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Abstract
Evaluation of the electromagnetic fields diffracted from plane apertures are,
in the general case, highly problematic. Fortunately the exploitation of the
Fresnel and more restricted Fraunhofer approximations can greatly simplify
evaluation. In particular, the use of the fast Fourier transform algorithm
when the Fraunhofer approximation is valid greatly increases the speed of
computation. However, for specific applications it is often unclear which
approximation is appropriate and the degree of accuracy that will be
obtained. We build here on earlier work (Shimoji M 1995 Proc. 27th
Southeastern Symp. on System Theory (Starkville, MS, March 1995) (Los
Alamitos, CA: IEEE Computer Society Press) pp 520–4) that showed that
for diffraction from a circular aperture and for a specific phase error, there is
a specific curved boundary surface between the Fresnel and Fraunhofer
regions. We derive the location of the boundary surface and the magnitude of
the errors in field amplitude that can be expected as a result of applying the
Fresnel and Fraunhofer approximations. These expressions are exact for a
circular aperture and are extended to give the minimum limit on the domain
of validity of the Fresnel approximation for plane arbitrary apertures.

Keywords: Fresnel diffraction, Fraunhofer diffraction, near-field diffraction,
far-field diffraction, scalar diffraction

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In scalar diffraction problems, evaluation of diffracted
electromagnetic fields is often accomplished using either the
Fresnel of Fraunhofer approximations. This demarcation
is due to useful approximations, which greatly alleviate
the complexity of evaluating the diffraction integrals. The
general theory of diffraction at plane apertures was developed
long ago [1–3] and is summarized in textbooks [4, 5].
The Fraunhofer approximation for diffraction from a planar
aperture is in fact the Fourier transform of the aperture
field distribution for which many highly optimized algorithms
for the computation of Fourier transforms have been
developed [6, 7]. In contrast, the Fresnel diffraction always
involves the integration of a highly oscillatory function in the
domain defined by the aperture, which makes its evaluation
more difficult, although many approaches for dealing with
this problem have been developed [8–10]. We build here on

earlier work by Shimoji [11] that showed that for diffraction
from a circular aperture and for a specific phase error,
there is a specific curved boundary surface between the
Fresnel and Fraunhofer regions. The boundary between
the Fraunhofer and Fresnel domains is determined by the
relative size of the diffracting aperture and the displacement
of the observation point as represented by the Fresnel number.
Because of these mathematical approximations the location of
the exact boundary is problematic. Southwell [12] studied,
by direct numerical integration, the validity of the Fresnel
approximation in the near field and found that it begins to break
down for beams expanding faster than about f/12. Theoretical
and experimental investigations of the Fresnel and Fraunhofer
diffraction of a coherent light beam due to an elliptical aperture
have been carried out and close agreement between them has
been obtained [13].

The region where the Fresnel approximation is valid is
commonly given by z3 > 25(a +

√
x2 + y2)4/λ [5] where, as
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Figure 1. Diffraction of a plane wave from an arbitrary-shape planar aperture. r is the distance from point (u, v, 0) on the aperture to point
(x, y, z) on the observation screen. σ is the distance between the aperture and the screen (normalized to wavelength). τ is the transverse
distance between the Huygens source point (u, v, 0) and the observation point (x, y, z).

shown in figure 1, x, y, z are the Cartesian coordinates, a is the
radius of the aperture and λ is the wavelength. This is obtained
from the requirement for a specific maximum phase error.
Steane and Rutt [14] explored the limits where the Fresnel
approximation is valid by considering the propagation of waves
in spatial-frequency space, and expressed the inaccuracy of the
Fresnel approximation as directly related to the Fresnel number
of the aperture.

We derive here expressions for the regions of validity of
both the Fresnel and Fraunhofer regions using the analytical
expression of the Rayleigh–Sommerfeld integral, in the normal
case of a circular aperture. In section 2 we use the scalar
Kirchhoff diffraction formula to obtain an analytic expression
for the optical field along the symmetric axis for a circular
aperture. This enables comparison between Fresnel and
Fraunhofer approximations along this axis. In section 3 we
deduce the Fresnel and Fraunhofer regions from a simple phase
error criterion combined with the error in amplitude and phase
for the symmetric axis of circular aperture.

2. Background

In scalar diffraction, the Kirchhoff formula with the first
and second Rayleigh–Sommerfeld formulae, which describe
the Huygens–Fresnel principle, are often used to represent
the propagation of optical fields. Although the Rayleigh–
Sommerfeld formulae and Kirchhoff diffraction are similar,
further investigation shows that the Kirchhoff diffraction
formula is a mathematically inconsistent theory [15–17]. The
first Rayleigh–Sommerfeld formula gives a physically realistic
prediction for the axial intensity close to a circular aperture,
whereas the second Rayleigh–Sommerfeld and Kirchhoff
diffraction formulae do not [18]. In this paper we are interested
only in evaluating the surfaces that delineate the volumes
for which the Fresnel and Fraunhofer diffraction theories are
valid and these are not close to the diffracting aperture. It is
therefore valid to use, as a starting position, any one of the
three above diffraction formulae. We have chosen to use the
second Rayleigh–Sommerfeld formula since it is both accurate
in this space range and, importantly, can be readily solved
analytically.

To study the validity of the Fresnel approximation, the
propagation of the optical wave front A(u, v, 0) from the plane
containing the aperture therefore requires only the evaluation
of the second Rayleigh–Sommerfeld formula (for plane waves)
and is defined as

E(x, y, z) = − 1

2π

∫ ∫
�

∂ A(u, v, z)

∂z

∣∣∣∣
z=0

eikr

r
du dv, (1)

where � determines the boundaries of integration, r =√
z2 + (x − u)2 + (y − v)2 and k = 2π

λ
.

The area of integration over the aperture requires, in
general, two-dimensional manipulations. However, when the
aperture function is separable in a specific coordinate system,
the problem is reduced to one-dimensional manipulation [15].
For circular apertures the use of polar coordinates, u = ρ cos θ

and v = ρ sin θ , allows the separation of components and
equation (1) can be written as

E(0, 0, z) = − i

λ

∫ 2π

0

∫ a

0

eik
√

z2+ρ2

√
z2 + ρ2

ρ dρ dθ. (2)

Consider a circular aperture irradiated by a plane wave with
unity amplitude and let R = √

z2 + ρ2 be the distance between
a given Huygens source and the observation point, so that
equation (2) is reduced to a one-dimensional integral:

E(0, 0, z) = − i 2π

λ

∫ √
z2+a2

z
eikR dR

= eikz − eik
√

z2+a2
. (3)

Equation (3) gives the analytical expression of the field
amplitude along the symmetric z-axis behind a circular
aperture illuminated by plane waves with unity amplitude. Its
form is shown in figure 2 for a/λ = 1000. It should be noticed
that the second Rayleigh–Sommerfeld diffraction formula is
valid only when the dimensions of the aperture and the distance
from the aperture to the observation point are large compared
to the wavelength.

As emphasized above, the direct calculation of
equation (1) is an intractable problem; however, in certain cases
such as along the symmetric axis as, in the evaluations here, it
is possible to derive analytical solutions [19].
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Figure 2. The amplitude |E(0, 0, z)| along the symmetric z-axis for
a circular aperture with radius a/λ = 1000. The spatial coordinates
are expressed in terms of wavelength λ.

To simplify evaluation of the Fresnel–Kirchhoff integral,
the general assumption states that variations in the argument
of the exponent have a greater effect than variation in other
terms. Thus, equation (1) becomes

E(x, y, z) = − i

λz

∫ ∫
�

A(u, v, 0)eikr du dv. (4)

To simplify the argument of the exponent, the r -term can be
replaced by the Maclaurin series expansion

r = z +
(x − u)2 + (y − v)2

2z
+

((x − u)2 + (y − v)2)2

8z3
+ · · ·

(5)
and to apply the Fresnel approximation only the first two terms
in this expansion are retained. We thus obtain

r ≈ z +
(x − u)2 + (y − v)2

2z
. (6)

Equation (4) is then rewritten to yield the Fresnel near-field,
diffraction integral:

E(x, y, z) = − i

λz
eikz

∫ ∫
�

A(u, v, 0)eik (x−u)2+(y−v)2

2z du dv.

(7)
When r is large, the aperture dimension can be neglected
compared to the distance z (z � u, v), which can be applied
to expression (6) to yield

r = z +
x2 + y2 − 2xu − 2yv

2z
+ · · · . (8)

Substitution of (8) into (7) gives the Fraunhofer approximation:

E(x, y, z) = − i

λz
eikz eik x2 +y2

2z

∫ ∫
�

A(u, v, 0)e−ik xu+yv

z du dv.

(9)
Although these two approximations to the exact scalar
diffraction integral are conceptually similar, the numerical and
analytical evaluation of the Fresnel approximation is generally
more challenging. Fortunately, the Fraunhofer diffraction is
the most important case encountered in engineering optics.
Notice, in (9), that Fraunhofer diffraction by an aperture is the
Fourier transform of the aperture field distribution.

3. Fresnel and Fraunhofer regions

In this section we derive the domains in which the Fresnel and
Fraunhofer approximations are valid. In order to simplify the
mathematics we employ normalized coordinates

τ 2 = (x − u)2 + (y − v)2

λ2
, (10)

σ = z

λ
, (11)

where τ is the normalized lateral displacement between the
source of the secondary wavelet at (u, v) and the observation
point at (x, y).

Writing the phase in the integrand in equation (4) as the
Maclaurin series (equation (5)) in terms of τ and σ yields

	 = 2π

[
σ +

1

2

τ 2

σ
+ O

(
τ

σ

)3]
, (12)

where the higher-order terms O( τ
σ
)3 are neglected in the

Fresnel approximation. These terms correspond to the phase
error due to the Fresnel approximation. The maximum error
introduced by the truncation of the MacLaurin series in the
Fresnel approximation is

	 f h = −π

4

τ 4

σ 3
. (13)

If we choose a maximum allowable error 	max,Fres that we
can tolerate by employing the Fresnel approximation, then this
determines the domain for which the Fresnel approximation
introduces this error to be the domain defined by

τ <

(
4

π
	max,Fres

)1/4

σ 3/4. (14)

For given values of 	max,Fres and σ , the locus of points defined
by τ is a circle centred at the transverse position of the Huygens
source. We define the radius of this circle as R0. From the
relation (14) we see that the phase error within the circle is
less than 	max,Fres while it is larger outside. Then, the Fresnel
region for each Huygens source over the aperture is the centre
of a circle within the plane of the screen and with radius τ .

The Fresnel region for an arbitrary aperture � is defined
as the domain where phase errors are less than 	max for all
Huygens sources within �. For an arbitrary aperture the
domain in the transverse direction is therefore defined by the
intersection of the infinite number of circles of radius τ in
the observation plane for which the error due to the Fresnel
approximation is less than 	max,Fres . This is illustrated in
figure 3 in which a finite subset of the infinite number of
circles is shown and all the circles are centred on points along
the perimeter of the aperture. The area for which the Fresnel
approximation introduces an error less than 	max,Fres is the
unshaded area that is common to all circles. If we denote the
maximum transverse dimension across the aperture as a, the
dimension in that plane for which the Fresnel approximation
introduces a phase error less than 	max,Fres is

τ = R0 − a. (15)

S88



Validity of Fresnel and Fraunhofer approximations in scalar diffraction

Z

U

λ σ

U

V
Y

X

Z

A B

A B C

C

A B C

Maximum
aperture

dimension

Aperture

Screen

Figure 3. Geometrical interpretation of the Fresnel zone τ = R0 − a for an arbitrary aperture with maximum aperture radius a, deduced
from a distribution of Huygens sources along the boundary shape aperture.

A consequence of the Fresnel zone being the intersection of
circles centred on the aperture perimeter is a smoothing of the
aperture shape with the result that many irregular or regular
polygonal apertures shapes will have a Fresnel zone that is
approximately circular with a radius given by equation (15).
Using equations (14) and (15) we can define the Fresnel zone
as the circle defined by

τ <

(
4

π
	0

)1/4

σ 3/4 − a. (16)

The Fraunhofer approximation is defined by ignoring the
quadratic phase in u and v in the integrand of equation (7).
The maximum phase error in the Fraunhofer approximation is
then

	 f h = π

λz
(u2 + v2). (17)

The domain where 	 f h is less than a certain given maximum
phase error 	max,Fraun for all the Huygens sources is the
Fraunhofer zone and is defined by

z � π

λ	min
(u2 + v2) = πa2

λ	min
. (18)

We have seen that equation (14) defines the Fresnel region
for the given 	max,Fres and distance σ between the aperture
and the screen. For the particular case where τ is zero, which
corresponds to the situation where the observation point is in
front of the aperture centre, σ takes its minimum value σ ∗. In
other words, σ ∗ is the inferior boundary of the Fresnel region
along the orthogonal axis crossing the plane containing the
centre point of the longest axis of the aperture. 	max,Fres can
be expressed in terms of σ ∗ as

	max,Fres = −π

4

a4

σ ∗3
. (19)

Equation (14) may also be rewritten in terms of σ ∗:

τ = a

(
σ

σ ∗

)3/4

− a. (20)

Before considering the determination of σ ∗ for a circular
aperture, a closer look at the geometrical proprieties of the
arbitrary-shape aperture will allow us to compare the Fresnel
region of the arbitrary aperture with that of a circular aperture.
Let us consider an arbitrary aperture that is circumscribed by
a circle, where the radius is equal to the maximum radial
dimension a. Because all Huygens sources within the arbitrary
aperture are within the circle, the phase error of the arbitrary
aperture along symmetric axis is less than or equal to the
phase error of its corresponding circle. Then, the minimum
boundary, σ ∗ of Fresnel region corresponding to the arbitrary-
shape aperture is less then a minimum boundary of Fresnel
region of a circle through the symmetric axis σ ∗

circle . This
means that σ ∗

circle is the upper limit for the value σ ∗ for the
arbitrary aperture. Using this upper limit on σ ∗, we can use
equation (20) to define a lower limit on the Fresnel zone.
Similarly, an upper limit on the Fresnel zone can be defined
using the circle inscribed within the arbitrary aperture. It
should be noted that the closeness of the upper and lower limits
to the Fresnel zone to the actual Fresnel zone depends on the
similarity of the aperture shape to a circle.

Equation (3) gives the exact value (within the scalar wave
approximation) of the field along the symmetric axis for a
circular aperture. The expressions for Fresnel and Fraunhofer
approximations respectively are given in [5] as

E f n(0, 0, z) = eikz(1 − eik a2

2z ) (21)

E f h(0, 0, z) = πa2

iλz
eikz (22)
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(a)

(b)

Figure 4. The error phase (a) and error amplitude (b) of the Fresnel
approximation along the symmetric z-axis for a circular aperture
with radius a = 1000. The spatial coordinates are expressed in
terms of wavelength λ.

where a is the aperture circle radius and z is the distance
between the aperture plane and the screen. Comparisons
of the amplitude and phase predicted by equation (3) with
those predicted by (21) and (22) are shown in figures 4 and 5
respectively. We define the normalized error in amplitude
introduced by the Fresnel and Fraunhofer approximations as


E(z, a) = |E(0, 0, z)| − |E f h, f n(0, 0, z)|
Emax

(23)

where Emax is the maximum absolute amplitude along the
z-axis.

For a given maximum error 
E , z = σ ∗
circle corresponds

to the boundary of the Fresnel or Fraunhofer regions as shown
in figures 4 and 5. The parameter σ ∗

circle is determined
by the relative amplitude error 
E and aperture radius a.
An analytical expression for σ ∗

circle can be derived using
equation (23) (see the appendix) and is given by

σ ∗
circle = 3

√
πa4

4 
E
. (24)

Finally, equations (18) and (20) for the Fraunhofer and Fresnel
approximations can be written as

z � πa2

λ
3√24 
E

. (25)

(a)

(b)

Figure 5. The error phase (a) and error amplitude (b) of the
Fraunhofer approximation along the symmetric z-axis for a circular
aperture with radius a = 1000. The spatial coordinates are
expressed in terms of wavelength λ.

τ = 4

√
4 
E

π
σ 3/4 − a. (26)

These expressions define the regions where the Fraunhofer and
Fresnel approximations yield relative accuracy in field of better
than or equal to 
E .

4. Conclusions

Whereas previous work gives the domains of validity of the
Fresnel and Fraunhofer approximations in terms of phase
errors, we have derived simple expressions for the domains as
a function of the more pertinent error in amplitude, 
E , of the
electrical field. These expressions are worst-case values that
are accurate for a uniformly illuminated circular aperture, but
will generally be conservative for non-circular apertures. The
simplicity of the expressions allows a simple test to determine
whether the Fraunhofer or Fresnel approximations may be
safely used or whether a more inconvenient formulation such
as the Rayleigh–Sommerfeld one is necessary.
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Appendix

The amplitudes for the axial fields calculated from the exact
expression (equation (3)) and from the Fraunhofer and Fresnel
approximations (equations (21) and (22)) can be trivially
written as

|E(0, 0, z)| = 2 sin
(

k

2
δ

)
(A.1)

|E f n(0, 0, z)| = 2 sin

(
ka2

4z

)
(A.2)

|E f h(0, 0, z)| = πa2

λz
(A.3)

where δ = √
z2 + a2 − z. The terms δ and sin( k

2δ) in (A.1) can
be replaced by Maclaurin series expansions:

δ = a2

2z
− a4

8z3
+ O

(
a

z

)4

(A.4)

sin

(
k

2
δ

)
= πa2

2λz
− 6πa4λ2 + π3a6

48λ3z3
+ O

(
a

z

)4

. (A.5)

The absolute error in amplitude in the Fraunhofer
approximation is written as


E = |E(0, 0, z)| − |E f h(0, 0, z)| = 2 sin

(
k

2
δ

)
− πa2

λz
.

(A.6)
Inserting equation (A.5) into (A.6) we obtain


E ≈ −6πa4λ2 + π3a6

24λ3z3
. (A.7)

Since 6πa4λ2 � π3a6, the last equation is simply expressed
as


E ≈ − π3a6

24λ3z3
. (A.8)

To derive the absolute amplitude error in the Fresnel
approximation we compare equation (A.1) with (A.2) to give
the approximate error in the use of the Fresnel approximation
as


E = |E(0, 0, z)| − |E f n(0, 0, z)|
= 2 sin

(
k

2
δ

)
− 2 sin

(
ka2

4z

)

= 4 cos

{
1

2

(
k

2
δ +

ka2

4z

)}
sin

{
1

2

(
k

2
δ − ka2

4z

)}
. (A.9)

Inserting equation (A.4) we obtain


E = 4 cos

(
πa2

2λz

)
sin

(
πa4

16λz3

)
(A.10)

and since z � a

cos
(

πa2

2λz

)
≈ 1 sin

(
πa4

16λz3

)
≈ πa4

16λz3
(A.11)

so we can write


E ≈ πa4

4λz3
. (A.12)
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