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Abstract

Background: Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of
biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their
validity and reliability, there remains no quantitive summary of this vast body of literature. Therefore, we aimed to
conduct a systematic review and meta-analysis to determine the i) concurrent validity and ii) test-retest reliability of
IMUs for measuring biomechanical gait outcomes during level walking in healthy adults.

Methods: Five electronic databases were searched for journal articles assessing the validity or reliability of IMUs
during healthy adult walking. Two reviewers screened titles, abstracts, and full texts for studies to be included,
before two reviewers examined the methodological quality of all included studies. When sufficient data were
present for a given biomechanical outcome, data were meta-analyzed on Pearson correlation coefficients (r) or
intraclass correlation coefficients (ICC) for validity and reliability, respectively. Alternatively, qualitative summaries of
outcomes were conducted on those that could not be meta-analyzed.

Results: A total of 82 articles, assessing the validity or reliability of over 100 outcomes, were included in this review.
Seventeen biomechanical outcomes, primarily spatiotemporal parameters, were meta-analyzed. The validity and
reliability of step and stride times were found to be excellent. Similarly, the validity and reliability of step and stride
length, as well as swing and stance time, were found to be good to excellent. Alternatively, spatiotemporal parameter
variability and symmetry displayed poor to moderate validity and reliability. IMUs were also found to display moderate
reliability for the assessment of local dynamic stability during walking. The remaining biomechanical outcomes were
qualitatively summarized to provide a variety of recommendations for future IMU research.
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Conclusions: The findings of this review demonstrate the excellent validity and reliability of IMUs for mean
spatiotemporal parameters during walking, but caution the use of spatiotemporal variability and symmetry metrics
without strict protocol. Further, this work tentatively supports the use of IMUs for joint angle measurement and other
biomechanical outcomes such as stability, regularity, and segmental accelerations. Unfortunately, the strength of these
recommendations are limited based on the lack of high-quality studies for each outcome, with underpowered and/or
unjustified sample sizes (sample size median 12; range: 2–95) being the primary limitation.
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Introduction
Gait analyses are important for evaluating movement in

healthy and pathological populations by assessing a

range of biomechanical outcomes from simple spatio-

temporal parameters to complex three-dimensional (3D)

joint angles [1, 2]. While laboratory-based, optical mo-

tion analysis systems remain the gold standard for gait

analysis, they are expensive, resource intensive, and

largely immobile, which limits their accessibility in both

research and clinical settings [3]. Alternatively, recent

technological advancements have led to the growing

popularity of more affordable, easy-to-use, and accessible

wearable sensors for the analysis of gait patterns [4].

Wearable technology refers to any electronic device

that can be worn, but inertial sensors are the most com-

mon type of wearable sensor for measuring gait [5].

These sensors apply the principle of inertia to measure

linear accelerations (i.e., accelerometers) or angular vel-

ocities (i.e., gyroscopes). Independently, inertial sensors

can provide information on the motion of segments, or

timing of gait events. Further, inertial sensors can be in-

tegrated into what is called an inertial measurement unit

(IMU), which contains a 3-axis accelerometer and a 3-

axis gyroscope, as well as, in some cases, a 3-axis mag-

netometer to assess heading direction [6]. The fusion of

data from these sensors facilitates the assessment of seg-

ment orientations and joint angles [6, 7]. Therefore, in-

ertial sensors, either on their own or combined in an

IMU, provide an excellent opportunity to collect a var-

iety of valuable and objective outcomes related to gait.

With the increasing popularity of wearable sensors,

there have been an increasing number of studies exam-

ining their validity and reliability for gait analysis. Simi-

larly, while there are many reviews of wearable sensor

literature available, most have taken a descriptive ap-

proach to outline potential applications [5, 8] or

methods [4, 9–11]. Therefore, there remains a lack of

systematic reviews and meta-analyses which synthesize

the results of the many validity and reliability studies

which have examined inertial sensor outcomes for gait

analysis. Recently, two systematic reviews examined 3D

joint kinematics from inertial sensors across a variety of

movements and populations [12, 13]. While they were

unable to quantitatively pool data due to study hetero-

geneity, they were able to qualitatively suggest sagittal,

and to a lesser extent frontal, plane lower limb joint

kinematics displayed acceptable validity. Nevertheless,

these findings remain confounded across a variety of hu-

man movements and populations. Therefore, addressing

kinematic outcomes in only healthy adult walking may help

to homogenize findings and recommendations. Further,

there remains a growing body of literature that addresses a

variety of spatiotemporal and other biomechanical out-

comes assessed across a variety of locations (e.g., back,

shank, foot, etc.) in walking which have yet to be addressed

in a systematic and quantitative manner. Addressing this

gap in the literature will help future researchers to identify

not only the most valid and reliable of these variables, but

the optimal placement of sensors to measure them. There-

fore, our aim was to conduct a systematic review and meta-

analysis to determine the i) concurrent validity and ii) test-

retest reliability of IMUs for measuring biomechanical gait

outcomes (e.g., spatiotemporal, kinematic, or other) during

level over-ground or treadmill walking in healthy adults.

Methods
Eligibility criteria

We included journal articles that assessed the validity or

reliability of IMUs measuring biomechanical outcomes

during walking in healthy adults. For a validity study to

be included, it must have assessed the concurrent valid-

ity (i.e., simultaneous collection) of inertial sensor mea-

sured biomechanical gait outcomes as compared to what

we defined to be gold standard devices (See Additional

file 1) in healthy adults. Similarly, for a reliability study

to be included, it must have assessed the test-retest

reliability (i.e., between-day, within-day, or between-

tester; involving the same measure/device/placement

with removal between sessions) of IMU-measured bio-

mechanical gait outcomes in healthy adult walking. Bio-

mechanical gait outcomes included spatiotemporal

parameters (e.g., step time, step length, stance time,

etc.), segment or joint kinematics/kinetics, or other bio-

mechanical outcomes (e.g., accelerations, stability, regu-

larity, etc.). However, we did not include per count

measures such as gait speed or cadence as these require
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two components (e.g., time and distance) and can often

be measured as an average over the entire dataset. Add-

itional details on our inclusion and exclusion criteria can

be found in Additional file 1.

Study identification and screening

A systematic literature search was conducted with the

help of a librarian to identify all relevant journal articles

in the following databases: MEDLINE, Embase,

CINAHL, Web of Science, and Compendex. Our search

criteria were based on the combination of four broad

topics: inertial sensors, gait biomechanics, healthy adults,

and validity/reliability. Each topic included an expanded

set of terms, keywords, and syntax specific to each data-

base to maximize the breadth of our search. A detailed

list of our search strategy for each database can be found

in Additional file 2. This search was conducted on May

7th, 2019.

Following the removal of duplicate items, titles and ab-

stracts were screened by two independent reviewers

(CTFT and DT) to determine their eligibility based on

the aforementioned criteria. Studies that were deemed

potentially eligible were passed to full-text screening

where two independent reviewers (CTFT and DK) con-

ducted a thorough examination of each article to deter-

mine if it would be included in our review. Moreover,

the reviewers also identified eligible components of the

study for future analysis; for example, a study may pass

in reliability criteria, but fail validity criteria (or vice

versa). Disagreements between reviewers were resolved

by consensus, with a third reviewer (MAH) available for

arbitration. Most studies defined a clear purpose of

assessing the validity and/or reliability of a given IMU

outcome in healthy adults, however a number of studies

addressed more advanced problems (e.g., clinical popula-

tions or new techniques) but still presented results that

met our criteria.

Methodological quality

Study quality was assessed by two independent reviewers

(JFE and AG) using a modified version of the Critical

Appraisal of Study Design for Psychometric Articles

[14], which we adapted to studies evaluating the psycho-

metric properties of wearable sensors (Additional file 3).

This modified evaluation form contains 12 items evalu-

ating study quality in 5 categories: study question, study

design, measurements, analyses, and recommendations.

Each item is scored as 2 (satisfactory), 1 (partially satis-

factory), or 0 (unsatisfactory), with a total possible score

out of 24 converted to a percentage. Raters were blinded

to any identifiable information (e.g., author names, study

title, publication year, journal) to avoid bias in their

quality assessment. Initially, both raters evaluated two

articles, after which they met to discuss each item to

clarify their meaning and interpretation. The same

process was repeated for each subsequent block of 20 ar-

ticles. An intraclass correlation coefficient [ICC (3,1)]

was calculated to evaluate pre-consensus inter-rater reli-

ability of the total score. Disagreements were discussed

and resolved through face-to-face meetings. If a consen-

sus could not be reached, a third rater (DK) served as

the tiebreaker. Studies obtaining a quality score between

85 and 100% were classified as high quality (HQ), those

scoring between 70 and 85% were classified as moderate

quality (MQ) and studies obtaining between 50 and 70%

were classified as low quality (LQ). Studies rating below

50% were considered very low quality (VLQ) and were

excluded from the quantitative synthesis. However, all

studies were still included in the qualitative synthesis.

Quality assessment scoring was then used to determine

the strength of recommendations [15].

Data extraction

Data were extracted from the included studies by one re-

viewer (NMK) and checked for accuracy by a second

(JMC). Extracted data consisted of study design, sample

demographics, inertial sensor specifications and place-

ments, as well as each biomechanical outcome of inter-

est and their reported statistical outcomes. While all

statistical outcomes were extracted for the qualitative as-

sessments, data pooling was a priori set to assess only

the Pearson correlation coefficients (r) and ICCs for val-

idity and reliability, respectively.

Data pooling

Data pooling was facilitated with a multistage grouping

of outcomes. First, all extracted outcomes were dichoto-

mized as assessing either validity or reliability. Outcomes

were then separated into overarching outcome groups

(e.g., spatiotemporal, kinematic, other), before being

grouped by specific outcome names (e.g., step time,

stride time, step length, etc.) and finally sensor locations

(e.g., foot, shank, thigh, back, etc.). For example, all as-

sessments of “step time” would be grouped together, but

further separated based on the placement of the inertial

sensor. Data were not further pooled by type of sensor

(e.g., accelerometer vs. gyroscope) or algorithm used.

Therefore, a single study may contribute to multiple in-

dependent data poolings based on validity or reliability,

outcome measure, and sensor placements. Biomechan-

ical outcomes with three or more independent study

samples using the same sensor location and reporting

the desired statistical outcomes (i.e., r, ICC) were quanti-

tatively synthesized. Agreement metrics (i.e., ICC and r)

were interpreted as poor (< 0.500), moderate (0.500–

0.749), good (0.750–0.899), and excellent (≥0.900).

Data for validity and reliability outcomes were meta-

analyzed based on the r and ICC, respectively, and 95%
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confidence intervals were generated using a random-

effects model (R version 3.6.0 using the meta package

with the metacor function [16]). Weighting of individual

point estimates was based on study sample sizes. Given

the non-normality of Pearson correlation coefficients

and ICCs, point estimates were variance-stabilized using

Fisher’s z-transform [17]. In all cases where an ICC was

reported, and as far as we could determine given the in-

formation available, the number of measures or compar-

ators was m = 2; therefore, Fisher’s z-transform applied

similarly to both r and ICC. However, for ICCs the

standard error was adjusted to 1/√(N-3/2) following pre-

vious recommendations [18]. Data were then trans-

formed back to their respective original outcome

measures for reporting. Heterogeneity was examined

using τ
2, I2 and Cochran’s Q statistic where τ

2 = 0 sug-

gests no heterogeneity, I2 values < 25, 26–50%, and >

75% suggest low, moderate and high heterogeneity [19],

and a significant Q statistic indicated that the studies do

not share similar effects. Results of the meta-analysis

were interpreted using the same agreement metric defi-

nitions as outlined above.

Alternatively, qualitative interpretation was conducted

on outcomes that were unable to be quantitatively

pooled. Additional error metrics (i.e., root-mean-square

error (RMSE), standard error of measurement (SEM),

minimum detectable change (MDC), limits of agreement

(LoA)) were included in this qualitative synthesis to sup-

port our interpretations [15]:

� Strong evidence: multiple HQ or MQ studies with

consistent results.

� Moderate evidence: multiple studies, including at

least one HQ study or multiple MQ studies,

presenting consistent results.

� Limited evidence: multiple LQ studies with

inconsistent results, or one HQ/MQ study.

� Conflicting evidence: multiple studies providing

inconsistent results, regardless of the methodological

quality.

� Very limited evidence: only one LQ or MQ study or

multiple VLQ

Results
Search results

Our search strategy identified a total of 2804 articles.

Following the removal of duplicates, screening of titles/

abstracts, and full-text screening, 82 articles [20–101]

were included in the current review (Fig. 1). We did not

set a date range on the search; however, the number of

papers in this area was found to increase heavily from

2008 to 2014, with > 50% of the included papers pub-

lished within approximately 5 years, and > 85% within 10

years (Fig. 2).

Methodological quality

Only 1 article was rated as HQ, 13 as MQ, 50 as LQ and 18

as VLQ (Table 1). Agreement between both raters reached a

single-measures ICC (3,1) of 0.83 [95% C.I. 0.75, 0.89). The

items for which articles generally scored higher were “1-

Background and research question” and “9- Organization

and completeness of study results”. In contrast, 81 papers

(95%) did not provide any justification about their sample

size and/or appeared to be underpowered.

Study characteristics

The 82 studies included in this review assessed biomech-

anical outcomes in walking using a variety of IMUs. The

most common IMU system used was Xsens Technolo-

gies (n = 9), followed by Opal (n = 7), and finally Dyna-

port (n = 5) and Shimmer (n = 5). The most common

sampling frequency used to assess walking was 100 Hz

(range: 25-2000 Hz). Lastly, data from 1510 healthy

adults were included across these studies (mean (sd)

sample size: 18 (17) participants; median sample size: 12

participants; range: 2–95 participants). See Table 2 and

Table 3 for breakdown of study characteristics separated

based on validity and reliability, respectively.

Validity

Overall, a total of 23 spatiotemporal outcomes, 3D lower

limb kinematics and kinetics, plus 7 other biomechanical

outcomes were assessed across the 63 studies that exam-

ined IMU validity. From these outcomes, 12 spatiotem-

poral parameters presented sufficient study quality and

statistical outcomes to allow for data pooling (Fig. 3 and

Fig. 4). We were unable to meta-analyze kinematic/kin-

etic outcomes or other biomechanical outcomes, due to

either a limited number of studies or, in many cases, a

lack of consistency in data reporting, as many studies re-

ported only RMSE or even a simple mean difference.

Studies that were unable to be meta-analyzed were

qualitatively summarized by outcomes and placements

in Supplementary Table 1 for spatiotemporal outcomes,

Supplementary Table 2 for kinematic/kinetic outcomes,

and Supplementary Table 3 for other biomechanical out-

comes. Therefore, the results presented in the following

section represent only outcomes and placements which

allowed for quantitative data pooling.

Quantitative pooling of spatiotemporal outcomes for

validity

Step time

Data from five low to moderate quality studies (contrib-

uting six independent study samples) suggests that the

validity for step time measured with IMUs placed on the

back was excellent (total n = 257; r = 0.99, 95% CI [0.97,

1.00], I2 = 93%, p < 0.001) [34, 41, 44, 77, 86]. An add-

itional 10 studies that could not be pooled provided
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Fig. 1 Flowchart of the systematic review selection process
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limited evidence for moderate to excellent validity of

step times measured at the back or shank/ankle [28, 51,

61, 88, 91, 93].

Step length

Data from five low to moderate quality studies (contrib-

uting six independent study samples) suggests that the

validity for step length measured with IMUs placed on

the back was good (total n = 234; r = 0.88, 95% CI [0.83,

0.92]; I2 = 32%; p < 0.001) [34, 41, 44, 77, 86]. An add-

itional study that could not be pooled provided limited

evidence for excellent validity of step length measured at

the back [51].

Stance time

Data from two low quality studies (contributing three in-

dependent study samples) suggests that the validity for

stance time measured with IMUs placed on the back

was excellent (total n = 107; r = 0.91, 95% CI [0.87, 0.94];

I2 = 0%; p < 0.001) [41, 44]. An additional 5 studies that

could not be pooled provided limited evidence for mod-

erate validity of stance times measured at the back [28,

82, 88, 91, 93].

Swing time

Data from two low quality studies (contributing three in-

dependent study samples) suggests that the validity of

swing time measured with IMUs placed on the back was

moderate (total n = 107, r = 0.68, 95% CI [0.56, 0.77];

I2 = 0%; p < 0.001) [41, 44]. An additional 3 studies that

could not be pooled provided very limited evidence for

moderate validity of swing times measured at the back

[28, 91, 93].

Step time variability

Data from three low to moderate quality studies suggests

that the validity of step time variability measured with

IMUs placed on the back was poor (total n = 189, r =

0.35, 95% CI [0.18, 0.50]; I2 = 31%, p < 0.001) [34, 41, 44].

An additional 2 studies that could not be pooled pro-

vided limited evidence for excellent validity of step time

variability measured at the back [51, 88].

Step length variability

Data from two low quality studies (contributing three in-

dependent study samples) suggests that the validity of

step length variability measured with IMUs placed on

the back was poor (total n = 107; r = 0.06, 95% CI [−

0.14, 0.25]; I2 = 0%, p = 543) [41, 44]. An additional study

that could not be pooled provided limited evidence for

poor validity of step length variability measured at the

back [51].

Stance time variability

Data from two low quality two studies (contributing

three independent study samples) suggests that the val-

idity of stance time variability measured by IMUs placed

at the back was moderate (total n = 107; r = 0.58, 95% CI

[0.35, 0.74]; I2 = 0.53%; p < 0.001) [41, 44]. An additional

study that could not be pooled provided very limited evi-

dence for moderate validity of stance time variability

measured at the back [88].

Swing time variability

Data from two low quality studies (contributing three in-

dependent study samples) suggests that the validity of

swing time variability measured by IMUs placed at the

back was poor (total n = 107; r = 0.34, 95% CI [0.11,

0.53]; I2 = 30%; p = 0.004) [41, 44].

Fig. 2 Number of studies identified, excluded, and included by years
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Table 1 Quality assessment scoring of 82 included studies

Study
Information

Study Ques. Study Design Measurement Analyses Rec Total

Author Year Ref Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 /24 %

Abhayasinghe 2019 [20] 1 0 1 2 0 N/A 0 0 2 1 0 0 7 31.8%*

Al-Amri 2018 [21] 2 1 1 2 2 2 2 2 2 1 1 2 20 83.3%

Allseits 2018 [22] 2 1 1 2 0 N/A 0 1 2 2 0 2 13 59.1%*

Allseits 2017 [23] 2 1 1 2 0 N/A 1 2 2 2 0 2 15 68.2%*

Aminian 2004 [24] 1 0 0 2 0 N/A 1 2 2 1 0 1 10 45.5%*

Atallah 2014 [25] 2 1 2 2 0 N/A 0 1 2 2 1 0 13 59.1%*

Backhouse 2013 [26] 2 1 1 2 0 N/A 1 1 2 2 0 1 13 59.1%*

Bautmans 2011 [27] 2 2 0 2 0 2 1 1 2 2 2 2 18 75.0%

Ben Mansour 2015 [28] 2 0 0 2 0 N/A 1 1 2 0 0 1 9 40.9%*

Benoussaad 2016 [29] 2 1 0 2 0 N/A 1 1 1 0 0 1 9 40.9%*

Bertoli 2018 [30] 2 1 0 2 1 N/A 2 2 2 2 0 2 16 72.7%*

Bolink 2016 [31] 2 1 1 2 0 N/A 2 1 2 2 1 2 16 72.7%*

Bruijn 2010 [32] 2 0 1 2 0 N/A 1 2 1 1 1 1 12 54.5%*

Buganè 2012 [33] 2 1 1 2 0 N/A 1 1 2 0 0 1 11 50.0%*

Byun 2016 [34] 2 2 1 2 0 N/A 1 2 2 1 2 1 16 72.7%*

Chalmers 2014 [35] 2 0 0 2 0 N/A 1 0 1 0 0 0 6 27.3%*

Chapman 2019 [36] 1 0 0 2 0 N/A 0 2 2 2 0 1 10 45.5%*

Charlton 2019 [37] 2 1 2 2 2 2 2 0 2 2 2 2 21 87.5%

Cole 2014 [38] 2 1 1 2 0 N/A 1 1 2 2 1 2 15 68.2%*

Cooper 2009 [39] 2 1 0 2 0 N/A 0 2 1 0 0 0 8 36.4%*

Dalton 2013 [40] 2 1 0 2 0 N/A 1 1 2 1 1 2 13 59.1%*

Del Din 2016 [41] 2 1 1 2 0 N/A 1 2 2 1 1 2 15 68.2%*

Esser 2009 [42] 0 0 1 2 0 N/A 1 0 1 1 1 1 8 36.4%*

Furrer 2015 [43] 2 1 1 2 0 N/A 2 1 2 2 1 1 15 68.2%*

Godfrey 2015 [44] 2 1 1 2 0 N/A 1 1 2 1 1 2 14 63.6%*

Gonzalez 2016 [45] 2 1 1 2 1 N/A 1 1 2 0 0 1 12 54.5%*

Gorelick 2009 [46] 2 1 1 2 0 2 1 2 2 1 2 2 18 75.0%

Greene 2012 [47] 2 1 2 2 0 N/A 2 2 2 1 0 0 14 63.6%*

Greene 2010 [48] 2 0 1 2 0 N/A 2 2 2 1 0 1 13 59.1%*

Hamacher 2014 [49] 1 0 1 1 0 2 1 0 2 2 1 1 12 50.0%

Hamacher 2015 [50] 2 0 1 1 0 2 0 0 2 2 2 2 14 58.3%

Hartmann 2009 [51] 2 2 1 2 0 N/A 1 2 2 2 1 2 17 77.3%*

Hartmann 2009 [52] 2 2 1 2 0 2 1 1 2 2 1 2 18 75.0%

Henriksen 2004 [53] 2 1 1 1 0 2 0 2 2 1 2 2 16 66.7%

Huang 2016 [54] 2 1 1 2 0 N/A 1 2 2 0 0 2 13 59.1%*

Hundza 2014 [55] 2 0 0 2 0 N/A 1 0 2 0 0 2 9 40.9%*

Jarchi 2014 [56] 2 0 1 2 0 N/A 1 1 2 2 1 2 14 63.6%*

Karatsidis 2019 [57] 2 1 1 2 0 N/A 2 0 2 1 1 2 14 63.6%*

Kavanagh 2006 [58] 2 1 2 2 0 2 2 2 2 1 1 2 19 79.2%

Kitagawa 2016 [59] 2 1 0 1 0 N/A 0 0 1 0 0 2 7 31.8%*

Kluge 2017 [60] 2 1 1 2 0 0 1 1 2 1 1 1 13 54.2%

Köse 2012 [61] 2 0 1 1 0 N/A 0 0 2 0 0 1 7 31.8%*
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Table 1 Quality assessment scoring of 82 included studies (Continued)

Study
Information

Study Ques. Study Design Measurement Analyses Rec Total

Author Year Ref Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 /24 %

Lebel 2017 [62] 2 1 0 2 0 N/A 1 1 2 1 1 2 13 59.1%*

L’Hermette 2008 [63] 1 1 0 1 0 N/A 1 0 1 1 0 1 7 31.8%*

Liikavainio 2007 [64] 2 1 1 1 0 2 2 2 2 0 1 2 16 66.7%

Liu 2009 [65] 2 1 0 1 0 N/A 0 1 2 1 0 2 10 45.5%*

Lord 2008 [66] 0 0 1 2 0 N/A 0 0 2 1 2 1 9 40.9%*

Lyytinen 2016 [67] 2 1 0 2 0 2 1 2 2 1 1 2 16 66.7%

Maffiuletti 2008 [68] 2 1 1 2 0 N/A 2 1 2 1 0 2 14 63.6%*

Manor 2018 [69] 2 2 1 2 0 2 0 0 1 1 1 2 14 58.3%

Mariani 2012 [70] 2 1 1 2 0 N/A 1 1 2 2 0 2 14 63.6%*

Mariani 2013 [71] 2 1 1 2 0 N/A 1 1 2 1 0 2 13 59.1%*

McGrath 2012 [72] 2 0 1 2 0 N/A 1 2 2 1 1 1 13 59.1%*

Moe-Nilssen 1998 [73] 2 0 0 1 0 2 1 1 2 2 1 2 14 58.3%

Nishiguchi 2012 [74] 2 1 0 0 0 2 1 1 2 1 1 1 12 50.0%

Ohtako 2001 [75] 2 0 0 2 0 N/A 0 1 1 1 0 2 9 40.9%*

Orlowski 2017 [76] 2 1 1 2 0 2 1 1 2 2 2 2 18 75.0%

Pepa 2017 [77] 2 0 1 2 0 N/A 0 2 2 2 0 1 12 54.5%*

Reynard 2014 [78] 2 2 1 1 0 2 1 0 2 2 2 2 17 70.8%

Sabatini 2015 [79] 2 1 1 2 0 N/A 2 2 1 2 0 2 15 68.2%*

Saremi 2006 [80] 2 0 1 1 0 2 2 1 2 0 0 2 13 54.2%

Schmitz-Hübsch 2016 [81] 2 1 1 2 0 N/A 0 1 2 2 0 1 12 54.5%*

Sejdic 2015 [82] 2 0 1 2 0 N/A 1 2 2 0 0 2 12 54.5%*

Selles 2005 [83] 2 1 0 2 0 N/A 1 2 2 1 1 1 13 59.1%*

Senden 2009 [84] 2 0 1 1 0 2 1 1 2 1 1 1 13 54.2%

Sijobert 2015 [85] 2 1 1 2 0 N/A 1 2 2 0 0 0 11 50.0%*

Silsupadol 2017 [86] 2 1 1 2 0 N/A 1 2 2 2 1 2 16 72.7%*

Steins 2014 [87] 1 0 1 1 0 N/A 1 0 2 2 2 1 11 50.0%*

Storm 2016 [88] 2 0 1 2 0 N/A 1 2 2 0 0 2 12 54.5%*

Teufl 2019 [89] 2 0 0 1 0 2 2 1 2 1 1 2 14 58.3%

Teufl 2018 [90] 2 1 1 1 0 2 2 0 2 1 2 2 16 66.7%

Trojaniello 2014 [91] 2 1 1 2 0 N/A 1 0 2 0 0 1 10 45.5%*

Trojaniello 2014 [92] 2 1 1 2 0 N/A 2 2 1 2 0 2 15 68.2%*

Trojaniello 2015 [93] 2 1 1 2 0 N/A 2 2 2 0 0 2 14 63.6%*

van der Straaten 2018 [94] 2 2 1 2 0 2 1 0 2 2 2 2 18 75.0%

van Schooten 2013 [95] 2 0 1 2 0 2 1 0 2 2 1 2 15 62.5%

Washabaugh 2017 [96] 1 1 1 2 0 1 0 1 2 2 1 2 14 58.3%

Wundersitz 2015 [97] 2 1 1 2 0 N/A 0 2 2 2 1 1 14 63.6%*

Xia 2017 [98] 2 1 0 2 0 N/A 2 1 2 1 1 1 13 59.1%*

Zhang 2013 [99] 1 1 1 2 0 N/A 2 0 1 0 1 0 9 40.9%*

Zijlstra 2013 [100] 2 1 1 1 0 2 1 1 2 1 1 2 15 62.5%

Zijlstra 2003 [101] 2 1 0 1 0 N/A 0 1 1 0 0 1 7 31.8%*

*Percentage calculated out of 22 as studies did not qualify for reliability and were not assessed on Q6 for sample retention
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Step time symmetry

Data from three low to moderate quality studies suggests

that the validity of step time symmetry measured by IMUs

placed at the back was poor (total n = 189; r = 0.06, 95%

CI [− 0.17, 0.28]; I2 = 55%; p = 0.618) [34, 41, 44].

Step length symmetry

Data from two low quality studies (contributing three in-

dependent study samples) suggests that the validity of

step length symmetry measured by IMUs placed at the

back was poor (total n = 107; r = 0.06, 95% IC [− 0.14,

0.25]; I2 = 0%; p = 0.571) [41, 44].

Stance time symmetry

Data from two low quality studies (contributing three in-

dependent study samples) suggests that the validity of

stance time symmetry measured by IMUs placed at the

back was poor (total n = 107; r = 0.19, 95% CI [− 0.01,

0.37]; I2 = 0%; p = 0.058) [41, 44].

Swing time symmetry

Data from two low quality studies (contributing three in-

dependent study samples) suggests that the validity of

swing time symmetry measured by IMUs placed at the

back was poor (total n = 107; r = 0.13, 95% CI [− 0.17,

0.41]; I2 = 56%; p = 0.395) [41, 44].

Reliability

Overall, a total of 15 spatiotemporal outcomes, 3D

lower limb kinematics, and 8 other biomechanical out-

comes were assessed across the 25 studies that exam-

ined IMU reliability (See Table 3). From this group, 4

spatiotemporal outcomes and 1 other biomechanical

outcome presented sufficient study quality and statis-

tical outcomes for meta-analysis (Fig. 5), but no kine-

matic outcomes were able to be pooled. Similar to

validity, the inability to pool many outcomes was due

to either a limited number of studies or, in many cases,

a lack of consistency in data reporting. Studies that

were unable to be pooled were qualitatively summa-

rized by outcomes and placements in Supplementary

Table 3 Details of studies assessing reliability for spatiotemporal (ST), kinematic (KIN), and other biomechanical outcomes (OTHER)

Author Year Ref n Age ST KIN OTHER Sensor Hz

Al-Amri 2018 [21] 24 35 X Xsens MTw Awinda (Xsens Technologies BV, Netherlands) 60

Bautmans 2011 [27] 20O/20Y 79/22 X X DynaPort (McRoberts BV, The Hague, The Netherlands) 100

Charlton 2019 [37] 20 28.3 X Invensense MPU6050 (San Jose, CA) 100

Gorelick 2009 [46] 8F/10M 25/31 X IDEEA (MiniSun LLC., Fresno, CA) *

Hamacher 2014 [49] 19 71 X Xsens MTw (Xsens Technologies BV, Netherlands) 75

Hamacher 2015 [50] 17O/12Y 71/26 X Xsens MTw (Xsens Technologies BV, Netherlands) 75

Hartmann 2009 [52] 23 73 X DynaPort (McRoberts BV, The Hague, The Netherlands) 100

Henriksen 2004 [53] 20 35 X X Meac-x (Mega Electronics Ltd., Kuopio, Finland) 250

Kavanagh 2006 [58] 8 23 X ADXL202 (Analog Devices) 250

Kluge 2017 [60] 11 34 X Shimmer (Shimmer Sensing, Dublin, IR) 102

Liikavainio 2007 [64] 10 29 X X Meac-x (Mega Electronics Ltd., Kuopio, Finland) 2000

Lyytinen 2016 [67] 9 23 X Meac-x (Mega Electronics Ltd., Kuopio, Finland) 1000

Manor 2018 [69] 14 30 X iPhone 4 s (Apple, CA) 100

Moe-Nilssen 1998 [73] 19 23 X Logger Technologi HB (Ostragardsvagen, Sweden) 128

Nishiguchi 2012 [74] 30 21 X Sony Ericsson, Xperia SO-01B 32

Orlowski 2017 [76] 25 26 X Shimmer (Shimmer Sensing, Dublin, IR) 102

Reynard 2014 [78] 95 44 X Physilog (BioAGM, CH) 200

Saremi 2006 [80] 12 31 X IDEEA (MiniSun LLC., Fresno CA) 32

Senden 2009 [84] 24 21–60 X McRoberts BV (Hague, Netherlands) 100

Teufl 2019 [89] 24 * X Xsens MTw Awinda (Xsens Technologies BV, Netherlands) 60

Teufl 2018 [90] 28 24 X Xsens MVN (Xsens Technologies BV, Netherlands) 60

van der Straaten 2018 [94] 20 63 X Xsens MVN (Xsens Technologies BV, Netherlands) *

van Schooten 2013 [95] 20 29 X DynaPort (McRoberts BV, Hague, Netherlands) 100

Washabaugh 2017 [96] 19 24 X Opal (Mobility Lab, APDM Inc., Portland, OR) *

Zijlstra 2013 [100] 20 74 X DynaPort (McRoberts BV, Hague, Netherlands) 100

*Information not reported
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Table 4 for spatiotemporal outcomes, Supplementary

Table 5 for kinematic outcomes, and Supplementary

Table 6 for other biomechanical outcomes.

Quantitative pooling of spatiotemporal outcomes for

reliability

Stride time

Data from three low quality studies suggests that the re-

liability of stride time measured by IMUs placed at the

foot was excellent (total n = 38; ICC = 0.92, 95% CI [0.86,

0.96]; I2 = 0%; p < 0.001) [49, 60, 96].

Stride length

Data from three low quality studies suggests that the re-

liability of stride length measured by IMUs placed at the

foot was excellent (total n = 38; ICC = 0.94, 95% CI [0.89,

0.97]; I2 = 0%; p < 0.001) [49, 60, 96].

Fig. 3 Forest plot of data pooling for spatiotemporal mean validity. Squares represent Pearson correlation coefficients and bars indicate 95%
confidence intervals, with diamonds as pooled data. Methodological quality of each study is indicated by colour: HQ = green, MQ = yellow, LQ =
orange, and VLQ = red
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Stance time

Data from three low quality studies suggests that the re-

liability of stance time measured by IMUs placed at the

foot was good (total n = 38; ICC = 0.85, 95% CI [0.72,

0.92]; I2 = 0%, p < 0.001) [49, 60, 96].

Swing time

Data from three low quality studies suggests that the re-

liability of swing time measured by IMUs placed at the

foot was good (total n = 38; ICC = 0.89, 95% CI [0.78,

0.95]; I2 = 4%; p < 0.001) [49, 60, 96].

Fig. 4 Forest plot of data pooling for spatiotemporal variability and symmetry validity. Squares represent Pearson correlation coefficients and bars
indicate 95% confidence intervals, with diamonds as pooled data. Methodological quality of each study is indicated by colour: HQ = green, MQ =
yellow, LQ = orange, and VLQ = red
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Quantitative pooling of other biomechanical outcomes

for reliability

Local dynamic stability

Data from three low to moderate quality studies suggests

that the reliability of a local dynamic stability outcome,

namely short-term, maximum Lyapunov exponent in the

mediolateral axis, measured by IMUs placed at the back

was moderate (total n = 154; ICC = 0.60, 95% CI [0.48,

0.69]; I2 = 0%; p < 0.001) [50, 78, 95].

Discussion
The aim of this review was to determine the validity and

reliability of biomechanical outcomes derived from

IMUs during healthy adult walking, with the hope that

Fig. 5 Forest plot of data pooling for spatiotemporal and other biomechanical outcome reliability. Squares represent intraclass correlation
coefficients and bars indicate 95% confidence intervals, with diamonds as pooled data. Methodological quality of each study is indicated by
colour: HQ = green, MQ = yellow, LQ = orange, and VLQ = red
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we could pool results to provide valuable recommenda-

tions based on this immense body of literature. While 82

studies, examining over 100 outcomes, were included in

this review, we were able to conduct meta-analysis for

only 17 outcomes. Moreover, most data pooling oc-

curred from a limited number of studies (e.g., 3–5).

Nevertheless, these findings were able to provide a

much-needed synthesis of the validity and reliability data

for spatiotemporal, kinematic/kinetic, and other bio-

mechanical outcomes from IMUs, as well as important

recommendations for future studies in this growing field

of research.

Spatiotemporal parameters presented the most fertile

ground to pool results and make recommendations.

Most notably, step time and stride time presented the

strongest body of evidence for excellent validity and reli-

ability. Although pooling was only possible for step time

validity (back) and stride time reliability (foot), the quali-

tative pooling of results across the back, foot, and other

placements also provide relatively consistent, but limited,

evidence (based on study quality) for excellent validity

and reliability. This limited, but generally consistent evi-

dence was similarly found for good to excellent validity

and reliability of step length and stride length across a

variety of placements (e.g., back, shank, foot). Lastly,

stance time and swing time were examined in fewer

studies but were still found to present good to excellent

validity and reliability in all pooled data, except swing

time validity (moderate validity). Qualitative pooling of

these spatiotemporal parameters across a variety of

placements generally supported this conclusion with

good to excellent validity and reliability. Overall, these

findings are supportive of the assessment of mean spa-

tiotemporal outcomes using IMUs, but do not clearly

identify any IMU placement to be superior to another. It

was only the validity of mean stride length which dem-

onstrated a potential advantage of an IMU at the foot

(e.g., excellent validity) compared to the back (e.g., good

validity), with reliability metrics remaining excellent at

both placements. This provides evidence for improved

results of length parameters measured at the foot com-

pared to the back, as one might expect. However, there

was only a single study assessing the validity of mean

stride length at the back [51] and as such this should be

interpreted with caution. To this point, many of the

above recommendations were defined as “limited evi-

dence”, but we would argue that this statement of “lim-

ited evidence” is primarily based on the limited quality

of studies, rather than a limitation of the sensors and

outcomes themselves.

Contrary to spatiotemporal mean outcomes, the valid-

ity and reliability of spatiotemporal variability and sym-

metry outcomes were less favourable. Specifically, the

validity of pooled variability and symmetry outcomes

(step time, step length, stance time, swing time) mea-

sured at the back were poor to moderate, with the quali-

tative pooling of results providing similar findings on a

variety of variability outcomes and placements. The lim-

ited studies assessing reliability of these variability and

symmetry outcomes fared slightly better, demonstrating

poor to good reliability. In contrast to these findings,

one study found excellent validity for step time variabil-

ity [51]. Notably, this study also displayed the highest

quality of any in this outcome category at 77.3%. More-

over, step time variability was calculated based from 4

separate walking trials, which may have improved their

findings. Nevertheless, these results suggest that unlike

mean spatiotemporal outcomes which may mask ran-

dom error from step to step, variability measures (e.g.,

standard deviation of individual step or stride-based out-

comes) are, by definition, more susceptible to these er-

rors and also require strict and standardized protocols.

In general, these findings are similar to a previous review

of gait variability across a variety of measurement de-

vices [102], further suggesting that it is more likely the

protocol than the IMU itself that limits the validity and

reliability of these variability measures. Further, while

Lord et al. [102] provided some recommendations (e.g.,

minimum 12 steps, piloting reliability, etc.), there re-

mains a need for better defined protocols and processing

standards for spatiotemporal variability outcomes. For

example, variability outcomes computed from, ideally, at

least 30 continuous steps [103, 104], or to a lesser ex-

tent, multiple walking trials to reach this number [51,

105], may serve to improve the validity and reliability of

these important outcomes.

Similar to recent reviews examining the validity and

reliability of IMU-derived lower limb joint kinematics

[12, 13], we were unable to pool any of these results.

This inability to pool data remained even though we had

a more homogenous cohort of studies (i.e., healthy

adults during walking). Nevertheless, this improved

homogeneity did allow us to draw more consistent quali-

tative interpretations for IMUs in healthy adult walking.

For example, while our results support previous conclu-

sions that IMUs provided better estimates of lower limb

sagittal joint angles as compared to frontal or transverse

angles [12, 13], we also found more consistent levels of

good to excellent validity and reliability in the sagittal

plane. Further, this translated to RMSEs (Supplementary

Tables 2 and 5) approximately half that of previous re-

views based on a variety of movements [12, 13]. Simi-

larly, although frontal and transverse plane joint angles

displayed less validity and reliability than sagittal joint

angles, they were generally found to be moderate to ex-

cellent. While this supports the use of IMUs for the

measurement of 3D lower limb joint angles, it should be

noted that much of this evidence remains limited for the
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sagittal plane, and very limited for other planes. There-

fore, future research should not only focus on improving

these results by examining potential sources of error

(e.g., orientation estimates, anatomical calibrations, soft-

tissue artifacts, etc.), but doing so in more rigorous re-

search designs. Lastly, in addition to joint angles, we

found IMUs displayed excellent validity for obtaining

segment angles at the foot, shank, and thigh. Although

these findings are also drawn from very limited evidence,

this more simplistic approach of measuring segment ori-

entations does not lead to compounding levels of error

from multiple sensors across a joint, and as such, may

be a better use of IMUs if the information of interest

can be derived from a single segment [62].

While IMUs offer the unique opportunity to collect a

variety of other biomechanical outcomes, only the reli-

ability results for measures of stability, regularity, and

acceleration RMSE were found to have stronger than

very limited evidence. Short-term local dynamic stability

(mediolateral axis), assessing complex non-linear aspects

of gait variability and control [78], was the only outcome

to be meta-analyzed and demonstrated moderate reli-

ability. Stride regularity and step symmetry outcomes,

assessing the consistency of acceleration waveforms

using an autocorrelation procedure [106], demonstrated

good and moderate reliability, respectively, but only

from qualitative pooling. Further, similar to measures of

gait variability, there remains limited information on the

best practices for collecting these data. Lastly, acceler-

ation RMS outcomes reported by five studies demon-

strated limited evidence for good to excellent reliability

in individual axes but could not be meta-analyzed due to

incompatibilities in statistical parameters. Together,

these results are promising for the reliability of other

biomechanical measures that track human motion, but

require more high-quality studies to establish better

standards for the reliability of these outcomes. While the

lack of validity data on these biomechanical outcomes

may also be limiting, the unique nature of these out-

comes may make establishing a true gold standard valid-

ity to optical systems less necessary if more high-quality

reliability evidence was present.

One of the most important findings from this review is

the lack of high-quality evidence and appropriate statis-

tical outcomes utilized in much of the research in this

field. The methodological quality assessment was adapted

to best rate IMU validity and reliability studies, and yet

many scored poorly. Underpowered and/or unjustified

sample sizes were the most glaring issue, with a lack of ap-

propriate statistical outcomes being a common problem

as well. For instance, many studies simply reported mean

differences as a measure of validity or reliability, which

only addresses the bias of the system and not the agree-

ment. Alternatively, reporting only Pearson’s r does not

describe any potential systematic bias between measures.

Therefore, we strongly advocate for all future work in this

area to not only include adequate and/or justified sample

sizes [107], but more appropriate statistical outcomes.

Specifically, we would advise future work to include both

relative (e.g., r, ICC) and absolute (e.g., LOA, SEM) statis-

tical metrics [108, 109]. Further, Bland and Altman plots

provide an excellent method to visualize the distribution

of scores, but they should always be accompanied with the

bias (i.e., mean difference) and an estimate of precision

(i.e., standard deviation or 95% confidence interval of

mean difference), as well as the limits of agreement with

an estimate of precision (95% confidence interval of limits

of agreement [110];). While there may be additional met-

rics that can support the interpretation of results (e.g.,

RMSE, MDC, etc.), including the aforementioned relative

and absolute statistical outcomes as a minimum will pro-

vide the reader with an excellent impression of the validity

and/or reliability that can be expected on biomechanical

outcomes derived from IMUs.

In addition to providing recommendations, we must

also acknowledge the limitations in our study. First, we

chose not to include per unit measures (counts, cadence,

gait speed, etc.) as these can be determined based on

post collection estimates (e.g., distance travelled over a

given time period = gait speed) which would confound

results. Similarly, we chose not to include the direct tim-

ing of gait events (e.g., initial contact, toe-off, etc.) as

these define the precursors to spatiotemporal outcomes,

but not the actual outcomes themselves. Also, due to the

already large scope of this review, we did not include

within-session reliability or between-session reliability

where the device was not removed. For example, Moe-

Nilssen [111] examined a variety of outcomes relevant to

the current review, but data from that study were not in-

cluded as the researchers did not remove the device be-

tween sessions, and was therefore assessing a different

level of IMU reliability. Lastly, we attempted to separate

outcomes by walking speed in our synthesis of data and

whenever possible used normal or preferred speeds to

best represent healthy adult gait. Nevertheless, there

were several instances where this was not possible and,

as such, some data has mixed speed results.

Future directions

The findings from this comprehensive review and meta-

analysis illustrate the vast and continually growing body

of literature in this field. Nevertheless, even with this

large body of literature, it remains difficult to synthesize

findings due to a lack of study quality and standardized

protocols. Therefore, we urge the IMU community to

focus on quality over quantity in research, as more poor

quality, limited sample size studies will not advance the

field but only convolute the results. In addition to this
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general recommendation, we present four specific rec-

ommendations for future directions.

� IMUs consistently demonstrate at least moderate

validity and reliability in assessing all mean

spatiotemporal parameters. Further, excellent

validity and reliability can be expected on measures

of step and stride time and length measured at the

back and lower limbs. Therefore, we do not

recommend the need for future studies to address

the validity and/or reliability of mean step and stride

time and length during walking as a primary

outcome.

� Measures of spatiotemporal parameter variability

from IMUs demonstrate inconsistent levels of

validity and reliability. However, these

inconsistencies are more likely due to variable

protocols (i.e., number of steps/trials) and

processing techniques, rather than a flaw in the

devices themselves. Therefore, future research

should seek to identify optimal and standardized

protocols and processing techniques best suited to

assess measures of gait variability with IMUs.

� While joint kinematics generally demonstrate good

to excellent validity and reliability in the frontal and

sagittal plane, this information is often drawn from

small studies with poor statistical measures. Future

research in this area must improve study designs

(e.g., justified sample sizes, appropriate statistical

outcomes) in order to provide more high-quality

evidence and recommendations on these important

outcomes.

� Additional biomechanical outcomes such as a

stability, regularity, and acceleration RMS

demonstrate promising reliability. Unfortunately,

much like gait variability, there is a lack information

on optimal and standardized protocols. Moreover,

similar to joint kinematics, there is a need for more

high-quality study designs. Therefore, future re-

search should seek to address the best practices for

IMU measures such as stability, regularity, and ac-

celeration RMS using appropriate sample sizes and

statistical outcomes.

Conclusion
The findings of this review demonstrate the excellent

validity and reliability of IMUs for measuring mean step/

stride time and length during walking, but caution the

use of spatiotemporal variability and symmetry metrics

without strict protocol. Further, this work tentatively

supports the use of IMUs for joint angle measurement,

especially in the sagittal plane, and other biomechanical

outcomes such as stability, regularity, and segmental ac-

celerations. Unfortunately, the strength of these

recommendations are limited based on the paucity of

high-quality studies for each outcome. Future work

should seek to address these gaps by undertaking more

rigorous study designs and statistical considerations for

testing the validity and reliability of IMU-derived bio-

mechanical outcomes in walking. We have provided sev-

eral recommendations for future studies that will

strengthen the quality of the results and provide better

insights into the validity and reliability of IMUs for gait

analysis.
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