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Valley-symmetry-preserved transport in ballistic
graphene with gate-defined carrier guiding
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Ever since the discovery of graphene1, valley symmetry
and its control2,3 in the material have been a focus of
continued studies in relation to valleytronics4,5. Carrier-guiding
quasi-one-dimensional (1D) graphene nanoribbons (GNRs)6–12

with quantized energy subbands preserving the intrinsic
Dirac nature have provided an ideal system to that end.
Here, by guiding carriers through dual-gate operation in
high-mobility monolayer graphene, we report the realization
of quantized conductance in steps of 4e2/h in zero magnetic
field, which arises from the full symmetry conservation of
quasi-1D ballistic GNRs with effective zigzag-edge conduc-
tion. A tight-binding model calculation confirms conductance
quantization corresponding to zigzag-edge conduction even
for arbitrary GNR orientation. Valley-symmetry conservation
is further confirmed by intrinsic conductance interference
with a preserved Berry phase of π in a graphene-based
Aharonov–Bohm(AB)ringpreparedbysimilardualgating.This
top-down approach for gate-defined carrier guiding in ballistic
graphene is of particular relevance in the efforts towards
efficient and promising valleytronic applications.

Valley-symmetry conservation in graphene nanoribbons (GNRs)
has not yet been fully achieved. GNRs obtained by dry etching
or grown naturally by chemical vapour deposition have exhibited
transport characteristics with valley mixing or formation of an
energy gap within the diffusive transport channels, which is
most likely caused by random disorder13–16. Even suspended
GNRs with reduced random disorder have exhibited conductance
quantization17 in steps of 2e2/h (where e is the electron charge
and h is Planck’s constant), which suggests broken valley symmetry
in the ballistic one-dimensional (1D) transport channels of
the system. Gate-defined guiding of non-relativistic carriers
in bilayer graphene has also been attempted, but again with
conductance quantization18,19 in steps of 2e2/h. More recently,
1D guiding of carriers has been introduced by electronic total
reflection employing electricalmeans, whichmimics fibre optics20,21.
However, the scheme suffers from low efficiency of carrier
guiding and does not show sufficient performance for adoption in
valleytronic applications.

Valley-symmetry conservation requires effective suppression of
intervalley scattering arising from short-range scattering from
disorder such as atomically sharp defects, substrate roughness,
and edge irregularities22,23. In this study, we have overcome these
obstacles to obtaining rich intrinsic physics related to valley
symmetry in transport measurements by taking several measures
during device fabrication. We minimized scattering by atomically
sharp defects and substrate roughness by sandwiching a monolayer

graphene sheet between clean hexagonal boron nitride (hBN)
layers24, and eliminated scattering by edge irregularities by gate-
defined guiding of carriers instead of physically tailoring carrier-
transport paths in graphene. This unique carrier-guiding scheme
leads to the practical realization of quasi-1D ballistic GNRs that
conserve the intrinsic symmetries of graphene as in zigzag-edged
GNRs. The scheme enables the exploration of graphene-based
valleytronics and the investigation of phase-coherent transport
characteristics governed by the intrinsic Dirac nature of graphene.
These have not been explored thoroughly in previous studies
based on diffusive GNRs with etch-defined physical paths25–27 of
carrier transport.

In this study, we prepared both back- and top-gated ballistic
graphene devices, wherein a monolayer graphene sheet was
encapsulated by two thin crystalline hBN layers using a dry transfer
method (see Methods and Fig. 1a). Through the dual operation of
the back gate and top gates, the conductance map shown in Fig. 1b
was obtained at T = 0.15K. The diagonal boundary between the
unipolar and bipolar regions, corresponding to the local minimum
conductance, tracks the charge neutral point (CNP) in the top-
gated region.

Electrostatic simulations based on finite-element analysis
confirmed that the carrier type and the density n in the globally
back-gated and the locally top-gated graphene regions (regions A
and B in Fig. 1c) can be independently fine-tuned by applying gate
voltages Vbg and Vtg, respectively. The density profiles shown in
Fig. 1c correspond to the points denoted by the circular symbols
in Fig. 1b (colours match in the two figures). Although graphene
has no intrinsic energy gap at the CNP, effective carrier guiding
was attained along the quasi-1D transport channels between two
adjacent top gates, with a sharp difference in the gated potential
(or in corresponding n) as the Fermi level EF of region B was
tuned to the CNP whereas that of region A was off-tuned from
the CNP. However, due to the potential gradient existing at the
boundary of A and B, the effective channel width W ∗ experienced
by carriers becomes narrower than the lithographically defined
physical channel widthW (see Fig. 1c). The potential gradient over
a scale larger than the lattice constant of graphene helps retain
the valley symmetry for the carrier transport in a gate-defined
GNR compared to the atomically sharp boundary of a physically
etched GNR.

Figure 2a,b shows the conductance of the device as a function
of Fermi wavevector kF, and the corresponding transconductance
dG/dkF, which emphasizes features in the conductance G itself. The
most interesting characteristics of Fig. 2a,b are that the observed
conductance is quantized in multiples of ∼4e2/h, starting from
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Figure 1 | Gate-defined quasi-1D transport channel built on graphene. a, Scanning electron microscopy (SEM) image of the device to verify the guiding of

charge carriers with dual-gate operation. Top gates were deposited on top of a hexagonal boron nitride (hBN)/graphene/hBN device with standard Hall-bar

geometry. Scale bar, 1 µm. b, Differential conductance G as a function of back-gate voltage Vbg and top-gate voltage Vtg measured at temperature

T=0.15K in zero magnetic field. Coloured circular symbols on the diagonal minimum-conductance boundary between the monopolar and bipolar regions

correspond to the same-coloured carrier density profile shown in c. c, Numerical calculation (lower panel) of carrier density for gate operation

corresponding to the schematic device configuration (upper panel). By controlling both Vbg and Vtg, the Fermi level of graphene under the top gate was

tuned to stay on the charge neutral state. The distance between two top gatesW was ∼120 nm, withW∗ (∼65 nm) being the effective channel width

estimated from the observed conductance profile.

10e2/h, which stems from the full conservation of both spin
and valley symmetries in graphene. Previously, only conductance
quantization in steps of 2e2/h or appreciably smaller values13–19,21

has been reported. The discrepancy in earlier studies could have
been caused by edge disorder, low transmission probability in the
conducting channels, or a possible change in the electronic structure
in physically tailored GNR structures10–12. In our devices, the
graphene sheet was free of structural deformation or corresponding
changes in the electronic structure. Only the potential difference at
the boundary between the top gate and the graphene guides the flow
of carriers (more details will be discussed later, in relation to Fig. 3).
The observed zero-field conductance quantization in multiples of
∼4e2/h in Fig. 2 demonstrates the first realization of quasi-1D
ballistic conducting channels in graphene with full preservation of
spin and valley symmetries.

We estimated the value of W ∗ using the semi-classical
relationship G = 4e2/πh · kFW

∗ (dashed line in Fig. 2a). Values
of W ∗ ∼ 65 nm for holes (Fig. 2a) and 52 nm for electrons
(not shown) were obtained. Conductance quantization was
reproduced in separate measurements on other devices with similar
geometries (see Supplementary Information). The semi-classical
expression is valid for le ≫ W ∗ (le; mean free path) and Fermi
wavelengths28λF < 2W ∗. The former condition was easily satisfied
and the latter condition was also met for |Vbg − VCNP| > 2V (or
kF > 63× 106 m-1; VCNP = 1.4V for the back gate). For a larger λF
in the range |Vbg −VCNP| < 2V, however, the quantum effect was
disturbed and the conductance did not follow the semi-classical
relationship. It is believed that this, together with weakened carrier
guiding near the CNP, suppressed the expected conductance
quantization for G=2, 6e2/h in our measurements.

The quantized channel conductance in steps of 4e2/h as 10, 14,
18, 22, . . . times e2/h (supposedly starting fromG=2e2/h) observed

here is a typical characteristic of ballistic zigzag-edged GNRs6–12.
These robust zigzag-edge conduction characteristics in our GNRs
are highly interesting, because no specific orientation was chosen
for the quasi-1D channel between two adjacent top gates. It is
highly unlikely that all the quasi-1D channels in our devices were
aligned parallel to the zigzag-edge direction. Instead, it is highly
probable that both zigzag- and armchair-like edges were mixed
together randomly.

To confirm the characteristics of the robust zigzag-edged GNRs,
we modelled the effective 1D transport channels confined by dual-
gate operation as GNRs. The electronic structure and quantum
conductance of the GNRs were calculated using the tight-binding
method. First-principles calculations were also performed to
examine the validity of the tight-binding calculations (see Methods
and Supplementary Fig. 7). Considering only one π electron
per carbon, the tight-binding Hamiltonian of GNRs is given by:
H =ε

∑
i c

†

i
ci − t

∑
〈ij〉(c

†

i
cj + h.c.), where ε is the on-site energy, t

is the nearest-neighbour hopping parameter, c†
i
(ci) is the creation

(annihilation) operator and h.c. is theHermitian conjugate. Because
the potential variation in the effective channel is not significant,
the modulation in on-site and hopping terms was neglected in
our calculations (for the effect of the boundary smoothness on
the conductance, see Methods and Supplementary Fig. 9). The
quantum conductance was calculated using the Landauer–Buttiker
formalism: G(E)= 2e2/hTR(E), where the transmission coefficient
TR(E) is obtained using the recursive Green’s function method29. In
our calculations, the semi-infinite left and right leads and the central
conductor are all GNRs. As shown in Fig. 1c, electronic transport is
achieved in the 1D effective channel with widthW ∗.

The translational vector Tmn =ma1 +na2 ≡ (m,n) with integers
m and n (Fig. 3a) characterizes the axial orientation of GNRs.
The zigzag-edged (armchair-edged) GNRs have T01 (T11). All other
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Figure 2 | Quantized conductance of a quasi-1D graphene channel in zero

magnetic field. a, G as a function of the Fermi wavevector kF and Vbg (or the

carrier density n; Vbg −VCNP =−10V corresponds to n=8.2× 1011 cm−2)

for holes, with clear quantization observed at 10, 14, 18, 22, 26e2/h

at T=0.15K. The dashed line is a fit using the semi-classical relation

G=4e2/h ·kFW/π in the ballistic transport regime, which gives the effective

channel widthW∗ ∼65 nm. The inset shows the SEM image of the top gate

deposited on the hBN/graphene/hBN stack (graphene is denoted in blue).

The physical channel width between the two top gates,W, was 120 nm.

b, Variation of the transconductance dG/dkF. The minima, nearly periodic in

4e2/h, correspond to the appearance of plateaux in the conductance trace.

directions fall in between these two vectors. Atomic structures of
GNRs together with Tmn are presented in the Supplementary Fig. 6.

Figure 3b shows calculated band structures of 60-nm-wideGNRs
for various axial orientations. The position of the valleys in the
1D Brillouin zone (BZ) is determined by the zone-folding scheme6

(Fig. 3c). The two inequivalent valleys (K and K′) of graphene are
projected onto k=±l(m− n)/3 in the 1D BZ with l = 2π/|Tmn|,
the size of the 1D BZ. If m−n is not a multiple of three, K and K′

are projected onto different k points, which guarantees suppression
of the intervalley scattering by crystal momentum conservation.
Otherwise (that is, for (1,4), (2,5) and (1,1) orientations), the two
valleys are projected onto the Ŵ point (see Fig. 3b), which in
principle can lead to intervalley scattering. However, even in this
case of arbitrarily oriented GNRs, the boundary conditions7,9,11

suppress the intervalley scattering, except in the case of armchair-
edged boundary conditions. The imbalance in the number of
sublattices at the edge sites (see Supplementary Fig. 6) decouples the
states at the K and K′ valleys, leading to the zigzag-like boundary
conditions imposing suppression of the valley mixing9. The only
exception is all-armchair-edged GNRs, and thus the conductance
step of 4e2/h occurs for arbitrarily orientedGNRs. The valleymixing
in 1D conducting channels in graphene can be understood in
terms of the crystal momentum and pseudospin conservations (see
Supplementary Information and Supplementary Fig. 10).

Calculated band structures and quantumconductance for a (1,2)-
oriented GNR are plotted in Fig. 3d and for a (1,4)-oriented GNR in
Fig. 3e. We clearly observe a conductance step of 4e2/h, two units of
quantum conductance each fromnon-mixed valleys (for other types
of GNR, see Supplementary Fig. 8). The conductance of 2e2/h near
the CNP is the contribution from the edge-localized flat band. All
these results demonstrate that arbitrarily oriented graphene quasi-
1D channels defined with gate operation have the same conducting
properties as zigzag-edged GNRs.

To further confirm the effectiveness of the conservation of
valley symmetry in graphene along the specified guiding path,
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Figure 3 | Tight-binding calculations for GNRs with arbitrary axial direction. a, Hexagonal lattice of graphene. a1 and a2 are the unit vectors.

Tmn =ma1 +na2≡ (m,n) is the translational vector that characterizes the axial direction of GNRs. b, Calculated band structures of 60-nm-wide GNRs for

various axial directions, as denoted at the top of the panels. Leftmost panel, (0,1) zigzag-edged GNR and rightmost panel, (1,1) armchair-edged GNR.

c, Zone folding of the graphene 2D BZ into a 1D BZ of (1,2) GNR. Projections of the Dirac valleys at K (blue cone) and K′ (red cone) into 1D BZ (solid line in

orange) are illustrated in the enlarged circle. d,e, The band structure (left panel) and quantum conductance (right panel) of 60-nm-wide GNR with (1,2) (d)

and (1,4) (e) axial direction. The quantum conductance reveals a step of 4e2/h, the same as for the zigzag-edged GNR.
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Figure 4 | Aharonov–Bohm interference in a ballistic graphene device. a, SEM image of the device showing the Aharonov–Bohm (AB) interference.

Ring-shaped top gates are connected together by air bridging. Scale bar, 1 µm. b, Negative magnetoconductance of the interferometer at T=0.15K for

Vbg =30V. Periodic oscillations are clearly visible in the inset. c, 1G as a function of Vbg and B. A persistent conductance minimum exists at B=0,

pointing to the robust destructive interference over a wide range of Vbg. Bands of blueish regions around the dotted lines correspond to the first

oscillation minima. The inset, taken from a separate high-resolution scan in a narrower Vbg range for the same device, reveals continuously varying

AB oscillations.

Aharonov–Bohm (AB) interferometry was investigated with an AB
ring defined by dual-gate operation similar to that introduced above.
Figure 4a presents a typical AB interferometer in a four-terminal
configuration. The central circular top gate and the two nearby side
top gates were connected together by air bridging, which in turn
were connected to outside gating leads.

Figure 4b shows the four-terminal magnetoconductance across
the AB ring at Vbg = −30V, with the background exhibiting
a negative magnetoconductance. This arose from the enhanced
backscattering rate of carriers with increasing magnetic field, which
led to weak anti-localization30. This result suggests that the quasi-
1D transport channels formed in our device preserved the valley
symmetry with negligible intervalley scattering. Clear periodic
oscillations can be seen on top of the background (Fig. 4b), with
a magnetic-field period 1B = 56G. The period corresponds to
one flux quantum h/e threading the AB ring of 485 nm in radius,
which is in good agreement with the mean radius r = 470 nm of
the ring, estimated on the basis of scanning electron microscopy
(see the detailed fast Fourier-transform analysis in Methods and
Supplementary Fig. 12).

Details of theAB interference (see inset Fig. 4b) reveal destructive
interference for zero field, which arises from valley-symmetry-
preserving transport together with acquisition of a Berry phase
of π. This Berry phase is revealed in the wavefunction of a carrier
when it encloses the degeneracy point in momentum space without
intervalley scattering. In Fig. 4c, the destructive AB oscillations for
zero field persist near the CNP in a wide Vbg range, between −6
and −1V (VCNP =−0.5V). This finding clearly demonstrates that
the zero-field quantum phenomenon with a Berry phase of π is
closely related to the relativistic nature of carriers in graphene. A
large variation of the Fermi wavevector within this range of Vbg

caused a significant change in the propagation routes of carrier
partial waves in the AB ring, which led to an irregular but generally
continuous variation of the oscillation, except for B= 0. However,
robust preservation of the valley symmetry in our gate-defined

graphene-based AB interferometer leads to persistent destructive
interference at zero field.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Sample fabrication.Monolayer graphene was encapsulated between two relatively
thin (typically thinner than 30 nm) crystals of hBN using the dry transfer
technique24. This structure was placed onto a heavily electron-doped Si substrate
capped with a 300-nm-thick oxidation layer. The standard electron-beam
lithography process was then adopted to apply contact electrodes to the
heterostructure with the following sequence: electron (e)-beam patterning of
contact regions, plasma etching to make trenches, e-gun deposition of electrodes
and the lift-off process. Electrodes were prepared by in situ sequential deposition of
a Cr/Au (10 nm/50 nm) bilayer. The top gates were then deposited directly onto the
top hBN to make a sharp potential gradient. The sides of the heterostructure were
electrically insulated with an Al2O3 layer before depositing the top gates, because
the top-gate electrode could provide unintended electrical shorting to the side of
the heterostructure. This insulation was located far from the actual transport
channels, to ensure that it did not affect the transport characteristics related to
top gating.

For the AB interferometer, the side top gates were connected to the central
top-gate island by air bridging combined with a multilevel lithography process31.
A LOR 3A (MicroChem) resist layer was spin-coated at 4,000 r.p.m. for 30 s, and
then baked on a hot plate at 200 ◦C for 90 s. This layer was used as a temporary
support for the suspended portion of the air bridge. Following the processes of
making connections between top gates, involving standard e-beam lithography,
e-gun evaporation, and lift-off, the LOR layer was carefully removed, leaving the
air-bridge-connected top gates. The suspension height of the air bridge above the
top hBN surface was measured to be ∼350 nm. Considering the small dielectric
constant of vacuum, the air bridge had a negligible effect on the carrier modulation
in graphene underneath during top-gate operation.

Device geometry. For the GNR device discussed in the main text, the total length
between the source and drain electrodes was ∼3.8µm. The centre-to-centre
distance between the lateral voltage probes was ∼2.2µm. Lithographically defined
channel width and length of the GNR between top gates were ∼120 nm and
∼1.1µm, respectively. In the AB-ring interferometer device, the total length
between the source and drain electrodes was 4.4 µm. The centre-to-centre distance
between lateral voltage probes was ∼2.7µm. The channel width and the average
radius of the AB ring were ∼150 nm and 470 nm, respectively. See the SEM image
of Supplementary Fig. 1.

Measurements. Application of a voltage Vbg to the Si substrate, underneath the
280-nm-thick SiO2 and a 20–30-nm-thick bottom hBN connected in series,
allowed tuning of the overall carrier density n in the graphene devices. With the top
gate deposited directly on the 10–30-nm-thick top hBN layer, n was locally
modulated in the graphene under the top gate by application of a voltage Vtg.
Electrical characterization of the devices was performed using a standard lock-in
technique operated at a frequency of 13.3Hz with an a.c. bias current of 10 nA. The
graphene layer employed in this study showed carrier mobilities ranging from
50,000 to 300,000 cm2 V−1 s−1, extracted from the conductivity at n∼1012 cm−2 at
T =0.15K. The residual carrier density from the electron-like and hole-like
puddles was approximately 1010 cm−2. Also, from the negative resistance observed
in a van der Pauw configuration, we confirmed that graphene used in our study
was in a true ballistic transport regime with sufficiently long le over the scales of the
device ∼1.1µm. As shown in Fig. 1b, the slope of the diagonal boundary between
the monopolar and bipolar regions (∼−15.7) leads to an estimation of the
thickness of the top hBN layer of ∼19 nm, where the slope is equal to the ratio of
the dielectric capacitances of the top gate and back gate. The thin top hBN layer
enabled an interface of sharp potential difference to be set up.

Details of tight-binding calculations.We performed first-principles calculations
based on the density functional theory implemented in the Quantum Espresso
package32 to check the validity of the tight-binding method. We used the ultrasoft
pseudopotential to describe the electron–ion interaction. The exchange–correlation
energy was treated within the generalized gradient approximation (GGA)
parameterized by Perdew, Burke and Ernzerhof33. The energy cutoff for the
expansion of the plane-wave basis set was 32 Ry. The Brillouin zone integration was
done with the k-point sampling at 1×30×1 grid for zigzag-edged GNRs and at

1×15×1 grid for armchair-edged GNRs. The edge atoms of GNRs were
passivated by hydrogen atoms. The Hamiltonian for the band structures was
constructed from the basis of the maximally localized Wannier functions34

(MLWFs) implemented in the Wannier90 (ref. 35). The Green’s function to
calculate the quantum conductance was also obtained from the Hamiltonian. The
semi-infinite left and right leads and the central conducting region are all GNRs29,36.

Supplementary Fig. 7 shows the calculated band structures and quantum
conductance obtained by both the first-principles and tight-binding methods. In
our tight-binding calculations, only the nearest-neighbour hopping integral was
considered and set to t =2.7 eV as in ref. 37. Despite the absence of higher-order
hopping and edge-hopping modulations, the quantum conductance step of 2e2/h
in armchair-edged GNRs (in panels a, b, e, f of Supplementary Fig. 7) and 4e2/h in
zigzag-edged GNRs (in panels c, d, g, h) are well described.

Effect of smooth channel boundaries. To investigate the effect of the boundary
smoothness on the conductance, we emulated the carrier density profile in Fig. 1c
by incorporating potential profiles (Supplementary Fig. 9a) into our tight-binding
Hamiltonian as the on-site energy term (V (yi) with yi along the transverse
direction in the channels), H =

∑
iV (yi)c

†

i
ci −

∑
〈ij〉(c

†

i
cj +h.c.). Smoothness of a

boundary is modelled by a sine function V (yi) near the GNR edge. The quantum
conductance of a 15 nm-width GNR along the zigzag and (1,4) directions (without
potential modification) is depicted in Supplementary Fig. 9b,c. The conductance
step is 4e2/h. From the semi-classical relation G= (4e2/πh)kFW

∗ in the ballistic
transport regime, the effective channel width is estimated to be ∼14 nm.
Supplementary Fig. 9d,e shows the conductance step of 4e2/h for the 1D channels
with the smooth boundaries, the same value of step as that for GNRs in
Supplementary Fig. 9b,c. This indicates that the boundary smoothness does not
disturb the conductance step, regardless of the degree of smoothness and the
channel direction. The effective channel width is estimated to be ∼15 nm. In this
calculation, to reduce the computation time, we assume the size of GNR to be
W ∗ ∼15 nm, which is smaller than the actual value ofW ∗ ∼65 nm. The
gate-defined GNR exhibit almost identical conductance plateaux as GNRs of the
same channel width with sharp boundaries.

Fast Fourier-transform analysis on AB interference. In Supplementary Fig. 12,
the Fourier spectrum of the magnetoconductance shown in Fig. 3b is plotted. The
peak seen at 1/56G−1 corresponds to the h/e-periodic AB effect. In the spectrum,
the position and width of the h/e peak correspond well to the expected h/e
oscillations, given the values of the inner and outer radii in our device (indicated as
a pink shaded region in Supplementary Fig. 12). Higher harmonics, especially
h/2e-periodic oscillations, are also visible in the Fourier spectrum. There exists a
secondary peak of ∼9% of the primary h/e-periodic oscillation amplitude,
verifying the long phase coherence in this system, as expected.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.

References
31. Liu, G., Velasco, J., Bao, W. & Lau, C. N. Fabrication of graphene p-n-p

junctions with contactless top gates. Appl. Phys. Lett. 92, 203103 (2008).
32. Giannozzi, P. et al . QUANTUM ESPRESSO: a modular and open-source

software project for quantum simulations of materials. J. Phys. Condens. Matter
21, 395502 (2009).

33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

34. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier
functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

35. Charlier, J.-C., Blase, X. & Roche, S. Electronic and transport properties of
nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

36. Sancho, M. L., Sancho, J. L. & Rubio, J. Highly convergent schemes for the
calculation of bulk and surface Green functions. J. Phys. F 15, 851–858 (1985).

37. Hancock, Y., Uppstu, A., Saloriutta, K., Harju, A. & Puska, M. Generalized
tight-binding transport model for graphene nanoribbon-based systems. Phys.
Rev. B 81, 245402 (2010).

NATURE PHYSICS | www.nature.com/naturephysics

© Macmillan Publishers Limited . All rights reserved

http://dx.doi.org/10.1038/nphys3804
www.nature.com/naturephysics

	Valley-symmetry-preserved transport in ballistic graphene with gate-defined carrier guiding
	Main
	Methods
	Sample fabrication.
	Device geometry.
	Measurements.
	Details of tight-binding calculations.
	Effect of smooth channel boundaries.
	Fast Fourier-transform analysis on AB interference.
	Data availability.

	Acknowledgements
	References


