. we have shown the convergence in (69) for finite trees of size
less than r for any fixed a0:
(75)

lim
a→0

sup
Ω⊂MT Borel

k≥1

∣∣∣∣∣P̂k

(
Ω ∩ Ĝ(a0) ∩

⋃

m∈T ,#m≤r

E(m)

)
− Pk

(
Ω ∩ Ĝ(a0) ∩

⋃

m∈T ,#m≤r

E(m)

)∣∣∣∣∣ = 0.

We finish the proof by showing that limδ→0 lima0→0 lima→0(I2 + I3) = 0. Equation (70)
yields

(76) I3 = sup
k

∑
m∈T
#m>r

Pk(Ĝ(a) ∩ E(m)) ≤ 1

r − 1
Kini exp(κdKinit) ≤ δ
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and in a similar way we obtain

lim
a0→0

lim
a→0

I2 = lim
a0→0

lim
a→0

sup
k

∑
m∈T
#m>r

P̂k

(
Ĝ(a) ∩ E(m)

)

≤ lim
a0→0

lim
a→0

sup
k

P̂k(Ĝ(a0))− lim
a0→0

lim
a→0

inf
k

∑
m∈T
#m≤r

P̂k

(
Ĝ(a0) ∩ E(m)

)

(68,75)
= 1− lim

a0→0
inf
k

∑
m∈T
#m≤r

Pk

(
Ĝ(a0) ∩ E(m)

) (76)

≤ δ.

Equation (68) yields that the last expression converges to 0 uniformly in a0 as δ tends to
0. Thus we have demonstrated that (69) is satisfied. ¤

Now we are in the position to give the proof of Proposition 22.

Proof of Proposition 22. We show that (68) and (69) imply (65): Since P̂k and Pk are
probability measures, eq. (69) implies that

(77) lim
a0→0

lim
a→0

sup
k

∣∣∣P̂k

(
MT \ Ĝ(a0)

)
− Pk

(
MT \ Ĝ(a0)

)∣∣∣ = 0.

Let now Ω ⊂ Ĝ(a0) for some a0 > 0 and fix ε > 0. Then

lim
a0→0

lim
a→0

sup
k
|P̂k(Ω)− Pk(Ω)| ≤ lim

a0→0
lim
a→0

sup
k

∣∣∣P̂k

(
Ω ∩ Ĝ(a0)

)
− Pk

(
Ω ∩ Ĝ(a0)

)∣∣∣

+ lim
a0→0

lim
a→0

(
sup

k
P̂k

(
Ω \ Ĝ(a0)

)
+ sup

k
Pk

(
Ω \ Ĝ(a0)

))

(69)
= lim

a0→0
lim
a→0

sup
k

P̂k

(
Ω \ Ĝ(a0)

)
+ lim

a0→0
sup

k
Pk

(
Ω \ Ĝ(a0)

)

(77)

≤ 2 lim
a0→0

sup
k

Pk

(
MT \ Ĝ(a0)

)
(68)
= 0.

Equation (64) follows directly from (68) since Ĝ(a) ⊂ G(a). ¤

2.7. Proof of the main results.

Proof of Theorem 2. We demonstrate that the distribution of a single tagged particle
satisfies the Boltzmann equation. Let A ⊂ Td×Rd be a Borel set and define Ω(A) ⊂MT
by

Ω(A) = {Φ ∈MT | β1(m) = 1 and z1 ∈ A},
which is a Borel set in MT (23), as β1(m) = 1 is a property of m alone. With this
notation we obtain that for every a0 > 0∣∣∣∣lima→0

lim
k→∞

P̂t,k(Ω)−
∫

A

du dft(v)

∣∣∣∣
Lemma 5

= lim
a→0

lim
k→∞

∣∣∣∣P̂t,k(Ω)−
∫

A

du dft,k−1(v)

∣∣∣∣
Proposition 14

= lim
a→0

lim
k→∞

∣∣∣∣P̂t,k(Ω)− Pt,k(Ω)

∣∣∣∣

= lim
a→0

lim
k→∞

∣∣∣∣P̂t,k(Ω ∩ G(a0))− Pt,k(Ω ∩ G(a0))− Pt,k(Ω \ G(a0)) + P̂t,k(Ω \ G(a0))

∣∣∣∣
(65)

≤ lim
a→0

lim
k→∞

Pt,k(MT \ G(a0)) + lim
a→0

lim
k→∞

P̂t,k(MT \ G(a0)).

26



-2e-05

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0 0.02 0.04 0.06 0.08 0.1 0.12

co
rre

cti
on

 to
 m

ea
n 

fie
ld 

[f(
t)-

1/
(1

+t
)]

time

data, N=100000, M=3700
prediction
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.

Now using that P̂t,k and Pt,k are probability measures and eq. (65) again for Ω̃ := MT ∩
G(a0), we obtain, for all k ∈ N, that lima→0 P̂t,k(MT \ G(a0)) = 1− lima→0 P̂t,k(G(a0)) =
1− Pt,k(G(a0)) = Pt,k(MT \ G(a0)). Now proceeding

≤2 lim
k→∞

Pt,k(MT \ G(a0)),

we send now a0 to 0, apply (64) and obtain that lima0→0 limk→∞ Pt,k(MT \ G(a0)) = 0,

hence lima→0 limk→∞ P̂t,k(Ω) =
∫

A
du dft(v), and the proof of Theorem 2 is complete. ¤

Proof of Corollary 3. Equation (15), Lemma 5 and Remark 16 show that 1⊗ ft,k, 1⊗ ft

and f̂
(a)
t,k are absolutely continuous with respect to 1⊗ f0. The calculation above implies

convergence of f̂
(a)
t,k to 1⊗ ft in L1(1⊗ f0). ¤

3. The effect of concentrations

We illustrate now that the idealized theory does not capture the many-particle dynamics if
the initial distribution f0 exhibits strong concentrations. To simplify the long calculations
at the end of the proof we assume that d = 2, but similar results are expected to hold in
the case d = 3.

Theorem 27. Let v ∈ R2 be such that |v| = 1
2

and set f0 = 1
2
(δ(· − v) + δ(· + v)). If

Q̂(t) = lima→0 limk→∞ P̂t,k(β1 = 1) denotes the empirical probability that a tagged particle
does not collide, then

(78) lim
t→0

1

t3

(
Q̂(t)−

∫

R2

dft(v)

)
=

1

9
,

where ft = 1
1+t

f0 is the unique solution of the Boltzmann equation (11) which satisfies the
initial condition ft=0 = f0.

A numerical simulation (Fig. 3) illustrates the prediction (78).

Proof. We could use the tree measures Pt and P̂t to prove the assertion. To keep the
notation as simple as possible and focus on the essential computation we chose a slightly
different approach based on Taylor expansion.
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It can be assumed without loss of generality that the initial value of the tagged particle
is (0, v). We define the set

Mλ :=

{
u ∈ Td

∣∣∣∣ min
s∈[0,t]

|2sv − u| ≤ ρ

}
,

which is basically a cylinder with radius ρ and centerline given by the particle-trajectory
without collisions and contains the initial positions of those particles that might collide
with the tagged particle before time t. The parameter ρ > 0 is a function of λ such that
vol(Mλ) = atλ, i.e. ρ solves

(79) πρ2 + 2ρt− aλt = 0.

The idea is that for short times the survival probability should be dominated by events
where the number of initial positions which fall into the set Mλ is small. It turns out that
the survival probability conditional to having j initial positions in Mλ can be computed
explicitly provided that λ ≥ j + 1. The reason is that for sufficiently large diameter the
survival probability is independent of the configuration outside the cylinder.
Since only half of the particles are potential collision partners and the modulus of the
relative velocity is 1 the collision rate is 1 (recall that κ2 = 2). By construction of λ the
probability that the total number of particles whose initial position is contained in Mλ

equals k is given by e−λt (λt)k

k!
.

Let pk(λ, t) be the probability that the particle does not collide before time t if there are
precisely k particles contained in Mλ. We will show later that in the limit where a tends
to 0 the probabilities pk become independent of t. This is expected since all particles in
Mλ, except those near the ends, will either collide or leave the cylinder before time t. For
small a the cylinder is very slender and only little volume is contained in the caps near
the ends. For this reason we will not show the dependency on t in future.

Lemma 28. For all j ∈ N

(80) lim
t→0

1

tj

∣∣∣∣∣Q̂(t)− e−λt

j∑

k=0

(λt)k

k!
pk(λ)

∣∣∣∣∣ = 0.

Proof. Let ω = {u0(i), | i = 1 . . . N} be the set of initial positions and Pj = Prob(#(ω ∩
Mλ) > j) be the probability that Mλ contains more than j particles. Clearly

Pj = e−λt

(
eλt −

j∑

k=0

(λt)k

k!

)
≤ e−λttj+1 sup

s∈[0,t]

λj+1

(j + 1)!
eλs =

λj+1

(j + 1)!
tj+1,

where the inequality is due to Taylor’s theorem. ¤

We will only be interested in the case j = 3.

Idealized behavior. Let Q(t) := 1
1+t

be the particle density predicted by the idealized

theory. We are seeking idealized probabilities pid
k (λ) ∈ [0, 1] such that

(81) Q(t) = e−λt

∞∑

k=0

(λt)k

k!
pid

k (λ).

Replacing the exponential function in (81) by the power series one obtains that

(82)
∞∑

l,m=0

(−λt)l

l!

(λt)m

m!
pid

m(λ) =
∞∑

k=0

(−t)k.

28



Ordering the left hand side by powers of t and equating coefficients yields the following
hierarchical set of equations for the probabilities pk

k∑

l=0

(−1)l

l!(k − l)!
pid

k−l =

(
−1

λ

)k

.

We can use the equations above to determine pid
k recursively and obtain that

pid
k = (−1)k k!

λk
−

k∑

l=1

(−1)l

(
k

l

)
pid

k−l.

The recurrence relation can be solved explicitly and we obtain

(83) pid
k =

k∑

l=0

k!

(k − l)!

(
−1

λ

)l

.

Equation (80) and (81) implies that if pk does not agree with formula (83), then Q̂(t) 6=
Q(t) if t is sufficiently small.

Computation of the empirical probabilities pk. If λ ≥ k + 1 the probability pk can
be computed explicitly. The reason is that the diameter of the cylinder is so large that
the collision probability is not influenced by the initial configuration outside Mλ and so
small that the probability of initial configurations with overlap is negligible. To keep the
notation as simple as possible we will from now on ignore errors coming from the finiteness
of a and assume that the particles are intervals with length a perpendicular to the vector
v. Explicit estimates of the dependency of p2 on a are provided at the end of the proof, no
approximation is involved in the case of p1. The dependency of p3 on a can be estimated
analogously.
We will show now that for all λ ≥ 4 the values of pk(λ), k = 0, 1, 2, 3 are given by p0 = 1,
p1 = 1− 1

λ
, p2 = 1− 2

λ
+ 2

λ2 , p3 = 1− 3
λ

+ 6
λ2 − 6

λ3 + α2

λ3 with α2 = 2
3
. This implies that

lim
t→0+

Q̂(t)− 1
1+t

t3
=

α2

6
=

1

9

and thus the claim.
Let k ∈ {0, 1, 2, 3} be the number of particles contained in the set Mλ. For the sake
of simplicity we say that the particles with velocity v are white and the particles with
velocity −v are black. One obtains 2k different color distributions, each of those cases has
the same probability of occurring.
We are now in a position to compute an explicit formula for the values of pk(λ). We
have to consider several cases, depending on the direction and relative position of the
particles in the path of the tagged particle. Particles traveling in the same direction as
the tagged particle are denoted by w, particle in the other direction by b. The ordering
of the particles in the cylinder is given in the index.

Computation of p0.
It is clear that p0 = 1 since there is no obstacle in Mλ.

Computation of p1.
pw

1 = 1,
pb

1 = 1− 2
λ
.

We obtain the overall probability p1 = 1
2
(pw

1 + pb
1) = 1− 1

λ
.
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Computation of p2.
pww

2 = 1 (No collision possible),
pbb

2 = (1− 2
λ
)2 (Probability of avoiding two independent black particles),

pbw
2 = 1− 2

λ
(Probability of avoiding one black particle, the position of the white particle

is irrelevant),
pwb

2 = 1− 2
λ
(1− 2

λ
) (Probability of avoiding a black particle which might be removed by

a white particle before it comes to a collision).
Adding the probabilities yields that p2 = 1

4
(pww

2 + pbb
2 + pwb

2 + pbw
2 ) = 1− 2

λ
+ 2

λ2 .

Computation of p3.
pwww

3 = 1 (No collision possible),
pbbb

3 = (1− 2
λ
)3 (Probability of avoiding 3 independent black particles),

pbww
3 = 1− 2

λ
(Probability of avoiding 1 black particle, the white particles are irrelevant),

pwbw
3 = 1− 2

λ
(1− 2

λ
) (Probability of avoiding one black particle which might be removed

by one white particle. The second white particle is irrelevant).
pwwb

3 = 1− 2
λ
(1− 2

λ
)2 (Probability of avoiding one black particle which might be removed

by two independent white particles).
pbbw

3 = (1− 2
λ
)2 (Probability of avoiding 2 independent black particles, the white particle

is irrelevant).
pbwb

3 = (1 − 2
λ
)(1 − 2

λ
(1 − 2

λ
)) (Probability of avoiding 2 independent black particles, the

second black particle might be removed by a white particle).
pwbb

3 = 1− 4
λ

+ 12
λ2 − 24

λ3 + 8α2

λ3

To demonstrate that the formula above indeed yields the correct value of pwbb
3 we introduce

the coordinates perpendicular to v of the three particles ui ∈ R, i = 1, 2, 3 and consider
four mutually exclusive scenarios. In three scenarios the probability of being scattered can
be computed analogously to the preceding cases. As these computations are independent
of a, we let a = 1 for notational convenience. For the particle to exist, we need that black
particles in the cylinder (with either |u2| ≤ 1 or |u3| ≤ 1) have to be removed by the first
white one.

Prob(|u2| > 1 and |u3| > 1) = (1 − 2
λ
)2, (Probability of avoiding 2 independent black

particles, the white particle u1 is irrelevant)
Prob(|u2| ≤ 1 and |u2 − u1| ≤ 1 and |u3| > 1) = 4

λ2 (1 − 2
λ
), (The white particle removes

the first black particle, the second black particle is avoided.)
(The case |u2| ≤ 1, |u1 − u2| > 1, |u3| > 1 does not contribute to pwbb

3 as it implies a
collision.)
The last case is that the first black particle is avoided, while the white particle removes
the second black particle, i.e. this case is |u2| > 1, |u3| ≤ 1, |u1−u3| ≤ 1 and |u1−u2| > 1.
We split this into subcases: The first case is
Prob(|u2| ≥ 3 and |u3| ≤ 1 and |u1 − u3| ≤ 1) = (1− 6

λ
) 4

λ2 .
To compute the probability of being scattered in the remaining case where |u2| ∈ (1, 3],
|u3| ≤ 1, |u1 − u3| ≤ 1 and |u1 − u2| > 1 we have to do an explicit integration.

I2 =

∫ 1

−1

du3

∫ u3+1

u3−1

du1

∫ 3

1

du2 (1− χ[−1,+1](u1 − u2))

+

∫ 1

−1

du3

∫ u3+1

u3−1

du1

∫ −1

−3

du2 (1− χ[−1,+1](u1 − u2))

=2

∫ 1

−1

du3

∫ u3+1

u3−1

du1

∫ 3

1

du2 (1− χ[−1,+1](u1 − u2)),
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as the other integral is obtained by the transformation (u1, u2, u3) 7→ (−u1,−u2,−u3).
A simple but lengthy calculation yields that I2 = 40

3
. The details of this calculation are

irrelevant, but for the purpose of checking that this number is indeed correct the detailed
calculations are included below. We obtain that

pwbb
3 = (1− 2

λ
)2 + 4

λ2 (1− 2
λ
) + (1− 6

λ
) 4

λ2 + I2
λ3 .

Altogether this yields

p3 =1
8
(pwww

3 + pwwb
3 + pwbw

3 + pbww
3 + pwbb

3 + pbwb
3 + pbbw

3 + pbbb
3 )

=1− 3
λ

+ 6
λ2 − 6

λ3 + I2−8
8λ3 ,

and therefore α2 = I2−8
8

= 2
3
.

We calculate now the value of I2.

I2 =2

∫ 1

−1

du3

∫ 0

u3−1

du1

∫ 3

1

du2 (1− χ[−1,1](u1 − u2))︸ ︷︷ ︸
=1

+ 2

∫ 1

−1

du3

∫ u3+1

0

du1

∫ 3

1

du2 (1− χ[−1,1](u1 − u2))

=4

∫ 1

−1

du3 (1− u3) + 2

∫ 1

−1

du3

∫ u3+1

0

du1

∫ 3

1

du2

− 2

∫ 1

−1

du3

∫ u3+1

0

du1

∫ 3

1

du2 χ[−1,1](u1 − u2)

=8 + 8− 2

∫ 1

−1

du3

∫ u3+1

0

du1

∫ 1+u1

max(1,u1−1)

du2

=16− 2

∫ 1

−1

du3

∫ u3+1

0

du1

∫ 1+u1

1

du2

=16− 2

∫ 1

−1

du3

∫ u3+1

0

du1 u1 = 16− 2

∫ 1

−1

du3
1

2
(u3 + 1)2

=16− 1

3
[(u3 + 1)3]u3=1

u3=−1 = 16− 8

3
.

We provide now an explicit estimate of the dependency of p2 on a. Due to our choice of
ρ (79) and as λ ≥ 4 there are not any finite size effects for pww

2 , pbb
2 and pbw

2 . Only pwb
2

depends on a: The probability that the white particle removes the black one, that will
be hit at a time 0 ≤ s ≤ t, is given by the probability of finding an extra white particle
in Mλ such that it hits before time s. This probability is given by the volume quotient:

2as
πρ2/2+2sρ

. Integrating this yields

pwb
2 = 1−

(
1− 2

λ

)
1

t

∫ t

0

2as
π
2
ρ2 + 2sρ

ds.

Equation (79) implies that pwb
2 = 1− 2

λ
(1− 2

λ
) + O(a).

¤

4. Proofs of auxiliary results

This section contains the proofs of Lemmas 5, 7, 15, 19, 20 and 23. These lemmas are
not concerned with multi-scale aspects.
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We first explain the notation used in Lemma 5. Let w ∈ C(Rd), w ≥ 0 be a weight. For
a Radon-measure f we define

‖f‖w := sup
φ∈BC0(Rd),‖φ‖≤1

∫
|φ(v)w(v) df(v)|.

Then Mw = {f ∈ (BC0(Rd)))∗| ‖f‖w < ∞} is a Banach space of measures with norm
‖.‖w. To control convergence we introduce weighted spaces in time for X-valued functions,
for some Banach space X

C0
ρ([0,∞), X) := {u ∈ C0([0,∞), X)| sup

t∈[0,∞)

(exp(−ρt)‖u(t)‖X < ∞}) with norm

‖u‖ρ := sup
t∈[0,∞)

(exp(−ρt)‖u(t)‖X) .

Proof of Lemma 5. The proof is based on a simple contraction argument. First, we
note that ‖ft,k‖(1+|v|)2 is decreasing in t as 0 ≤ L[fs,k−1](v) < ∞. Next we estimate
exp(−ρt)‖ft,k+1 − ft,k‖1+|v| for 0 ≤ t < ∞, with ρ chosen later. Let φ ∈ BC0(Rd) with
‖φ‖ ≤ 1, then consider

exp(−ρt)

∣∣∣∣
∫

Rd

φ(v)(1 + |v|) (dft,k+1(v)− dft,k(v))

∣∣∣∣

=

∫

Rd

φ(v)(1 + |v|) df0(v) exp(−ρt)

∣∣∣∣exp

(
−

∫ t

0

L[fs,k](v) ds

)
− exp

(
−

∫ t

0

L[fs,k−1](v) ds

)∣∣∣∣

≤
∫

Rd

φ(v)(1 + |v|) df0(v) exp(−ρt)

∫ t

0

|L[fs,k](v)− L[fs,k−1](v)| ds).

Because of the positivity of L, we obtain a Lipschitz constant of 1 for exp(−.). We have

≤
∫

Rd

φ(v)(1 + |v|) df0(v)κd

(
exp(−ρt)

∫ t

0

∫

Rd

|dfs,k(v
′)− dfs,k−1(v

′)| |v − v′|ds

)

Then using the norms in M1(Rd) and M1+|v|(Rd) and splitting the exponential term, we
obtain

≤
∫

Rd

φ(v)(1 + |v|) df0(v)κd

(∫ t

0

exp(−ρ(t− s))
[
exp(−ρs)‖fs,k − fs,k−1‖1+|v|

+ exp(−ρs)|v|‖fs,k − fs,k−1‖1

]
ds

)

≤ 2κd

∫

Rd

φ(v)(1 + |v|)2 df0(v) sup
0≤s<∞

(∫ t

0

exp(−ρ(t− τ)) dτ

) (
exp(−ρs)‖fs,k − fs,k−1‖1+|v|

)

≤ 2κd‖f0‖(1+|v|)2
1

ρ
(1− exp(−ρt))‖fk(.)− fk−1(.)‖ρ.

Thus for ρ > 2κd‖f0‖(1+|v|)2 the sequence (fk)k∈N converges in C0
ρ([0,∞),M1+|v|) by Ba-

nach’s fixed point theorem and the limit solves ft = exp(− ∫ t

0
L[fs](v) ds)f0. Hence f is

differentiable and solves (11) for t ∈ [0,∞). Uniqueness of the solution of the integral
equation also follows by the Banach fixed point theorem. On the other hand all solutions
of (11) in C1([0, T ],M1+|v|) have to satisfy the integrated form too, showing uniqueness
of the solutions of (11). As 0 ≤ ft(v) ≤ f0(v), we also obtain ft ∈ M(1+|v|)2 . ¤
Proof of Lemma 7. We first show, that the implicit relation β(i, t) in Theorem 2 is well-
defined. For each particle it indicates whether it has undergone a collision: β(i, t) jumps
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from 1 to 0 at the time of the collision. As the particles are removed after a collision, a
collision can only occur when

dist(zi, zi′ , s) = a for some i 6= i′.

This also takes multiple collisions into account, which lead to an undefined situation in
hard-sphere collision dynamics, but as particles are removed here after a collision, the
scattering state can be defined.
The distance dist(zi, zi′ , s) is a continuous piece-wise affine function in s, except possibly a
unique point, if there is an initial intersection, but then dist(zi, zi′ , s) > a near this jump.
There are only finitely many different pieces in a finite interval [0, t], because v(i)−v(i′) is
finite and only a finite number of coverings of the torus Td can be visited in a finite time.
Hence for every particle i, there are at most N − 1 possible collision times, i.e. the first
time τ(i, i′) ≥ 0 at which dist(zi, zi′ , s) = a for each i′. The at most N(N − 1)/2 possible
times for collision of the particles i = 1, . . . , N can be well-ordered. So by inductively
checking at all possible collision times τ(i, i′), there exists a well-defined collision time for
each particle i, at which it collides with an unscattered particle (β(i, .) has a well-defined
jump); or the particle remains unscattered itself for [0,∞) (β(i) is constant), which shows
the existence of β(i, t).
To prove convergence of βk(i, t), defined in (16), to β(i, t) as k tends to ∞, we first
introduce some notation using the real scattering state β(., .). Let τj be an ordering
of the finite number of collision events described by β(., .). The sets Ij are particles
available for collision at time τj and Cj are those particle actually colliding. We define
I1 = {1, . . . , N} and τ0 = 0. For each j ≥ 1 let τj > τj−1 and Cj, Ij+1 ⊂ Ij be recursively
defined by

min{dist(zi, zi′ , τj) | i 6= i′ ∈ Ij} = a for each i ∈ Cj,

dist(zi, zi′ , s) > a for all i, i′ ∈ Ij, s ∈ [τj−1, τj),

Ij+1 = Ij \ Cj.

It can be checked that β(i, s) = 1 if there exists j ∈ N such that i ∈ Ij and s ∈ [0, τj].
For all other choices of i and s we have that β(i, s) = 0. Clearly β(i, ·) is constant within
the intervals (τj−1, τj]. We will show using induction that for each j ∈ {1, 2, . . .} and each
k ≥ j

βk(i, s) = β(i, s) if s < τj or i ∈ I1 \ Ij.(84)

The claim is clear for j = 1. Assume now that the claim has been established up to j and
let k ≥ j + 1. We will show that

βk(i, s) = β(i, s) if s < τj+1 or i ∈ I1 \ Ij+1.(85)

By the induction assumption (85) holds for s ∈ [0, τj] or i ∈ I1 \ Ij and we can assume
from now that s > τj.
Case 1. Let i ∈ I1 \ Ij+1. We have to show that

βk(i, s) = β(i, s) for all k ≥ j + 1.(86)

Since s > τj we have that β(i, s) = 0. By (84) eq. (86) holds if i ∈ I1 \ Ij, hence we can
assume that i ∈ Cj. In this case there exists i′ ∈ Cj such that dist(zi, zi′ , τj) = a. The
induction assumption (84) implies that βk−1(i

′, τj−1) = 1 and thus

dist(zi, zi′ , τj) = aβk−1(i
′, τj),

this implies by definition (16) that βk(i, s) = 0.
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Case 2. Let i ∈ Ij+1 and s ∈ (τj, τj+1). We show that

βk(i, s) = β(i, s) = 1 for all k ≥ j + 1.(87)

Using definition (16) again, we have to ensure dist(zi, zi′ , s) ≥ aβk−1(i
′, s) for all i′ and

s ∈ (τj, τj+1). If i′ is such that βk−1(i
′, s′) = 0, then the condition holds trivially as always

dist(zi, zi′ , s
′) ≥ 0 = aβk−1(i

′, s′).

So consider instead i′ with βk−1(i
′, s′) = 1 for s′ ∈ (τj−1, τj). Then the induction assump-

tion implies that βk−1(i
′, s′) = β(i′, s′) and therefore i′ ∈ Ij. Since i ∈ Ij+1 and i′ ∈ Ij it

is not possible that dist(zi, zi′ , τj) = a. Hence we obtain dist(zi, zi′ , s) ≥ a = aβk−1(i
′, s)

for s ∈ (τj, τj+1). This completes the induction step.
Since the number of particles is finite, eq. (18) is a consequence of (84). ¤

Proof of Lemma 19. To simplify the notation we define Ĉ = C \ C̄. The assumption
A ⊂ ∪∞r=0(C \ C̄)r implies

Probppp

(C ∩ ω ∈ A | C̄ ∩ ω = ∅) = Probppp

(
Ĉ ∩ ω ∈ A | C̄ ∩ ω = ∅

)

=Probppp

(
Ĉ ∩ ω ∈ A

)

by independence since the sets Ĉ and C̄ are disjoint. The last expression is an unconditional
probability with respect to the Poisson-point process which can be evaluated explicitly
using Definition 1:

Probppp

(
Ĉ ∩ ω ∈ A

)
=

∞∑
r=0

Probppp

(
Ĉ ∩ ω ∈ A ∩ Cr

)

=
∞∑

r=0

e−µ(Ĉ) (µ(Ĉ))r

r!
× (µ(Ĉ))−r

∫

Ĉr

dµr(z)χA(z) = e−µ(Ĉ)
∞∑

r=0

1

r!

∫

A∩Cr

dµr(z).

This proves formula (54). ¤

Proof of Lemma 15. This is a proof by induction over k. For k = 1, we immediately have
in the tree description β1 = 1 and β1(i, t) ≡ 1 in the many particle dynamics. For k > 1,
we consider a tree (m,φ) with root particle i∗ which has r1 particle on level two with
subtrees m1, . . .mr1 . For each subtree mj with root particle j∗ and time span s1j we have
β1(mj) = βk−1(j

∗, s1j) by assumption. Then by (22) and the induction assumption

(88) β1(m) =
∏

j=1...rl

(1− β1(mj)) =
∏

j=1...rl

(1− βk−1(j
∗, s1j)).

Whereas considering (16), βk(i
∗, s1) can only be 1 if dist(zi∗ , zj, s) ≥ aβk−1(j, s) for all s

and j 6= i∗. Only the particles j∗ with j ∈ {1, . . . , rl} have some s with dist(zi∗ , zj∗ , s) ≤
a, namely s1j. Hence we have βk(i

∗, s1) = 1 if and only if βk−1(j
∗, s1j) = 0 for all

j ∈ {1, . . . , rl}. This is equivalent to the right hand side of (88) and hence β1(m) being
1, completing the proof. ¤

Proof of Lemma 20. We prove this by induction over k. For k = 1, this is just the
definition in (46). Now assume that eq. (60) holds for k − 1. We split Ω in two parts.

Firstly for Ω ⊂ G(a) ∩MT k−2, we obtain by (43) that P̂k(Ω) = P̂k−1(Ω) and then the
right-hand sides of (60) coincide as well.
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For Ω ⊂ G(a) ∩ (MT k \MT k−2) a Borel set, we have by (45) and (59)

P̂k(Ω) =

∫

Td×Rd

dP1(φ1(Z1)) e−Γ̂1(Φ1(Z1))

∫

(Td×Rd)r2

µr2(Φ2(Z1Z2))

. . . e−Γ̂k−1(Φk−1(Z1...Zk−1))

∫

Ak(Ω,Φk−1(Z1...Zk−1))

dµrk(Z1Z2 . . . Zk)

=
∑

m∈Tk\Tk−2

∫

A(Ω)

dµ#m(z) e−
P

j<k Γ̂j(Φ(z)),

where we observe that Ak(Ω, Φk−1(Z1 . . . Zk−1)) is empty for m ∈ Tk−1 \Tk−2. This empty
integral is then evaluated as 0 and we obtain (60) for all Ω ⊂ G(a) ∩MT k. ¤

Proof of Lemma 23. For each ξ ∈ Rd \ {0} we define the cone

M(ξ, a) =
{
v ∈ Rd | (v · ξ)2 ≥ (|ξ|2 − a2)|v|2} .

We first observe that M(ξ, a) ⊂ M( 1
|ξ|ξ, a) for all ξ ∈ Rd with |ξ| ≥ 1, i.e. in particular for

ξ ∈ Zd\{0}. Letting c(a) := sup{∫
M(ξ,a)

df0(v) | ξ ∈ Zd\{0}}, we see, if lim supa→0 c(a) >

0, then by normalizing there exists a converging sequence of directions ξj in Sd−1 such
that ξj → ξ and

∫
M(ξj ,aj)

df0(v) > c. This implies with M(ξj, aj) ⊂ M(ξ, aj + |ξ − ξj| +
2
√|ξ − ξj|), that lim supa→0

∫
M(ξ,a)

df0(v) > c in contradiction to assumption (6). Hence

we have that c(a) = o(1) as a → 0. For each v ∈ R(t, a) such that |v| ≤ V̄ there exists
ξ(v) ∈ Zd \{0} such that |ξ(v)| ≤ V̄ t+a and v ∈ M(ξ(v), a), i.e. each velocity v ∈ R(t, a)
is an element of one of at most (2tV̄ + 2a)d cones. Thus we obtain, using (5),

∫

R(t,a)

(1 + |v′|) df0(v
′) ≤

∫

R(t,a)∩{|v′|≤V̄ }
(1 + |v′|) df0(v

′) +

∫

{|v′|>V̄ }
(1 + |v′|) df0(v

′)

≤ (1 + V̄ )(2tV̄ + 2a)dc(a) + Kini/V̄ ,

with Kini =
∫
Rd df0(v) (1+ |v|)2. So choosing first V̄ large the second term is small. Then

choose a so that the first term is small, which completes the proof of the equation (66). ¤

5. Discussion

In this paper we propose and develop a new method that allows us to derive and justify
effective continuum limits as scaling limits of large interacting particle systems. We
consider the conceptually simplest situation of kinetic annihilation where each particle
moves with constant velocity until it interacts with another particle. After the collision
the collided particles are removed from the system. The transport term could be dropped
by considering spatially homogenous initial data. The analysis of kinetic annihilation
with transport term will be the subject of a forthcoming paper.
It would be highly desirable to generalize our approach so that also the case of collisional
dynamics can be treated. The main difficulty arises from the fact that although the
concept of the collision trees can be adapted it is harder to obtain lower bounds on
probabilities of good events. The reason is that in the case of collisional dynamics the
trees consist of two different types of nodes:

(1) Destructive collisions which prevent the root particle from being in a certain state.
These collisions correspond to the loss term in the Boltzmann equation.

(2) Constructive collisions which explain the momentum changes of observed particles.
These collisions correspond to the gain term in the Boltzmann equation and do
not occur in the gainless case.
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Formally, the likelihood of trees with constructive and destructive nodes can be computed
with a formula analogous to (24), but due to the presence of two different types of nodes
the integrand changes its sign. Moreover, it can be checked that for sufficiently large t, the
integrand is not absolutely integrable, i.e. the integral only makes sense when cancelation
effects are taken into account. These cancelation effects are the probabilistic analogue of
the fact that solutions of the homogeneous Boltzmann equation

∂f

∂t
= Q+[f, f ] + Q−[f, f ]

only exist globally in time due to cancellation effects, in the sense that the lossless Boltz-
mann equation ∂f

∂t
= Q+[f, f ] does not admit global solutions, see [IS87]. For this reason

it is currently unclear, whether almost sharp lower bounds on the likelihood of good trees
can be obtained in this way.
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Appendix A. Notation

Symbol Meaning
a diameter of the balls
N number of particles
n = a1−d intensity of the Poisson measure for the initial positions on Td

(u, v) phase space variables in Td × Rd

f0 initial velocity distribution, element of PM(Rd)
Probtppp probability of the Poisson-point process of the initial data, Definition 1
fk approximate solution of the gainless, homogeneous Boltzmann equation, (15)
PM(Rd) probability measure on Rd

Hd d-dimensional Hausdorff measure
M+(Td × Rd) non-negative measures on Td × Rd

Mw(Rd) measures with weight function w, after Lemma 5
β(a)(i, t) scattering state (= 1 unscattered, = 0 scattered) of particle i at time t, (16)
βk(i, t) scattering state when restricting to tree of height k, see (16,22) and Lemma 15
T ⊂ ∪∞i=1Ni set of tree skeletons, Definition 8
m ∈ T tree (skeleton), Definition 8
l ∈ m a node in a tree, Definition 8
l̄ the parent of node l, Definition 8
|l| height of a node (= i if l ∈ Ni), Definition 8
rl number of children of node l, (21)
(ul, vl, sl, νl) ∈ Td × Rd × [0,∞)× Sd−1 data on node l with ul, vl initial data,

νl collision parameter and sl collision time, Definition 8
MT marked trees with collision data, Definition 8
E(m) ⊂MT trees with skeleton m, (19)
Φ = (m, φ) ∈MT tree (with collision data)
Pt,k idealized probability, (24)
Pt,1 distribution of root, (46)
dλ̄l simplified idealized distribution at node l, (29)
P̂t,k empirical distribution, (42)
R(t, a) ⊂ Rd resonant initial velocities, (47)
G(a) ⊂MT good trees, Definition 18
Ĝ(a0) ⊂ G(a0) good trees with additional desirable properties, (67)
γl integrated collision rate of particle l (idealized), (26)
Γ(j) joint integrated collision rate of particles of height j (idealized), (25)
Γ̂(j) joint integrated collision rate of particle of height j (empiric), (57)
Cl = Cl(φ) colliding initial values of particle at node l, Definition 18
C(k) :=

⋃
l∈m∩Nk Cl ⊂ Td × Rd, (55)

C̄(k) :=
⋃
|l|<k Cl ⊂ Td × Rd, after eq. (55)

Ĉ(k) := C(k) \ C̄(k), (58)
BC0 bounded continuous functions
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