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Validity Inferences From Interobserver Agreement

John S. Uebersax
Behavioral Sciences Department, The RAND Corporation

Methods for measuring rater agreement and making inferences about the accuracy of dichotomous
ratings from agreement data are described. The first section presents a probability model related to
latent class analysis that is applicable when ratings are based on a discrete trait. The second section
extends these methods to situations in which ratings are based on a continuous trait, using a model
related to signal detection theory and item response theory. The values obtained by these methods
provide either direct or upper-bounds estimates of rating accuracy, depending upon the nature of
the rating process. Formulas are shown for combining the opinions of multiple raters to classify cases
with greater accuracy than simple majority or unanimous opinion decision rules allow. Additional
technical refinements of the probability modeling approach are possible, and it promises to lead to
many improvements in the ways that ratings by multiple raters are analyzed and used.

Classifications based on dichotomous observer or expert rat-
ings are used routinely in psychological research. For example,
an investigator may observe episodes of children’s behavior and
classify them according to whether or not they constitute play,
a clinician may rate whether a particular trait or symptom is
present, or an experimental psychologist may wish to classify
learning strategies according to some typology. Common to all
of these is the need to evaluate the quality of observer ratings.
Typically, the assessment of rating quality takes one of two
forms. If some criterion measure is available, the accuracy of
ratings can be assessed directly by comparing observers’ ratings
to cases’ true states as determined by the criterion; the accuracy
of ratings thus measured, or their tendency to indicate the true
state of cases, is also commonly referred to as their validity. An-
other common strategy for assessing the quality of ratings is to
compare those of one rater with those of another. Thus, for ex-
ample, a researcher may obtain independent ratings from two
or more raters for each of a set of cases and determine the extent
to which ratings of the same case agree in order to measure what
is commonly referred to as their reliability.

While there is some degree of general agreement about what
statistical methods should be used to measure rating validity,
there is much more debate concerning the methods that should
be used to measure reliability. Cohen (1960) proposed the
kappa coefficient as a measure of interrater agreement, arguing
that it had certain advantages over simply considering the pro-
portion of times raters agree. Many limitations of the kappa
coeflicient have been pointed out, however. Maxwell (1977), for
example, noted the arbitrary method by which it attempts to
correct levels of observed agreement for an amount attributable
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to chance. More recently, Carey and Gottesman (1978), Grove,
Andreason, McDonald-Scott, et al. (1981), Spitznagel and
Helzer (1985), and Uebersax (1987) observed that the same rat-
ing procedure may result in-different, and potentially very dis-
parate, values of kappa when the proportions of cases belonging
to various categories vary from population to population. A
consequence of this is that it may be difficult to compare results
across studies or to generalize from the results of a single study.
Several of these authors also noted the desirability of measuring
agreement on presence and absence of a trait separately, which
the kappa coefficient does not do.

Other statistical indices proposed to measure observer agree-
ment include the random error coefficient (Janes, 1979; Max-
well, 1977; Zwick, 1988), Yule’s Y (Spitznagel & Helzer, 1985),
and the log-odds ratio (Sprott & Vogel-Sprott, 1987). Many of
the criticisms raised in connection with the kappa coefficient
apply in varying degrees to these also.

At the same time, a more fundamental question about the
relationship between rating validity and rating agreement has
not been resolved. There is often a tendency to view validity
and reliability as separate and unrelated issues. It is clear,
though, that they must be related in some way. We know, for
example, that the correspondence of ratings to an external crite-
rion is limited by their reliability (Shrout, Spitzer, & Fleiss,
1987). There has been recent interest in the possibility of mak-
ing direct inferences about the accuracy of individual ratings
on the basis of observed levels of rater agreement. Several arti-
cles have discussed methods for making such inferences. How-
ever, possible limitations of these methods, in particular, the cir-
cumstances under which they provide information about rating
validity as opposed to simply expressing rater agreement in a
different, though perhaps very useful way, require greater clari-
fication. :

The purpose of this article is threefold. First, it reviews the
conceptual basis for methods proposed to make inferences con-
cerning rating validity from agreement data. Second, restric-
tions on the applicability of these methods, most importantly,
that the trait on which ratings are based must be viewed as dis-
crete, are noted. Methods extending the approach to situations
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in which the trait is more accurately viewed as continuous are
then presented. Third, the relationship between the informa-
tion provided by these methods and rating validity as it is more
traditionally understood is discussed.

Discrete Case

Conceptual Basis

The nature of the problem of making inferences about rating
validity from observer agreement can be illustrated by means
of a hypothetical example. Consider the following problem:

An urn contains a large number of black and white marbles. There
are also two bowls, each containing a large number of black and
white stones, the proportions of black and white stones in the two
bowls being different. A two-stage procedure is defined as follows:
First, a marble is drawn from the urn; then, if the marble is black,
three stones are randomly drawn from the first bowl, but if the
marble is white, three stones are drawn from the second bowl. You
are informed neither of the color of the marble drawn nor from
‘which of the bowls the stones are taken. You are told only the num-
bers of black and white stones drawn each time, for example, *“‘two
blacks and a white.” Given that this procedure is repeated many
times, you are to determine (a) the proportion of black and white
marblesin the urn, and (b) the proportion of black and white stones
in each of the two bowls.

This problem can in fact be solved easily. To see this, consider
what would happen if there were only one bow] instead of two.
In that case, the frequency of outcomes involving various num-
bers of black and white stones would follow a binomial distribu-
tion. Because the shape of a binomial distribution is uniquely
determined by the probabilities of the alternative outcomes, it
is possible to infer these probabilities from an observed distri-
bution, given a sufficient number of observations, or in terms
of this example, to infer the proportion of black and white
stones in the bowl from the results observed. The fact that the
stones may be drawn from either of two bowls adds only slightly
to the complexity of the problem. The observed pattern of re-
sults then represents the mixture of two binomial distributions.
_ However, again the shape of the combined distribution is deter-
mined uniquely by the proportion of black and white stones in
each of the two bowls and by the proportion of times that stones
are selected from one or the other of them. Thus, given enough
repetitions to accurately characterize the distribution, it is pos-
sible to estimate the desired values.
There is a direct analogy between this example and that of
inferring the accuracy of a rating procedure, given multiple rat-
- ings for each of a sample of cases. The urn corresponds to a
population of cases consisting of a certain proportion with and
* a certain proportion without some characteristic or trait of in-
terest; the bowls and their contents represent differing probabil-
ities of a case being rated as having or not having the trait, de-
pending upon whether it does or does not have the trait; the
three stones drawn correspond to the ratings of three indepen-
dent observers of a particular case. Thus, inferring the contents
of the urn and the bowls from the numbers of black and white
stones observed over many trials is analogous to estimating the
prevalence of cases in a population with and without a trait, and
the probabilities of positive and negative ratings, given either
“type of case, on the basis of several ratings of each of a sample

of cases. Because these probabilities are the same as the proba-
bilities of correct or incorrect ratings, this is equivalent to infer-
ring the accuracy or validity of ratings on the basis of observer
agreement.

Several authors have discussed the application of probability
models related to this subject. Kaye (1980) and Kraemer (1982)
considered the possibility of directly estimating rater accuracy
on the basis of ratings by two or more raters. Using related
methods, Hui and Walter (1980) showed that given rating pro-
cedures with different levels of accuracy and two samples drawn
from populations with different trait prevalences, it is possible
to estimate the accuracy of the two procedures and the preva-
lence of the trait in both populations. Gelfand and Solomon
(1974, 1975) have also discussed the use of related models in the
analysis of votes by jury members in criminal and civil trials.
Though not directly identified as such, the models developed in
those articles are closely related to the set of techniques gener-
ally known as latent class analysis (Goodman, 1974; Lazarsfeld
& Henry, 1968). More formal discussions of the application of
latent class analysis to the study of observer agreement have
been made by Dawid and Skene (1979), Dillon and Mulani
(1984), and Walter (1984).,

Kaye (1980), Kraemer (1982), and Gelfand and Solomon
(1974, 1975) differ somewhat from Dawid and Skene (1979),
Dillon and Mulani (1984), and Walter (1984) in terms of the
type of rating design considered. The approach of the former
authors was more consistent with an interpretation of ratings
being made by panels of raters selected for each case separately
by some random process. Thus, the raters rating one case may
not necessarily be the same as those rating another. In contrast,
the rating paradigm considered by the latter authors corre-
sponds more closely to a fully crossed design in which a fixed
panel of raters evaluates each case, so that each case is observed
by each rater. An advantage of the latter approach is that it
makes it possible to consider the level of rating accuracy associ-
ated with each individual rater. However, in order to do this, it
is necessary that it be possible to associate with each rating ofa
particular case the identity of the observer making the rating,
information that may not always be available to the investigator.

We shall consider here the first type of rating paradigm, that
is, varying rater panels, in part because it involves fewer param-
eters and is therefore somewhat simpler but also because it re-
sembles more closely the paradigm to be considered in conjunc-
tion with the continuous model in the next section. The reader
should note, however, that with the application of appropriate
constraints, the general latent class model can be adapted to
designs in which raters vary from case to case and will yield
results identical to those of the methods described here. A dis-
cussion of this is to be found in Dillon and Mulani (1984).

Latent Class Analysis

Latent class analysis has been used in many diverse applica-
tions in psychological research (for recent examples, see Dillon,
Madden, & Kumar, 1983; Young, 1983). No satisfactory de-
scription of the theory, methods, or extensive literature con-
cerning latent class analysis can be made here, and for this the
reader is referred to Lazarsfeld and Henry (1968) and Good-
man (1974). For present purposes, it suffices to note that the



basic premise of latent class analysis is that an observed pattern
of results, for example, responses or scores of cases with respect
to a set of categorical variables, derives from the cases’ member-
ship in two or more latent categories. From the observed data,
it is possible to apply mathematical procedures to estimate the
prevalence of these latent categories, the extent to which each
variable indicates membership in one category or another, and
the probable membership of each case.

We shall suppose that cases are rated on the same trait by
several observers. Specifically, let us assume that the data corre-
spond, as in the marble example, to a two-stage Bernoulli pro-
cess. First, N cases are assumed to be randomly drawn from a
population whose members belong to one of ¢ latent categories.
In general, we shall suppose these categories to be two in num-
ber, one with a higher probability of eliciting a positive rating
and corresponding, though not necessarily exactly, to presence
of the trait and the other, with a lower probability of eliciting a
positive rating, corresponding to absence of the trait; we shall
refer to these as the positive and negative latent categories, re-
spectively. In the formal development of the probability model,
however, we shall allow the number of latent categories to vary,
to allow for instances in which it may be useful to consider more
than two. The observer ratings themselves, though, will be con-
sidered dichotomous. Second, for each case, a panel of k observ-
ers is assumed to be selected by a random process from a popu-
lation of potential raters, who independently rate the case. We
note, also, that this need not be a panel in the literal sense of
the term,; alternatively, multiple ratings of each case may come,
for example, from replications of the same rating procedure.

Two assumptions are made in conjunction with the discrete
model considered here. The first is that the probability of a posi-
tive rating, given a case belonging to a particular latent category,
is the same for each observation of the case. This is not the same
as requiring that all raters have the same probabilities of making
a positive rating for a given latent class. Probabilities of individ-
ual raters may vary; however, given that they do, it is essential
that random sampling of raters be used to assure that any given
rating of a case has the same probability of being positive.

_ The second assumption, which is common to all forms of
latent class analysis, is that of conditional independence. This
asserts that within each latent category, the probability of one
rating being positive is statistically independent of another be-
ing positive. This is equivalent to stating that cases within each
latent category are identical with respect to their probability of
eliciting a positive rating and is essentially a restatement of the
definition of latent categories. The discrete model of observer
agreement thus requires that the probabilities of eliciting posi-
tive ratings for all cases take only a finite, and presumably rela-
tively small, number of values. This may be a reasonable as-
sumption in some applications, as, for example, when the trait
considered is truly dichotomous. However, in other situations
the trait may be more accurately regarded as continuous, with
corresponding continuously varying values in the probability
of eliciting a positive rating. This will be considered in the next
section.

Probability Model

To begin, let the ith rating of a case be denoted by u;, a value
‘of 1 being assigned if the rating is positive and a value of 0 if the

3

rating is negative. Let X be a discrete variable indicating one of
¢ latent categories to which a case may belong. We define the
probability of the ith rating of a case being positive, given that
the case is a member of latent category s(s=1, ---,¢), as

P{u;=1|X =5} = p,. n

We shall assume in general that the categories are numbered
such that the first has the lowest probability of eliciting a posi-
tive rating and that the last is associated with the highest proba-
bility, that is, p; < p» < --- < p, o, in the two-category case,
simply that p, < p,. Let us also denote the population preva- .
lence of each latent category, s, by r;, such that Zr, = 1, From
this we easily derive a formula for the probability that, given k
randomly selected ratings of a case, exactly j will be positive.
Consider the hypothetical results of a case rated by five raters,
represented by an arbitrary ordering as the vector 1,0, 1, 1, 0.
Given a case belonging to the first latent category, the probabil-
ity of this response pattern occurring is p; (1 — p1)pi o1 (1 — py).
We note, however, that there are 5!/(3! 2!) orderings containing
exactly three positive ratings, each with the same probability of
occurring. Thus we see that the probability of exactly j out of k
ratings being positive, given a case belonging to latent class s, is

Plu=jlX=s}= (/D pi(I - p)*, 2

where u, indicates the total number of positive ratings for that
case. It follows that the probability of exactly j out of k positive
ratings for a randomly selected case, regardless of latent cate-
gory, is : '

P{u.=j}= (k) 2l rpi(1 = pY. 3)
jl ==

This leads directly to a specification of the likelihood function
for a set of results obtained in a multirater agreement study. Let
the results of N cases rated by k raters each be represented by
the vector ng, ny, - - -, ., with n; indicating the number of cases
receiving exactly j out of k positive ratings. Given the indepen-
dence assumptions noted in the preceding section, the likeli-
hood of a particular pattern of observed frequencies, given a set
of prevalence and rating probability parameters, is

k
L=1 P{u=j}"u “)

j=0

Estimation

From observed results summarized in terms of the vector ng,
ny, - - -, ng, the goal is to estimate the probabilities of positive
ratings py, ps, - - -, D. and the prevalences r;, r3, - - -, r.(ry, or
any other one of the prevalences, need not be estimated, be-
cause they must sum to 1) for each of the latent classes.

Iterative maximum likelihood procedures provide a general
method for obtaining estimates of these parameters from a set
of observed data. By definition, the maximum likelihood esti-
mates of the latent parameters are those that maximize the
value of Equation 4. To facilitate computation, we take the loga-
rithm of Equation 4, resulting in
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F=3Z nilog E rsp{;(l —p:)k-j, (5)
Jj=0 s=1

as the function to be maximized, noting that the logarithm of
the combination term need not be considered because it is con-
stant. A convenient way of obtaining the parameter values that
maximize this function is by means of the multivariate general-
ization of the Newton-Raphson algorithm (Lazarsfeld & Henry,
1968). By this iterative method, first derivatives of Equation 5
relative to each of the latent parameters and second partial de-
rivatives are calculated for a given set of parameter estimates.
From these, new estimates of the latent parameters, closer to
the maximizing values, are calculated, derivatives are again
computed, and the process is repeated until the solution con-
verges, that is, until two successive sets of estimates result in a
sufficiently small change in Equation 5. A useful feature of this
method is that it leads directly to estimates of the asymptotic
standard errors of the parameters. Specifically, these values are
calculated following a method discussed by Haberman (1978,
1979), from the inverse of the information matrix, which is gen-
erated in the course of deriving iterative approximations.

A computer program implementing this algorithm in the
case of two latent categories to estimate the parameter p,, p,,
and r, has been developed (Uebersax, in press). Convergence is
very rapid, usually taking two or three iterations. One of the
factors affecting the efficiency of the algorithm is the initial esti-
mates of p;, p2, and r, selected. Advantage can be taken of the
fact that the results of k = 4 raters can be reformulated in terms
of the expected results, given three ratings per case. Let #; de-
note, as before, the number of times a case receives exactly j
positive ratings, given k opinions. In addition, let n; (i = 0, 1,
..., k") denote the expected results of sampling only k' (k' < k)
ratings for each case. Then

)

n;= Z _— nj. (6)
"0
} J :

For the special case of k = 3 raters and ¢ = 2 latent categories,
Lazarsfeld and Henry (1968, pp. 27-31) presents an algebraic
solution for the estimation of latent parameters. The values for
ng, ni, n3, and n3 derived by Equation 6 can be used in con-
junction with this method to provide initial estimates for p;, p2,
and r,, which then form the basis for a convergent maximum
likelihood solution.

" Parameter estimates may also be obtained by iterative pro-
portional fitting procedures, such as those discussed by Good-
man (1974).

Goodness of Fit

The correspondence of a model defined by a set of parameter
estimates to observed results can be assessed either by means of
the x* goodness-of-fit statistic or a x? test based on the likeli-
hood ratio statistic. Let ¢; (j = 0, 1, - - -, k) be the vector of
expected frequencies of cases with various numbers of positive

“ratings. These are obtained for a particular model by multiply-

ing the number of cases rated, N, by the value of P{w, = j} given
in Equation 3 for each number of positive ratings, j. The x>
goodness-of-fit statistic is then equal to Z(n; — ¢;)*/¢;], the
number of degrees of freedom for the test being equal to the
number of possible values of j, or k + 1, minus 1 (since Zn; =
N) minus the number of latent parameters estimated. Because
the parameters estimated, given ¢ latent categories, are ¢ rating
probability estimates and ¢ — 1 prevalence estimates, the total
number of parameters estimated is 2¢ — 1. Thus the degrees of
freedom for the goodness-of-fit test 1s k — 2¢ -+ 1 or, in the two-
category case, k — 3. Alternatively, the value of x2 based on the
likelihood ratio statistic, equal to 2Z;n; log (n;/¢;), can be used
to assess model fit, the degrees of freedom being the same as
with the goodness-of-fit test.

Most of the cautions concerning the use of goodness-of-fit
tests in general apply to this case as well. Because, unlike most
applications of statistical tests, the goal of a goodness-of-fit test
is to obtain results that are not significant, the typical procedure
of setting a low value for a becomes nonconservative rather than
conservative. A comparatively high value for « may therefore
be more appropriate. Also, if the sample size is extremely large,
then even a slight departure of the results expected for a particu-
lar model from the observed results may be statistically signifi-
cant. Thus, in using these approaches to assessing model fit, a
researcher must exercise judgment in interpreting results.

If a satisfactory fit is not obtained with a two-category model,
it may be because the trait itself is not discrete rather than be-
cause it has a greater number of discrete levels, so that it may
be useful to consider approaches such as that presented in the
following section that view the trait as a continuous variable.
Alternatively, particularly when theoretical considerations war-
rant it, improved fit may be achieved by considering discrete
models with three or more latent categories. The maximum
number of categories possible to consider is limited by the num-
ber of raters. Specifically, it is necessary that k bé greater than
or equal to 2¢ — 1 to obtain estimates and greater than or equal
to 2¢if a x? test is also to be used. Instances may occur in which
two or more models may both yield a satisfactory fit with the
data. In such cases, parsimony, given that there are no a priori
theoretical considerations lending support to the higher-cate-
gory model, would argue in favor of the model involving fewer-
categories. In general, parameter estimates associated with
models with fewer categories will also have smaller standard er-
rors than those associated with models involving more catego-
ries.

Example

Suppose that a researcher is studying recognition of facial
expressions. Let data be gathered in which 600 photographs are
rated according to whether the expression of the figure in the
picture is perceived as smiling. Four subjects are selected ran-
domly to rate each photograph, and the ratings are made ac-
cording to the discrete model outlined in the previous section.
Results are tabulated in the form of a vector of frequencies with
which various numbers of positive ratings occur, specifically,
no=171,n, =39, n, = 46, n; = 144, and n, = 300.

From Equation 6, the expected frequencies for the results of
three-rater panels are approximately ng = 81, nj = 52, n3 =



131, and n3 = 336, leading from Lazarsfeld and Henry’s (1968)

equations to initial estimates of p, = .132, p, = .889, and

r, = .796. Using these as starting values, the iterative estimation

algorithm results in values of p;, = .125, p, = .884, and r, = .803,

with standard errors of .0234, .0088, and .0189. Application of
Equation 3 results in expected frequencies for cases receiving

varying numbers of positive ratings of ¢, = 69.5, e, = 42.2, €, =

38.7, es = 154.9, and e, = 294.7. In comparing these to the

observed frequencies by means of the goodness-of-fit test, a

value of x* equal to 2.524 is obtained, which with 4 — 3 or 1 df’
is nonsignificant at the .1 level. Thus, it could be concluded that

the data are adequately represented by 2 model positing the ex-
istence of two latent categories, one with a higher, .884 proba-

bility of leading to a positive rating and one with a lower, .125

probability.

Relationship to Rating Accuracy

Before considering the relationship between the latent pa-
rameter estimates and rating accuracy, it will be helpful to re-
view more generally methods for measuring accuracy. Several
indices are used for this purpose. Two that are very common
are sensitivity and specificity. Both may be defined in terms of
conditional probabilities. Sensitivity (Se) is the conditional
probability that a case will be rated as having a trait, given that
the trait is present. Equivalently, it may be interpreted as the
probability of detecting a positive case or the proportion of posi-
tive cases correctly rated. Specificity (Sp) measures the accuracy
of negative ratings, being defined as the conditional probability
that a case will be rated as not having the trait, given that the
trait is absent. Thus, it may similarly be viewed as the probabil-
ity of detecting a negative case or the proportion of negative
cases correctly rated.

Two related indices are what are often termed the predictive
value of positive and negative ratings. These represent the con-
verse conditional probabilities of sensitivity and specificity. The
predictive value of positive ratings is equal to the conditional
probability of a case having the trait, given that it receives a
positive rating, and the predictive value of negative ratings is the
conditional probability of a case not having the trait, given that
it is rated as not having the trait. As is evident from their defini-
tions, these indices bear a strong relationship to one another.
The application of Bayes’ theorem shows, for example, that the
sensitivity of ratings is equal to the probability of a positive rat-
ing being made, multiplied by the predictive value of a positive
rating, divided by the prevalence of positive cases. In a corre-
sponding way, rating specificity is equal to the probability of a
negative rating multiplied by the predictive value of negative
ratings, divided by the prevalence of negative cases. -

An additional index occasionally used to express the validity
of ratings is overall accuracy or percent correct, which is simply
the proportion of cases, either positive or negative, that are cor-
rectly rated. The drawback of using overall accuracy as a valid-
ity index, however, is that it does not distinguish between the
accuracy of positive and negative ratings, information that the
researcher may find useful.

In the two-category case it is clear that there is a close connec-
tion between the probabilities of positive ratings, given mem-
“ bership in the latent categories, p; and p., and rating accuracy.
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Specifically, if the latent categories correspond exactly to pres-
ence and absence of the trait, p, may be taken as a direct esti-
mate of rating sensitivity and 1 — p, as an estimate of rating
specificity. By application of Bayes’ theorem, the predictive
value of positive ratings is then equal to 7,0, /(r, py + r2p), the
predictive value of negative ratings is equal to (1 — p,)/
[ri(1 — p;) + r2(1 — p,)], and the percent of correct ratings is
equaltor;(1 —p)) + raps.

Kaye (1980) and Walter (1984), in their discussions of valid-
ity inferences from agreement data, assumed this identity be-
tween latent classes and true categories. Again, this is not im-
plausible in many cases. If there are no systematic factors caus-
ing raters to agree other than their mutual ability to detect
presence or absence of a trait, that is, no sources of shared error,
latent and true categories would be expected to correspond per-
fectly. Moreover, in many applications, particularly those con-
nected with psychological research, what is often investigated
is precisely the capacity of a stimulus to elicit a certain response
in a rater. For example, the rating process considered may in-
volve judgments concerning whether a sound is audible or
whether an anecdote is funny. In such cases, a latent consensus

-of observers’ judgments may be regarded as the criterion of in-

terest.

In other instances, however, the latent classes may not corre-
spond exactly to actual presence or absence of the trait. For ex-
ample, raters may have some decision criterion or definition of
the trait in common that corresponds imperfectly with true
presence or absence of the trait, or some cases may have a re-
lated characteristic causing them to appear positive to all raters, _
hence belonging to the positive latent category, yet actually be
negative. In this case, the relationship between p; and p, and
rating accuracy depends on the probabilities of latent class
membership, given true category membership. Specifically, rat-
ing sensitivity is equal to the probability of a positive rating,
given a case belonging to the positive latent category (p, ), multi-
plied by the probability of a case belonging to the positive latent
category, given that it is positive, plus the probability of a posi-
tive rating, given a member of the negative latent category (p, ),
multiplied by the probability of membership in the negative la-
tent class, given a positive case. Because the probabilities of pos-
itive and negative latent class membership, given a positive case,
must sum to 1, and because p, > p,, it follows that Se must be
less than or equal to p,. By similar reasoning, it is seen that
Sp=<1-p.

For ¢ > 2 latent categories, explicit formulas can be derived
giving the accuracy of individual ratings based on the estimated
values of p, and r,. These require, however, that the investigator
be able to specify on the basis of theoretical considerations or a
priori knowledge the probability of a positive or negative case
falling in each latent class or, equivalently, the proportions of ,
cases in each latent class that are positive and negative. How-
ever, following reasoning similar to that in the two-category
case, it may be shown that sensitivity is bounded by the largest
value of p,, thatis, Se < p., and specificity by 1 minus the lowest
value, thatis,Sp< 1 — p,.

The validity parameters obtained by means of latent class
modeling, both in cases in which they directly estimate rating
sensitivity and specificity and in cases in which they provide
upper-bounds estimates, are useful in a variety of practical re-
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search situations. For example, they may serve as a basis for
estimating minimal sample sizes necessary to attain requisite
statistical power for a comparison of mean differences between
two groups, when group membership is determined on the basis
of rater classifications. Although positive and negative cases
may differ on a particular variable of interest, the effect of inac-
curate ratings is to create groups that contain both positive and
negative cases. The mean difference between groups as given by
the rating procedure may therefore tend to underestimate the
true difference between the groups. By using the estimates of
sensitivity, specificity, and prevalence obtained by the methods
shown, it is possible to estimate the effects of misclassification
on observed mean differences and statistical power and to deter-
mine a suitable sample size to compensate for this effect.
Having noted more generally the factors that must be consid-
ered in deriving validity inferences from rating agreement, we
shall now focus on the case of ¢ = 2 latent classes and perfect
correspondence between actual and latent categories.

Value of Multiple Opinions

An important feature of the methods discussed here is that
they make it possible to attach a precise probabilistic meaning
to the ratings of several observers. It follows from the initial
independence assumptions that the probability of a case belong-
ing to the positive latent category receiving k unanimous posi-
tive ratings is equal to p%. Similarly, the probability of a case
belonging to the negative latent category receiving kK unanimous
negative ratings is (1 — p;)*. By extension, the application of
Bayes’ theorem shows that the probability of a case belonging
to the positive latent class, given k unanimous positive
ratings, is

oy = k= T2PE
PX =2 =k} =, ™

and the probability of a case belonging to the negative latent
class, given k unanimous negative ratings, is

n(l "‘Pl)k
. 8
n(l —p)*+ n(l - p) ®

Given that the latent categories derive only from trait presence
and absence, these values are also interpretable as the predictive
values of unanimous positive and negative ratings. More gener-
ally, consider a pattern of opinions consisting of j positive and
k — j negative ratings. The probability of positive class member-
ship, given this pattern, is then

P{X=1lu=0}=

rph(l — p)*7 ©
npi(1 — )7 + npi(l - p)*7’

and the probability of negative class membership is 1 minus this
amount. Again, because we have assumed a perfect correspon-
dence between latent categories and trait states, these values
also estimate the probability of a positive or a negative case,
given the observed ratings.

It is easy to see many practical applications for these formu-
las. For example, a researcher may wish to integrate the infor-
mation provided by multiple observers to derive an optimal

~classification for each case. Accordingly, by Equation 9 it is pos-

PlX=2u=j}=

sible to determine on the basis of observed ratings whether a
case is more probably a member of the positive or the negative
latent category. If, as is commonly the case, equal misclassifica-
tion costs are assumed, that is, if the cost associated with assign--
ing a positive case to the negative category is equal to that of
assigning a negative case to the positive category, the optimal
classification would be to the category to which the case has the
higher probability of membership. If misclassification costs are
different, the product of the probability of a case belonging to
each category and the cost associated with failing to identify a
case belonging to that category should be calculated and the
case assigned to the category for which this product is higher.
For a discussion of this in a related context, see Macready and
Dayton (1977).

Equations 7-9 may also be helpful in planning the number
of ratings per case necessary to classify cases with a desired de-
gree of accuracy. Although an investigator may feel that the
opinion of one rater or expert is an insufficient criterion to clas-
sify a case for research or clinical purposes, there are often few
guidelines for determining how many ratings per case would be
more appropriate. These equations provide a formal basis for
such decisions and make it possible to estimate the incremen-
tal predictive value of each additional observer. Of potential in-
terest is that these equations also lend themselves to adaptive
rating strategies, in which ratings are solicited from successive
observers until a case can be assigned to one category or the
other with a sufficient degree of accuracy.

Majority Opinion

Many authors have considered the use of majority opinions
by a panel of raters in assigning a case to one category or an-
other (see, .g., Schouten, 1985, 1986). By simple extension, the
formulas shown here can be applied to estimate the sensitivity,
specificity, and predictive values of majority-based decisions.
Let u, = j’ denote at least j' out of k positive ratings of a case,
where j’ is the minimal number constituting a majority. The
probability of a majority positive opinion, given a member of
the positive latent category, corresponding to the sensitivity of
a majority positive opinion, is thus

P{u:j’lX: 2}+ oo +P{u.=le= 2},
or

k [k
PluzjlX=2}=3 ( ,)Pﬁ(l - p2)i. (10)
r
Similarly, the probability of positive latent category member-
ship, given a majority of positive ratings, corresponding to the
predictive value of a positive classification based on majority
decision, is

k
n ¥ Plu=jlX=2}
P{X=2lu=j}=— . an
Z Plu=j}

J=i




where the component probabilities are given by Equations 2
and 3.

Agreement Due to Error

In the original article concerning the kappa coefficient, Co-
hen (1960) suggested that the proportion of pairs of rater opin-
ions in agreement is misleading because it does not consider the
role that chance may play in determining agreement. The exact
nature of chance as it operates in rater decision making, and
especially as it pertains to agrecment measurement, however,
has never been clearly formulated. Maxwell (1977) suggested
that cases can be divided into two categories: those for which a
rating can be made with absolute certainty and those for which
the status of the case is not clear and the rater must guess. Ac-
cording to this view, it would be expected that two raters guess-
ing on the latter type of case would agree a certain proportion
of the time, that is, agreements would occur by chance. In prac-
tice, of course, it is unlikely that all cases are such that trait
presence or trait absence is either perfectly apparent or com-

" pletely unknown. It is unclear, in fact, whether guessing affects
the rating process to a significant degree at all. One might in-
stead suppose that raters generally make their decisions on the
basis of the observed information and according to rules that
they consider valid. Information concerning a case may be mis-
leading or a rater’s decision rules inaccurate, leading to a rating
that is in error, but this is not the same as making a rating by
chance.

It is of interest to consider the implications of the methods
shown here for the problem of agreement in which both raters
are incorrect. The expected proportion of pairs of ratings in
agreement, given values of p,, p2, 1y, and r;, can be expressed
as

P{u;=w} = n[pt + (1 — pY1 + nlPi + (1 - p)]. (12)

Itisreadily seen that agreements can be divided into two catego-

_ries: those in which both raters assign a case to the correctly
corresponding latent category, that is, rate a member of the pos-
itive latent class as positive or 2 member of the negative latent
class as negative, or r,(1 — p;)? + rp3, and those associated with
mutual error, in which both raters assign a case to the incorrect
latent category, or r,p; + r2(1 — p,)°. These may be divided into
components reflecting mutual error or accuracy with regard to
each separate category. Furthermore, these components may be
made independent of prevalence and hence comparable across
studies. Thus, it is seen that p3 estimates the probability of a
nonerror agreement and (1 — p,)* the probability of an agree-
ment due to error, given a member of the positive latent class,
and that (1 — p,)? and p? represent corresponding values, given
a member of the negative latent class.

The indices thus derived provide an approach to measuring
rater agreement that is advantageous in that (a) it incorporates a
theoretically based model about the role of error in determining
agreement and how it should be corrected for, (b) it expresses
agreement on positive and negative ratings separately, and ©
agreement can be expressed in a way that is independent of

~prevalences, facilitating the comparison of studies.

Application to a Continuously Varying Trait

Though useful in developing a basic framework for approach-
ing the problem of making inferences about rating accuracy
from agreement data, limitations on the applicability of the pre-
ceding methods are posed by the assumption of discrete latent
categories. Kraemer (1982) considered several sets of data and
found the fit of a two-category discrete model to be low. Al-
though, as Walter (1984) noted, better fit could be obtained by
allowing for additional latent categories, it is important to con-
sider whether it makes sense to model many rating processes in
terms of discrete categories. In many applications it would be
more accurate to view the trait on which ratings are based as
continuous, although the ratings themselves may be dichoto-
mous. Methods similar to those presented in the previous sec-
tion can be developed for the continuous case. These methods,
it will be noted, are related in many respects both to signal de-
tection theory (Swets, 1973, 1986) and to item response theory .
(Hulin, Drasgow, & Parsons, 1983; Lord & Novick, 1968).

The basic components of the continuous model are illus-
trated in Figures 1 and 2. We begin by assuming the existence
of a continuous latent trait denoted by the variable 6. Although
we refer to this as a trait, the term is used broadly and may refer
either to a single continuous trait (e.g., activity level) or to a
more complex characteristic consisting of an aggregation of sev-
eral traits (e.g., degree of schizophrenic symptomatology). In
addition, it is assumed that there are two types of cases in the
population, which we shall refer to as positives and negatives.
Both are, at least initially, assumed to follow normat distribu-
tions with regard to 4. Cases are again sampled randomly, and
each is independently evaluated by k randomly selected observ-
ers, who indicate whether they consider it to be positive or nega-
tive.

Let g,(6), with mean x, and standard deviation o, be a proba-
bility density function describing the distribution of negative
cases at each level of 8, and let g;(6), with mean y, and standard
deviation o, be the probability density function of positive
cases with respect to 6. Scaling these by the prevalences of both
types of cases in the population, 1 — P and P, respectively, we
define the functions

Si(8) = (1 — P)gi(6)
and
J2(6) = Pg6).

By letting f3(8) = £1(8) + f2(6), it is seen that f3(6) is a probability
density function giving the probability of a randomly selected
case having any trait level § (Table 1).

We next consider the role that a rating threshold plays in the
decision process of a rater. Each rater is assumed to have a char-
acteristic threshold, corresponding to a minimal trait level that
a case must display in order to warrant a positive rating. The

.concept of a rating threshold is thus closely related to the idea

of a cutting score in test theory, and many of the ideas familiar
from that context apply here as well. For example, the propor-
tion of the area under £;(#) falling to the right of a rater threshold
corresponds to the true positive rate for that decision criterion,
and the proportion to the left corresponds to the false negative
rate. Similarly, the proportion of the area under fi(6) to the left
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Figure . Model of discrete rating formation when the underlying trait is continuous. (The x-axis corre-
sponds to the latent trait level, 8, e.g., the severity of symptoms associated with a disorder; f;(6) and £3(8)
describe the relative proportions of negative and positive cases, respectively, at various levels of 8; the vertical

line corresponds to the threshold of a hypothetical rater.)
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Figure 2. Probability density function of rater thresholds (normal distribution), 6), and probability of
positive rating (ogive shaped) function, p(8). (For a case at trait level §, the probability of a positive rating is
equal to the probability of sampling a rater threshold at or below that point or to the proportion of the rater
threshold distribution less than or equal to 6. Thus the probability of positive rating function is equal to the

cumulative distribution function of rater threshoids.)



Table |
Glossary of Terms for Continuous Model
Term Definition
0 Latent trait level
11(6), /2(0) Relative frequency of negative and positive cases at 8
L® £0) +£(6)
N Total number of cases rated
P Prevalence of positive cases
I Mean threshold for making a positive rating
o Standard deviation of rater thresholds
p(d) Probability of a positive rating given a case at §; equal to

cumulative distribution function of rater thresholds

of a threshold corresponds to its true negative rate, and the pro-
portion to the right corresponds to its false positive rate. Raters
are assumed to differ from one another in terms of the location
of their thresholds. Specifically, let rater thresholds be assumed
to be normally distributed along the trait continuum, with the
probability of a rater threshold being located at each level of ¢
given by the probability density function #(6), with mean u, and
standard deviation g,.

Probability Model

In the discrete case, we considered the probability of a posi-
tive rating, p,, given each latent category. We now wish to gener-
alize this to provide a continuous function, p(8), giving the
probability of a positive rating for a case at any trait level, 8.
Given a case at 6, the probability of the ith rating being positive
is equal to the probability of sampling a rater whose threshold
is less than or equal to 4, or the proportion of the probability
density function of rater thresholds less than or equal to this
value. Therefore

P{u;= 1|8} = p(8) = J:D «0) 4o, (13)

with u; denoting, as before, the outcome of the ith rating. We
- will call p(#), the cumulative distribution function of #(0), the
probability of positive rating function. Readers familiar with
item response theory will note that this is similar, both in terms
of derivation and of function, to an item-characteristic curve.
A difference is that whereas each test item is generally consid-
ered to have its own characteristic curve, p(6) describes the
probability of any rating’s being positive. A better analogy,
therefore, would be between this function and an aggregate
item-characteristic curve describing the probability of answer-
ing correctly an item randomly selected from a pool of items
with normally distributed difficulties. Fleiss (1965) has shown
several interesting implications of item-characteristic curves
for the measurement of rater agreement.
Again letting . denote the number of positive ratings for a
case, the conditional probability of exactly j (j=0, 1, ---, k)
positive ratings, given a case at trait level 6 is

P{u=jl6} = (j)p’(ﬂ)[l - (O (14)

“The unconditional probability of exactly j positive ratings is

9

therefore obtained by considering at each trait level the value
of Equation 14 multiplied by the probability of selecting a case
at that level, or

P(u=j} = O [ rowon-sor-a.  as

Thus, given N cases, the expected number with exactly j positive
ratings is
E(n;) = NP{w. = j}, (16)

and the likelihood of an observed set of frequencies ny, 14, - - -,
n, given a rating procedure characterized by f3(6) and p(9), is

k
L=T] P{w=j}" amn
j=0

Because f3(0) = £,(6) + f2(8), and because the definition of p(6)
is the cumulative distribution function of rater thresholds, we
see that the likelihood of an observed pattern of ratings is there-
fore a function of fi(6), /2(8), and #(8) or, assuming these to be
normal, of the parameters u,, 0y, 42, 02, i, 01, and P. Any one
of the means and any one of the standard deviations may be
specified arbitrarily, for example, g, = 0 and ¢, = 1, reducing
to five the number of parameters necessary to estimate. Pro-
vided that there are at least five ratings per case, maximum like-
lihood estimates may again be obtained numerically. The pro-
cedure is the same as in the discrete case, that is, the logarithm
of Equation 17 taken to provide a more computationally tracta-
ble function and an estimation algorithm such as the Newton-
Raphson method used to provide a convergent solution for the
parameter values maximizing this function. The number of pa-
rameters necessary to estimate may be reduced if additional as-
sumptions can be made, for example, specifying that o, = o,
or if the prevalence of positive cases is known and model fit can
be assessed by means of a likelihood ratio or goodness-of-fit x*
test, with df equal to k minus the number of parameters esti-

mated.

Validity Coefficients

Once obtained, the parameters defining the distribution of
cases on the latent trait continuum and probability of positive
rating function can serve as a basis for inferences concerning
the sensitivity and specificity of observer ratings. The formulas
for estimating these values, shown in Table 2, follow directly
from the rating model. For example, the probability of a case
being observed at trait level 8, given that it is positive, is
(1/P)f>(9), and the probability of a case at trait level 8 receiving
a positive rating is p(6). Thus, the probability of a randomly
selected positive case receiving a positive rating, that is, rating
sensitivity, is given by the integral of (1/P)/5(8)p(0) over the range
of 6. The formulas for rating specificity and the predictive value.
of positive and negative ratings follow similarly.

The interpretation of these values as sensitivity and specific-
ity in the usual sense requires that the latent case types associ-
ated with the distributions f,(6) and f2(8) correspond exactly to
positive and negative cases as they are generally defined. If the
latent and actual types correspond only imperfectly, these re-
sults give upper-limit estimates for rating sensitivity and speci-
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Table 2
Validity Coefficient Formulas for Continuous Model
Validity index Computational formula

Sensitivity /P _[w 2(0)X6) do
Specificity va-p [ s -ped
Percent correct [ seona - po1+ 5000 0
Prediptive value of positive -[ea £Op0) db

raines " s@p a0
Predictive value of L, A

negative ratings

" o -penas

ficity, provided that the distribution of cases within each latent
type is independent of true type. In the development of the fol-
lowing formulas, we shall assume an identity between latent
type and actual category membership.

Example

A special case of the continuous model occurs when only one
type of case exists and the latent trait can be viewed as following
a single normal distribution. In this case, the rating model is
described by two parameters, p, and o,; that is, rater accuracy
and agreement are determined by the location of the mean rater
threshold in relation to the distribution of cases and the vari-
ability of rater thresholds in relation to trait variability. This
is especially useful because maximum likelihood estimates for
these parameters can be obtained on the basis of as few as two
ratings per case. The assumption of a trait characterized by a
single normal distribution may, moreover, be more appropriate
than the assumption of a mixture of two normal distributions
in some cases.

For example, consider the reliability data concerning the di-
agnosis “depressive personality” reported in the field trials of
the DSM-1II classification system of psychiatric disorders (Wil-
liams & Spitzer, 1980). In this study, 662 patients were diag-
nosed by panels of k = 2 diagnosticians. From the value of the
kappa coefficient reported, .157, it is possible to calculate the
numbers of patients receiving the diagnosis once, twice, or not
at all. Specifically, these values are n, = 520, n; = 77, and m, =
65. This diagnosis is not generally considered to have a specific
genetic or biochemical etiology, and it would not be unreason-
able to interpret it as an extreme form of characteristics that are
normally distributed, making the special case of the continuous
model described above plausible.

Necessary to estimate are g, and o,. To assure rapid conver-

" gence, starting values are selected by an ad hoc procedure, in

this case, a simple multidimensional “grid search™ algorithm
that evaluates the log of the likelihood function for all combina-
tions of parameter values, considering fixed increments of each
parameter within a probable range. From this, initial estimates
of u, = 1.1, relative to 2 mean for the trait of 0, and ¢, = .45,
relative 10 a trait standard deviation of 1, are obtained. Use of
the Newton-Raphson algorithm then yields a convergent solu-
tion for the maximum likelihood estimates of these parameters
of u, = 1.116 and o, = .456, with standard errors of .065 and
.056. In order to estimate rater sensitivity and specificity from
the data, the formulas in Table 2 must be modified slightly to
accommodate the provision of a single distribution of cases. If
we let the probability density function of all cases be denoted
by f(8), rating sensitivity is estimated as the probability of a case
that falls in the portion of the distribution generally considered
to warrant a positive rating, which may be defined as the portion
above the mean rater threshold, receiving a positive diagnosis
by a randomly selected rater. This is given by the integral of
f(Op(d) from pu, to oo, divided by the integral of f(§) over the
same range. Similarly, rating specificity is given by the integral
of f(O)[1 — p(#)] from —co to u,, divided by the integral of f(6)
over the corresponding range. For the given data, values of ap-
proximately .79 and .94, respectively, are obtained. These val-
ves are much higher than what one might expect on the basis
of the level of kappa reported. This may be seen as attributable
to the tendency of the kappa coefficient to yield inordinately
low values, given large differences in the proportions of positive
and negative ratings, that is, the base rate problem discussed by
Carey and Gottesman (1978) and others.

Multiple Opinions

If we follow the same reasoning as in the discrete model, the
probability, given a positive case, of k consecutive positive rat-
ings, or the sensitivity of a decision rule requiring unanimous
positive ratings by k raters, is given by the integral of
(1/P)f5(6)p*(8) across 6. Similarly, the specificity of a rule requir-
ing k unanimous negative ratings for a negative classification is
equal to the integral of [1/(1 — P)1A(O)[1 — p())* over 6. This
leads to a generalization of Equation 9 for the probability of a
case being positive, given an observed pattern of positive and
negative ratings by a panel of observers. Let the function p*(6)
be defined, giving the probability of some combination of posi-
tive and negative ratings for a case at trait level 8. Specifically,
let

k
o) = (j)p’(o)[l - @O, (18)

where the combination consists of j positive and k — j negative
ratings. The probability of a case being positive, given this com-
bination of ratings, is then

[ sow@ a
[ sor@a

and the probability of a case being negative is equal to 1 minus
this amount.



Equations for estimating the accuracy of majority opinion
decisions, similar to Equations 10 and 11, may again be derived.
For example, the sensitivity of a positive majority rating is ob-
tained by summing the numerator of the above expression
across all values of j constituting 2 majority, multiplied by 1/P.
The predictive value of a majority positive rating is also ob-
tained by dividing the sum of the numerator of the expression
above across the appropriate values of j by the sum of the de-
nominator over the same values. Equations for the specificity
and predictive value of negative majority ratings can be con-
structed similarly.

Agreement Due to Error

It also follows from the continuous model that for a case at
any trait level 6, the probability of two independent positive rat-
ings is pX(6), and the probability of two negative ratings is [1 —
p(8)). The probability of two raters agreeing and being correct
is therefore

[* son1 - pore + 5o as,
and the probability of two raters agreeing and being in error is

[ sowe + o1 - por .

It is apparent that the former can be divided into separate com- |

ponents giving the probability of ratings being in agreement and
correct for either a negative or a positive case. Dividing these by
1 — P and P, respectively, these terms provide separate indices
of agreement not attributable to error that are independent of
sample prevalences, that is, conditional upon a case being nega-
tive or positive. '

Discussion

In summary, it has been shown that the use of probability

_ modeling techniques related to latent class analysis and item
response theory leads to many useful innovations in analyzing
observer agreement. In certain cases, as when there are no sys-
tematic factors connecting the opinions of raters other than mu-
tual accuracy, these methods lead directly to estimates for the
accuracy of individual ratings and classifications based on the
opinions of several raters. If factors other than mutual accuracy
affect rater agreement, for example, sources of common error,
these methods provide a basis for deriving upper-bounds esti-
mates for rating sensitivity and specificity. They also lead to
ways of expressing rater agreement that avoid many of the
difficulties associated with previous approaches.

The probability modeling approach has many implications
for how dichotomous ratings are treated in practice and suggests
improvements in the ways these data are typically used. For ex-
ample, Equation 9 and the corresponding continuous trait for-
mula lead directly to the expectation that simple majority deci-
sion rules will result in suboptimal classification in certain in-
stances. It is possible for cases receiving two negative ratings
and three positive ratings to have a higher probability of belong-

~ing to the negative category. Thus, in order to make the best use

11

of the information available in ratings by multiple observers,
probability modeling may be necessary. '

Limitations of these methods must also be considered. One
is that the assumption of normal distributions in the continu-
ous case may lead to lack of fit between the model and observed
data. Other distributional forms for cases and rater thresholds
may be considered, provided that they can be explicitly parame-
terized. For example, parameters reflecting the skew of the dis-
tributions of positive and negative cases may be added to the
continuous model, potentially providing a more accurate fit,
given that there are enough raters per case and associated de-
grees of freedom to estimate the additional parameters.

Although studies in which the rating panel is sampled sepa-
rately for each case are common in psychological research, the
alternative, for a fixed panel of raters to rate each case, is also
widely used. In this case, the assumption of a constant probabil-
ity, conditional on latent trait level, of any rating being positive
is violated. If the raters are relatively similar, the effect of this
would be expected to be small. However, in general, when data
take the form of ratings by a fixed panel, such that each case is
rated by each observer, other methods should be considered
such as the latent class models discussed by Dawid and Skene
(1979), Dilion and Mulani (1984), and Walter (1984). More
complex fixed designs, such as those in which some or all of
the raters repeat ratings at different points in time, can also be
accommodated under the framework of Goodman’s (1974)
general latent class model.

The relationship between the continuous model and item re-
sponse theory also becomes more apparent with data arising
from a fixed-panel design. There, the situation of cases being
rated positive or negative on some trait by each of a panel of
raters is closely analogous to that of subjects answering cor-
rectly or incorrectly a set of test items. Thus, the item difficulty
and subject ability estimates obtained by means of item re-
sponse theory correspond directly to rater thresholds and case
trait levels. Methods developed in conjunction with modern test
theory may thus be used to provide estimates of these individual
rating parameters. A paper describing this approach in more
detail is currently in preparation (Uebersax & Grove, 1988).
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