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Abstract. In testing that a given distribution P belongs to a parameterized family P , one is often led to compare a nonparametric
estimate An of some functional A of P with an element Aθn

corresponding to an estimate θn of θ . In many cases, the asymptotic
distribution of goodness-of-fit statistics derived from the process n1/2(An − Aθn

) depends on the unknown distribution P . It is
shown here that if the sequences An and θn of estimators are regular in some sense, a parametric bootstrap approach yields valid
approximations for the P -values of the tests. In other words if A∗

n and θ∗
n are analogs of An and θn computed from a sample

from Pθn
, the empirical processes n1/2(An −Aθn

) and n1/2(A∗
n −Aθ∗

n
) then converge jointly in distribution to independent copies

of the same limit. This result is used to establish the validity of the parametric bootstrap method when testing the goodness-
of-fit of families of multivariate distributions and copulas. Two types of tests are considered: certain procedures compare the
empirical version of a distribution function or copula and its parametric estimation under the null hypothesis; others measure the
distance between a parametric and a nonparametric estimation of the distribution associated with the classical probability integral
transform. The validity of a two-level bootstrap is also proved in cases where the parametric estimate cannot be computed easily.
The methodology is illustrated using a new goodness-of-fit test statistic for copulas based on a Cramér–von Mises functional of the
empirical copula process.

Résumé. Pour tester qu’une loi P donnée provient d’une famille paramétrique P , on est souvent amené à comparer une estimation
non paramétrique An d’une fonctionnelle A de P à un élément Aθn

correspondant à une estimation θn de θ . Dans bien des cas, la
loi asymptotique de statistiques de tests bâties à partir du processus n1/2(An − Aθn

) dépend de la loi inconnue P . On montre ici
que si les suites An et θn d’estimateurs sont régulières dans un sens précis, le recours au rééchantillonnage paramétrique conduit à
des approximations valides des seuils des tests. Autrement dit si A∗

n et θ∗
n sont des analogues de An et θn déduits d’un échantillon

de loi Pθn
, les processus empiriques n1/2(An − Aθn

) et n1/2(A∗
n − Aθ∗

n
) convergent alors conjointement en loi vers des copies

indépendantes de la même limite. Ce résultat est employé pour valider l’approche par rééchantillonnage paramétrique dans le cadre
de tests d’adéquation pour des familles de lois et de copules multivariées. Deux types de tests sont envisagés : les uns comparent la
version empirique d’une loi ou d’une copule et son estimation paramétrique sous l’hypothèse nulle ; les autres mesurent la distance
entre les estimations paramétrique et non paramétrique de la loi associée à la transformation intégrale de probabilité classique. La
validité du rééchantillonnage à deux degrés est aussi démontrée dans les cas où l’estimation paramétrique est difficile à calculer. La
méthodologie est illustrée au moyen d’un nouveau test d’adéquation de copules fondé sur une fonctionnelle de Cramér–von Mises
du processus de copule empirique.
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1. Introduction

Given independent copies X1, . . . ,Xn of a random vector X with cumulative distribution function F : Rd → R, sup-
pose that it is desired to test

H0: F ∈ F = {Fθ : θ ∈ O},

the hypothesis that F comes from a parametric family of distributions whose members are indexed by a parameter θ

belonging to an open set O ⊂ R
p . To achieve this goal, a natural way to proceed consists of measuring the difference

between the empirical distribution function, defined for all x ∈ R
d by

Fn(x) = 1

n

n∑
i=1

1(Xi ≤ x), (1)

and a parametric estimate Fθn of F derived under H0 from some consistent estimate θn = Tn(X1, . . . ,Xn) of the true
parameter value θ0. Here and in the sequel, inequalities between vectors are taken to hold componentwise.

Cramér–von Mises, Kolmogorov–Smirnov and many other standard goodness-of-fit procedures are based on sta-
tistics expressed as continuous functionals Sn = φ(GF

n ) of the empirical process

G
F
n = n1/2(Fn − Fθn).

Formal tests, however, require knowledge of the asymptotic null distribution of Sn, which often depends on the un-
known value of θ .

1.1. The parametric bootstrap

To solve this problem, Stute et al. [26] suggest the following “parametric bootstrap” procedure.
For some large integer N and every k ∈ {1, . . . ,N}, repeat the steps below:

(a) Given θn = Tn(X1, . . . ,Xn), generate n independent observations X∗
1,k , . . ., X∗

n,k from distribution Fθn .

(b) Compute θ∗
n,k = Tn(X

∗
1,k, . . . ,X

∗
n,k) and for each x ∈ Rd , let

F ∗
n,k(x) = 1

n

n∑
i=1

1
(
X∗

i,k ≤ x
)
.

(c) Compute S∗
n,k = φ(GF ∗

n,k), where

G
F ∗
n,k = n1/2(F ∗

n,k − Fθ∗
n,k

)
.

With the convention that large values of Sn lead to the rejection of H0, Stute et al. [26] show that under appropriate
regularity conditions, an approximate P -value for the test is given by

1

N

N∑
k=1

1
(
S∗

n,k > Sn

)
.

Henze [20] obtained a similar result in the univariate discrete case. In both papers, the validity of the paramet-
ric bootstrap stems from the fact that under H0 and as n → ∞, (Sn, S

∗
n,1, . . . , S

∗
n,N ) converges weakly to a vector

(S,S∗
1 , . . . , S∗

N) of mutually independent and identically distributed random variables.
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1.2. Motivation for the present work

This investigation was motivated by the need to test the appropriateness of various dependence structures on the basis
of a random sample

X1 = (X11, . . . ,X1d), . . . , Xn = (Xn1, . . . ,Xnd)

from a continuous random vector X with cumulative distribution function F . Specifically, denote by F1, . . . ,Fd the
univariate margins of X and let C : [0,1]d → [0,1] be the copula for which Sklar’s representation

F(x1, . . . , xd) = C
{
F1(x1), . . . ,Fd(xd)

}
holds for all x1, . . . , xd ∈ R. In fact, C is simply the cumulative distribution function of U = ξ(X), where ξ : Rd → Rd

is defined for all x1, . . . , xd ∈ R by

ξ(x1, . . . , xd) = (
F1(x1), . . . ,Fd(xd)

)
. (2)

Unless the margins are known, the vectors U1 = ξ(X1), . . . ,Un = ξ(Xn) cannot be observed. However, a consistent
estimate of Fj is defined for all t ∈ R and j ∈ {1, . . . , d} by

Fjn(t) = 1

n + 1

n∑
i=1

1(Xij ≤ t).

This uncommon choice of normalization is used because Fjn serves later as an argument in score functions and
pseudo-likelihoods that could blow up at 1. Letting

ξn(x1, . . . , xd) = (
F1n(x1), . . . ,Fdn(xd)

)�
, (3)

for all x1, . . . , xd ∈ R, one could thus base a test of the hypothesis

H0: C ∈ C = {Cθ : θ ∈ O} (4)

on the pseudo-observations Û1 = ξn(X1), . . . , Ûn = ξn(Xn). Various options are possible; two of them are briefly
described below.

Tests based on the empirical copula
Hypothesis (4) could be tested using a Cramér–von Mises or Kolmogorov–Smirnov statistic Sn = φ(GC

n ) with

G
C
n = n1/2(Cn − Cθn),

where Cθn is a parametric estimate of Cθ derived from the estimation θn = T (X1, . . . ,Xn) of θ under H0 while Cn is
the empirical copula, defined for all u ∈ [0,1]d by

Cn(u) = 1

n

n∑
i=1

1(Ûi ≤ u). (5)

This possibility is raised but quickly dismissed by Fermanian [10], due to the complexity of the weak limit of G
C
n .

See, e.g., [11,12,27] for derivations of the limit of the related empirical copula process n1/2(Cn − Cθ0).
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Tests based on Kendall’s distribution
Another avenue explored by Wang and Wells [29] and Genest et al. [15] is to construct a test of hypothesis (4) on
Kendall’s distribution, i.e., the distribution function K of the probability integral transform W = F(X). Using the fact
that one can also write W = C(U), Genest and Rivest [17] and Barbe et al. [1] show that a consistent estimate of K

is given by the empirical distribution Kn of the pseudo-observations Ŵ1 = Cn(Û1), . . . , Ŵn = Cn(Ûn). The latter is
defined for all w ∈ [0,1] by

Kn(w) = 1

n

n∑
i=1

1(Ŵi ≤ w). (6)

Thus if Kθ denotes the distribution of W when C = Cθ ∈ C , and if Kθn is a parametric estimate of Kθ derived from
θn = T (X1, . . . ,Xn) under the subsidiary hypothesis

H0: K ∈ K = {Kθ : θ ∈ O}, (7)

a goodness-of-fit test could rely on a continuous functional Sn = φ(GK
n ) of

G
K
n = n1/2(Kn − Kθn).

Whether hypothesis (4) is tested using G
C
n or the subsidiary hypothesis (7) is tested using G

K
n , the limiting dis-

tribution of the test statistic Sn does not only depend on the unknown parameter θ but also possibly on the nuisance
parameters F1, . . . ,Fd . Therefore, while the use of a parametric bootstrap may very well yield valid P -values, this
conclusion cannot be reached on the basis of the results reported by Stute et al. [26], because of the presence of
dependence among the sets of pseudo-observations Û1, . . . , Ûn and Ŵ1, . . . , Ŵn.

1.3. Objective and outline of the paper

The purpose of this work is to establish the validity of the parametric bootstrap in situations where the hypothesis to
be tested concerns the distribution P of an unobservable s-variate random vector U , viz.

H0: P ∈ P = {Pθ : θ ∈ O},
where O is an open subset of R

p . Although U cannot be seen, it is assumed that U = ξ(X) for some function
ξ : Rd → Rs of an observable d-variate random vector X, and that a consistent estimator ξn of ξ can be constructed
from independent copies X1, . . . ,Xn of X.

In order to encompass procedures based on G
C
n and G

K
n as special cases, suppose that a test of H0 is to be derived

from a continuous functional Sn = φ(GA
n ) of an abstract empirical process of the form

G
A
n = n1/2(An − Aθn).

Here, Aθn and An stand respectively for a parametric and a nonparametric estimate of an abstract quantity A that
depends on P . More specifically, A is taken to be a function mapping a closed rectangle T ⊂ [−∞,∞]r into Rs , and
Aθ denotes the form taken by A when P = Pθ for some θ ∈ O. Thus for the test based on G

C
n , one has T = [0,1]d ,

r = s = d and Aθ = Cθ ; similarly, T = [0,1], r = s = 1 and Aθ = Kθ for the test based on G
K
n .

The result to be shown here is that the parametric bootstrap yields a valid approximation to the null distribution of
the empirical process G

A
n under appropriate conditions. The main requirements concern the large-sample behavior of

the estimators An of A and θn of θ that are constructed from the pseudo-observations Û1 = ξn(X1), . . . , Ûn = ξn(Xn).
In particular, the process Θn = n1/2(θn − θ) needs to converge weakly, as n → ∞, to a centered random variable Θ .
This is denoted symbolically

Θn = n1/2(θn − θ) � Θ. (8)

Similarly, it must be that, as n → ∞,

An = n1/2(An − A) � A, (9)
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i.e., An converges weakly to a centered process A in the space D(T ;Rs) of càdlàg processes from T to Rs , equipped
with the Skorohod topology.

Additional regularity conditions needed for the result are stated in Section 2. Although these conclusions could
possibly be derived within a different framework considered by Bickel and Ren [4], the conditions given here are
adapted to the current context and easier to verify than theirs. The present proofs are also different and yield interesting
insights. The two-level parametric bootstrap introduced in Section 3 also appears to be novel; it is required in many
applications where Aθn cannot be computed easily but can be approximated through a parametric bootstrap of its own.

The goodness-of-fit tests for copula models introduced above are revisited in Section 4. Also given there is a
multivariate extension of a procedure designed by Durbin [9] for checking the fit of a univariate distribution. As a
practical illustration, testing for a Gaussian copula structure is considered in Section 5 on the basis of the empirical
copula (5). An explicit algorithm is also provided which can be adapted easily to test for other copula families via
one- or two-level parametric bootstrapping. For a more extensive comparison of this procedure with alternative tests
for copula models, see Genest et al. [16].

To avoid interrupting the flow of the presentation, most technical arguments are relegated to a series of appendices.

2. Validity of the one-level parametric bootstrap

Let U1, . . . ,Un be a random sample from some distribution P , and assume that it is desired to test the hypothesis

H0: P ∈ P = {Pθ : θ ∈ O},
where P is a family of probability measures on R

d indexed by a parameter θ living in an open set O ⊂ R
p . The family

is assumed to be identifiable, i.e., θ 	= θ ′ ⇒ Pθ 	= Pθ ′ .
As discussed in the Introduction, let T ⊂ [−∞,∞]r be a closed rectangle and suppose that the test of H0 is to

be based on an abstract mapping A : T → R
s that depends on the true distribution P of U1, . . . ,Un. In particular,

suppose that A = Aθ when P = Pθ , and write A = {Aθ : θ ∈ O}. In this general context, identifiability is ensured if
for every ε > 0,

inf
{

sup
t∈T

∥∥Aθ(t) − Aθ0(t)
∥∥: θ ∈ O and |θ − θ0| > ε

}
> 0.

This condition is assumed throughout, as one might otherwise have Aθ = Aθ ′ for some θ 	= θ ′ and problems could
arise; see, e.g., [24]. Furthermore, the mapping θ �→ Aθ is assumed to be Fréchet differentiable with derivative Ȧ, i.e.,
for all θ0 ∈ O,

lim
h→0

sup
t∈T

‖Aθ0+h(t) − Aθ0(t) − Ȧ(t)h‖
‖h‖ = 0. (10)

Finally, let θn = Tn(U1, . . . ,Un) be a consistent estimate of θ and assume that the D(T ;R
s)-valued process

An = Υn(U1, . . . ,Un) estimates A consistently. Suppose specifically that the processes Θn = n1/2(θn − θ) and
An = n1/2(An − A) have centered Gaussian limits when n → ∞, as per (8) and (9).

The purpose of this section is to state additional regularity conditions on the families P , A and on the sequences
An and θn of estimators. These requirements will ensure that a parametric bootstrap algorithm approximates correctly
the limiting behavior of the empirical process

G
A
n = n1/2(An − Aθn).

Consequently, the parametric bootstrap will also provide a suitable approximation of the asymptotic distribution of
goodness-of-fit test statistics expressed as continuous functionals Sn = φ(GA

n ).
The validity of the parametric bootstrap first depends on smoothness and integrability conditions on the parametric

family of distributions.

Definition 1. A family P = {Pθ : θ ∈ O} is said to belong to the class S(λ) for a given reference measure λ (indepen-
dent of θ ) if:
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1.1. The measure Pθ is absolutely continuous with respect to λ for all θ ∈ O.
1.2. The density pθ = dPθ/dλ admits first and second order derivatives with respect to all components of θ ∈ O. The

gradient (row) vector with respect to θ is denoted ṗθ , and the Hessian matrix is represented by p̈θ .
1.3. For arbitrary u ∈ R

d and every θ0 ∈ O, the mappings θ �→ ṗθ (u)/pθ (u) and θ �→ p̈θ (u)/pθ (u) are continuous
at θ0, Pθ0 almost surely.

1.4. For every θ0 ∈ O, there exist a neighborhood N of θ0 and a λ-integrable function h : Rd → R such that for all
u ∈ R

d , supθ∈N ‖ṗθ (u)‖ ≤ h(u).
1.5. For every θ0 ∈ O, there exist a neighborhood N of θ0 and Pθ0 -integrable functions h1, h2 : Rd → R such that for

every u ∈ R
d ,

sup
θ∈N

∥∥∥∥ ṗθ (u)

pθ (u)

∥∥∥∥
2

≤ h1(u) and sup
θ∈N

∥∥∥∥ p̈θ (u)

pθ (u)

∥∥∥∥ ≤ h2(u).

In the sequel, θ0 represents the true (unknown) value of θ and P = Pθ0 . Furthermore,

p = pθ0 , ṗ = ṗθ0, p̈ = p̈θ0 .

Remark 1. Using Condition 1.4 with the continuity of ṗθ as a function of θ and Lebesgue’s dominated convergence
theorem, one may conclude that

∂

∂θ

∫
pθ(u)g(u)λ(du) =

∫
ṗθ (u)g(u)λ(du) (11)

for any bounded measurable function g : Rd → R, not depending on θ . In particular,
∫

ṗ(u)λ(du) = 0. Furthermore,
if Fθ denotes the distribution function associated with Pθ , the mapping θ �→ Fθ is then Fréchet differentiable and its
derivative Ḟθ satisfies the following identity for all x ∈ R

d :

Ḟθ (x) =
∫

ṗθ (u)1(u ≤ x)λ(du). (12)

Remark 2. When P ∈ S(λ), the multivariate central limit theorem implies that if U1, . . . ,Un form a random sample
from P = Pθ0 , then as n → ∞,

WP,n = n−1/2
n∑

i=1

ṗ�(Ui)

p(Ui)
� WP ∼ N (0, IP ), (13)

where E(WP ) = 0 by Remark 1 and IP is the Fisher information matrix, viz.

IP =
∫

ṗ�(u)ṗ(u)

p(u)
λ(du). (14)

The validity of the parametric bootstrap also relies on the following general notion of P -regularity of estimators.
It is cast below in terms of An but it applies also to many other sequences in the sequel, e.g., in the case An = θn.

Definition 2. Let U1, . . . ,Un be a random sample from P = Pθ0 and let WP,n be defined as in (13). A sequence An is
said to be Pθ0 -regular for A = Aθ0 if, as n → ∞, the process (An,WP,n) with An = n1/2(An − A) converges weakly
in D(T ;R

s) × R
p to a centered Gaussian pair (A,WP ) and the Fréchet derivative Ȧ of A defined in (10) satisfies

Ȧ(t) = E{A(t)W�
P } for every t ∈ T . The sequence is said to be P -regular for A if it is Pθ0 -regular for Aθ0 at all

θ0 ∈ O.

Remark 3. The P -regularity of a sequence of estimators θn = Tn(U1, . . . ,Un) for θ ∈ O implies that Θn = n1/2(θn −
θ) � Θ as n → ∞, where Θ is a centered Gaussian random vector and E(ΘW

�
P ) = I is the identity matrix.
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Now let U∗
1 , . . . ,U∗

n be a bootstrap sample from Pθn , and set

θ∗
n = Tn

(
U∗

1 , . . . ,U∗
n

)
, Θ∗

n = n1/2(θ∗
n − θ

)
,

A∗
n = Υn

(
U∗

1 , . . . ,U∗
n

)
, A

∗
n = n1/2(A∗

n − A
)
.

The following result, whose proof is given in Appendix B, gives conditions under which the weak limits of the
processes

G
A
n = n1/2(An − Aθn) and G

A∗
n = n1/2(A∗

n − Aθ∗
n

)
.

are independent and identically distributed. This guarantees that a parametric bootstrap based on the process An is
valid.

Theorem 1. Assume that P ∈ S(λ) and that as n → ∞,

(An,Θn,WP,n) � (A,Θ,WP ) (15)

in D(T ;R
s) × R

p⊗2, where the limit is a centered Gaussian process. Let Γ = E(ΘW
�
P ) and set a(t) = E{A(t)W�

P }
for every t ∈ T . Then, as n → ∞,(

An,A
∗
n,Θn,Θ

∗
n

)
�

(
A,A

�,Θ,Θ�
)

in D(T ;R
s)⊗2 × R

p⊗2. In the limit, A
� = A

⊥ + aΘ and Θ� = Θ⊥ + Γ Θ are defined in terms of an independent
copy (A⊥,Θ⊥) of (A,Θ). If in addition (An, θn) is P -regular for A × O, then(

G
A
n ,G

A∗
n

)
�

(
G

A,G
A∗) = (

A − ȦΘ,A
⊥ − ȦΘ⊥)

in D(T ;Rs)⊗2, as n → ∞, and GA∗
is an independent copy of GA.

3. A two-level parametric bootstrap

To perform a goodness-of-fit test based on a continuous functional Sn = φ(GA
n ) of the process

G
A
n = n1/2(An − Aθn),

one must compute Aθn at various points, but this is not always easily done.
For tests based on the empirical copula, for instance, one has Aθn = Cθn and many copula families are not alge-

braically closed. In this case, a simple way to circumvent the problem is to generate a random sample V ∗
1 , . . . , V ∗

m

from probability measure Qθn with distribution function Cθn and for u ∈ [0,1]d , to approximate Cθn(u) by

Č∗
n(u) = 1

m

m∑
j=1

1
(
V ∗

j ≤ u
)
.

It is typical to take m = �γ n� for some γ ∈ (0,∞), but it will only be assumed here that m is a function of n such that
m/n → γ ∈ (0,∞) as n → ∞.

More generally, the strategy proposed here consists of replacing Aθn by an approximation Ǎ∗
n = Ψm(V ∗

1 , . . . , V ∗
m)

built from a random sample V ∗
1 , . . . , V ∗

m from Qθn ∈ Q = {Qθ : θ ∈ O}. In order for this approach to make sense, it
must be assumed that if A = Aθ0 and Ǎn = Ψm(V1, . . . , Vm) for a random sample V1, . . . , Vm from Q = Qθ0 , then

Ǎn = n1/2(Ǎn − A) � Ǎ

in D(T ;R
s), as n → ∞ (and hence m → ∞).

Given that such a process exists, here is a natural way to circumvent the lack of a closed form for Aθn in the
computation of the test statistic Sn:
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(a) Compute θn = Tn(U1, . . . ,Un) and let An = Υn(U1, . . . ,Un).
(b) Given U1, . . . ,Un, generate a random sample V ∗

1 , . . . , V ∗
m from Qθn .

(c) Let Ǎ∗
n = Ψm(V ∗

1 , . . . , V ∗
m) and compute Sn = φ(GǍ∗

n ), in which GǍ∗
n = n1/2(An − Ǎ∗

n).

Now in order to approximate the distribution of Sn, a second parametric bootstrap procedure is necessary. To this
end, pick N large and repeat the following steps for every k ∈ {1, . . . ,N}:
(a) Given U1, . . . ,Un, V ∗

1 , . . . , V ∗
m, generate a random sample U∗

1,k, . . . ,U
∗
n,k from Pθn .

(b) Compute θ∗
n,k = Tn(U

∗
1,k, . . . ,U

∗
n,k) and let A∗

n,k = Υn(U
∗
1,k, . . . ,U

∗
n,k).

(c) Given U1, . . . ,Un, V ∗
1 , . . . , V ∗

m and U∗
1,k, . . . ,U

∗
n,k , generate a random sample V ∗∗

1,k, . . . , V
∗∗
m,k from Qθ∗

n,k
.

(d) Let Ǎ∗∗
n,k = Ψm(V ∗∗

1,k, . . . , V
∗∗
m,k) and compute S∗

n,k = φ(GǍ∗∗
n,k ), in which G

Ǎ∗∗
n,k = n1/2(A∗

n,k − Ǎ∗∗
n,k).

With the convention that large values of Sn lead to the rejection of H0, and under regularity conditions stated below,

a valid approximation to the P -value for the test based on Sn = φ(GǍ∗
n ) is given by

1

N

N∑
k=1

1
(
S∗

n,k > Sn

)
.

As for the standard parametric bootstrap, the validity of the above two-level extension is ensured, provided that

one can show that, as n → ∞, (GǍ∗
n ,G

Ǎ∗∗
n,1 ) converges weakly in D(T ;R

s)⊗2 to a pair of independent and identically
distributed limiting processes.

Assume that Q ∈ S(ν) for some reference measure ν (independent of θ ). Write qθ for the density of Qθ , let q̇θ be
the gradient (row) vector with respect to θ , and denote the Hessian matrix by q̈θ . When Q = Qθ0 , write by extension

q = qθ0 , q̇ = q̇θ0 , q̈ = q̈θ0 .

Note that when Q ∈ S(ν), the multivariate central limit theorem implies that if V1, . . . , Vm form a random sample
from Q = Qθ , then, as n → ∞,

WQ,n = n−1/2
m∑

i=1

q̇�(Vi)

q(Vi)
� WQ ∼ N (0, IQ), (16)

where in view of the fact that m/n → γ ∈ (0,∞) as n → ∞,

IQ = γ

∫
q̇�(u)q̇(u)

q(u)
ν(du). (17)

Now let U1, . . . ,Un and V1, . . . , Vm be two mutually independent random samples from P = Pθ0 ∈ P and Q =
Qθ0 ∈ Q, respectively. Let WP,n and WQ,n be defined as in (13) and (16), respectively. Conditionally on U1, . . . ,Un

and V1, . . . , Vm, make the following additional assumptions:

(a) Given θn = Tn(U1, . . . ,Un), the random vectors U∗
1 , . . . ,U∗

n and V ∗
1 , . . . , V ∗

m are mutually independent random
samples from Pθn and Qθn , respectively.

(b) Given U∗
1 , . . . ,U∗

n and V ∗
1 , . . . , V ∗

m and θ∗
n = Tn(U

∗
1 , . . . ,U∗

n ), the random vectors V ∗∗
1 , . . . , V ∗∗

m are a random
sample from Qθ∗

n
.

Finally, introduce the additional notations

Ǎn = Ψm(V1, . . . , Vm), Ǎ∗
n = Ψm

(
V ∗

1 , . . . , V ∗
m

)
, Ǎ∗∗

n = Ψm

(
V ∗∗

1 , . . . , V ∗∗
m

)
and

Ǎn = n1/2(Ǎn − A), Ǎ
∗
n = n1/2(Ǎ∗

n − A
)
, Ǎ

∗∗
n = n1/2(Ǎ∗∗

n − A
)
.
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The following result, whose proof is given in Appendix C, gives conditions under which the weak limits of the
processes

G
Ǎ∗
n = n1/2(An − Ǎ∗

n

)
and G

Ǎ∗∗
n = n1/2(A∗

n − Ǎ∗∗
n

)
are independent and identically distributed. This proves the validity of a two-level parametric bootstrap based on the
process An.

Theorem 2. Assume that P ∈ S(λ), Q ∈ S(ν) and that as n → ∞,

(An, Ǎn,Θn,WP,n,WQ,n) � (A, Ǎ,Θ,WP ,WQ)

and that the limit is a centered Gaussian process in D(T ;R
s)m⊗2 × R

p⊗3. Let Γ = E(ΘW
�
P ) and set a(t) =

E{A(t)W�
P } and ǎ(t) = E{Ǎ(t)W�

Q} for every t ∈ T . Then, as n → ∞,

(
An,A

∗
n, Ǎn, Ǎ

∗
n, Ǎ

∗∗
n ,Θn,Θ

∗
n

)
�

(
A,A

�, Ǎ, Ǎ
�, Ǎ

��,Θ,Θ�
)

in D(T ;R
s)⊗5 × R

p⊗2. In the limit,

A
� = A

⊥ + aΘ, Θ� = Θ⊥ + Γ Θ, Ǎ
� = Ǎ

⊥ + ǎΘ, Ǎ
�� = Ǎ

⊥⊥ + ǎΘ�,

where (A⊥,Θ⊥) is an independent copy of (A,Θ). In addition, the processes Ǎ, Ǎ
⊥ and Ǎ

⊥⊥ are mutually indepen-
dent and identically distributed, as well as independent of A, A

⊥, Θ and Θ⊥. Moreover if (An, θn) is P -regular for
A × O and Ǎn is Q-regular for A, then

(
G

Ǎ∗
n ,G

Ǎ∗∗
n

)
�

(
G

Ǎ∗
,G

Ǎ∗∗) = (
A − Ǎ

⊥ − ȦΘ,A
⊥ − Ǎ

⊥⊥ − ȦΘ⊥)
in D(T ;R

s)⊗2, as n → ∞, and G
Ǎ∗

is an independent copy of G
Ǎ∗∗

.

4. Examples of application

In this section, the validity of the one- and two-level parametric bootstrap is established in four common goodness-of-
fit testing contexts. The first example considers classical tests for parametric families of random vectors; it is discussed
here because the conditions under which Theorems 1 and 2 are established seem easier to verify than the requirements
imposed by Stute et al. [26]. The second and the third examples are about goodness-of-fit for copula models, while
the last application revisits the approach of Durbin [9] for goodness-of-fit testing of parametric families of random
vectors using the probability integral transformation.

4.1. Goodness-of-fit tests for parametric families

Let X be a d-variate random vector with continuous distribution function F . Suppose that it is desired to test the null
hypothesis

H0: F ∈ F = {Fθ : θ ∈ O},
i.e., F = Fθ0 for some θ0 ∈ O. Given a random sample X1, . . . ,Xn from F , a natural procedure is to compare the
empirical distribution function (1) to Fθn , where θn = Tn(X1, . . . ,Xn) is an estimation of the unknown parameter
θ ∈ Rp . The test could be based, e.g., on a Cramér–von Mises or on a Kolmogorov–Smirnov functional Sn = φ(GF

n )

of the empirical process

G
F
n = n1/2(Fn − Fθn).



Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models 1105

To establish the validity of the parametric bootstrap for such statistics, one can use Theorems 1 and 2 with Aθ = Fθ

and Pθ standing for the unique probability measure associated with Fθ and density fθ . Assume that P = {Pθ : θ ∈
O} ∈ S(λ), where λ is Lebesgue’s measure. Introduce the following notation:

f = fθ0, ḟ = ḟθ0, f̈ = f̈θ0 .

To check the P -regularity of F , let Fn = n1/2(Fn − F) and

WF,n = n−1/2
n∑

i=1

ḟ �(Xi)

f (Xi)
. (18)

Results from [5] imply that as n → ∞, (Fn,WF,n) � (F,WF ) in D([−∞,∞]d ;R) × R
p , where WF is a centered

Gaussian variable with variance

IF =
∫

ḟ �(x)ḟ (x)

f (x)
λ(dx)

and F is an F -Brownian bridge, i.e., F is a continuous centered Gaussian process with covariance function

cov
{
F(x),F(y)

} = F(x ∧ y) − F(x)F (y),

where x ∧ y = min(x, y) for all x, y ∈ R
d . The following result is a consequence of these observations and the fact

that for all x ∈ R
d ,

E
{
F(x)W�

F

} =
∫

ḟ (y)1(y ≤ x)λ(dy) = Ḟ (x)

in view of Eq. (12).

Proposition 1. Let X1, . . . ,Xn be a random sample from distribution F = Fθ0 for some θ0 ∈ O. If P ∈ S(λ), then the
canonical empirical distribution function Fn defined in (1) is P -regular for F .

Next, assume that θn is a P -regular sequence for O such that, as n → ∞,

(Fn,Θn,WF,n) � (F,Θ,WF )

in D([−∞,∞]d ;R) × R
p⊗2. Suppose further that the limit is Gaussian, so that condition (15) is satisfied with

An = Fn. It then follows that (Fn, θn) is P -regular for F × O because E(FW
�
F ) = Ḟ = Ḟθ0 by Proposition 1 and

E(ΘW
�
F ) = I by the regularity hypothesis on θn.

Finally, all the conditions of Theorems 1 and 2 are met with A = F , An = Fn and Ǎn = F̌n, where the latter is
defined for all x ∈ R

d by

F̌n(x) = 1

m

m∑
i=1

1(Yi ≤ x)

in terms of a random sample Y1, . . . , Ym from Pθ that is independent of X1, . . . ,Xn. Therefore, the one- and two-level
parametric bootstraps yield valid approximations of the distribution of any continuous functional Sn = φ(GF

n ).
In this context, the class of estimators that are P -regular for O is broad, as shown below.

Definition 3. An estimator θn = Tn(X1, . . . ,Xn) for θ ∈ O is said to belong to class R if n1/2(θn − θ) = Θ ′
n + oP (1),

where

Θ ′
n = n−1/2

n∑
i=1

Jθ (Xi) (19)
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is expressed in terms of a score function Jθ : Rd → Rp that is square integrable with respect to Pθ and such that for
all θ ∈ O, one has both

Eθ

{
Jθ (X)

} =
∫

Jθ (x)fθ (x)λ(dx) = 0 and

∫
Jθ (x)ḟθ (x)λ(dx) = I. (20)

Proposition 2. Let θn = Tn(X1, . . . ,Xn) be an estimator of θ ∈ O from the class R. If P ∈ S(λ), then (Fn, θn) is
P -regular for F × O.

To establish this result, first note that each component of the vector (Fn,Θ
′
n, WF,n) is tight and that the finite-

dimensional distributions converge by the classical multivariate central limit theorem, because each term is a sum
of independent and identically distributed centered random variables. In addition, observe that E(ΘW

�
F ) = I by

Eq. (20).

Example 1. When it is uniquely defined and IF is non-singular, the maximum likelihood estimator belongs to R. For,
in that case, relation (19) holds with Jθ = I−1

F ḟ �
θ /fθ . Furthermore, this function satisfies conditions (20) because of

identity (11) and from the fact that under P = Pθ0 ,

E
(
ΘW

�
F

) = I−1
F

∫
ḟ �(x)ḟ (x)

f (x)
λ(dx) = I−1

F IF = I.

Example 2. Moments estimators also belong to R. Assume that

θ = g(μ) and μ =
∫

M(x)fθ (x)λ(dx)

for some integrable function M : Rd → R
d that does not depend on θ . Suppose also that g is continuously differen-

tiable and that the matrix ġ of derivatives is non-singular. Then g−1 exists and is continuously differentiable by the
inverse function theorem. Furthermore, Slutsky’s theorem implies that for all x ∈ R

d ,

Jθ (x) = ġ
{
g−1(θ)

}{
M(x) − g−1(θ)

}
.

This score function meets the appropriate requirements because of (11) and the fact that under P ,

E
(
ΘW

�
F

) = ġ
{
g−1(θ0)

}∫
h(x)

ḟ (x)

f (x)
λ(dx)

= ġ
{
g−1(θ0)

}[ ∂

∂θ

∫
M(x)fθ (x)λ(dx)

]
θ=θ0

= ġ
{
g−1(θ0)

}[ ∂

∂θ
g−1(θ)

]
θ=θ0

= I.

Example 3. When it is uniquely defined, the estimator θn minimizing

�n(θ) =
∫ {

Fn(x) − Fθ(x)
}2 dFn(x)

between Fn and Fθ also belongs to R, provided that

Σθ =
∫

Ḟ�
θ (x)Ḟθ (x)fθ (x)λ(dx)

is non-singular for every θ ∈ O. In this case, representation (19) holds with

Jθ (x) = Σ−1
θ

∫ {
1(x ≤ y) − Fθ(y)

}
Ḟ�

θ (y)fθ (y)λ(dy)
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for all x ∈ Rd and

Θn = Σ−1
∫

Fn(y)Ḟ�
θ (y)fθ (y)λ(dy) + oP (1)

with Σ = Σθ0 . Thus, as n → ∞, one has (Fn,Θn) � (F,Θ) under P , and

Θ = Σ−1
∫

F(y)Ḟ�(y)f (y)λ(dy).

Direct calculations show that θn is P -regular for O. For, under P ,

E
(
ΘW

�
F

) = Σ−1E

{∫
F(y)Ḟ�(y)f (y)W�

F λ(dy)

}
= Σ−1

∫
Ḟ�(y)Ḟ (y)f (y)λ(dy) = I.

For conditions under which θn exists and is unique, see [2] or [3].

4.2. Goodness-of-fit tests for copulas

Let X be a continuous d-variate random vector with distribution function F , margins F1, . . . ,Fd , and unique under-
lying copula C. Suppose it is desired to test the null hypothesis

H0: C ∈ C = {Cθ : θ ∈ O},
i.e., C = Cθ0 for some θ0 ∈ O. Given a random sample X1, . . . ,Xn from F , a natural way to proceed is to compare the
empirical copula Cn defined in (5) to a parametric estimate Cθn , where θn is an estimation of the unknown parameter
θ ∈ Rp .

In view of the fact that the dependence structure represented by the copula C is invariant by strictly increasing trans-
formations of the margins of X, many authors have argued that estimators θn of θ should be margin-free, i.e., based
on the ranks of the observations, which are maximally invariant under this class of transformations. This amounts to
taking θn as a function of the pseudo-observations Ûi = ξn(Xi) with ξn defined in (3).

Note that under this condition, both Cn and θn are measurable with respect to the sigma-algebra Un generated
by U1 = ξ(X1), . . . ,Un = ξ(Xn), where ξ is the mapping defined in (2). Although they are unobservable, the latter
variables are mutually independent copies of U = ξ(X) and distributed as C.

For arbitrary u ∈ [0,1]d , let

Bn(u) = 1

n + 1

n∑
i=1

1(Ui ≤ u) (21)

and for every j ∈ {1, . . . , d} and t ∈ [0,1], define

Bjn(t) = 1

n + 1

n∑
i=1

1(Uij ≤ t). (22)

The empirical copula is then asymptotically equivalent to

Cn(u) = Bn

{
B−1

1n (u1), . . . ,B
−1
dn (ud)

}
at every u = (u1, . . . , ud) ∈ [0,1]d .

Thus assume that θn = Tn(U1, . . . ,Un) and suppose that Sn = φ(GC
n ) is a continuous functional of the empirical

process

G
C
n = n1/2(Cn − Cθn).
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To establish the validity of the parametric bootstrap for such goodness-of-fit statistics, one can use Theorems 1
and 2 with Aθ = Cθ and Pθ standing for the unique probability measure associated with Cθ and density cθ . Assume
that P = {Pθ : θ ∈ O} ∈ S(λ), where λ is Lebesgue’s measure. Introduce the following notation:

c = cθ0, ċ = ċθ0, c̈ = c̈θ0 .

To check the P -regularity of C , let Cn = n1/2(Cn − C) be the empirical copula process and write

WC,n = n−1/2
n∑

i=1

ċ�(Ui)

c(Ui)
.

Using results from Chapter 5 of the book by Gänßler and Stute [12], one can then show that, as n → ∞,

(Bn,Cn,WC,n) � (B,C,WC)

in D([0,1]d ;R)⊗2 × R
p . Here, WC is a centered Gaussian variable with variance

IC =
∫

ċ�(x)ċ(x)

c(x)
λ(dx)

and B is a C-Brownian bridge. Furthermore, as shown by Gänßler and Stute [12] (but see also [10,19,27]), the limit
C admits the representation

C(u) = B(u) −
d∑

j=1

βj (uj )
∂

∂uj

C(u), (23)

for all u = (u1, . . . , ud) ∈ [0,1]d , where for each j ∈ {1, . . . , d}, βj is a classical Brownian bridge related to B via the
equation βj (t) = B(1t,j ) in which 1t,j = (e1, . . . , ed) ∈ R

d with ei = t if i = j and ei = 1 otherwise.
Note that in view of Eq. (12),

E
{
B(u)W�

C

} =
∫

ċ(v)1(v ≤ u)λ(dv) = Ċ(u)

for all u ∈ [0,1]d , and hence for all t ∈ [0,1] and j ∈ {1, . . . , d} one has

E
{
βj (t)W

�
C

} = Ċ(1t,j ) = 0.

Thus for all u ∈ [0,1]d , representation (23) yields E{C(u)W�
C } = Ċ(u).

The following result is a consequence of these observations.

Proposition 3. Let X1, . . . ,Xn be a random sample from distribution F with unique underlying copula C = Cθ0 for
some θ0 ∈ O. If P ∈ S(λ), then the empirical copula Cn is P -regular for C .

Next, assume that θn is a P -regular sequence for O such that, as n → ∞,

(Bn,Θn,WC,n) � (B,Θ,WC)

in D([0,1]d ;R) × R
p⊗2, where the weak limit is Gaussian. It then follows that (Cn, θn) is P -regular for C × O

because E(CW
�
C) = Ċ = Ċθ0 by Proposition 1 and E(ΘW

�
C) = I by the regularity hypothesis on θn.

Finally, all the conditions of Theorems 1 and 2 are met with A = C , An = Cn and Ǎn = B̌n defined for all u ∈ [0,1]d
by

B̌n(u) = 1

m

m∑
i=1

1(Yi ≤ u)
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in terms of a random sample Y1, . . . , Ym from Pθ that is independent of X1, . . . ,Xn. Therefore, the one- and two-level
parametric bootstraps yield valid approximations of the distribution of any continuous functional Sn = φ(GC

n ).
In the context of copula models, there are two main strategies for rank-based estimation of the dependence para-

meter θ . These approaches lead to two distinct classes of estimators, which are considered separately. In the sequel,

Hn(u) = (
B1n(u1), . . . ,Bdn(ud)

)� and H(u) = (
β1(u1), . . . , βd(ud)

)�

for all u = (u1, . . . , ud) ∈ [0,1]d , where B1n, . . . ,Bdn are defined as in (22). Thus if H(u) = u, then Hn = n1/2(Hn −
H) � H in D([0,1]d ;R

d), as n → ∞.

Definition 4. A rank-based estimator θn = Tn(U1, . . . ,Un) of θ is said to belong to class R1 if it can be written in
the form

n1/2(θn − θ) = n−1/2
n∑

i=1

Jθ

{
Hn(Ui)

} + oP (1)

in terms of a score function Jθ : (0,1)d → R
p that satisfies the following regularity conditions for all θ ∈ O:

(a) Jθ is twice differentiable and J 2
θ is integrable with respect to Pθ ;

(b) Jθ is standardized, i.e.,∫
Jθ (u)cθ (u)du = 0 and

∫
Jθ (u)ċθ (u)du = I ; (24)

(c) there exists a function hθ that is integrable with respect to Pθ for which

∣∣∣∣ ∂2

∂ui ∂uj

Jθ (u)

∣∣∣∣ ≤ hθ (u)

for all i, j ∈ {1, . . . , d} and u ∈ (0,1)d .

A proof of the following proposition is given in Appendix D.

Proposition 4. Let θn = Tn(U1, . . . ,Un) be an estimator of θ ∈ O from the class R1. If P ∈ S(λ), then (Cn, θn) is
P -regular for C × O.

Example 4. Consider the maximum pseudo-likelihood estimator investigated, e.g., by Genest et al. [13] and Shih and
Louis [25]. Assume its existence and the fact that the score vector defined for all u ∈ (0,1)d by

J (u) = I−1
C

ċ�(u)

c(u)

satisfies the regularity conditions pertaining to class R1. It then follows from Example 1 that this omnibus, rank-based
estimator belongs to the class R1. When θ is real-valued, other examples include estimates based on the inversion
of Spearman’s rho or van der Waerden’s coefficient. The inversion of Kendall’s tau, however, falls into the class R2

defined below.

Definition 5. A rank-based estimator θn = Tn(U1, . . . ,Un) of θ is said to belong to class R2 if it can be written in
the form

n1/2(θn − θ) = n−1/2
n∑

i=1

Jθ

{
Bn(Ui)

} + oP (1)
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in terms of a score function Jθ : (0,1) → Rp that satisfies the same regularity conditions as in Definition 4 and such
that for all θ ∈ O,∫

Jθ

{
Cθ(u)

}
cθ (u)du = 0,

and ∫
Jθ

{
Cθ(u)

}
ċθ (u)du +

∫
J ′

θ

{
Cθ(u)

}
Ċθ (u)cθ (u)du = I. (25)

A proof of the following proposition is given in Appendix E.

Proposition 5. Let θn = Tn(U1, . . . ,Un) be an estimator of θ ∈ O from the class R2. If P ∈ S(λ), then (Cn, θn) is
P -regular for C × O.

Example 5. Condition (25) holds for “moment-like” parameters satisfying

θ = g(μ) and μ =
∫

M
{
Cθ(u)

}
cθ (u)du

for any integrable and continuously differentiable function M : (0,1) → R that does not depend on θ . Suppose that g

is in fact continuously differentiable, with non-singular derivative ġ. Then, by Slutsky’s theorem,

Jθ (t) = ġ
{
g−1(θ)

}{
M(t) − g−1(θ)

}
for all t ∈ (0,1). Condition (25) holds in that case, because under P ,

E
(
ΘW

�
C

) =
∫

J
{
C(u)

}
ċ(u)du +

∫
J ′{C(u)

}
Ċ(u)c(u)du

= ġ(τ0)

[∫
M

{
C(u)

}
ċ(u)du +

∫
M ′{C(u)

}
Ċ(u)c(u)du

]

= ġ(τ0)

[
∂

∂θ

∫
M

{
Cθ(u)

}
cθ (u)du

]
θ=θ0

= ġ(τ0)

[
∂

∂θ
g−1(θ)

]
θ=θ0

= I

with τ0 = g−1(θ0). Suppose, e.g., that θ is real and that Kendall’s tau is defined as in [1,21] or [14] by

τ = g−1(θ) = 1

2d−1 − 1

{
−1 + 2d

∫
Cθ(u)cθ (u)du

}
.

If this function and its inverse are continuously differentiable, the parameter estimate θn = g(τn) based on the inver-
sion of Kendall’s tau belongs to R2.

Example 6. When it is uniquely defined, the estimator θn minimizing

�n(θ) =
∫ {

Cn(u) − Cθ(u)
}2 dCn(u)

between Cn and C also belongs to R2, provided that

Σθ =
∫

Ċ�
θ (u)Ċθ (u)cθ (u)du
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is non-singular for all θ ∈ O. The proof is omitted, as it is similar to the argument described in Example 3. A natural
goodness-of-fit test could thus be based on the Cramér–von Mises statistic defined as Sn = �n(θn). See [27] for
conditions under which θn exists and is unique.

4.3. Goodness-of-fit for copulas based on Kendall’s process

Keeping the notations of Section 4.2, let X be a continuous d-variate random vector with distribution function F ,
margins F1, . . . ,Fd , and unique underlying copula C. Suppose once again that the null hypothesis of interest is

H0: C ∈ C = {Cθ : θ ∈ O}.
However, suppose that following [15] and [29], it is desired to base a goodness-of-fit test for C on the probability
integral transformation W = F(X) = C(U).

Under the assumption that C = Cθ , let the associated Kendall distribution be defined for every w ∈ [0,1] by

Kθ(w) = P
{
Cθ(U) ≤ w

} = P
{
Fθ(X) ≤ w

}
.

Given a random sample X1, . . . ,Xn from F and an estimator θn = Tn(U1, . . . ,Un) of θ ∈ R
p , a parametric estimate

of K is then given by Kθn . As argued by Genest and Rivest [17] and Barbe et al. [1], a reasonable test of H0 can be
based on a continuous functional Sn = φ(GK

n ) of the process

G
K
n = n1/2(Kn − Kθn),

where Kn is the nonparametric estimator of K defined by (6). Although these tests are not generally consistent, they
are sometimes more powerful than procedures based on Cn; see, e.g., Genest et al. [16]. The fact that the process G

K
n

is univariate also makes it possible to assess the fit visually, in addition to formal tests; on this point, see [17].
As in the previous section, the estimator θn is required to be margin-free, i.e., rank-based. Under this condition,

both Kn and θn are measurable with respect to the sigma-algebra Un generated by U1, . . . ,Un. For, an equivalent
alternative expression for Kn is given for every w ∈ [0,1] by

Kn(w) = 1

n

n∑
i=1

1
{
Fn(Xi) ≤ w

} = 1

n

n∑
i=1

1
{
Bn(Ui) ≤ w

}
,

where Bn is defined in (21).
To establish the validity of the parametric bootstrap for statistics of the form Sn = φ(GK

n ), one can use Theorems 1
and 2 with Aθ = Kθ and Pθ standing for the unique probability measure associated with Cθ . To this end, assume that
P = {Pθ : θ ∈ O} ∈ S(λ), where λ is Lebesgue’s measure on [0,1]d .

If Qθ denotes the probability measure with distribution function Kθ , further assume that Q = {Qθ : θ ∈ O} ∈ S(ν),
where ν is Lebesgue’s measure on [0,1]. Finally, introduce the notations

K = Kθ0 , k = kθ0, Kn = n1/2(Kn − K).

To check the P -regularity of An = Kn, consider the process defined for all w ∈ [0,1] by

αn(w) = n−1/2
n∑

i=1

[
1
{
C(Ui) ≤ w

} − K(w)
]
. (26)

Theorem 1 in [1] implies that, as n → ∞,

(αn,Bn,Kn,WC,n) � (α,B,K,WC)

in D([0,1];R)⊗3 ×R
p , where (α,B,K,WC) is a continuous centered Gaussian process. In addition, K(w) = α(w)−

μ(w,B), where

μ(w,g) = k(w)E
{
g(U)|C(U) = w

}
,
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is well defined for every real-valued continuous function g on [0,1]d and all w ∈ [0,1] by Condition II in Appendix F.
Given the calculations in Appendix G, the desired result is then the following.

Proposition 6. Let X1, . . . ,Xn be a random sample from distribution F with unique underlying copula C = Cθ0 for
some θ0 ∈ O. Suppose that P ∈ S(λ) and Q ∈ S(ν). Assume also that the density kθ of Qθ satisfies Conditions I and II
described in Appendix F. Then Kn is P -regular for K = {Kθ : θ ∈ O}.

Now suppose that the sequence θn is P -regular for O and that, as n → ∞,

(Kn,Θn,WC,n) � (K,Θ,WC)

in D([0,1];R)×R
p⊗2, where the weak limit is Gaussian. It then follows that (Kn, θn) is P -regular for K × O because

E(KW
�
C) = K̇ by Proposition 6 and E(ΘW

�
C) = I by the regularity hypothesis on θn.

In the light of Propositions 4–6, one then gets the following result.

Proposition 7. Let θn = Tn(U1, . . . ,Un) be an estimator of θ ∈ O from the class R1 ∪ R2. Suppose that P ∈ S(λ),
Q ∈ S(ν) and that the density kθ of Qθ satisfies Conditions I and II described in Appendix F. Then the sequence
(Kn, θn) is P -regular for K × O.

Finally, given that An 	= Cn in this particular application, the question of what should serve as Ǎn must be ad-
dressed. Two natural choices are:

(a) Generate a random sample V1, . . . , Vm from Pθ , define

Ŵi = 1

m

m∑
j=1

1(Vj ≤ Vi)

for each i ∈ {1, . . . ,m} and, for all w ∈ [0,1], let

Ǎn(w) = 1

m

m∑
i=1

1(Ŵi ≤ w). (27)

(b) Generate a random sample W1, . . . ,Wm from Qθ with associated distribution function Kθ ; then for each w ∈
[0,1], let

Ǎn(w) = 1

m

m∑
i=1

1(Wi ≤ w). (28)

The conditions for the regularity of these estimators are delineated in the following result, whose proof is immediate
from Propositions 1 and 6.

Proposition 8. Suppose that P ∈ S(λ), Q ∈ S(ν) and that the density kθ of Qθ satisfies Conditions I and II described
in Appendix F. Then the sequence Ǎn is P -regular for K when defined by (27) and it is Q-regular for K when defined
by (28).

With either one of these choices for Ǎn, therefore, the conditions are assembled for the application of Theorems
1 and 2. Consequently, the one- and two-level parametric bootstraps yield valid approximations of the distribution of
any continuous functional Sn = φ(GK

n ).
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4.4. Goodness-of-fit testing using Durbin’s approach

In the same context as in Section 4.1, but calling on the notion of probability integral transform discussed in Sec-
tion 4.3, one could base a test of

H0: F ∈ F = {Fθ : θ ∈ O}
on the distribution K of F(X), i.e., Kendall’s distribution. A parametric estimate under H0 is given for all w ∈ [0,1]
by

Dn(w) = 1

n

n∑
i=1

1
{
Fθn(Xi) ≤ w

}
,

where θn = T (X1, . . . ,Xn) is a consistent estimator of θ .
A goodness-of-fit test could thus be based on some continuous functional of

G
D
n = n1/2(Dn − Kθn).

This proposal is considered by Durbin [9] in the univariate case, where it can be seen to yield a consistent test.
Although the multivariate extension investigated here is not always consistent in dimension d > 1, its univariate
character allows for a graphical assessment of goodness-of-fit, which may be an advantage in some circumstances.

To establish the validity of the parametric bootstrap for statistics of the form Sn = φ(GD
n ), one can use Theorems 1

and 2 with Aθ = Kθ and Pθ standing for the unique probability measure associated with Fθ . To this end, assume
that P = {Pθ : θ ∈ O} ∈ S(λ), where λ is Lebesgue’s measure on R

d . If Qθ denotes the probability measure with
distribution function Kθ , further assume that Q = {Qθ : θ ∈ O} ∈ S(ν), where ν is Lebesgue’s measure on [0,1].

Let K = Kθ0 and k = kθ0 as before, and introduce also

Dn = n1/2(Dn − K).

To check the P -regularity of An = Dn, note that the process αn defined in (26) can also be written as follows for all
w ∈ [0,1]:

αn(w) = n−1/2
n∑

i=1

[
1
{
F(Xi) ≤ w

} − K(w)
]
.

If WF,n is defined as in (18), one can then call on the methodology developed in [18] to show that under P ,

(αn,Dn,WF,n) � (α,D,WF )

in D([0,1];R)⊗2 × R
p , as n → ∞. Here, the weak limit (α,D,WF ) is a continuous centered Gaussian process, and

for all w ∈ [0,1],
D(w) = α(w) − κ(w, Ḟ )Θ

with κ defined for every real-valued continuous function g on [0,1]d and all w ∈ [0,1] by

κ(w,g) = k(w)E
{
g(X)|F(X) = w

}
.

Note that it follows from a remark at the end of Appendix G that μ(w, Ċ) = κ(w, Ḟ ) when both Ḟ and Ċ exist.
Given the calculations in Appendix H, the desired result is then the following.

Proposition 9. Let X1, . . . ,Xn be a random sample from distribution F = Fθ0 for some θ0 ∈ O. Suppose that
P ∈ S(λ) and Q ∈ S(ν). Assume also that the density kθ of Qθ satisfies Conditions I and II described in Appen-
dix F. Then Dn is P -regular for K = {Kθ : θ ∈ O}.



1114 C. Genest and B. Rémillard

Now suppose that the sequence θn is P -regular for O and that, as n → ∞,

(Dn,Θn,WF,n) � (D,Θ,WF )

in D([0,1];R)×R
p⊗2, where the weak limit is Gaussian. It then follows that (Kn, θn) is P -regular for K × O because

E(DW
�
F ) = K̇ by Proposition 9 and E(ΘW

�
F ) = I by the regularity hypothesis on θn.

In the light of Proposition 2, one then gets the following result.

Proposition 10. Let θn = Tn(X1, . . . ,Xn) be an estimator of θ ∈ O from the class R. Suppose that P ∈ S(λ), Q ∈
S(ν) and that the density kθ of Qθ satisfies Conditions I and II described in Appendix F. Then the sequence (Dn, θn)

is P -regular for K × O.

Finally, given that An 	= Fn, the issue of what should serve as Ǎn must again be addressed. Here, the most natural
choices are:

(a) Generate a random sample Y1, . . . , Ym from Pθ , define

Ŵi = 1

m

m∑
j=1

1(Yj ≤ Yi)

for i ∈ {1, . . . ,m} and, for all w ∈ [0,1], let

Ǎn(w) = 1

m

m∑
i=1

1(Ŵi ≤ w). (29)

(b) Generate a random sample W1, . . . ,Wm from Qθ with associated distribution function Kθ ; then for each w ∈
[0,1], let

Ǎn(w) = 1

m

m∑
i=1

1(Wi ≤ w). (30)

The conditions for the regularity of these estimators are delineated in the following result, whose proof is immediate
from Propositions 1 and 9.

Proposition 11. Suppose that P ∈ S(λ), Q ∈ S(ν) and that the density kθ of Qθ satisfies Conditions I and II de-
scribed in Appendix F. Then the sequence Ǎn is P -regular for K when defined by (29) and it is Q-regular for K when
defined by (30).

With either one of these choices for Ǎn, therefore, the conditions are assembled for the application of Theorems
1 and 2. Consequently, the one- and two-level parametric bootstraps yield valid approximations of the distribution of
any continuous functional Sn = φ(GD

n ).

5. An illustration

Stute et al. [26] and Henze [20] show the usefulness of the parametric bootstrap in testing the goodness-of-fit of
multivariate continuous and discrete distributions, respectively. This methodology is also applied with success by
Genest et al. [15,16] and Dobrić and Schmid [8] in copula modeling contexts. This section, therefore, is limited to a
short illustration.

Consider the problem of testing that subject to appropriate transformations of its margins, a continuous d-variate
random vector X is Gaussian. In other words, suppose that one wants to check whether there exists a d ×d correlation
matrix Σ for which the underlying copula C of X is of the form

CΣ(u) = 1

(2π)d/2|Σ |1/2

∫ Φ−1(u1)

−∞
· · ·

∫ Φ−1(ud )

−∞
exp

(
−1

2
z�Σ−1z

)
dzd · · · dz1,
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where z = (z1, . . . , zd)�, u = (u1, . . . , ud) ∈ (0,1)d , and Φ denotes the cumulative distribution function of a standard
N (0,1) random variable.

This problem, which is of current interest in finance, is considered, e.g., by Breymann et al. [6] and Malevergne
and Sornette [23]. The tests they propose are based on specific properties of the multivariate Gaussian distribution.
Because the asymptotic behavior of their statistics is unwieldy, however, they approximate it by the distribution that
would obtain if the copula parameters and the univariate margins of the data were known. Unfortunately, this yields
unreliable P -values as shown, e.g., by Dobrić and Schmid [8]. Thanks to the parametric bootstrap, however, it is
possible to bypass these issues entirely.

For the general problem of testing hypothesis (4) that a copula C belongs to a given parametric copula family
C = {Cθ : θ ∈ O}, a simple “blanket procedure” would be to reject H0 for large values of the Cramér–von Mises
statistic

Sn = n

∫ {
Cn(u) − Cθn(u)

}2
dCn(u) =

n∑
i=1

{
Cn(Ûi) − Cθn(Ûi)

}2
. (31)

When θn is a rank-based estimator of θ from the class R1 ∪ R2,

Sn =
∫ {

G
C
n (u)

}2 dC(u) + oP (1)

is an approximation of a continuous functional of the empirical process GC
n = n1/2(Cn − Cθn). Theorem 1 then

guarantees that the parametric bootstrap yields valid P -values for Sn, provided that P ∈ S(λ). One would resort to
a one- or two-level procedure, depending whether the exact value of Cθ(u) could or could not be computed easily at
each u = Ûi , i ∈ {1, . . . , n}.

The requirements are met for Gaussian copulas. In that case, Klaassen and Wellner [22] show that an efficient
rank-based estimation of θ = Σ is given by the matrix θn = (σ̂jk) whose entries are the van der Waerden correlations,
viz.

σ̂jk =
n∑

i=1

Φ−1
(

Rij

n + 1

)
Φ−1

(
Rik

n + 1

)/ n∑
i=1

Φ−1
(

i

n + 1

)2

, (32)

for all j, k ∈ {1, . . . , d}. Here, Rij is the rank of Xij among X1j , . . . ,Xnj for all i ∈ {1, . . . , n} and j ∈ {1, . . . , d}.
The one- and two-level parametric bootstrap algorithms are detailed below in the general case. A user could call

on either one, depending whether a numerical integration routine is available or not for Cθ(u) at arbitrary u ∈ [0,1]d .

One-level parametric bootstrap procedure for Sn

1. Convert the data into rank vectors Ri = (Ri1, . . . ,Rid)�, i ∈ {1, . . . , n}.
2. Put Ûi = Ri/(n + 1) for i ∈ {1, . . . , n} and for all u ∈ [0,1]d , let

Cn(u) = 1

n

n∑
i=1

1(Ûi ≤ u).

3. Estimate θ by a rank-based estimator θn; e.g., use formula (32) when testing that the copula is Gaussian.
4. Compute Sn using formula (31).
5. Pick N large and repeat the following steps for every k ∈ {1, . . . ,N}:

(a) Generate a random sample X∗
1,k, . . . ,X

∗
n,k from copula Cθn and compute the associated rank vectors

R∗
1,k, . . . ,R

∗
n,k .

(b) Put Û∗
i,k = R∗

i,k/(n + 1) for i ∈ {1, . . . , n} and for all u ∈ [0,1]d , let

C∗
n,k(u) = 1

n

n∑
i=1

1
(
Û∗

i,k ≤ u
)
.
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(c) Construct an estimate θ∗
n,k of θ by the same rank-based method as in Step 3; e.g., when testing that the copula

is Gaussian, substitute Û∗
i,k = R∗

i,k/(n + 1) for Ûi = Ri/(n + 1) in formula (32).
(d) Compute

S
∗
n,k =

n∑
i=1

{
C∗

n,k

(
Û∗

i,k

) − Cθ∗
n,k

(
Û∗

i,k

)}2
.

An approximate P -value for the test based on Sn is then given by

1

N

N∑
k=1

1
(
S

∗
n,k > Sn

)
.

Two-level parametric bootstrap procedure for Sn

1. Convert the data into rank vectors Ri = (Ri1, . . . ,Rid)�, i ∈ {1, . . . , n}.
2. Put Ûi = Ri/(n + 1) for i ∈ {1, . . . , n} and for all u ∈ [0,1]d , let

Cn(u) = 1

n

n∑
i=1

1(Ûi ≤ u).

3. Estimate θ by a rank-based estimator θn; e.g., use formula (32) when testing that the copula is Gaussian.
4. Pick m much larger than n:

(a) Generate a random sample V ∗
1 , . . . , V ∗

m from copula Cθn .
(b) Approximate Cθn(u) at each u ∈ [0,1]d by

Č∗
n(u) = 1

m

m∑
i=1

1
(
V ∗

i ≤ u
)
.

(c) Compute

Sn = n

∫ {
Cn(u) − Č∗

n(u)
}2 dCn(u) =

n∑
i=1

{
Cn(Ûi) − Č∗

n(Ûi)
}2

.

5. Pick N large and repeat the following steps for every k ∈ {1, . . . ,N}:
(a) Generate a random sample X∗

1,k, . . . ,X
∗
n,k from copula Cθn and compute the associated rank vectors

R∗
1,k, . . . ,R

∗
n,k .

(b) Put Û∗
i,k = R∗

i,k/(n + 1) for i ∈ {1, . . . , n} and for all u ∈ [0,1]d , let

C∗
n,k(u) = 1

n

n∑
i=1

1
(
Û∗

i,k ≤ u
)
.

(c) Construct an estimate θ∗
n,k of θ by the same rank-based method as in Step 3; e.g., when testing that the copula

is Gaussian, substitute Û∗
i,k = R∗

i,k/(n + 1) for Ûi = Ri/(n + 1) in formula (32).
(d) For the same integer m as in Step 4:

(i) Generate a random sample V ∗∗
1,k, . . . , V

∗∗
m,k from copula Cθ∗

n,k
.

(ii) Approximate Cθ∗
n,k

(u) at each u ∈ [0,1]d by

Č∗∗
n,k(u) = 1

m

m∑
i=1

1
(
V ∗∗

i,k ≤ u
)
.
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(iii) Compute

S
∗
n,k =

n∑
i=1

{
C∗

n,k

(
Û∗

i,k

) − Č∗∗
n,k

(
Û∗

i,k

)}2
.

An approximate P -value for the test based on the Cramér–von Mises statistic Sn is then given by

1

N

N∑
k=1

1
(
S

∗
n,k > Sn

)
.

To illustrate the validity of the parametric bootstrap for the Cramér–von Mises statistic Sn, 10,000 random samples
of size n = 250 were generated from the bivariate Gaussian copula with correlation θ = 1/4. The null hypothesis was
then tested at the 5% level using N = 1000 bootstrap samples and a numerical integration routine for Cθ . As an
alternative, the copula was also estimated by a two-level bootstrap procedure using m = 100,000.

The results for the one-level parametric bootstrap are given in the first line of Table 1, along with those of a similar
experiment carried out with sample size n = 500. Figures for the two-level bootstrap (not reported) are very similar.
The quality of the approximation is seen to be excellent.

To check the power of the goodness-of-fit test based on Sn, samples of size n = 250 and 500 were also generated
from Student copulas with various degrees of freedom (df) but the same correlation as under the Gaussian model;
for additional information about this class of meta-elliptical copulas, refer to [7]. Those results may also be found in
Table 1. As expected, the test quickly gains in power as the degrees of freedom get smaller. For examples involving
other copula models and extensive comparisons with alternative goodness-of-fit tests, see [16].

6. Conclusion

This paper shows the validity of the parametric bootstrap for testing the goodness-of-fit of a class P = {Pθ : θ ∈ O} of
probability measures whenever the sequences An and θn of estimators of Aθ and θ are P -regular. For situations where
the distribution function associated with Pθ is not available in closed form, a two-level extension of the parametric
bootstrap is also developed and shown to be valid.

The results proved herein are obtained under conditions that are generally easier to verify than those of [26] or
[3]. While these authors limited their investigation to parametric contexts, the approach described here also applies in
semiparametric settings and is illustrated in four situations commonly encountered in practice.

In particular, a one- or two-level parametric bootstrap approach is valid in goodness-of-fit testing for copula models
using either the empirical copula process or its associated Kendall process, as discussed by Genest et al. [15,16]. In
the latter paper as in [8], the authors also consider tests of goodness-of-fit based on Rosenblatt’s transformation. It is
easy to check that the parametric bootstrap methodology also applies to this case.

Table 1
Percentage of rejection of the null hypothesis that a copula is Gaussian, based on the statistic Sn whose 95% critical
value is estimated from N = 1000 parametric bootstrap samples. The power, observed over 10,000 replicates, is
presented as a function of the sample size n and of the meta-elliptical copula used to generate the data. In all models,
the correlation θ between the two variables is fixed at 1/4.

Copula model n = 250 n = 500

Gaussian 5.09 5.08
Student (20 df) 6.45 6.13
Student (10 df) 8.28 9.38
Student (5 df) 14.88 21.20
Student (2.5 df) 43.51 75.46
Student (2 df) 63.17 94.22
Student (1.5 df) 87.56 99.93
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Appendix A. Auxiliary results

Let P = {Pθ : θ ∈ O} be a parametric family of distributions and assume that P ∈ S(λ) for some reference measure λ

which is independent of θ . Let U1, . . . ,Un,U
∗
1 , . . . ,U∗

n be mutually independent observations from P = Pθ0 for some
θ0 ∈ O. Write pθ = dPθ/dλ and p = pθ0 . Finally, let θn = Tn(U1, . . . ,Un) be an estimator of θ and introduce

Θn = n1/2(θn − θ0), WP,n = n−1/2
n∑

i=1

ṗ�(Ui)

p(Ui)
, �n =

n∑
i=1

log

{
pθn(U

∗
i )

p(U∗
i )

}
.

The following result, which concerns the weak limit of the pair (�n,Θn), is instrumental in establishing Theorem 1.

Lemma 1. Suppose that the sequence (WP,n,Θn) converges weakly, as n → ∞, and that the joint distribution of the
limit (WP ,Θ) is N (0,Σ) with

Σ =
(

IP Γ �
Γ Λ

)
, Γ = E

(
ΘW

�
P

)
, Λ = E

(
ΘΘ�)

and IP defined as in (14). There exists an independent copy W
⊥
P of WP , also independent of Θ , such that, as n → ∞,

(�n,Θn) �
(
Θ�W⊥

P − Θ�IP Θ/2,Θ
)
.

Proof. When P ∈ S(λ), the sequence

W
∗
P,n = n−1/2

n∑
i=1

ṗ�(U∗
i )

p(U∗
i )

is known to have a weak limit, say W
⊥
P , which has the same distribution as WP but is independent from it and from Θ .

When ‖Θn‖ ≤ M , one can write

�n =
n∑

i=1

[
log

{
pθn

(
U∗

i

)} − log
{
p
(
U∗

i

)}]

= Θ�
n W

∗
P,n + 1

2
Θ�

n

[
1

n

n∑
i=1

{
p̈(U∗

i )

p(U∗
i )

− ṗ�(U∗
i )ṗ(U∗

i )

p2(U∗
i )

}]
Θn + Rn,

where

|Rn| ≤ M2

2n

n∑
i=1

sup
‖θ−θ0‖≤Mn−1/2

{∥∥∥∥ p̈θ (U
∗
i )

pθ (U
∗
i )

− p̈(U∗
i )

p(U∗
i )

∥∥∥∥ +
∥∥∥∥ ṗ�

θ (U∗
i )ṗθ (U

∗
i )

p2
θ (U

∗
i )

− ṗ�(U∗
i )ṗ(U∗

i )

p2(U∗
i )

∥∥∥∥
}

can be made arbitrarily small with probability close to one because of part 1.4 of Definition 1. Using the tightness of
the sequence Θn and the fact that

lim
n→∞

1

n

n∑
i=1

{
p̈(U∗

i )

p(U∗
i )

− ṗ�(U∗
i )ṗ(U∗

i )

p2(U∗
i )

}
= −IP P almost surely,

one can see that, as n → ∞, �n � Θ�
W

⊥
P − Θ�IP Θ/2, whence the result. �

Next, assume that Q = {Qθ : θ ∈ O} ∈ S(ν) for some reference measure ν which is independent of θ . Let
V1, . . . , Vm, V ∗

1 , . . . , V ∗
m, V ∗∗

1 , . . . , V ∗∗
m be observations from Q = Qθ0 . Write qθ = dQθ/dν and q = qθ0 . Assume

that

U1, . . . ,Un, U∗
1 , . . . ,U∗

n , V1, . . . , Vm, V ∗
1 , . . . , V ∗

m, V ∗∗
1 , . . . , V ∗∗

m ,
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are mutually independent and let Pn denote their joint probability measure.
Let θ∗

n = Tn(U
∗
1 , . . . ,U∗

n ) be an estimator of θ and set

Θ∗
n = n1/2(θ∗

n − θ
)
.

The following result, which is required for the proof of Theorem 2, concerns the joint limiting behavior of the se-
quences Θn, Θ∗

n and the logarithm of

dP ∗
n

dPn

=
{

n∏
i=1

pθn(U
∗
i )

p(U∗
i )

}
×

{
m∏

i=1

qθn(V
∗
i )

q(V ∗
i )

}
×

{
m∏

i=1

qθ∗
n
(V ∗∗

i )

q(V ∗∗
i )

}
.

Lemma 2. Suppose that the sequence (WP,n,WQ,n,Θn) converges weakly, as n → ∞, and that the distribution of
the limit (WP ,WQ,Θ) is N (0,Δ) with

Δ =
(

IP 0 Γ �
0 IQ 0
Γ 0 Λ

)
, Γ = E

(
ΘW

�
P

)
, Λ = E

(
ΘΘ�)

,

where IP and IQ are defined as in (14) and (17), respectively. There exist an independent copy (W⊥
P ,Θ⊥) of (WP ,Θ)

and mutually independent copies W
⊥
Q and W

⊥⊥
Q of WQ that are independent of WP and W

⊥
P , Θ and Θ⊥, such that,

as n → ∞,(
log

(
dP ∗

n

dPn

)
,Θn,Θ

∗
n

)

�
(

Θ�
W

⊥
P + Θ�

W
⊥
Q − 1

2
Θ�IP Θ − 1

2
Θ�IQΘ + (

Θ⊥)�
W

⊥⊥
Q − 1

2

(
Θ⊥)�

IQΘ⊥,Θ,Θ⊥
)

.

Proof. Let W
⊥
P be the weak limit of the sequence W

∗
P,n, as in the proof of Lemma 1. When Q ∈ S(ν), the sequences

WQ,n = n−1/2
m∑

i=1

q̇�(Vi)

q(Vi)
, W

∗
Q,n = n−1/2

m∑
i=1

q̇�(V ∗
i )

q(V ∗
i )

, W
∗∗
Q,n = n−1/2

m∑
i=1

q̇�(V ∗∗
i )

q(V ∗∗
i )

are known to have weak limits, denoted WQ, W
⊥
Q and W

⊥⊥
Q , respectively. Moreover, the latter are mutually indepen-

dent and identically distributed, in addition to being independent of WP , W
⊥
P , Θ and Θ⊥.

Proceeding as in the proof of Lemma 1, one can deduce that when ‖Θn‖ ≤ M ,

log

(
dP ∗

n

dPn

)
= Θ�

n W
∗
P,n + Θ�

n W
∗
Q,n − 1

2
Θ�

n IP Θn − 1

2
Θ�

n IQΘn + (
Θ∗

n

)�
W

∗∗
Q,n − 1

2

(
Θ∗

n

)�
IQΘ∗

n + Rn,

where |Rn| can be made arbitrarily small with probability close to one. Given that the sequence (Θn) is tight, the
conclusion follows by construction and the fact that m/n → γ , as n → ∞. �

Appendix B. Proof of Theorem 1

The proof is based on Le Cam’s Third Lemma as stated, e.g., by van der Vaart and Wellner [28]. Thus, assume at first
that U1, . . . ,Un, U∗

1 , . . . ,U∗
n are mutually independent random vectors with probability measure P = Pθ0 for some

θ0 ∈ O. Denote by Pn their joint probability measure.
Let θn = Tn(U1, . . . ,Un) and θ∗

n = Tn(U
∗
1 , . . . ,U∗

n ) be estimators of θ and write

Θn = n1/2(θn − θ), Θ∗
n = n1/2(θ∗

n − θ
)
.
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Similarly, let An = Υn(U1, . . . ,Un) and A∗
n = Υn(U

∗
1 , . . . ,U∗

n ) be estimators of A = Aθ0 and introduce

An = n1/2(An − A), A
∗
n = n1/2(A∗

n − A
)
.

Under the conditions of the theorem, the joint limiting distribution of Θn and An is Gaussian so without loss of
generality, the former may be treated as a component of the latter. This is done below both for Θn and Θ∗

n .
Define P ∗

n by

dP ∗
n

dPn

= exp(�n) =
n∏

i=1

pθn(U
∗
i )

p(U∗
i )

.

Note that under P ∗
n , U1, . . . ,Un are mutually independent with probability measure P , while conditionally on the

sigma-algebra Un generated by U1, . . . ,Un, the random vectors U∗
1 , . . . ,U∗

n are mutually independent with probability
measure Pθn .

By hypothesis, A
∗
n is independent of U1, . . . ,Un and has the same distribution as An under Pn. Therefore, it follows

from Lemma 1 that, as n → ∞,(
dP ∗

n

dPn

,An,A
∗
n

)
�

(
ζ,A,A

⊥)

under Pn, where A
⊥ is an independent copy of A and

ζ = exp
(
Θ�

W
⊥
P − Θ�IP Θ/2

)
.

Moreover, E(ζ ) = E(ζ |Θ) = 1 because W
⊥
P is distributed as N (0, IP ) and independent of Θ .

Invoking Le Cam’s Third Lemma, one can now see that P ∗
n is contiguous with respect to Pn. Furthermore if Yn

is an arbitrary sequence of random vectors such that Yn � Y under Pn, as n → ∞, then Yn � Y � under P ∗
n also.

Moreover, the limit Y � is such that for any bounded continuous function L,

E
{
L

(
Y �

)} = E
{
ζL(Y )

}
.

In particular, as n → ∞, (An,Θn) � (A,Θ) under P ∗
n , because W

⊥
P is independent of (A,Θ). Accordingly,

E
{
ζL(A,Θ)

} = E
{
E(ζ |Θ)L(A,Θ)

} = E
{
L(A,Θ)

}
for any bounded continuous function L : D(T ;R

s) × R
p → R.

Given that, as n → ∞, (An,A
∗
n) � (A,A

⊥) under Pn, a similar argument implies that (An,A
∗
n) � (A,A

�) under
P ∗

n with

E
{
L

(
A,A

�
)} = E

{
ζL

(
A,A

⊥)}
(B.1)

for any bounded continuous function L : D(T ;R
s)⊗2 → R. Furthermore, A

� is càdlàg whenever A is càdlàg, and it is
continuous if A is continuous.

Next, fix ωj ∈ R
�s and let sj1, . . . , sj� ∈ T for j ∈ {1,2}. Let also

Z1 = (
A(s11)

�, . . . ,A(s1�)
�)�

,

Z2 = (
A

⊥(s21)
�, . . . ,A

⊥(s2�)
�)�

,

Z� = (
A

�(s21)
�, . . . ,A

�(s2�)
�)�

.

Further define Σj = E(ZjZ
�
j ) for j ∈ {1,2} and put a�

2 = E(W⊥
P Z�

2 ).
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Exploiting identity (B.1), multivariate normality and the independence between (Θ,A) and (W⊥
P ,A⊥), one finds

E
{
exp

(
iω�

1 Z1 + iω�
2 Z�

)} = E
{
ζ exp

(
iω�

1 Z1 + iω�
2 Z2

)}
= E

{
exp

(
iω�

1 Z1 + iω�
2 Z2 + Θ�

W
⊥
P − Θ�IP Θ/2

)}
= E

{
exp

(
iω�

1 Z1 − ω�
2 Σ2ω2/2 + iω�

2 a2Θ
)}

,

where the last equality follows upon conditioning on Z1 and Θ . Similarly,

E
{
exp

(
iω�

1 Z1 − ω�
2 Σ2ω2/2 + iω�

2 a2Θ
)} = E

[
exp

{
iω�

1 Z1 + iω�
2 (Z2 + a2Θ)

}]
.

Consequently, A
� is a centered Gaussian process. Furthermore, the finite-dimensional distributions of (A,A

�)

agree with those of (A,A
⊥ + aΘ), where a(t) = E{A(t)W�

P } for every t ∈ T . As a result, the processes (A,A
�) and

(A,A
⊥ + aΘ) are identically distributed, as claimed.

To establish the second assertion, it suffices to remark that together with the above result, condition (10) implies

G
A
n = n1/2(An − Aθn) = An − ȦΘn + oP (1),

G
A∗
n = n1/2(A∗

n − Aθ∗
n

) = A
∗
n − ȦΘ∗

n + oP (1).

If the sequence (An, θn) is also regular for A × O, it follows that, as n → ∞, (GA
n ,G

A∗
n ) � (A − ȦΘ,A

� − ȦΘ�).
Now in this case, a = Ȧ for the process An while a = E(ΘW

�
P ) = I for the process Θn, which was assimilated

into An. Therefore,

A
� − ȦΘ� = A

⊥ + ȦΘ − Ȧ
(
Θ⊥ + Θ

) = A
⊥ − ȦΘ⊥

is an independent copy of A − ȦΘ , which completes the proof.

Appendix C. Proof of Theorem 2

The proof is similar to that of Theorem 1 but based on Lemma 2. Thus, fix θ0 ∈ O and consider at first two sets
of mutually independent random vectors U1, . . . ,Un, U∗

1 , . . . ,U∗
n and V1, . . . , Vm, V ∗

1 , . . . , V ∗
m,V ∗∗

1 , . . . , V ∗∗
m from

probability measures P = Pθ0 and Q = Qθ0 , respectively.
Denote by Pn the joint probability measure of these 2n + 3m random vectors. Given estimators θn =

Tn(U1, . . . ,Un) and θ∗
n = Tn(U

∗
1 , . . . ,U∗

n ) of θ , define another probability measure P ∗
n by

dP ∗
n

dPn

=
{

n∏
i=1

pθn(U
∗
i )

p(U∗
i )

}
×

{
m∏

i=1

qθn(V
∗
i )

q(V ∗
i )

× qθ∗
n
(V ∗∗

i )

q(V ∗∗
i )

}
.

Note that under the conditions of the theorem, the 2n + 3m random vectors have the same distribution as in Lemma 2
under P ∗

n . Assuming without loss of generality that θn is a component of An, it thus follows that, as n → ∞, the
vector of processes(

dP ∗
n

dPn

,An,A
∗
n, Ǎn, Ǎ

∗
n, Ǎ

∗∗
n ,WP,n,W

∗
P,n,WQ,n,W

∗
Q,n,W

∗∗
Q,n

)

converges weakly in R × D(T ;R
s)⊗5 × R

p⊗5, under Pn, to a limit of the form(
ζ̌ ,A,A

⊥, Ǎ, Ǎ
⊥, Ǎ

⊥⊥,WP ,W
⊥
P ,WQ,W

⊥
Q,W

⊥⊥
Q

)
.

In this limit, (A⊥,W
⊥
P ) is an independent copy of (A,WP ), while (Ǎ⊥,W

⊥
Q) and (Ǎ⊥⊥,W

⊥⊥
Q ) are independent

copies of (Ǎ,WQ). Furthermore, A, A
⊥, WP and W

⊥
P are mutually independent of Ǎ, Ǎ

⊥, Ǎ
⊥⊥, WQ, W

⊥
Q, W

⊥⊥
Q .

Finally,

ζ̌ = exp
{
Θ�

W
⊥
P + Θ�

W
⊥
Q + (

Θ⊥)�
W

⊥⊥
Q − Θ�IP Θ/2 − Θ�IQΘ/2 − (

Θ⊥)�
IQΘ⊥/2

}
,
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and it can be checked easily that E(ζ̌ ) = 1.
It now follows from Le Cam’s Third Lemma that P ∗

n is contiguous with respect to Pn, and if Yn is an arbitrary
sequence of random variables such that Yn � Y under Pn, as n → ∞, then Yn � Y � under P ∗

n also. Moreover, the
limit Y � is such that for any bounded continuous function L,

E
{
L

(
Y �

)} = E
{
ζ̌L(Y )

}
.

Next, proceeding as in the proof of Theorem 1, one can see (separating θn from An for added clarity) that

E
{
L

(
A,A

�, Ǎ, Ǎ
�, Ǎ

��,Θ,Θ�
)} = E

{
ζ̌L

(
A,A

⊥, Ǎ, Ǎ
⊥, Ǎ

⊥⊥,Θ,Θ⊥)}
,

where for a, ǎ and Γ given in the statement of the theorem,

Θ� = Θ⊥ + Γ Θ, A
� = A

⊥ + aΘ, Ǎ
� = Ǎ

⊥ + ǎΘ, Ǎ
�� = Ǎ

⊥⊥ + ǎΘ�.

To verify this assertion, fix ω1, ω2, ω3, ω4, ω5 ∈ R
�m and for j ∈ {1,2,3}, let sj1, . . . , sj�, tj = tj1, . . . , tj� ∈ T .

Next, set

Z1 = (
A(s11)

�, . . . ,A(s1�)
�)�

, Z2 = (
Ǎ(t11)

�, . . . , Ǎ(t1�)
�)�

,

Z3 = (
A

⊥(s21)
�, . . . ,A

⊥(s2�)
�)�

Z4 = (
Ǎ

⊥(t21)
�, . . . , Ǎ

⊥(t2�)
�)�

,

Z5 = (
Ǎ

⊥⊥(t31)
�, . . . , Ǎ

⊥⊥(t3�)
�)�

, Z� = (
A

�(s21)
�, . . . ,A

�(s2�)
�)�

,

Ž� = (
Ǎ

�(t21)
�, . . . , Ǎ

�(t2�)
�)�

, Ž�� = (
Ǎ

��(t31)
�, . . . , Ǎ

��(t3�)
�)�

,

and let Σj = E(ZjZ
�
j ) for j ∈ {1, . . . ,5}. Further set

a�
3 = E

(
W

⊥
P Z�

3

)
, a�

4 = E
(
W

⊥
QZ�

4

)
, a�

5 = E
(
W

⊥⊥
Q Z�

5

)
and

ζ̌1 = exp
(
Θ�

W
⊥
P − Θ�IP Θ/2

)
,

ζ̌2 = exp
(
Θ�

W
⊥
P − Θ�IP Θ/2 + Θ�

W
⊥
Q − Θ�IQΘ/2

)
.

It is then possible to develop

Ω = E
{
exp

(
iω�

1 Z1 + iω�
2 Z� + iω�

3 Z3 + iω�
4 Ž� + iω�

5 Ž��
)} = E

{
ζ̌ exp

(
i

5∑
j=1

ω�
j Zj

)}

as follows, exploiting multivariate normality and independence as appropriate:

Ω = E

{
ζ̌2 exp

(
i

4∑
j=1

ω�
j Zj

)
exp

(−ω�
5 Σ5ω5/2 + iω�

5 a5Θ
⊥)}

= E

{
ζ̌1 exp

(
i

3∑
j=1

ω�
j Zj

)
exp

(−ω�
5 Σ5ω5/2 + iω�

5 a5Θ
⊥)

exp
(−ω�

4 Σ4ω4/2 + iω�
4 a4Θ

)}

= E

{(
i

2∑
j=1

ω�
j Zj

)
exp

(−ω�
5 Σ5ω5/2 − ω�

5 a5Λa�
5 ω5/2 + iω�

5 Γ a5Θ
)

× exp
(−ω�

4 Σ4ω4/2 + iω�
4 a4Θ − ω�

3 Σ3ω3/2 + iω�
3 a3Θ + ω�

5 a5Ξω3
)}

.
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In the last expression, Γ = E(ΘW
�
P ) and Λ = E(ΘΘ�) are as defined in Lemma 2, while Ξ = E(Θ⊥Z�

3 ). The first
part of Theorem 2 is thus proved, because

Ω = E
[
exp

[
iω�

1 Z1 + iω�
2 Z2 + iω�

3 (Z3 + a3Θ) + iω�
4 (Z4 + a4Θ) + iω�

5

{
Z5 + a5

(
Θ⊥ + Γ Θ

)}]]
.

To establish the second claim, one can proceed along the same lines as in the proof of the second part of Theorem 1.
Given that (An, θn) is P -regular for A × O and Ǎn is Q-regular for A, one has a = ǎ = Ȧ and Γ = I . It follows that as

n → ∞, the pair (GǍ∗
n ,G

Ǎ∗∗
n ) converges weakly in D(T ;R

s)⊗2 to (GǍ�
,G

Ǎ��
), where G

Ǎ� = A−B
� = A−Ǎ

⊥−ȦΘ

and

G
Ǎ�� = A

� − B
�� = A

⊥ + ȦΘ − Ǎ
⊥⊥ − Ȧ

(
Θ⊥ + Θ

) = A
⊥ − Ǎ

⊥⊥ − ȦΘ⊥.

As the latter is clearly an independent copy of G
Ǎ�

, the proof is complete.

Appendix D. Proof of Proposition 4

Set J = Jθ0 and let J ′(u) be the p × d matrix of partial derivatives of J (u) with respect to the components of
u = (u1, . . . , ud) ∈ (0,1)d . It is then easy to check that

Θn = n−1/2
n∑

i=1

J (Ui) + n−1/2
n∑

i=1

[
J
{
Hn(Ui)

} − J (Ui)
] + oP (1)

= n−1/2
n∑

i=1

J (Ui) + 1

n

n∑
i=1

J ′(Ui)Hn(Ui) + oP (1).

It follows from results in Section 3.2 of [19] that if

Θ†
n = n−1/2

n∑
i=1

J (Ui),

then, as n → ∞,

(
Hn,Θ

†
n,Θn

)
�

(
H,Θ†,Θ

)
in D([0,1]d ;R

d) × R
p⊗2, where the weak limit is a continuous centered Gaussian process in which

Θ = Θ† +
∫

J ′(u)H(u)c(u)du.

Under these conditions, it follows that, as n → ∞,

(
Cn,Θn,WC,n

)
� (C,Θ,WC)

in D([0,1]d ;R
d) × R

p⊗2, where the limit is a continuous, centered Gaussian process. Moreover, the sequence θn is
P -regular for O. For, under P ,

E
(
ΘW

�
C

) = E
(
Θ†

W
�
C

) +
∫

J ′(u)E
{
H(u)W�

C

}
c(u)du =

∫
J (u)ċ(u)du = I

in view of (24) and the fact that E{H(u)W�
C } = 0 for all u ∈ [0,1]d .
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Appendix E. Proof of Proposition 5

Set J = Jθ0 and J ′ as in Appendix D. One can then see that

Θn = n−1/2
n∑

i=1

J
{
C(Ui)

} + 1

n

n∑
i=1

J ′{C(Ui)
}
Bn(Ui) + oP (1).

Hence if

Θ‡
n = n−1/2

n∑
i=1

J
{
C(Ui)

}
,

results in Section 3.2 of [18] imply that, as n → ∞,(
Bn,Θ

‡
n,Θn

)
�

(
B,Θ‡,Θ

)
in D([0,1]d ;R) × R

p⊗2, where the weak limit is a continuous centered Gaussian process with

Θ = Θ‡ +
∫

J ′{C(u)
}
B(u)c(u)du.

Moreover, the sequence θn is P -regular for O. For, under P ,

E
(
ΘW

�
C

) = E
(
Θ‡

W
�
C

) +
∫

J ′{C(u)
}
E
{
B(u)W�

C

}
c(u)du

=
∫

J
{
C(u)

}
ċ(u)du +

∫
J ′{C(u)

}
Ċ(u)c(u)du = I,

in view of (25) and the fact that Bn is P -regular for C .

Appendix F. Smoothness conditions for the existence of Kendall’s process

Condition I. For all θ ∈ O, the distribution function Kθ of C(U) admits a density kθ which is continuous on O ×(0,1]
and such that kθ (w) = o{w−1/2 log−1/2−ε(1/w)} for some ε > 0, as w → 0.

Condition II. For all θ ∈ O, there exists a version of the conditional distribution of the vector U given C(U) = w such
that, for any continuous real-valued function g on [0,1]d , the mapping w �→ μ(w,g) = kθ (w)E{g(U)|C(U) = w} is
continuous on (0,1] with μ(1, g) = k(θ,1) g(1, . . . ,1).

Appendix G. Proof of Proposition 6

To show that the sequence Kn is P -regular for K, it remains to see that E(KW
�
C) = K̇ . To this end, first observe that

together with Conditions I and II in Appendix F, the smoothness assumptions on kθ imply

K̇(w) =
∫ w

0
k̇(t)dt

for all w ∈ [0,1] and

K̇(1) =
[

∂

∂θ

∫ 1

0
kθ (w)dw

]
θ=θ0

= 0.
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Similarly, the conditions on cθ are such that
∫

ċ(u)du = 0.
Write a(w) = E{K(w)W�

C } for all w ∈ [0,1]. To show that a = K̇ , let � : [0,1] → R be an arbitrary continuous
function and write

L(w) =
∫ w

0
�(t)dt

for arbitrary w ∈ [0,1]. Interchanging the order of integration, one finds

∫ 1

0
K̇(w)�(w)dw =

∫ 1

0

∫ w

0
k̇(t)�(w)dt dw = −

∫ 1

0
k̇(t)L(t)dt.

Using the fact that E{B(u)W�
C } = Ċ(u) for all u ∈ [0,1]d , one then gets

∫ 1

0
K̇(w)�(w)dw = −

[
∂

∂θ

∫ 1

0
kθ (w)L(w)dw

]
θ=θ0

= −
[

∂

∂θ

∫
cθ (u)L

{
Cθ(u)

}
du

]
θ=θ0

= −
∫

ċ(u)L
{
C(u)

}
du −

∫
c(u)�

{
C(u)

}
Ċ(u)du. (G.1)

Similarly,

∫ 1

0
E
{
μ(w,B)W�

C

}
�(w)dw =

∫ 1

0
μ(w, Ċ)�(w)dw

=
∫ 1

0
k(w)E

{
Ċ(U)|C(U) = w

}
�(w)dw

=
∫

c(u)�
{
C(u)

}
Ċ(u)du. (G.2)

Finally,

∫ 1

0
E
{
α(w)W�

C

}
�(w)dw =

∫ 1

0

∫
�(w)ċ(u)1

{
C(u) ≤ w

}
dudw

=
∫

ċ(u)
[
L(1) − L

{
C(u)

}]
du

= −
∫

ċ(u)L
{
C(u)

}
du

=
∫ 1

0
K̇(w)�(w)dw +

∫ 1

0
E
{
μ(w,B)W�

C

}
�(w)dw. (G.3)

Upon substitution of (G.1) and (G.2) into (G.3), one finds

∫ 1

0

{
a(w) − K̇(w)

}
�(w)dw = 0.

As the choice of � is arbitrary, one may conclude.
Note that as a by-product of the proof, one finds K̇(w) = E{α(w)W�

C } − μ(w, Ċ) for all w ∈ [0,1].
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Appendix H. Proof of Proposition 9

To show that the sequence Dn is P -regular for K, it remains to check that E(DW
�
F ) = K̇ . To this end, write a(w) =

E{D(w)W�
F } for all w ∈ [0,1] and let � : [0,1] → R be an arbitrary continuous function. Let also L(w) denote its

integral on the interval [0,w], as in Appendix G.
Write a(w) = E{D(w)W�

F } for every w ∈ [0,1]. Proceeding as in the proof of Proposition 6, one finds

∫ 1

0
K̇(w)�(w)dw = −

[
∂

∂θ

∫ 1

0
kθ (w)L(w)dw

]
θ=θ0

= −
[

∂

∂θ

∫
fθ (x)L

{
Fθ(x)

}
dx

]
θ=θ0

= −
∫

ḟ (x)L
{
F(x)

}
dx −

∫
f (x)�

{
F(x)

}
Ḟ (x)dx. (H.1)

Similarly,

∫ 1

0
E
{
κ(w, Ḟ )ΘW

�
F

}
�(w)dw =

∫ 1

0
κ(w, Ḟ )�(w)dw

=
∫ 1

0
k(w)E

{
Ḟ (X)|F(X) = w

}
�(w)dw

=
∫

f (x)�
{
F(x)

}
Ḟ (x)dx (H.2)

and ∫ 1

0
E
{
α(w)W�

F

}
�(w)dw =

∫ 1

0

∫
�(w)ḟ (x)1

{
F(x) ≤ w

}
dx dw

=
∫

ḟ (x)
[
L(1) − L

{
F(x)

}]
dx

= −
∫

ḟ (x)L
{
F(x)

}
dx. (H.3)

Upon substitution of (H.1) and (H.2) into (H.3), one finds

∫ 1

0

{
a(w) − K̇(w)

}
�(w)dw = 0.

As the choice of � is arbitrary, one may conclude.
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