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Abstract—This paper investigates the validity of the parabolic
effective mass approximation (EMA), which is almost univer-
sally used to describe the size and bias-induced quantization in
n-MOSFETs. In particular, we compare the EMA results with a
full-band quantization approach based on the linear combination
of bulk bands (LCBB) and study the most relevant quantities for
the modeling of the mobility and of the on-current of the devices,
namely, the minima of the 2-D subbands, the transport masses,
and the electron density of states. Our study deals with both
silicon and germanium n-MOSFETs with different crystal orien-
tations and shows that, in most cases, the validity of the EMA is
quite satisfactory. The LCBB approach is then used to calculate
the values of the effective masses that help improve the EMA
accuracy. There are crystal orientations, however, where the 2-D
energy dispersion obtained by the LCBB method exhibits features
that are difficult to reproduce with the EMA model.

Index Terms—Band structure, effective mass approximation,
full-band, quantization models, quantum confinement.

I. INTRODUCTION

NANOSTRUCTURED devices are being extensively in-
vestigated for their possible application in CMOS and

post-CMOS technologies. The most interesting examples in-
clude the fully depleted, ultrathin film silicon-on-insulator
(UT-SOI) MOSFETs [1]–[6] and the nanowire transistors,
which are promising candidates for the ultimate CMOS
downscaling [7]–[11]. The engineering options for the nano-
MOSFETs include the choice of the semiconductor and its
crystallographic orientation [12]–[15], as well as the biaxial or
uniaxial mechanical strain [16]–[19]; all of them deserve an ac-
curate and extensive evaluation by means of device simulations.

Most of the above design knobs impact the electrical char-
acteristics of a metal–oxide–semiconductor (MOS) transistor
through its band structure in the plane of the transport, which
affects both the injection velocity at the virtual source, hence
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the maximum ballistic on-current IBL of the device [20], [21],
and the scattering rates, which still significantly limit the real
on-current of the devices [22], [23]. Thus, for the simulation of
UT-SOI transistors, we need a quantization model to calculate
the band structure as a function of the 2-D wave vector k
in the transport plane (i.e., the 2-D band structure), which
should be both computationally efficient and accurate even for
a very small semiconductor thickness TSCT. The computational
efficiency is particularly critical for the development of a multi-
subband Monte Carlo simulator [24], where the band structure
must be computed at each section of the MOSFET and each
time the electrostatic potential is updated.

The effective mass approximation (EMA) is almost univer-
sally used both in the semiclassical transport models [24]–[28]
and in several recent studies that employ a quantum transport
treatment [12], [13], [29]. In the semiclassical picture, the band
structure at each section of the device is obtained by solving the
1-D quantization problem set by the confining potential energy
in the direction normal to the semiconductor–oxide interface.
In this case, when a parabolic energy dispersion is assumed in
the quantization direction, the EMA results in a Schrödinger-
like equation in the real space that provides the minima of the
subbands. Then, an analytic energy dispersion in the transport
plane (i.e., as a function of the 2-D wave vector k) is added
to the subband minimum [24], [26]–[28]. Thus, in such an
EMA model, the quantization produces a shift in the subband
minima; while, it does not affect the energy dispersion inside
each subband.

However, for very small TSCT values, the strong quantum
mechanical confinement can yield significant deviations from
the simple EMA results mainly in terms of: 1) different values
for the minima of the 2-D subbands; and 2) distortion of
the energy dispersion in the transport plane, with a resulting
change in the transport masses and in the 2-D effective density
of states (DOS). Such effects have been recently investigated
for the silicon nanowire transistors by using the tight-binding
approach [30].

In this paper, we extend the work presented in [31] and
investigate the validity of the EMA quantization model for
the silicon and the germanium n-MOSFETs with different
crystal orientations by means of a systematic comparison to
the band structure that is calculated with the linear combination
of bulk bands (LCBB) [32]–[34]. More precisely, we start by
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discussing the differences in the minima of the 2-D subbands
that are obtained with either the EMA or the LCBB model.
Then, we extract the transport masses from the LCBB band
structure for different TSCT values and compare the numer-
ically calculated 2-D DOS of the LCBB method with the
analytical expressions of the EMA model. The overall results
on the validity of the EMA approach are quite reassuring, and
the accuracy of the EMA model can be improved by adjusting
the transport masses for very thin semiconductor thicknesses.

II. LCBB BAND STRUCTURE CALCULATION

The LCBB approach is an accurate full-band method for the
calculation of the band structure in nanostructured devices, and
it is based on the expansion of the unknown eigenfunction in
terms of the bulk Bloch functions of the constituent semicon-
ductor. As implied by (1), shown at the bottom of the page,
we used a confining potential energy to mimic the band dis-
continuity at the semiconductor–oxide interface; specifically,
we embraced a single material approximation, which seems
reasonable for the semiconductor–oxide heterojunctions where
the band discontinuity is very large.

If we let z be the quantization direction and U(z) the con-
fining potential energy, then, for each k vector in the transport
plane, the allowed energies εµ(k) are calculated by solving the
eigenvalue problem [34] where µ is the index of the eigenvalue
(i.e., the subband index), A

(n)
µ (k, kz) denotes the coefficients

of the unknown eigenfunction, UT (qz) is the Fourier transform
of U(z), (2π/L) is the spacing used for the discretization of
kz , and Gz is the magnitude of a reciprocal lattice vector in the
kz direction. Furthermore, E

(n)
FB (k, kz) is the energy in the nth

band of the bulk crystal conduction band, and f
(n,n′)
kz,k′

z
(k, Gz)

denotes an appropriate overlap integral of the periodic parts
un,k,kz

of the Bloch functions [34], [35]. The index n′ runs
over the number nFB of bands of the bulk crystal included in
the calculations; in all the calculations, we have used the two
lowest bands of the bulk crystal conduction band.

From (1) we clearly see that, in the LCBB method we
have to calculate the Fourier transform of the potential U(z)
so that U(z) has to feature a finite potential energy barrier
at the semiconductor–oxide interface, which is hereafter de-
noted with UB . Furthermore, (1) also clarifies that the full-
band energy E

(n)
FB (k, kz) of the constituent semiconductor is an

input of the LCBB method. We have used the well-established
nonlocal-pseudopotential (NLP, [36]) method to determine both
the full-band dispersion E

(n)
FB (k, kz) and the overlap factors

f
(n,n′)
kz,k′

z
(k, Gz) that enter (1). The parameters for the NLP

procedure were taken from [36] for silicon and from [37] for
germanium.

TABLE I
PARAMETERS OF THE EMA MODEL FOR DIFFERENT MATERIALS AND

QUANTIZATION DIRECTIONS. FOR EACH VALLEY, nν IS THE

DEGENERACY, mz IS THE QUANTIZATION MASS, AND mle AND mte ARE

THE LONGITUDINAL AND TRANSVERSE MASS OF THE ELLIPTIC ENERGY

DISPERSION AROUND THE MINIMUM (IN UNIT OF m0), RESPECTIVELY.
∆E DENOTES THE ENERGY SPLIT BETWEEN THE VALLEYS IN THE BULK

SEMICONDUCTOR. THE EFFECTIVE MASSES mz , mle, AND mte HAVE

BEEN OBTAINED AS EXPLAINED IN [40] FROM THE LONGITUDINAL AND

THE TRANSVERSE MASSES OF THE BULK CRYSTAL ENERGY DISPERSION

BY USING THE VALUES 0.916m0 AND 0.19m0 FOR THE ∆ VALLEYS OF

THE BULK SILICON, 1.6m0 AND 0.093m0 FOR THE Λ VALLEYS,
0.888m0 AND 0.194m0 FOR THE ∆ VALLEYS, AND 0.05m0

FOR THE Γ VALLEY OF THE BULK GERMANIUM

All the results shown in the following of the paper have been
obtained by solving directly (1) with no further approximations.
As explained in [34], the kz values included in (1) must vary
in a periodicity interval of the reciprocal lattice space along
the kz direction, namely, in an interval of length 2, 2

√
2,

and
√

3 for the (100), (110), and (111) quantization direction,
respectively. Throughout the paper, we express the wave vectors
in units of (2π/a0), where the lattice constant a0 is 0.543
and 0.565 nm for silicon and germanium, respectively. The
2-D band structure is calculated with the LCBB method by
varying the wave vector k in (1), where k plays the role of a
parameter.

Fig. 1 illustrates the lowest subband versus the 2-D k vector
for the inversion layer of a Si(100) SOI MOSFET. The D0.916

2-D valley is clearly observed at the point k = (0, 0), whereas
the D0.19 valleys are at the points k = (±0.85, 0) and k =
(0,±0.85) (see Table I for the labels of the valleys). As it can be
seen in Fig. 1, in general, the valleys of the 2-D electron gas are
not located at the point k = (0, 0); hence, when we analyze the
energy dispersion of a 2-D valley with the LCBB method, we
must solve (1) along the lines in the k plane that run across the
minimum of the valley. Furthermore, the value of k in the plots
that correspond to a given valley is always obtained as the
displacement with respect to the k point that corresponds to the
minimum of the valley [i.e., k = (0, 0) for the D0.916 valley or
k = (±0.85, 0) and k = (0,±0.85) for the D0.19 valleys].

E
(n)
FB(k, kz)A(n)

µ (k, kz) +
2π

L

∑
n′,k′

z

{
UT (k′

z − kz)f
(n,n′)
kz,k′

z
(k, 0) +

∑
Gz

UT (k′
z − kz + Gz)f

(n,n′)
kz,k′

z
(k, Gz)

}

×A(n′)
µ (k, k′

z) = εµ(k)A(n)
µ (k, kz) (1)
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Fig. 1. Si(100). Square well with TSCT = 3 nm. Contour plot for the lowest
eigenvalue ε0(k) versus the wave vector k obtained by solving (1). The energy
levels are 0.06, 0.4, 1.0, and 1.8 eV for the solid lines and 0.2, 0.7, 1.4, and
2.15 eV for the dashed lines. The axes are in unit of 2π/a0. The square
indicates the first Brillouin zone of the 2-D electron gas. The lowest valley
is the D0.916 valley located at the point k = (0, 0), whereas the D0.19 valleys
are at the points k = (±0.85, 0) and k = (0,±0.85) (see Table I for the label
of the valleys).

III. COMPARISON BETWEEN LCBB AND EMA RESULTS

Both the EMA and the LCBB methods can be used for
any confining potential energy U(z); however, we decided to
compare the two models by using a very simple square well
with a finite barrier UB . The width TSCT of the well is thus the
parameter that governs the strength of the quantum mechanical
confinement. In the following, the energy values reported in the
graphs are referred to the bottom of the square well.

In the EMA approach, we assume a parabolic energy disper-
sion in the quantization direction with a quantization mass mz ,
so that the minima of the 2-D subbands are obtained by the
well-known Schrödinger-like equation in the real space [25]–
[27], [38]. The eigenvalues of a square well are known in an
analytical form for an infinite barrier, whereas for a finite barrier
UB , they can be obtained by solving an algebraic transcendental
equation [39]. Unless it is otherwise stated (as it happens in
Fig. 6), all the results shown hereafter have been obtained
with a barrier UB = 3 eV for both the EMA and the LCBB
calculations.

The quantization mass (mz), the transverse (mte), and the
longitudinal mass (mle) employed in the EMA model are
reported in Table I, and they have been obtained from the
values of the longitudinal and transverse masses of the bulk
crystals [40]. The effective masses for the bulk silicon and the
bulk germanium (reported in the caption of Table I) have been
directly extracted from the NLP calculations used as a part of
the LCBB method; the values of the masses are consistent with
[36] and [37].

The results of the paper are mainly focused on Si(100)
transistors (which are the CMOS technology standard) and

Fig. 2. Energy dispersion for the D0.916 valley in a Si(100) inversion layer
calculated with either the EMA or the LCBB model. (a) TSCT = 10 nm.
(b) TSCT = 2 nm. The minimum is located at k = 0, and kx moves along
the (010) crystal direction. Since k = 0 is a symmetry point, exactly the same
result is obtained along the (001) direction. The LCBB calculations exhibit the
valley splitting between the doublets of subbands [25].

on Ge(110) devices; in fact, for the germanium n-MOSFETs,
the (110) wafer orientation is the most promising among the
principal orientations [12], [13], [41].

A. Minima of the 2-D Subbands

Fig. 2 reports the energy dispersion for Si(100) around the
D0.916 valley and for two values of TSCT. As it can be seen,
the EMA approximation tracks fairly well the lowest energy
branches of the LCBB band structure even for the thinnest semi-
conductor film. The error in the minima of the 2-D subbands
increases for the higher subbands.

It is interesting to notice that the LCBB results exhibit a
splitting between the two lowest subbands, which is known
as valley splitting [25], and it is clearly larger in the thinner
semiconductor film. The EMA model inherently assumes a
perfect degeneracy for the two lowest branches of the D0.916

valleys; hence, the valley splitting is a feature that the EMA
model does not account for [25].

At this regard, Fig. 3 reports the values of the valley splitting
versus the semiconductor thickness for the Si(100) D0.916

valley. The splitting is larger for the second lowest than it is
for the lowest doublet of subbands. The results for the lowest
subband are in agreement with the values recently obtained with
the tight-binding method [42]. The splitting for a given TSCT

is smaller than it is in a Si(100) nanowire transistor having a
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Fig. 3. Energy splitting at the minimum of the 2-D subbands versus the
semiconductor thickness, calculated with the LCBB method for the Si(100)
D0.916 valleys. The results for the lowest and the second lowest doublets of
subbands are illustrated. The energy splitting of the lowest subband is small
compared to the thermal energy at room temperature KBT � 26 meV.

Fig. 4. Si(100). Lowest eigenvalue versus the semiconductor thickness for
the D0.916 and D0.19 valleys that is calculated with either the LCBB or the
EMA model. The EMA results for an infinite energy barrier UB are obtained
by setting the wave function to zero at the oxide interface.

diameter equal to TSCT [30]; not surprisingly, the 2-D quantum
confinement produced in a nanowire device emphasizes the val-
ley splitting with respect to 1-D confinement in a conventional
MOS transistor.

Fig. 3 shows that the valley splitting of the lowest subband is
always small compared to the thermal energy at room tempera-
ture KBT � 26 meV; hence, from a practical viewpoint, it can
be neglected for the analysis of the electron devices unless very
low temperatures are considered.

Fig. 4 reports the minima for the lowest subband versus TSCT

for the D0.916 and the D0.19 valleys of Si(100). As it can be
seen, the EMA approach tracks the LCBB results very well
when the finite barrier UB = 3 eV is accounted for. Instead,
for an infinite energy barrier (which corresponds to a null
boundary condition for the wave function at the semiconductor-
oxide interface), the EMA minima increase well above the
corresponding LCBB values for the thinnest silicon films. Fig. 5
reports the same comparison as in Fig. 4 for the L0.25, the
D0.318, and the Γ0.05 valleys of Ge(110). Even in this case,
the EMA reproduces well the minima of the different valleys
and their relative position, which sets the valley that gives the
dominant contribution to the inversion charge and to the current
of the transistor [12], [13].

Fig. 5. Ge(110). Lowest eigenvalue versus the semiconductor thickness for
the L0.25, D0.318, and Γ0.05 valleys that is calculated with either the LCBB
or the EMA model. The energy offset of the D and Γ valleys with respect to
the L valleys of bulk germanium is 189 and 145 meV, respectively, as reported
in Table I.

Fig. 6. Lowest eigenvalue versus the barrier height UB for different valleys
of silicon and germanium inversion layers. The semiconductor thickness is
TSCT = 2 nm. As expected, the difference between the EMA and LCBB in-
creases with UB ; the effect is more clearly observed for the small quantization
masses (see Table I).

Finally, Fig. 6 illustrates the impact of the barrier height UB

on the agreement between the EMA and the LCBB calculations
for some of the inversion layers considered in Figs. 4 and 5
and for the thinnest semiconductor film. As it can be seen,
the differences are reduced for smaller UB values, which are
representative of some high-k materials actively investigated
as possible SiO2 replacements for the gate dielectric [43]. We
found that, as expected, the impact of UB on the absolute values
of the subband minima and on the agreement between the EMA
and LCBB calculations is significantly smaller for larger film
thicknesses TSCT.

B. In-Plane Energy Dispersion and Transport Masses

In the energy dispersion illustrated in Fig. 2, we can see
that the EMA can reproduce fairly well not only the subband
minima but also the energy dependence on the wave vector.
This implies that, in the case of Fig. 2, the values for the
effective masses reported in Table I can be reliably used to
describe the 2-D energy dispersion.
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Fig. 7. Transverse (mte) and longitudinal (mle) effective masses versus the
semiconductor thickness for some valleys of the Si(100) and the Ge(110)
inversion layers. (a) Si(100), D0.19, mte; Ge(110), L0.25, mte; Si(110),
D0.315, mte. (b) Ge(110), L0.25, mle; Ge(110), D0.318, mte. These effective
masses exhibit a nonnegligible dependence on TSCT and deviate from the
values reported in Table I for very small semiconductor thicknesses.

The values of the transport masses extracted from the LCBB
calculations have been systematically studied for different
semiconductor thicknesses. More precisely, we have calculated
the transverse mte and the longitudinal mle masses for the
most relevant valleys of the Si(100) and the Ge(110) inversion
layers by best fitting the LCBB energy dispersion. The fitting
has been always performed by taking a small energy range of
10 meV above the minimum of each valley, and the transport
masses have been obtained by using a strictly parabolic energy
dispersion. Fig. 7 illustrates some cases where the effective
masses exhibit a nonnegligible dependence on TSCT and hence
a nonnegligible deviation from the values reported in Table I
and routinely employed in the EMA calculations [12], [13],
[41]. The effect is particularly evident for the transverse mass
in the D0.19 valleys of Si(100).

In the cases that are not illustrated in Fig. 7, we could not
identify a systematic and quantitatively relevant change of the
effective masses versus TSCT. Hence, in these cases, the EMA
model can be reliably used with the values for the masses of
Table I (derived from the masses of the bulk crystal).

However, in addition to the possible changes of the transport
masses, the LCBB calculations also reveal some differences
in the 2-D band structure with respect to the EMA results
that cannot be simply accounted for by adjusting the EMA
parameters. In this respect, we have recently pointed out that
the Si(100) inversion layers exhibit a third system of valleys
(in addition to D0.916 and D0.19 indicated in Table I), which

Fig. 8. Si(111). TSCT = 2 nm. (a) Contour plot for the lowest eigenvalue
ε0(k) versus the wave vector k that is obtained by solving (1). The energy
levels are 0.2, 0.65, 1.2, and 1.8 eV for the solid lines and 0.4, 0.95, 1.5, and
2.1 eV for the dashed lines. The axes are in unit of 2π/a0. The six degenerate
minima are in k = (±1.7/

√
6, 0) and in k = (±0.85/

√
6,±0.85/

√
2). The

hexagon indicates the 2-D Brillouin zone [34]. (b) Energy dispersion along the
dashed line indicated in (a) obtained with either the LCBB or the EMA model.
The minimum of the LCBB calculations is no longer at the point kx = 1.7/

√
6,

as for thicker silicon films. Furthermore, the minimum predicted by the EMA
overestimates the corresponding LCBB value.

is located at the boundary of the 2-D Brillouin zone, and it is
typically neglected in the EMA picture [34], [35].

A case of a similarly large discrepancy between the EMA and
LCBB results is illustrated in Fig. 8 for the Si(111) inversion
layer. In fact, Fig. 8(a) shows the energy dispersion of the
lowest subband in the k plane and for TSCT = 2 nm. The
hexagon indicates the 2-D Brillouin zone, and the minimum
along the positive kx direction is at kx = 1.7/

√
6 � 0.694, as

expected from the position of the energy minima in the 3-D
Brillouin zone [34], [40]. However, Fig. 8(b) shows that for
TSCT = 2 nm, the minimum calculated by the LCBB method
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tends to move toward the edge of the 2-D Brillouin zone
(i.e., at kx = 2.0/

√
6 � 0.8165), and its value is significantly

overestimated by the EMA model. Furthermore, the LCBB
band structure exhibits a flat energy branch that corresponds
to an effective mass much larger than the mle = 0.674 value
reported in Table I (and that is anyway difficult to be reproduced
with a simple parabolic or nonparabolic model).

C. Density of States

In order to further compare the LCBB and the EMA models,
we have studied the 2-D electron density of states (DOS), which
is a very important parameter because it is tightly related to
the calculation of the scattering rates. The EMA model has
analytical expressions for the 2-D DOS for both the parabolic
and nonparabolic cases [26], [27], [38]. For the LCBB model,
instead, the DOS has been numerically calculated by counting
for each energy bin the k points in the 2-D first Brillouin zone
that have an eigenvalue belonging to the energy bin. Each k
point must be weighted for an appropriate area in the k plane
according to the k discretization, which leads to the following
mathematical expression

D2D(E) =
∑

µ,kx,ky

2∆kx∆ky

(2π)2∆E

{
H

[
εµ(kx, ky) − E +

∆E

2

]

− H

[
εµ(kx, ky) − E − ∆E

2

]}
(2)

where ∆E, ∆kx, and ∆ky indicate the spacing in the energy
and in the k discretization, whereas H(x) is the step function.

Fig. 9 compares the EMA to the LCBB DOS curves for
Si(100) and for TSCT = 3 and 2 nm. The EMA results have
been obtained either for the transport masses of Table I
or for the values corrected according to the TSCT depen-
dence shown in Fig. 7. As it can be seen, the conventional
two-valley picture typically employed in the EMA approach
tends to underestimate the DOS. By including the contribu-
tion of the X-valley at the edge of the 2-D Brillouin zone
[34], [35] and by employing the TSCT-dependent transport
masses, the agreement between the EMA and the LCBB
results becomes good up to energies around 0.6 eV above
the lowest minimum. This is the energy range of practical
interest to simulate the IDS in the transistors of modern
CMOS technologies, where the supply voltage is 1 V or
below.

Fig. 10 shows the comparison between the EMA and the
LCBB DOS for Ge(110). Even in this case, the agreement
is fairly good in the range of most practical interest, and the
use of the TSCT dependent masses reported in Fig. 7 makes
the EMA results closer to the LCBB calculations. For Si(111),
instead, Fig. 11 shows that the agreement between the EMA
and the LCBB results is worse. In particular, in the case of
TSCT = 2 nm, the LCBB DOS features a peak at an energy

Fig. 9. Electron 2-D DOS versus energy for Si(100) that is obtained with
either the LCBB or the EMA model. (a) TSCT = 3 nm. (b) TSCT = 2 nm.
The EMA nonparabolic model that employs only the D0.916 and D0.19 valleys
tends to underestimate the DOS calculated by the LCBB method. A better
agreement with the LCBB calculations is obtained by adding the X-valley to
the EMA model [34]. For the EMA case, we show (dashed and long-dashed
lines) the results that employ the transport masses defined in Table I and (filled
circles) the results that have been obtained by using for each TSCT value the
corresponding transport masses reported in Fig. 7. In this latter case, the X-
valleys have been accounted for.

appreciably lower than the lowest available states according
to the EMA model. This peak of DOS clearly stems from the
flat energy branch in the LCBB energy dispersion illustrated
in Fig. 8(b), which results in a DOS that decreases with the
energy for very low energy values. This latter behavior cannot
be reproduced by an EMA model, even if we adjust the masses.
Hence, we conclude that, in the case of Si(111) and at very
small silicon thicknesses, it is problematic to follow the LCBB
results with an EMA approach.

IV. DISCUSSION AND CONCLUSION

In this paper, we have systematically investigated the validity
of the EMA quantization model for the silicon and the germa-
nium n-MOSFETs with different crystal orientations. To this
purpose, we have used the LCBB full-band quantization model
to study the main parameters that govern the electron density
and the transport in the inversion layers: the minima of the 2-D
subbands, the transport masses, and the 2-D DOS.

The comparison of the EMA results to the LCBB calcu-
lations indicates that the simplified EMA approach can quite
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Fig. 10. Electron 2-D DOS versus energy for Ge(110) that is obtained with
either the LCBB or the EMA model. For the EMA case, we show the results that
employ the transport masses defined in Table I and the results that have been
obtained by using for each TSCT value the corresponding transport masses
reported in Fig. 7. (a) TSCT = 3 nm. (b) TSCT = 2 nm. The agreement
of the EMA to the LCBB calculations is fairly good up to an energy about
0.6 eV above the minimum of the lowest subband.

accurately reproduce the minima of the 2-D subbands provided
that a finite value of the semiconductor–oxide barrier is ac-
counted for. When the EMA is used with a null boundary condi-
tion for the wave function at the semiconductor–oxide interface,
instead, the results for TSCT values below approximately 5 nm
significantly deviate from the LCBB calculations, which inher-
ently employ a finite semiconductor–oxide barrier.

In some quantization directions, the LCBB method points out
that by scaling TSCT, the 2-D energy dispersion is not merely
shifted (as it happens in an EMA model), but an appreciable
distortion of the energy to k relation is produced. We have
quantified this effect by extracting from the LCBB calculations
the effective transport masses and illustrated their possible de-
pendence on TSCT and the deviations from the values typically
employed in the EMA model.

In most cases, the changes of the transport masses are mod-
est, at least for the crystal directions of largest technological
interest. However, in some cases, the LCBB approach points out
that the confining potential energy changes the position of the
energy minima in the 2-D Brillouin zone and produces branches
in the 2-D energy dispersion that are hard to be reproduced with
a simple parabolic or nonparabolic model [see the discussion of
Figs. 8 and 11 for the Si(111) inversion layers].

As a general conclusion, it can be stated that the EMA
model is fairly reliable even for very thin silicon films; in

Fig. 11. Electron 2-D DOS versus energy for Si(111) that is obtained with
either the LCBB or the EMA model. (a) TSCT = 3 nm. (b) TSCT = 2 nm.
In the case of the thinnest semiconductor film, we see a clear peak of the DOS
according to the LCBB calculations at energies below the lowest states obtained
with the EMA model.

some cases, its accuracy can be improved by changing the
transport masses as illustrated in Fig. 7. Our results have been
obtained by using a schematic, square well, confining potential.
However, we verified that the main trends are fully verified even
in a triangular well; hence, they are expected to be of general
validity for the electron inversion layers of n-MOS transistors.
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