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Validity and reliability of a linear positional transducer across commonly practised
resistance training exercises

Harry F. Dorrell , Joseph M. Moore , Mark F. Smith and Thomas I. Gee

Human Performance Centre, School of Sport and Exercise Science, College of Social Sciences, University of Lincoln, Lincoln, UK

ABSTRACT

This study investigated the validity and reliability of the GymAware PowerTool (GPT). Thirteen resistance
trained participants completed three visits, consisting of three repetitions of free-weight back squat,
bench press, deadlift (80% one repetition maximum), and countermovement jump. Bar displacement,
peak and mean velocity, peak and mean force, and jump height were calculated using the GPT, a three-
dimensional motion capture system (Motion Analysis Corporation; 150 Hz), and a force plate (Kistler;
1500 Hz). Least products regression were used to compare agreeability between devices. A within-trial
one-way ANOVA, typical error (TE; %), and smallest worthwhile change (SWC) were used to assess
reliability. Regression analysis resulted in R2 values of >0.85 for all variables excluding deadlift mean
velocity (R2 = 0.54–0.69). Significant differences were observed between visits 3-2 for bench press bar
displacement (0.395 ± 0.055 m; 0.383 ± 0.053 m), and deadlift bar displacement (0.557 ± 0.034 m;
0.568 ± 0.034 m). No other significant differences were found. Low to moderate TE (0.6–8.8%) were
found for all variables, with SWC ranging 1.7–7.4%. The data provides evidence that the GPT can be
used to measure kinetic and kinematic outputs, however, care should be taken when monitoring
deadlift performance.
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Introduction

Resistance training is an essential stimulus for the development

of muscular strength and power, and is considered fundamental

to many athlete’s periodised regimes (Harries, Lubans, & Callister,

2012, 2015). One approach to ensure the effectiveness of such

regimes is through the monitoring of acute training variables.

Traditionally, variables were limited to the volume and intensity

of a given movement, however, as technology and training

practices have developed, access to more complex variables

such as lift velocity and force have become available (Peterson,

Rhea, & Alvar, 2004). These variables have been shown to offer

insight into an athlete’s development and have a wide range of

uses in the design andmonitoring of periodised regimes (Pereira

& Gomes, 2003).

The velocity at which a given lift is performed is directly

related to both the force-velocity relationship of the athlete,

and their current state of fatigue (Haff, 2012; Sanchez-Medina

& González-Badillo, 2011). Therefore, the measurement of lift

velocity allows insight into the athlete’s current physiological

status (Conceição, Fernandes, Lewis, Gonzaléz-Badillo, &

Jimenéz-Reyes, 2016; González-Badillo et al., 2015; González-

Badillo & Sánchez-Medina, 2010). This allows informed deci-

sions to be made on factors such as proposed training volume,

prescribed training loads, and regime progression (Kraemer &

Ratamess, 2004). This is often done through use of athlete

velocity profiling, facilitating the prediction of one repetition

maximum, and the prescription of individualised velocity

training zones (González-Badillo & Sánchez-Medina, 2010;

Jidovtseff, Harris, Crielaard, & Cronin, 2011; Kraemer &

Ratamess, 2004; Sánchez-Medina, Pallarés, Pérez, Morán-

Navarro, & González-Badillo, 2017). Due to the potential impli-

cation of these measures, the accurate and reliable assessment

of these performance variables is essential.

Traditionally, the direct acquisition of these performance

variables required the use of a force plate and/or high speed

video analysis, limiting research to specialised facilities due to

labour- and resource-intensive protocols (Lamas et al., 2012).

Whilst these methods are widely considered “gold standard”

in terms of performance assessments, the transferability to

an applied setting has been questioned (Cronin, Hing,

& Mcnair, 2004). To overcome this, kinematic systems, includ-

ing linear positional transducers (LPTs), have become increas-

ingly popular tools for quantifying the force, power and

velocity outputs of resistance training exercises (Argus, Gill, &

Keogh, 2012; González-Badillo et al., 2015; Sánchez-Medina

et al., 2017).

Commercially available LPTs use a tether attached directly

to the athlete or weightlifting bar, enabling real-time collec-

tion of time-displacement data. This data, along with inputted

mass (athlete and/or system), is then used to derive further

variables such as, velocity, acceleration, force, and power.

Research has utilised LPTs across a range of resistance training

movements, with the aim of measuring and applying perfor-

mance variables, in both training and testing environments

(Argus, Gill, Keogh, Hopkins, & Beaven, 2010; Conceição

et al., 2016; Cormie, Mccaulley, Triplett, & Mcbride, 2007;
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Drinkwater, Moore, & Bird, 2012). Whilst these monitoring

tools are becoming prevalent within both applied and

research environments, the validity and reliability of specific

devices has yet to be fully examined within the literature.

The GymAware PowerTool (GPT) is a commercially available

LPT, which has been used within an array of research studies

evaluating velocity (Argus, Gill, Keogh, & Hopkins, 2011), accel-

eration (Beaven, Cook, Kilduff, Drawer, & Gill, 2012), force

(Crewther, Kilduff, Cunningham, Cook, & Yang, 2010), and

power (Argus et al., 2012), across a range of resistance training

movements. However, minimal research exists exploring the

validity and intra-visit reliability of the device. Drinkwater,

Galna, McKenna, Hunt, and Pyne (2007) evaluated the validity

of the GPT, during free-weight bench press, and Smith-

machine back squat and bench throw. Eccentric and con-

centric peak and mean power output were calculated through

use of the GPT and validated against two-dimensional video

data. Validity was quantified through use of standard error of

measurement, and coefficient of variation (3.6–14.4 W, 1.0–

3.0%, respectively). The relationships between the criterion

device (video) and the GPT were evaluated using Pearson’s

product moment, producing strong correlations (r ≥ 0.97).

Whilst the data presented suggests high levels of validity,

the use of manually calibrated, two-dimensional video capture

limits the practical applications of this research due to an

increased risk of both systematic and random error.

Crewther et al. (2011) investigated the validity of the GPT

during weighted squat jumps (20 kg, 40 kg, 60 kg, and 80 kg).

Concentric peak force and power of twelve trained partici-

pants were assessed via comparisons of the GPT and a force

platform (Kistler, Switzerland). Relative validity was quantified

using least squares regression (r = 0.59–0.87), with Bland-

Altman plots revealing high random error across all assessed

resistances for peak force (20 kg: ± 579 N; 40 kg: ± 255 N;

60 kg: ± 255 N; 80 kg: ± 414 N), and peak power (20 kg:

± 879 W; 40 kg: ± 611 W; 60 kg: ± 748 W; 80 kg: ± 762 W).

The authors suggested that the error was likely due to the

differing methods between measuring devices. Force plates

measure the centre of mass directly, while the GPT differenti-

ates this variable from collected time-displacement data. Thus,

any body movement occurring independently of the bar,

potentially affecting centre of mass, will be missed by the

GPT (Crewther et al., 2011).

The limitations of the above research highlight a clear need

for further investigation into the validity of the GPT.

Furthermore, to our knowledge, the intra-visit reliability of

the GPT, set within a resistance-based exercise paradigm, has

yet to be examined. Producing outcome measures that have

addressed these issues would allow researchers and practi-

tioners to make informed decisions about use of the GPT

within athletic programme design and monitoring.

Researchers should endeavour to ensure data collected is

applicable to common strength and conditioning practice.

This should be achieved by assessing the validity and reliabil-

ity of the GPT on commonly employed lifts, which have a

range of techniques, lift distances, and velocities. Therefore,

the aims of this research were to investigate and establish the

validity of the GPT against integrated criterion devices, and to

assess the reliability of the GPT over three repeated visits.

These were addressed by evaluating displacement, velocity,

and force outputs of the back squat, bench press, deadlift (all

free-weight), and countermovement jump (CMJ), within a

trained population group.

Methods

Participants

Thirteen resistance trained participants (mean ± SD, age:

26.5 ± 4.8 years, height: 1.74 ± 0.10 m, body mass:

81.9 ± 12.1 kg), volunteered and consented to take part in

the study. All participants were free from injury and had at

least two years of resistance training experience prior to the

start date. All participants had experience of the movements

required prior to acceptance on the study. Protocols were

submitted to, and approved by, the local ethical review

board at the institution, in line with the Helsinki Declarations

for research with human volunteers.

Procedures

On their initial visit, participants completed a one repetition

maximum test protocol (1RM) for back squat, bench press, and

deadlift in accordance with guidelines established by the

National Strength and Conditioning Association (Baechle &

Earle, 2000). This was used as both a familiarisation session,

and to obtain 1RM data. Following this, participants com-

pleted three further visits, interspaced with a minimum of

96 hours rest (maximum 120 hours). Upon each visit, a stan-

dardised warm-up was overseen, consisting of five minutes of

stationary cycling (60 rpm, 60 W), followed by mobility and

practice movements with the powerlifting bar (Eleiko, Sweden;

20 kg). Participants subsequently completed the testing pro-

tocol consisting of three repetitions of free-weight back squat,

bench press, and deadlift (completed at 80% 1RM), followed

by three CMJs. Trial order was consistent for all visits. For all

lifts, participants were instructed to maintained eccentric con-

trol, before generating maximal force during the concentric

phase of each repetition. For the CMJ, participants were

instructed to keep their hands in contact with their hips (iliac

crest) throughout the movement.

For each trial completed, the GPT was attached to the

powerlifting bar (back squat, bench press, and deadlift) or

athlete (CMJ), with the participant standing on a force plate

(Kistler, Switzerland). For the back squat and bench press, the

GPT tether attachment site (GA) was located 10 cm from

the end of the bar, with this being centred during the deadlift

(Figure 1). For the CMJ, the GPT tether was attached directly to

the athlete’s midriff (in line with the naval) via a Velcro fasten-

ing. Time-displacement data were measured and recorded by

the GPT. Bar kinematics were recorded using a five-camera

three-dimensional motion capture system (Rapture-E, Motion

Analysis Corporation, Santa Rosa, CA; 150 Hz). Three passive

retro-reflective markers (12 mm diameter) were used, two

placed on the powerlifting bar (diametric ends; Figure 1),

and one on the GA. Force data were collected (1500 Hz)

during all movement trials except bench press.

2 H. F. DORRELL ET AL.



Data processing

Marker positions were identified using Cortex (v5.3.1, Motion

Analysis Corporation, Santa Rosa, CA) and analysed using

custom written MATLAB code (R2016a, MathWorks, Natick,

MA). Marker data were smoothed using a zero lag 2nd order

Butterworth low-pass filter, with a cut-off frequency of 6 Hz.

For each trial a virtual midpoint (VM) was created by taking

the mean position of the diametric markers, representing the

true centre of the bar. The VM and GA position data from the

motion capture system were used to represent bar, and

GymAware tether movement, respectively. Simultaneous col-

lection of data were completed by the GPT, and analysed

via the built-in GymAware Pro (GAP) software (Kinetic

Performance Technology, Canberra, Australia). The GAP soft-

ware automatically down-samples collected data to 50 points

a second, removing the need for smoothing.

For all movements, the concentric phase of each trial was

analysed from the onset of movement to a predefined end

point. The GAP software automatically detects the start of the

concentric phase as the first moment the tether data increases

(≥ 0.30 mm) above its lowest vertical position. End points are

defined as the point of greatest vertical displacement occur-

ring after the predefined start. To minimise differences due to

identification of start and end points, analyses closely match-

ing the GAP software were used within the marker positional

analysis. For the back squat and bench press, the start of the

concentric phase of the movement was identified as the frame

at which the vertical position was at its lowest point. For

deadlift, the start of the concentric phase was identified as

the first frame the vertical position was greater than 0.30 mm

above the starting position. For all movements, the end point

was identified as the point where marker vertical position was

at its highest following the identified start point.

Barbell displacement was measured as the vertical distance

between the predefined start and end of each trial. The first and

second derivatives of displacement data were calculated to

provide bar velocity and acceleration, respectively. The differ-

entiation method used by the GAP software takes

the difference between two adjacent points, divided by the

change in time. Subsequently, force is calculated by multiplying

acceleration by inputted mass. In contrast, the central differ-

ence method was used for the differentiation of marker data.

This method provides an estimate of the slope of the tangent at

a single point using the preceding and succeeding data (Hamill,

Knutzen, & Derrick, 2015). This allows the calculation of instan-

taneous velocity and acceleration at a specific time point, rather

than the average between two points. Comparative force data

was obtained via direct measurement from the force plate. Peak

and mean values were extracted for velocity and force enabling

comparison between collection methods.

To calculate jump height, the GAP software took the differ-

ence between vertical displacement of the tether from a pre-

defined start point (participant standing on toes), to the point

of the highest vertical position. For comparison, jump height

was calculated according to the impulse-momentum relation-

ship, using change in centre of mass velocity from the cap-

tured force plated data.

Statistical analysis

For all variables, the within-trial (visit) data for each participant

were averaged and the mean result used for statistical analysis.

Statistical analyses were conducted using SPSS 22.0 (Chicago,

IL) with the alpha level for significance set at α = 0.05.

Validity between the criterion (motion capture and force plate

data) and GPT calculated variables were evaluated using least

products regression and expressed as an R2 value. To assess

reliability, a within-trial one-way ANOVA test with repeated mea-

sures (1 × 3) were conducted to examine the between visit

differences across all GPT variables. Within-participant variation

was reported as typical error (TE) and displayed as a percentage

(90% confidence interval) following completion of a consecutive

pairwise analysis spreadsheet (Hopkins, 2015). Smallest worth-

while change (SWC) was calculated by multiplying the mean

between-participant standard deviation by 0.2 (representing a

small Cohen’s effect size; Drinkwater et al., 2005) and presented

as both absolute and relative values. Estimated sample-size

requirements for subsequent research were calculated using

the reported TE and SWC, using methods described by Hopkins

(2000). As the GPT derives all performance variables from time-

displacement data, the power-analyses were only run on this

variable across movements.

Results

Validity

Correlations between the GPT and the GA and VM sites for all

kinematic variables resulted in an R2 ≥ 0.99 for back squat and

R2 ≥ 0.91 for bench press (excluding VM displacement; R2 = 0.85).

For deadlift, correlations resulted in an R2 ≥ 0.92 for all kinematic

variables, barring mean velocity for both GA and VM sites;

R2 = 0.54 and R2 = 0.69, respectively (Table 1; Figure 2).

Correlations for back squat kinetics resulted in an R2 ≥ 0.99

for peak and mean force (mean difference ± SD: peak

force = 136.4 ± 86.0 N; mean force = 28.0 ± 39.1 N). Similarly,

strong correlations of R2 = 0.97 and R2 = 0.94 for peak and mean

force respectively (peak force = − 14.5 ± 69.0 N; mean

force = 52.0 ± 74.6 N) were found for deadlifts. For CMJ, correla-

tions between the GPT and calculated jump height had R2 = 0.88.

db 

Figure 1. Data capture set-up, detailing force plate (- - -), powerlifting bar (—),
cameras (∇), markers (o), and GymAware attachment site (back squat and bench
press: b; deadlift: d).
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Table 1. Mean difference of kinematic variables between the GymAware power tool (GPT) and the GymAware attachment site (GA) and virtual midpoint (VM) sites
[means ± SD (R2)].

Displacement (m) Peak velocity (ms−1) Mean velocity (ms−1)

Back squat
GA −0.009 ± 0.005 (0.99) 0.005 ± 0.007 (0.99) 0.029 ± 0.010 (0.99)
VM −0.019 ± 0.010 (0.99) −0.022 ± 0.025 (0.99) 0.014 ± 0.013 (0.99)

Bench press
GA −0.009 ± 0.009 (0.98) 0.002 ± 0.007 (0.99) 0.017 ± 0.016 (0.93)
VM 0.001 ± 0.022 (0.85) 0.009 ± 0.026 (0.91) 0.020 ± 0.010 (0.97)

Deadlift
GA −0.016 ± 0.009 (0.94) 0.004 ± 0.004 (0.99) 0.100 ± 0.037 (0.54)
VM 0.001 ± 0.010 (0.92) −0.014 ± 0.011 (0.99) 0.031 ± 0.029 (0.69)
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Figure 2. Least products regression displacement comparisons from GymAware to virtual midpoint (a, c, e) and GymAware attachment (b, d, f). Back squat (a, b),
bench press (c, d) and deadlift (e, f).
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Reliability

No significant differences were recorded for any of the variables

between visits for the back squat or CMJ. In contrast, significant

differences were observed for bench press between visits 3–2 for

displacement (mean ± SD: visit 3: 0.395 ± 0.055 m; visit 2:

0.383 ± 0.053 m;), with no significant differences recorded

between other variables. For deadlift, significant differences

were observed between visits 3–2 for displacement (mean

± SD: visit 3: 0.557 ± 0.034 m; visit 2: 0.568 ± 0.034 m), with no

significant differences found between other variables. The mean

TE for all variables between visits was low to moderate (Table 2;

range 0.6–8.8%), with SWC ranging from 1.7–7.7%; (back squat:

5.4–6.3%; bench press: 4.4–5.5%; deadlift: 1.7–7.7%; CMJ: 6.0%).

Sample-size estimation

For a simple test re-test or crossover design, minimum sample-

sizes were estimated as four (back squat and bench press), and

11 (deadlift) to enable detection of 80% power. If a control

group is implemented into the research, sample-size estima-

tions increase to 16 (back squat), 15 (bench press), and 44

(deadlift). For CMJ, a test re-test design would require a mini-

mum of six participants, with inclusion of a control group

increasing this to 25.

Discussion

This was the first study to explore the validity and reliability of

the GPT against integrated criterion devices. The results

demonstrate that the GPT is a valid device for determining

kinetic and kinematic variables during resistance training

movements (back squat, bench press, deadlift, and CMJ) in a

trained population. Least products regression between the

criterion devices and the GPT resulted in high R2 vales

(≥ 0.91) for 20 of the 23 comparisons. Furthermore, the GPT

produced low to moderate TE (0.6–8.8%) between visits, dis-

playing high levels of intra-session reliability.

Within the data presented, the only measurements that

showed a substantial difference between the GPT and criter-

ion device were mean velocity for the deadlift. Moderate

correlations were present for both GA (R2 = 0.54) and VM

(R2 = 0.69) when compared directly to the GPT values. One

practical explanation for this pertains to the sensitivity of the

motion capture system (i.e. higher sampling frequency), as it

was noted that with the deadlift an earlier concentric start

point was often detected within the motion capture data.

During the initial start phase of the deadlift, the vertical move-

ment of the bar is minimal, as supported by the strong corre-

lations present between the GPT and motion capture system

for deadlift displacement (R2 ≥ 0.92). However, the addition of

data points before the “true start” of the lift in the calculated

velocity data, will result in a lower mean. The mean takes the

sum of all data points and divides this by the number of

points. Therefore, the inclusion of extra data points, which

have a low velocity (minimal change in the rate of displace-

ment), results in a lower mean. This is apparent from the lower

mean velocities reported between the GPT and comparison

values obtained from motion capture data (mean ± SD:

GPT: 0.432 ± 0.041 m·s−1; GA: 0.332 ± 0.054 m·s−1;

VM: 0.401 ± 0.048 m·s−1). One explanation may be associated

with individual differences within the lift set-up. Tension is

often placed upon the bar prior to initiation of the deadlift,

causing the bar to flex or rotate (Hales, 2010). This would

cause the GA (centred for the deadlift) and/or the VM to

appear to displace vertically, triggering the data analysis pro-

cess to register premature movement, prior to the GPT tether

unwinding. This implies that the reported errors are due to the

process of identifying the beginning of the movement, rather

than the validity of the GPT. No current literature is available

on the validity of an LPT when measuring mean velocity of a

deadlift, meaning there is little evidence to provide support

for this theory. Further research may wish to explore the

role of the different methods of lift start identification on

outcome variables, particularly with applied devices used to

measure performance in the field.

With the exception of the mean velocity of the deadlift, the

validity assessments have all shown strong correlations

between the GPT and criterion measures for kinematic vari-

ables (Table 1). This appears to agree with similar research

which has explored the validity of kinematic measures

obtained via other commercially available LPTs. One such

study investigated the validity of the Tendo Weightlifting

Analyser during free-weight back squat and bench press

(Garnacho-Castaño, López-Lastra, & Maté-Muñoz, 2015).

Results obtained from the LPT were validated against an iso-

inertial dynamometer, with high correlations for both peak

and mean velocity reported, R2 = 0.92 and 0.96, respectively.

These strong correlations show comparable results and pro-

vide further evidence for LPTs as a suitable monitoring tool for

kinematic performance variables.

The kinetic variables calculated from the GPT are all derived

from the collected position data. Differentiation causes errors

in a signal to be magnified, therefore care should be taken to

minimise noise in original data and ensure suitable smoothing

methods are used. The GAP employs a down sampling

method to minimise these errors. Strong correlations were

found for peak and mean force of the squat and deadlift trials

(R2 ≥ 0.94) suggesting that minimal errors were present in the

post-processed GAP data. Crewther et al. (2011) explored the

Table 2. Typical error displayed as a percentage (TE) across variables between
visits (V).

TE V2-V1(%) TE V3-V2 (%) Mean TE (%)

Back squat
Displacement 3.9 (2.9–5.9) 3.7 (2.7–5.6) 3.8 (3.0–5.3)
Peak velocity 8.9 (6.7–13.8) 7.1 (5.4–11.0) 8.1 (6.4–11.5)
Mean velocity 7.9 (5.9–12.3) 6.0 (4.5–9.3) 7.0 (5.6–10.0)
Peak force 5.2 (3.9–8.1) 3.1 (2.3–4.7) 4.3 (3.4–6.1)
Mean force 0.6 (0.4–0.9) 0.7 (0.5–1.0) 0.6 (0.5–0.9)

Bench press
Displacement 3.4 (2.6–5.2) 2.4 (1.8–3.7) 3.0 (2.3–4.1)
Peak velocity 5.6 (4.2–8.6) 6.8 (5.1–10.4) 6.2 (4.9–8.7)
Mean velocity 7.1 (5.3–11.0) 7.7 (5.7–11.9) 7.4 (5.8–10.5)

Deadlift
Displacement 1.9 (1.4–2.9) 2.0 (1.5–3.1) 2.0 (1.6–2.7)
Peak velocity 10.1 (7.5–15.6) 7.4 (5.5–11.4) 8.8 (7.0–12.5)
Mean velocity 7.3 (5.4–11.2) 6.6 (5.0–10.2) 7.0 (5.5–9.8)
Peak force 2.4 (1.8–3.6) 3.7 (2.8–5.7) 3.1 (2.5–4.4)
Mean force 1.5 (1.1–2.3) 1.6 (1.2–2.5) 1.6 (1.3–2.2)

CMJ
Height 6.7 (5.0–10.4) 3.6 (2.7–5.6) 5.4 (4.3–7.7)
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validity of kinetic variables during weighted squat jumps col-

lected using the GPT and force plate. Moderate correlations

were reported (R2 = 0.59–0.87) following comparisons

between collection methods. Rather than increased error due

to data processing, it was suggested that the lower values

reported (R2 = 0.59; obtained during 20 kg jumps), were due

to horizontal bar movement, which was reduced as resistance

was increased (40 kg: R2 = 0.83; 60 kg and 80 kg: R2 = 0.87).

During this study, the GPT was attached to the end of the bar,

increasing the potential for horizontal sway during jumping

actions at lower resistances. While a similar attachment site

was used in the present study, the inclusion of greater resis-

tance, and therefore the removal of the ballistic nature of the

movement likely decreased the potential for horizontal sway,

increasing correlations between measurement devices (peak

force: R2 = 0.97–0.99; mean force: R2 = 0.94–0.99). It is worth

considering that the data collected via the GPT is that of

the movement of the tether, meaning results can differ

depending on lift technique (e.g. horizontal bar movement)

and tether attachment site. It is therefore recommended that

care be taken when selecting attachment sites, particularly at

lower resistances, or when ballistic movements are employed,

as this may lead to a greater presence of error, and thus

skewing of data.

The second aim of this study was to establish the test-retest

reliability of the GPT. For back squat and CMJ, the lack of

significant differences and low to moderate TE suggest that

the GPT is a reliable tool for collecting performance variables

of resistance trained individuals performing these tasks.

Similar results were reported for deadlift, with the exception

of displacement, where significant differences were found

between visits three and two. As all subsequent variables are

derived from displacement, the presence of statistical differ-

ence between visits highlights concerns with the GPTs ability

to measure this particular movement. However, the presence

of low TE (2.0%) between displacement data, and the absence

of statistical difference reported between other visits and

derived measures, suggest the GPT is a reliable tool for the

measurement of deadlift variables. To the author’s knowledge,

no other research is available to provide evidence as to

whether the results for these movements are comparable

across other LPTs or participant groups. As such, it is sug-

gested that future research further explores the test re-test

reliability associated with the GPT.

Analysis of the bench press resulted in the presence of

statistical difference between visits 3–2 for displacement

only. While these results raise doubt regarding intra-visit relia-

bility of the GPT, the minimal TE between visits (3.0%), and the

presence of no further statistical difference between derived

measures alleviate these concerns. While currently no research

exists regarding the reliability of displacement when utilising

LPT technology, a similar study explored the reliability of peak

velocity obtained via a comparable device during repeated

bench press trials (Tendo Weightlifting Analyser; (Stock, Beck,

DeFreitas, & Dillon, 2011)). Peak velocity was recorded

between 10–90% 1RM, over two repeated visits. The results

indicated that at lower resistances (≤ 70% 1RM), test-retest

reliability was moderate to high (CV = 3.1–5.8%), however,

as resistance increased (> 70% 1RM), relative consistency

decreased (CV = 10.3–12.6%). The authors suggested that

this reduced consistency was likely associated with the low

movement velocity present during the higher resistance trials,

the devices ability to detect small differences in displacement,

and potential participant fatigue due to previous repetitions.

Within the current research, the results presented produced

lower values than those reported (CV = 6.2%) considering the

resistance utilised (80% 1RM). This is potentially due to

the precision of the GPTs displacement detection in relation

to the Tendo Weightlifting Analyser (0.3 mm versus 10.0 mm

respectively), and the minimal stress placed on the partici-

pants prior to their repetitions. These results provide evidence

supporting the use of the GPT within the monitoring of kinetic

variables.

Conclusion

The aims of this research were to investigate and establish the

validity and reliability of the GPT. The results presented show

that the GPT provides valid measures of displacement and

subsequent derivatives across a range of common resistance

training exercises, when performed by trained individuals.

Furthermore, low to moderate TE outputs, following repeated

visits, provide confidence that the GPT can be utilised to

detect worthwhile changes in performance within a trained

participant group. The results do suggest care should be taken

when monitoring deadlift performance, with peak velocity

potentially offering a more robust measure than mean velo-

city. Future research may wish to investigate the source of the

errors associated with the calculation of deadlift mean velo-

city, and the effect different methods of lift start identification

have on this variable. Furthermore, as sample-size for future

research has been estimated, researchers can use this informa-

tion within the design subsequent research.
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