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Abstract: The healthy properties of berries are known; however, red fruits are very perishable,
generating large losses in production and marketing. Nonetheless, these wastes can be revalued
and used. The main objective of this study was the development of biodegradable pectin films
with berry agro-industrial waste extracts to monitor salmon shelf-life. The obtained extracts from
blueberries, blackberries, and raspberries wastes were evaluated in terms of flavonols, phenols and
anthocyanins contents, and antioxidant capacity. Then, pectin films with the extracts of different
berries were developed and characterized. The results showed that the blueberry extract film was
thicker (0.248 mm), darker (L* = 61.42), and opaquer (17.71%), while the highest density (1.477 g/cm3)
was shown by the raspberry films. The results also showed that blueberries were the best for further
application due to their composition in bioactive compounds, antioxidant capacity, and color change
at different pHs. The salmon samples wrapped in blueberry films showed lower values of pH
and deterioration of fish during storage compared to the control and pectin samples. This study
contributes to the valorization of berries agro-industrial waste by the development of eco-friendly
films that can be used in the future as intelligent food packaging materials contributing to the
extension of food shelf-life as a sustainable packaging alternative.

Keywords: biopolymers; intelligent food packaging; bioactive natural compounds; biodegradable;
shelf-life; sustainability

1. Introduction

Food packaging is an essential part of the food sector as it guarantees the quality
and safety of products, helps in the transport process, provides stable storage, prevents
damage and losses, and ensures greater safety for the consumer [1,2]. Traditionally, the
packaging is made from petroleum derivatives; however, they generally contain chemicals
considered harmful, such as bisphenol and phthalates [3]. In addition, the long life and
resistance of plastics to degradation have generated an accumulation of waste that has a
great negative impact on the environment [4]. For this reason, we are currently looking
for plastic reduction systems and the development of sustainable alternatives. Some of
these alternatives are bio-based polymers, e.g., pectin [1] that can generate biodegradable
packaging materials. Likewise, these new materials can be incorporated with different
compounds, improving characteristics such as permeability or optical features, which allow
the production of smart packaging systems [5].

Intelligent packaging is one type of smart packaging and is defined as one capable of
making decisions to increase the shelf-life of the food, inform the consumer, and improve
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the quality of the product through various methods such as pH indicators through color
changes [6]. The containers with pH indicators may incorporate extracts of various fruits
or vegetables that have different properties and allow color changes associated with the
variation in the pH of the product. Some of these extracts can be obtained from berries such
as blueberries, raspberries, and blackberries, which possess antioxidant capacity thanks to
their bioactive compounds, such as phenolic compounds and anthocyanins [7]. Berries are a
product with increasing attractiveness, and their consumption has increased in recent years
due to their beneficial properties for health such as antioxidants, anticancer substances,
vitamins, minerals, fibers, and other essential nutrients [8,9]. However, berries are very
perishable products since they have a high water content, which makes them susceptible to
mechanical damage, contamination, freezing, or dehydration, generating large losses [10].
These losses generate serious nutritional, economic, and environmental problems [11]. To
circumvent these problems, the fruits are normally processed, for example, for obtaining
juices, from which numerous by-products can be achieved [12]. Food waste is already a
global problem that endangers the long-term food supply chain, with 1.300 million tons
being discarded every year [13]. For this reason, the Sustainable Development Goals
(SDGs) require, by 2030, a halving of food waste per capita in the supply and consump-
tion chain [13]. More than 1.748 million tons of wasted food correspond to fruits and
vegetables [13], so there are already several reviews on the possible applications of these
residues. Bayram et al., 2021 [14] studied the possible use of biopolymers, biocomposites,
smart packaging, and edible films or coatings. In the processing of fruits and vegetables,
by-products consisting of seeds and shells are produced in large quantities, which present
a large concentration of bioactive components such as antioxidants, pigments, proteins,
essential oils, enzymes, and dietary fibers [13].

The residues resulting from processing, called pomace, also in the case of berries can
be reused in the food industry as ingredients or natural additives due to the bioactive
compounds [11]. As previously referred to, the waste generated represents a great loss of
valuable nutrients. For this reason, the biotransformation of waste is receiving increasing
attention since it can be used as a resource to obtain useful products with added value [8].
There are numerous biopolymers used in the development of packaging materials, with
poly (lactic acid) (PLA), cellulose, starch, and chitosan being more widely used [15]. PLA is
a biodegradable polymer with mechanical properties very similar to those of thermoplastics.
Starch is also biodegradable and is a polymer that is easily found; however, it has a strong
hydrophilic behavior, making it sensitive to moisture [15]. On the other hand, cellulose is
one of the most abundant renewable materials being used as a filler or host polymer in
packaging [15]. Chitosan contains antimicrobial properties, so it can be used as a host and
antimicrobial agent [15]. As previously referred to, another polymer that can be used in the
development of packaging films is pectin, in which plant extracts can be easily added to
generate active ingredients [16]. Pectin is a good component thanks to its ability as a gelling
and emulsifying agent, generating water-soluble films with low opacity [16]. Essential
oils can be added to pectin films, the most common being cinnamon, rosemary, oregano,
cloves, thyme, lemon, and orange. Other elements that can be incorporated into pectin are
agricultural residues such as banana, orange, and lemon peels among others [16]. Plant
extracts rich in phenolic compounds are also added to pectin to increase the antioxidant
capacity of the films, although there is less research in this area compared to in essential
oils [16].

On the other hand, blueberry residues have multiple uses such as biofuel, biogas,
biochar, or biocrude oil production [17]. There are also various uses in food as additives; for
example, Rai et al., 2021 [18] observed that blueberry residues produce certain ferments that
help to improve intestinal microbiota and intestinal function, corroborating its potential
use as a functional food [18–20]. Different studies used blueberry residues to develop
smart packaging as films based on different biopolymers such as chitosan, starch, and
gelatin [21–27]. However, no subsequent application was carried out as smart packaging
on food products such as meat or fish.
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Fresh fish is considered key in the diet as it provides 17% of the animal protein
ingested [28]. Specifically, salmon (Salmo salar) is one of the most consumed products
worldwide, representing 93% of production [29]. Its consumption has been increasing
thanks to the fact that it contains beneficial components for health such as omega-3 long-
chain polyunsaturated fatty acids (LC-PUFA) [28] as well as its color, taste, protein content,
vitamins, and antioxidants [30]. However, salmon and other fishery products are very per-
ishable due to their high-water activity, almost neutral pH, and other specific components
that favor biochemical, physical, and microbial deterioration during the production chain,
specifically the deterioration that begins immediately after capture [28].

To our knowledge, there is little information on the use of residues of other berries such
as raspberries and blackberries for the development of smart packaging materials, as well
as its comparison with blueberries and their subsequent use in fish products, particularly
in salmon. In addition, few studies in the literature reported the use of pectin as a matrix to
develop intelligent packaging. For this reason, this study aimed to develop and characterize
biodegradable pectin films with the incorporation of blueberry, raspberry, and blackberry
waste extracts and to study their effect on fresh salmon shelf-life.

2. Results and Discussion
2.1. Characterization of the Extracts

The results (Table 1) indicated significant differences (p < 0.05) in flavonol content
among the different extracts. The blueberry extract was the one with the highest flavonols
content (13.65 ± 0.01 mg of quercetin equivalents per g of extract), followed by the black-
berry extract. Similar results were obtained in other studies [31,32].

Table 1. Characterization of the antioxidant properties of the extracts.

Total Polyphenols Total Flavonols Total
Anthocyanins DPPH ABTS-TEAC

(mg GAE/100 g)
(mg of Quercetin
Equivalents per g

of Extract)

(mg of Malvidin-
3-Glucoside per L

of Extract)
(% Inhibition) (µmol Trolox/g ext.)

Raspberry 11.80 ± 0.060 a 0.99 ± 0.010 c 3.54 ± 0.500 a 20.65 ± 1.340 a 1.63 ± 0.110 a

Blackberry 11.80 ± 0.050 a 3.90 ± 0.990 a 13.21 ± 2.710 b 20.85 ± 1.201 a 1.48 ± 0.180 a

Blueberry 12.14 ± 0.080 b 13.65 ± 0.010 b 8.58 ± 0.870 ab 34.00 ± 0.282 b 2.67 ± 0.135 b

The values (mean ± standard deviation) followed by different lowercase letters in the same column, for each
parameter, are significantly different (p < 0.05).

Blackberry and blueberry extracts showed the highest level of anthocyanins. The
raspberry extract (Table 1) presented the lowest level of anthocyanins compared with the
blackberry extract (p < 0.05). Different studies reported significant differences between
anthocyanins obtained from blackberries and raspberries, being the latter of lower con-
tent [32,33]. Sariburun et al., 2010 [32] reported that the content of anthocyanins in extracts
using water was more effective as they have a high solubility in water. In a variety of rasp-
berry called “Rubin”, anthocyanins obtained from an extract with water were 60.3 ± 0.7 mg
GAE/100 g, while in an extract with methanol they were 24.1 ± 0.4 mg GAE/100 g. In the
case of the blackberries, extraction with water proved to be more effective, showing values
of 54.8 ± 0.8 mg GAE/100 g while with methanol the values were lower (41.3 ± 0.3 mg
GAE/100 g) [32]. In short, a higher anthocyanin content was shown in blackberries, as in
our study.

Blueberry extract showed the highest content of total polyphenols, differing sig-
nificantly from raspberry and blackberry extracts, although their levels of polyphenols
were also high. Other authors reported a higher polyphenol content in blackberry extract
(24.85 ± 0.11 mg g−1) while that of cranberry extract was significantly lower (6.08 ± 0.04 mg
g−1) [23] due to the extraction method in water to ensure food and environmental safety. In
addition, phenols are an important indicator of antioxidant capacity [23]. In our study, the
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highest antioxidant capacity in both methods was obtained in blueberry extract (Table 1),
while no significant differences (p > 0.05) were observed between the antioxidant capacity
of blackberry and raspberry extracts. This shows the expected positive correlation between
total polyphenol content and antioxidant capacity. The use of two different methods to
measure the antioxidant capacity under different reaction conditions allowed us to establish
a more precise view of the antioxidant capacity for the developed films. Gündeşli et al.,
2019 [34] reported the highest antioxidant capacity in blackberries, followed by raspberries.
Unlike other berries, blueberries have the greatest antioxidant capacity in the early stages
of ripening, which is related to the high levels of flavonols and hydroxycinnamic acids in
the pre-ripening stage [35].

On the other hand, the antioxidant capacity of raspberries was 40% lower than that
of blueberries.

2.2. Characterization of the Developed Films
2.2.1. Thickness, Density, and Hardness

The results for thickness, density, and hardness are presented in Table 2. Significant
differences (p < 0.05) were obtained in the thicknesses of all films, with the pectin films
being thinner while the blueberry films were thicker. In either case, it is shown that the
addition of fruit powder significantly increased the thickness of the films compared to the
control (pectin). For blueberries, similar values were recorded in the literature in the studies
reported by Luchese et al., 2018 [24] and Andretta et al., 2019 [26] in cassava starch films.
However, in other studies, Luchese et al., 2018 [25] and Jamróz et al., 2019 [36] obtained
significantly lower thickness values, even at higher percentages of blueberry and yerba
mate extracts. This decrease in thickness is possibly due to the particle size of the powder,
which is within 100–300 µm. In the study by Luchese et al., 2018 [25], a lower thickness was
observed in the films made from blueberry powder with smaller particle sizes. On the other
hand, similar results to those obtained in the thickness of the films with blackberry extract
(0.2 mm) were observed in the studies of Gutiérrez, 2018 [37] and Sganzerla et al., 2021 [38].
However, the films made with raspberry powder were thicker than those reported in
Yang et al., 2021 [39], possibly due to differences in powder concentration.

Table 2. Thickness, density, and hardness of the developed films.

Thickness (mm) Density (g/cm3) Hardness (g Force)

Pectin 0.128 ± 0.009 a 1.124 ± 0.023 a 495.267 ± 15.482 a

Raspberry 0.174 ± 0.044 b 1.477 ± 0.035 b 863.756 ± 12.142 b

Blackberry 0.200 ± 0.008 c 1.316 ± 0.015 c 882.467 ± 7.688 c

Blueberry 0.248 ± 0.009 d 1.380 ± 0.007 d 763.156 ± 10. 650 d

The values (mean ± standard deviation) followed by different superscript letters in the same column, for each
parameter, are significantly different (p < 0.05).

Table 2 shows also the density in the different films; the film with raspberry extract was
the one with the highest value (1.477 g/cm3) followed by the film with blueberry extract.
However, the results obtained were lower than those of Yang et al., 2021 [39], possibly due
to the different matrices used. In our study, the films were produced with pectin while
Yang et al., 2021 [39] used a matrix comprised of pectin, sodium alginate, and xanthan gum.
This could be due to the intermolecular interactions between anthocyanins and the matrix,
directly influencing their properties and, therefore, the films that contain them [40], and
thus, hydrogen bonds benefit from a regular arrangement of the matrix chain in the film,
generating a higher density [41–43].

On the other hand, there was also a trend of increasing hardness from pectin films
to the films incorporated with the berries’ extracts. The film with the blackberry extracts
presented the highest hardness while the film with the raspberry extracts the lowest.
Probably, the intermolecular hydrogen bonds were formed between the hydroxyl groups
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of the raspberry extract and the matrix, reducing the crosslinking of water and the matrix,
thus decreasing the hardness of the film [39].

2.2.2. Color

The color and opacity of the films are shown in Table 3. Significant differences were
observed in all the color parameters between the different films, except for the L* parameter,
where there were no significant differences (p > 0.05) between the film with blackberries
and the film with blueberries. However, the pectin film showed the highest luminosity
(L*) and hue (h*). It is worth noting a clear tendency h* decrease from pectin film (85.19)
to the film with blackberries (26.19). Despite the absence of differences in the L* value
between the films with blackberry and blueberry extracts, these presented different results
in the other parameters. The film with blackberry extract was more reddish compared will
all the other films. This may be due to the different composition of anthocyanins in the
different extracts. The trend to the red/purple is the result of the presence of cyanidin,
which is purple at neutral pH [23]. The results of the parameters a* and b* coincide with
the ones given in the study of Kurek et al., 2018 [23], where the same trend was observed
among films developed with blackberries and blueberry extracts. Of the films incorporated
with berry extracts, the film with raspberry extract was the one that presented the greatest
luminosity. The luminosity of the films with raspberry extract (74.75) was similar (77.76) to
the raspberry films (0.5 g/L raspberry films) reported by Yang et al., 2021 [39].

Table 3. Color and opacity of the developed films.

L* a* b* C* h* Opacity (%)

Pectin 91.377 ± 0.437 c 1.104 ± 0.164 a 13.076 ± 0.712 a 13.126 ± 0.721 a 85.194 ± 0.549 d 11.373 ± 0.193 a

Raspberry 74.753 ± 0.563 b 23.678 ± 0.225 c 14.620 ± 0.351 c 28.056 ± 1.071 b 31.687 ± 0.462 b 13.028 ± 0.106 b

Blackberry 61.102 ± 1.722 a 28.423 ± 1.111 d 13.976 ± 0.378 b 31.672 ± 1.159 d 26.188 ± 0.355 a 16.961 ± 0.299 c

Blueberry 61.422 ± 1.378 a 16.04 ± 0.537 b 25.431 ± 0.191 d 30.070 ± 0.344 c 57.766 ± 0.862 c 17.71 ± 0.190 d

The values (mean ± standard deviation) followed by different superscript letters in the same column, for each
parameter, indicate significant differences (p < 0.05).

2.2.3. Opacity

The protective action against light is an important feature in the packaging of food
since UV radiation and light are powerful lipid oxidizers [44]. Regarding opacity, there
was a clear trend of increase in the incorporation of extracts (Table 3). The film with
blueberry extract showed higher opacity than the film with blackberry extract, followed by
the raspberry one.

Conversely, Kurek et al., 2018 [23] reported that blackberry extract films turned out to
be opaquer than blueberry extract films.

2.2.4. Color Changes at Different pH

The color parameters were evaluated in solutions with different pHs to determine
whether color changes at an environmental pH can be shown. The highest color variability
according to pH changes was presented in the films with blueberry and raspberry extracts
(Figure 1).

In the case of blueberries, significant differences (p < 0.05) were determined in the
R value from pH 2 to 12. Yellowish brown hues of pH 2–5 were obtained, turning to a
slightly darker brown up to pH 12. However, the film with raspberry extract showed
very few color variations at different pHs, apart from some points showing significant
differences (p < 0.05) in R, G, and B values between pH 2 and 6. In fact, these changes were
not noticeable in the visual assessment (Figure 1).
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Other authors such as Kurek et al., 2018 [23] determined color parameters L, a, and
b in chitosan films with blueberry and blackberry residue in a pH range of 2–12. Red
colors from pH 2 to 4; blue/green at pH 5, 6, and 7; and dark green at pH 10 and 12 were
observed for blueberries [23]. Separately, a red color was displayed at pH 2 and 4; violet
at pH 5, 6, and 7; and dark blue at pH 10 and 12 for blackberries. In contrast, in a film of
carboxymethylcellulose (CMC) and blackberries, the colors obtained in a pH range of 1 to
13 varied from pink in an acid medium to yellowish green in a basic medium [38], possibly
due to the influence of the CMC matrix. Luchese et al., 2017 [22] determined the color
changes in chitosan films with blueberries, on a pH scale of 2–12, obtaining results like those
of Kurek et al., 2018 [23]. In addition, the process of prior blanching of the fruits caused
the luminosity values to be lower, obtaining darker films [22]. This procedure was also
performed in our study, which is why darker films were obtained such as those of Luchese
et al., 2017 [22]. This fact is because in the production of films with unblanched fruits there
is a greater degradation of anthocyanins [22]. Andretta et al., 2019 [26] observed in their
study with blueberries a color variation from red/orange at acid pH and green/ yellowish
at basic pH. Yun et al., 2019 [45] developed films with starch-based blueberries, obtaining
colors from pale violet to intense red when exposed to hydrogen chloride. However, in
exposure to ammonia, the violet turned blue and then green.

In the case of raspberry, variability was also observed, going from a yellowish rose at
pH 2, 3, and 4 to a stronger rose at pH 5 and then to a yellowish rose again in the rest of
the pH. In the study of Yang et al., 2021 [39], the color variation was from red to pink from
pH 1 to 6, from pink to violet-blue from pH 7 to 10, and green from pH 11 to 13. These
colors are because in the acidic media, the red flavylium cation form of the anthocyanins
predominates, which changes its structure as the pH becomes basic until it becomes a
yellow chalcone [39,40].

Therefore, the films with blueberry extract were selected in our study for the second
phase of the study to monitor the shelf-life of salmon fillets due to their higher polyphenol
content and second-best in anthocyanin content. In addition, the films were opaquer and
showed visible color changes at different pHs.

2.2.5. Biodegradation Properties
Soil

The films showed no changes in their structure after 24 h, although presented some
water absorption (from the wet soil). After the seventh day, the films started to show some
changes in their structure due to the solubility in water (Figure 2A).
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Moreover, the organic matter and the availability of phosphorus in the soil contribute
to a higher load of fungi also responsible for biodegradation [46]. A study in which cassava
starch films were developed showed similar results, with signs of biodegradation after
6 days and greater changes in the degradation of the films after 12 days [47].

Norcino et al., 2020 [48] developed pectin-based films with copaiba oil. In this study,
the films were practically biodegraded in the soil after 28 days.

In a recent study reported by Ren et al., 2022 [49], pectin-based films also biodegraded
significantly after three weeks and were biodegraded completely after five weeks.

The degradation can occur firstly from different physical and biological processes,
including wetting/drying, heating/cooling, or freezing/thawing. These processes con-
tribute to the cracking of the polymeric materials. In this study, the initial breakdown of
the films occurred due to the presence of water. Then, during the degradation process,
the extracellular enzymes from the microorganisms break down the polymer and the de-
polymerization occurs. Short chains or smaller molecules, such as oligomers, dimers, and
monomers, pass the semipermeable outer bacterial membranes and are then converted
to carbon dioxide, water, and biomass as the final products of the biodegradation [50,51].
The European Standard EN 13432 [52] indicates 90% as the value for packaging to be
considered biodegradable by biological action in 6 months. Thus, it is possible to affirm
that the developed films can be considered biodegradable.
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Seawater

The films showed several changes during the biodegradation test in seawater (Figure 2B).
After the second day, the films with the addition of berry extract kept their initial appearance
but showed some loss of color. The results presented by Alvarez-Zeferino et al., 2015 [53]
and Pereira et al., 2021 [54] are in agreement with the ones obtained in this study showing
low levels of biodegradation in the first days of testing.

On the 30th day, the films’ loss of color was more evident, and the seawater in which
they were submerged began to show signs of clouding due to the transfer of pigments (i.e.,
anthocyanins) from the films to the seawater. On the 45th day, it was possible to verify
that all films started to be fragmented, and the clouding of the water was also noticeable.
On the 60th day, greater changes were observed in the films’ structure, as they started to
fragment into small pieces and dissolve considerably in the seawater. These changes are
related to the swelling of the film, as both the swelling and the solubility of the film can
directly affect the water-resistance properties of the film, particularly if it occurs in a humid
environment [55,56].

After 90 days, all films lost their initial rectangular shape and were quite fragmented,
presenting a “flaky” appearance. Several factors influence the rate of biodegradation of
the films, such as the swelling, the movement/agitation of the seawater, the existence of
oxygenation, the presence of microorganisms in the seawater, and the ratio volume of
seawater/film [53,56,57].

In general, biodegradation in soil was practically obtained in a short period, with
an average degradation rate of 3.6% per day while the biodegradation in seawater took
more time, showing an average degradation rate of 1% per day. These results are of
extreme importance since they quantify and prove the fast degradation of these types
of biodegradable materials against plastic or even paper packaging. Paper and plastic
degradation are very slow processes, and they can take several years to be fully degraded,
depending on the type of plastic or paper and the used conditions [58].

For example, brown newspapers started to degrade by the 10th–12th week of exposure
in soil, remaining small pieces of the papers, while plastic bags had thinned off and
become transparent [59]. In another study, low-density polyethylene (LDPE) bags were
estimated to decompose by 50% after 4.6 years in inland (buried) and 3.4 years in marine
environments [60].

2.3. Effect of Films Monitoring Freshness of Salmon Fillets
2.3.1. pH

The results (Table 4) showed a clear upward trend in the pH for both control and
pectin treatment over storage. On the other hand, the pH of the fish samples treated with
the film with blueberry extract showed a tendency to be maintained until day 4 with a
subsequent rise on day 7. In addition, significant differences (p < 0.05) were observed
among the treatments from day 2.

Table 4. pHs of salmon fillets during storage with different treatments.

pH

Day 1 Day 2 Day 4 Day 7

Control 6.57 ± 0.021 a B 6.40 ± 0.030 c A 6.97 ± 0.052 c C 7.20 ± 0.020 b D

Pectin 6.40 ± 0.000 a C 6.24 ± 0.011 b B 6.97 ± 0.021 b A 6.92 ± 0.020 a D

Blueberry 6.24 ± 0.010 a D 6.00 ± 0.000 a C 5.58 ± 0.013 a B 6.95 ± 0.000 a A

The values followed by different lowercase superscript letters in the same column, for each parameter, are
significantly different (p < 0.05). The values followed by different capital superscript letters in the same row, for
each parameter, are significantly different (p < 0.05).

The initial pH values in salmon (pH > 6) for all samples with the different treatments
were similar to those reported by Ambrosio et al., 2022 [28]. The increase in pH may be
due to the production of ammonia and amines generated by the autolysis of nitrogenous
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compounds of bacteria that proliferate the decomposition process [28,61–64]. The films with
the blueberry extract prevented the pH increase by avoiding the degradation of proteins
and, therefore, the release of alkaline compounds during the first days of storage [65].

Therefore, the results showed a faster degradation in the control samples during
the storage time than in the treated samples, especially for the film with the blueberry
extract. The films composed of blueberry extract exerted a greater positive effect against
deterioration since, being rich in antioxidants, these compounds can migrate to the fish
surface, reducing the oxidation reactions [63,66].

2.3.2. Moisture

In the first days of storage, there were no significant differences in the humidity of the
samples between each treatment. From the fourth day, it is possible to observe significant
differences (p < 0.05) between all the treatments (Table 5). A tendency of humidity decrease
was also obtained throughout the storage in the treatments compared to the control samples.
However, this trend only showed significance in the blueberry treatment. As in our trial,
other authors obtained a reduction of humidity in the samples with the different films,
possibly due to the absorption of water, which can be beneficial since it can favor the control
of microbial growth [65] or due to drip loss.

Table 5. Moisture (%) of salmon fillets during storage with different treatments.

Moisture (%)

Day 1 Day 2 Day 4 Day 7

Control 63. 48 ± 0.011 a A 65.29 ± 0.030 a A 68.43 ± 0.010 c A 67.32 ± 0.010 b A

Pectin 63.48 ± 0.020 a B 55.72 ± 0.012 a A 54.46 ± 0.030 b A 51.77± 0.021 a A

Blueberry 63.48 ± 0.000 a C 57.96 ± 0.011 a BC 44.11 ± 0.000 a A 54.28± 0.010 a B

The values followed by different lowercase superscript letters in the same column, for each parameter, are
significantly different (p < 0.05). The values followed by different capital superscript letters in the same row, for
each parameter, are significantly different (p < 0.05).

2.3.3. Fish Color

For the color analysis, a two-way ANOVA was performed, thus obtaining the global
changes regarding the treatment and storage time.

The RGB color model is based on the mixing of red, green, and blue with different
intensities to generate a color. Therefore, the color is presented as an RGB triplet. Each of
the three colors can vary from zero to the maximum value (in this case 1023). The black
color is represented as (000, 000, 000) and the white (1023, 1023, 1023) [67].

The color of fish is one of the most important qualities since it has a great influence
on the consumer at the time of purchase [28]. Regarding the color in the salmon samples,
significant differences (p < 0.05) were observed in all measurement parameters (R, G, and B)
between the control samples and the samples with the film with blueberry extract (Figure 3).

The R value (red) obtained the highest values in the pectin treatment and on day 7
of storage. On day 7, the fish samples with a greater reddish color were observed in the
samples with blueberry treatment, possibly due to the migration of the compound from the
film to the fish. The same was observed in the study of Rico et al., 2020 [65], where color
migration occurred from the fennel components to the sample.

On the other hand, authors such as Albertos et al., 2015 [68] obtained a significant
decrease in luminosity (L*) in trout (Trachurus trachurus), due to the discoloration and
reduction of redness during storage, as in our control samples. This reduction of reddish
coloration in salmonids may be due to the oxidation of hemoproteins (hemoglobin, and
myoglobin), since in their oxidized ferric form they present a brown color [68]. In the
treated fish, the reddish color remained better, possibly due to the antioxidant effect of
the film.
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2.3.4. Film Color

Clear differences were obtained in the treatment with blueberries compared to the
treatment with pectin and without any treatment (Figure 3). In the case of G, a small
reduction was observed between treatments, although it was not significantly different.

Blueberry film obtained a brownish to more yellowish coloration throughout the
storage time. Zhai et al., 2017 [69] showed similar results in a study to control carp
freshness using colorimetric films with different anthocyanin concentrations.

The film with the lowest concentration changed from a purple color, going through
green, to yellow in a period of about 6 days, while the film with the highest concentration
showed no color differences until the third day. In the case of Wu et al., 2019 [70], the color
changes were observed at 24 h of storage, going from purple to grayish-blue or brown
depending on the anthocyanin concentration of the film.

These results were probably related to the increase of TVB-N (total volatile basic
nitrogen). The antioxidant capacity of anthocyanins migrating to fish would inhibit the
formation of volatile substances with nitrogen in storage [70], and their effects could vary
depending on whether they are in contact with fish. In our case, the film itself simply
by being on the surface of the food reduced exposure to oxygen and thus oxidation. In
addition, the salmon used in our study has muscle tissue with a reddish coloration due to
its high myoglobin content in comparison to Zhai et al., 2017 [69] and Wu et al., 2019 [70],
which may affect the color measurement of the films covering the samples.

2.4. Sensorial Analysis

The control samples presented the highest degree of fishy odor established by the
panelists (Figure 4), while the lowest value corresponded to the treatment with the film
with blueberry extracts. Albertos et al., 2015, 2018 [68,71] performed a sensory analysis in



Int. J. Mol. Sci. 2022, 23, 8970 11 of 18

which similar results were obtained concerning the control of fish odor, rancid odor, and
ammonia, which reflects the deterioration of fish meat. In addition, the introduction of
red fruit extract prevented the formation of unpleasant odors (fishy smell, rancid smell,
and ammonia smell) in the film-covered samples, detecting a slightly fruity aroma. The
same happened in the study of Albertos et al., 2018 [71], where an “herbaceous” aroma was
found in films incorporated with olive leaf powder.
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Figure 4. Sensorial analysis on day 2. Aromatic (A), rot (R), oxidation (Ox), dehydration (D), general
acceptability (GA), fishy odor (FO), rancid odor (RO), ammonia odor (AO), and others (O).

The control samples showed variability in the different parameters such as fish odor,
putrefactive odor, degree of dehydration, ammonia odor . . . etc., over storage. On the
other hand, in the treatment with the film with the blueberry extract, the values remained
constant. This would indicate the effectiveness of films in preserving the fish characteristics.

3. Materials and Methods
3.1. Materials

All the chemicals used in the formulation of films were food-grade quality Panreac
products (Panreac Química, Barcelona, Spain). Other reagents were purchased from Sigma-
Aldrich (Sigma Aldrich Chemical Co., Steinheim, Germany), and pectin was supplied by
Guinama (Guinama S.L.U., Valencia, Spain).

3.2. Raw Materials

Blackberry, raspberry, and blueberry wastes were obtained from Viveros Campiñas
(Chañe, Segovia, Spain). Berry wastes were disinfected with sodium hypochlorite (12 ◦C)
for 15 min and immediately dried at room temperature. Afterward, blackberry, raspberry,
and blueberry wastes were steamed at 100 ◦C for 3 min. Then, they were frozen at −83 ◦C
until berry extract preparation.

Gutted salmon (Salmon salar) was provided by Gallega de Distribuidores de Ali-
mentación (GADISA) (Ávila, Spain). Fish was captured in the north of Galicia. The salmon
was stored at 4 ◦C and immediately processed.

3.3. Development of Films with Berry Extracts
3.3.1. Preparation of Berry Extracts

Berries wastes were lyophilized (Lyoquest-55, Azbil Telstar Technologies SLU, Terrasa,
Spain) and then milled and sieved (100–300 µm) to obtain the residue in powder form.
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Berry extracts were then dissolved in distilled water (12.5% w/v) for 2 h of stirring
at room temperature. After, the suspension was centrifugated at 6000 rpm for 10 min and
filtered through Whatman grade number 1 filter paper. The extracts were then stored at
−80 ◦C until use.

3.3.2. Development of the Films
Pectin Films

Low methoxy amidated pectin (3% w/v) was dissolved in water and stirred at 80 ◦C
to obtain a homogenous solution. Afterward, glycerol (3%/biopolymer) was added as a
plasticizer for 2 h to achieve complete dispersion. The films were obtained by casting 20 mL
in 90 mm-diameter Petri dishes and dried at room temperature for 24 h. Before analyses,
the films were peeled-off and conditioned in desiccators over a saturated solution of KBr
(58% relative humidity) (Figure 5).
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Films Incorporated with Berry Extracts

Berry extracts (10% w/v) were completely dissolved in water before pectin addition.
From this point, the films were prepared as previously referred (Figure 5).

3.4. Characterization of the Antioxidant Properties of the Extracts
3.4.1. Total Phenols (TPs) Content

Total phenols were measured using the Folin–Ciocalteu method [72]. Results were
expressed as mg gallic acid equivalents (GAE) per g of extract using a calibration curve with
gallic acid (Sigma Aldrich Co., Steinheim, Germany) as the standard (9.8 µM to 70 µM).

3.4.2. Total Flavonols Content

Total flavonols content was analyzed with Neus reagent according to Arnous, Markis,
and Kefalas, 2002 [73]. Results were expressed as mg of quercetin equivalents per g
of extract.

3.4.3. Total Anthocyanin Content

Total anthocyanin content was determined using the pH differential method [74].
Dilutions were prepared in 50 mL volumetric flasks with buffers pH 1.0 and pH 4.5.
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Absorbance was then recorded at 520 nm (Thermo Fisher Scientific, Genesys 150, Madison,
WI, USA). Results were expressed as mg of malvidin-3-glucoside per L of extract.

3.4.4. DPPH (1,1-Diphenyl-2-picrylhydrazyl) Radical Scavenging Activity

The effect of antioxidant activity on DPPH was estimated according to the procedure
described by Brand-Williams, Cuvelier, and Berset 1995 [75]. Results were expressed as a
percentage of the inhibition of DPPH radical.

3.4.5. TEAC (Trolox Equivalent Antioxidant Capacity)

The analysis was carried out according to the method reported by Re et al., 1999 [76];
100 µL of diluted samples was mixed with 1000 µL of ABTS and working solution in an
Eppendorf tube. The decay in absorbance at 734 nm was recorded over 30 min with a
spectrophotometer (Thermo Fisher Scientific, Genesys 150, Madison, WI, USA). Trolox was
used as the standard (7.5–240 µM). Results were corrected for moisture and expressed as
µmol TE 100 g−1 d.m.

3.5. Characterization of the Developed Films
3.5.1. Film Thickness and Density

The film thickness was measured using a digital micrometer (Mitutoyo, model IDC
112, Kawasaki, Japan). The results were expressed as the average of 10 replicates of samples
taken from different locations on the film surface.

Density was determined from rectangular samples of the developed films with the
following dimensions: 30 mm × 20 mm. Then, each film was weighted, and for volume
calculation, the thickness of each film was used.

3.5.2. Hardness

The films’ hardness (g force) was determined according to the method of Bamdad et al.,
2006 [77], with some modifications. Samples were measured in six different areas, using a
texturometer (Brookfield, LFRA 1500, Middleborough, MA, USA), a stainless-steel probe
with 4 mm diameter (TA44), with a target value of 6 mm of penetration and a test speed of
0.5 mm/s.

3.5.3. Color

Color measurements were performed using a Minolta CR-400 colorimeter (Minolta
Inc, Tokyo, Japan) with D65 as illuminant and 10◦ observer angle. The instrument was
calibrated with a white tile standard (L* = 93.97, a* = −0.88 and b* = 1.21). To measure the
color of films, a white surface was used as background. The L* parameter (lightness index
scale) ranges from 0 (black) to 100 (white). The a* parameter measures the degree of red
(+a) or green (−a) color and the b* parameter measures the degree of yellow (+b) or blue
(−b) color. Three measurements were taken from each sample, and six samples from each
film were tested.

3.5.4. Opacity

The opacity of the samples was calculated based on the method reported by Martins
et al., 2010 [78], as the relationship between the opacity of each sample in a black standard
(Yb) and the opacity of each sample in a white standard (Yw), as can be seen in Equation (1):

Opacity (%) = Yb/Yw × 100 (1)

3.5.5. Color Changes at Different pHs

The films were cut into pieces of 2 cm2 and were immersed in different pH buffers to
adjust pH values to 2, 3, 4, 5, 6, 7, 8, 9, 10, and 12. Afterward, the color was determined
with a colorimeter on solids PCE-RGB (PCE Ibérica S.L., Albacete, Spain).
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3.6. Biodegradation Tests
3.6.1. Soil

The biodegradation test in soil was based on the methodology used by Pereira et al.,
2021 [54]. The films were cut (3 cm × 2 cm) and placed inside a perforated polyethylene
net (5 cm × 4 cm; mesh opening 4 mm). Then, the films were buried in soil (Eco grow:
nitrogen = 80–150 mg L−1; phosphorus = 80–150 mg L−1; potassium = 80–150 mg L−1;
organic Matter = >70%; pH = 5.5–6.5; humidity = 50–60%; conductivity = 0.2–1.2 EC) at a
distance of 11 cm from the surface in a rectangular vase (71 cm × 26 cm × 25.5 cm) and
with a distance of 5 cm between each film. The soil was watered with 500 mL of water every
7 days at 25 ◦C. The films’ appearance was photographed, and the area of biodegradation
was measured during the time of the experiment. This test was carried out in triplicate for
each sample.

3.6.2. Seawater

The biodegradation test in seawater was based on the methodology used by Pereira et al.,
2021 [54]. The films were cut (3 cm × 2 cm) and submerged in 300 mL of seawater (Faro,
Portugal, pH = 7.20). The samples were shaken at 150 rpm (Edmund Bühler, KL2 shaker,
Tübingen, Germany) and 25 ◦C. The films’ appearance was photographed during the time
of the experiment. This test was carried out in triplicate for each sample.

3.7. Monitoring the Shelf-Life of Salmon Fillets
3.7.1. Preparation and Treatments of Salmon Samples

Gutted salmon (Salmon salar) was skinned and filleted, then cut into pieces of 5.7 × 2.5 cm
(weighing approximately 10 g) and randomly allocated into 3 batches: fish without film
(control), pectin film (pectin), and pectin film with blueberry extract. Each fish sample was
individually wrapped with 90 mm-diameter films (control, pectin, and blueberry) with the
help of tweezers under hygienic conditions. Afterward, all treatments were stored at 4 ◦C
for 7 days. The assay was run in duplicate. All analyses were performed in triplicate.

3.7.2. pH

Each fish sample (10 g) was homogenized in 100 mL of distilled water, and the mixture
was filtered. The pH (pH-meter model basic 20, Crison, Barcelona, Spain) of the filtrate was
measured at room temperature.

3.7.3. Moisture

The moisture content of each sample was gravimetrically determined [79]: 10 g of fish
were prepared until constant weight in an air oven at 100 ◦C for about 24 h. The moisture
was expressed in percentage.

3.7.4. Color Changes

Color changes of films and fish surface without film were measured using a colorimeter
on solids PCE-RGB (PCE Ibérica S.L., Albacete, Spain) in the same conditions as previously
referred to in Section 3.5.5.

3.7.5. Sensorial Analysis

Samples were subjected to a descriptive test. A trained panel consisting of 10 panelists,
formed by 5 men and 5 women, with ages within 25–30, were recruited from the Catholic
University of Ávila, for their previous experience in sensory analysis.

In the descriptive test, the panelist scored the following different attributes: fishy
(off-odors, putrefaction) odor intensity, aromatic odor intensity, ammonia odor intensity,
other odors, drip loss, color without film (oxidation), and general acceptability. The scores
ranged between 1 and 10.
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3.8. Statistical Analysis

Data were analyzed by a one-way ANOVA. Fisher’s LSD (Least Significant Difference)
test was applied at a significance level of 0.05 for determining group differences. In the
color changes of salmon fillets, a two-way ANOVA (treatment, time) was performed.
Kruskal–Wallis test was used to examine differences in the sensorial analysis. The software
Statgraphics Centurion XVI was employed for carrying out the statistical analysis.

4. Conclusions

Berries are a source of anthocyanins and can be used as an effective method for
controlling the quality and freshness of food as pH indicators. The concentration of
anthocyanins in the developed films was a key factor influenced by both the intensity
and the rate of color change. The addition of berry extracts to pectin films contributed
to changing the films’ properties. Moreover, the pectin films’ supplement with blueberry
extracts not only showed biodegradability properties in soil and seawater but also protected
the salmon samples from deterioration due to their anthocyanin content and antioxidant
capacity, increasing the salmon’s shelf-life. This study contributes to the valorization of
berries’ agro-industrial waste by the development of eco-friendly films that can be used
in the future as food packaging materials to meet the market demands. However, more
studies are needed to evaluate different microbiological and quality parameters.

Author Contributions: Conceptualization, I.A.; formal analysis, J.R., R.M.S.C., A.D.-M. and I.A.;
investigation, J.R., R.M.S.C., A.D.-M. and I.A.; resources, J.R., R.M.S.C., A.D.-M. and I.A.; writing—
original draft preparation, J.R., R.M.S.C., A.D.-M. and I.A.; writing—review and editing, J.R., R.M.S.C.,
A.D.-M. and I.A.; supervision, J.R., R.M.S.C., A.D.-M. and I.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.-W.; Jafari, S.M. pH-Sensitive (Halochromic) Smart Packaging Films Based on

Natural Food Colorants for the Monitoring of Food Quality and Safety. Trends Food Sci. Technol. 2020, 105, 93–144. [CrossRef]
2. Singh, P.; Wani, A.A.; Langowski, H.C. Introduction: Food Packaging Materials. In Food Packaging Materials: Testing &

Quality Assurance, 1st ed.; Singh, P., Wani, A.A., Langowski, H.C., Eds.; CRC Press: Boca Ratón, FL, USA, 2017; pp. 1–11.
ISBN 978-131-537-439-0.

3. Rhim, J.W.; Park, H.M.; Ha, C.S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652.
[CrossRef]

4. Schmaltz, E.; Melvin, E.C.; Diana, Z.; Gunady, E.F.; Rittschof, D.; Somarelli, J.A.; Virdin, J.; Dunphy-Daly, M.M. Plastic pollution
solutions: Emerging technologies to prevent and collect marine plastic pollution. Environ. Int. 2020, 144, 106067. [CrossRef]
[PubMed]

5. Da Rocha, M.; Alemán, A.; Romani, V.P.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P.; Prentice, C. Effects of agar
films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life.
Food Hydrocoll. 2018, 81, 351–363. [CrossRef]

6. Kalpana, S.; Priyadarshini, S.R.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Intelligent packaging: Trends and
applications in food systems. Trends Food Sci. Technol. 2019, 93, 145–157. [CrossRef]

7. Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different
types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [CrossRef] [PubMed]

8. Pertuzatti, P.B.; Barcia, M.T. Biotransformation in temperate climate fruit: A focus on berries. A. J. Food Sci. Technol. 2015, 3, 12–17.
[CrossRef]

9. Kolman, O.J.; Ivanova, G.V.; Yamskikh, T.N.; Ivanova, A.N. Development of low-waste technologies for agro-processing
companies. IOP Conf. Ser. Earth Environ. Sci. 2020, 421, 022046. [CrossRef]

10. Kumar, S.; Baghel, M.; Yadav, A.; Dhakar, M.K. Postharvest biology and technology of berries. In Postharvest Biology and Technology
of Temperate Fruits; Mir, S.A., Shah, M.A., Mir, M.M., Eds.; Springer International Publishing AG: Gewerbestrasse, Switzerland,
2018; pp. 349–370. ISBN 978-331-976-842-4.

11. Dueñas, M.; García-Estévez, I. Agricultural and food waste: Analysis, characterization and extraction of bioactive compounds
and their possible utilization. Foods 2020, 9, 817. [CrossRef]

http://doi.org/10.1016/j.tifs.2020.08.014
http://doi.org/10.1016/j.progpolymsci.2013.05.008
http://doi.org/10.1016/j.envint.2020.106067
http://www.ncbi.nlm.nih.gov/pubmed/32889484
http://doi.org/10.1016/j.foodhyd.2018.03.017
http://doi.org/10.1016/j.tifs.2019.09.008
http://doi.org/10.3390/ijms161024673
http://www.ncbi.nlm.nih.gov/pubmed/26501271
http://doi.org/10.126991/ajfst-3-4A-3
http://doi.org/10.1088/1755-1315/421/2/022046
http://doi.org/10.3390/foods9060817


Int. J. Mol. Sci. 2022, 23, 8970 16 of 18

12. Venskutonis, P.R. Berries. In Valorization of Fruit Processing by-Products; Galanakis, C.M., Ed.; Academic Press: London, UK, 2020;
pp. 95–125. ISBN 978-012-817-106-6.

13. Basri, M.S.M.; Shah, N.N.A.K.; Sulaiman, A.; Tawakkal, I.S.M.A.; Nor, M.Z.M.; Ariffin, S.H.; Ghani, N.H.A.; Salleh, F.S.M. Progress
in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies
Used for Bioactive Compound Extraction. Polymers 2021, 13, 3503. [CrossRef] [PubMed]

14. Bayram, B.; Ozkan, G.; Kostka, T.; Capanoglu, E.; Esatbeyoglu, T. Valorization and application of fruit and vegetable wastes and
by-products for food packaging materials. Molecules 2021, 26, 4031. [CrossRef]

15. Basri, M.S.M.; Shah, N.N.A.K.; Sulaiman, A.; Tawakkal, I.S.M.A.; Nor, M.Z.M.; Ariffin, S.H.; Ghani, N.H.A.; Salleh, F.S.M. A
review on antimicrobial packaging from biodegradable polymer composites. Polymers 2022, 14, 174. [CrossRef]

16. Nastasi, J.R.; Kontogiorgos, V.; Daygon, V.D.; Fitzgerald, M.A. Pectin-based films and coatings with plant extracts as natural
preservatives: A systematic review. Trends Food Sci. Technol. 2022, 120, 193–211. [CrossRef]

17. Liu, H.; Qin, S.; Sirohi, R.; Ahluwalia, V.; Zhou, Y.; Sindhu, R.; Binod, P.; Singhnia, R.R.; Patel, A.K.; Juneja, A.; et al. Sustainable
blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review. Bioresour. Technol. 2021, 332, 125181.
[CrossRef]

18. Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent advances in the sustainable design and applications of
biodegradable polymers. Bioresour. Technol. 2021, 325, 124739. [CrossRef]

19. Cheng, Y.; Wu, T.; Chu, X.; Tang, S.; Cao, W.; Liang, F.; Fang, Y.; Pan, S.; Xu, X. Fermented blueberry pomace with antiox-
idant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode.
LWT-Food Sci. Technol. 2020, 125, 109260. [CrossRef]

20. Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent developments on solid-state fermentation for
production of microbial secondary metabolites: Challenges and solutions. Bioresour. Technol. 2021, 323, 124566. [CrossRef]

21. de Moraes Crizel, T.; Costa, T.M.H.; de Oliveira Rios, A.; Flôres, S.H. Valorization of food-grade industrial waste in the obtaining
active biodegradable films for packaging. Ind. Crops Prod. 2016, 87, 218–228. [CrossRef]

22. Luchese, C.L.; Sperotto, N.; Spada, J.C.; Tessaro, I.C. Effect of blueberry agro-industrial waste addition to corn starch-based films
for the production of a pH-indicator film. Int. J. Biol. Macromol. 2017, 104, 11–18. [CrossRef]
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34. Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Polyphenol content and antioxidant capacity of berries: A review. Int. J. Agric. For.
Life Sci. 2019, 3, 350–361.

35. Castrejón, A.D.R.; Eichholz, I.; Rohn, S.; Kroh, L.W.; Huyskens-Keil, S. Phenolic profile and antioxidant activity of highbush
blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem. 2008, 109, 564–572. [CrossRef]

36. Jamróz, E.; Kulawik, P.; Guzik, P.; Duda, I. The verification of intelligent properties of furcellaran films with plant extracts on the
stored fresh Atlantic mackerel during storage at 2 ◦C. Food Hydrocoll. 2019, 97, 105211. [CrossRef]

37. Gutiérrez, T.J. Active and intelligent films made from starchy Sources/Blackberry pulp. J. Polym. Environ. 2018, 26, 2374–2391.
[CrossRef]

http://doi.org/10.3390/polym13203503
http://www.ncbi.nlm.nih.gov/pubmed/34685262
http://doi.org/10.3390/molecules26134031
http://doi.org/10.3390/polym14010174
http://doi.org/10.1016/j.tifs.2022.01.014
http://doi.org/10.1016/j.biortech.2021.125181
http://doi.org/10.1016/j.biortech.2021.124739
http://doi.org/10.1016/j.lwt.2020.109260
http://doi.org/10.1016/j.biortech.2020.124566
http://doi.org/10.1016/j.indcrop.2016.04.039
http://doi.org/10.1016/j.ijbiomac.2017.05.149
http://doi.org/10.1016/j.foodhyd.2018.05.050
http://doi.org/10.1016/j.foodhyd.2018.04.010
http://doi.org/10.1016/j.ijbiomac.2017.08.083
http://doi.org/10.1016/j.foodhyd.2019.02.019
http://doi.org/10.1016/j.fpsl.2019.100315
http://doi.org/10.3390/foods11030338
http://doi.org/10.3390/coatings6010006
http://doi.org/10.1021/acsfoodscitech.1c00259
http://doi.org/10.15835/nbha3926265
http://doi.org/10.1111/j.1750-3841.2010.01571.x
http://doi.org/10.3390/foods9050623
http://doi.org/10.1016/j.foodchem.2008.01.007
http://doi.org/10.1016/j.foodhyd.2019.105211
http://doi.org/10.1007/s10924-017-1134-y


Int. J. Mol. Sci. 2022, 23, 8970 17 of 18

38. Sganzerla, W.G.; Ribeiro, C.P.P.; Uliana, N.R.; Rodrigues, M.B.C.; da Rosa, C.G.; Ferrareze, J.P.; Veeck, A.P.D.L.; Nunes, M.R. Bioac-
tive and pH-sensitive films based on carboxymethyl cellulose and blackberry (Morus nigra L.) anthocyanin-rich extract: A perspec-
tive coating material to improve the shelf life of cherry tomato (Solanum lycopersicum L. var. cerasiforme). Biocatal. Agric. Biotechnol.
2021, 33, 101989. [CrossRef]

39. Yang, J.; Fan, Y.; Cui, J.; Yang, L.; Su, H.; Yang, P.; Pan, J. Colorimetric films based on pectin/sodium alginate/xanthan gum
incorporated with raspberry pomace extract for monitoring protein-rich food freshness. Int. J. Biol. Macromol. 2021, 185, 959–965.
[CrossRef] [PubMed]

40. Yong, H.; Liu, J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based
active and intelligent packaging films. Food Packag. Shelf Life. 2020, 26, 100550. [CrossRef]

41. Wang, S.; Marcone, M.; Barbut, S.; Lim, L.T. The impact of anthocyanin-rich red raspberry extract (ARRE) on the properties of
edible soy protein isolate (SPI) films. J. Food Sci. 2012, 77, C497–C505. [CrossRef]

42. Wang, X.; Yong, H.; Gao, L.; Li, L.; Jin, M.; Liu, J. Preparation and characterization of antioxidant and pH-sensitive films based on
chitosan and black soybean seed coat extract. Food Hydrocoll. 2019, 89, 56–66. [CrossRef]

43. Yong, H.; Wang, X.; Bai, R.; Miao, Z.; Zhang, X.; Liu, J. Development of antioxidant and intelligent pH-sensing packaging films by
incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocoll. 2019, 90, 216–224. [CrossRef]

44. dos Santos Caetano, K.; Lopes, N.A.; Costa, T.M.H.; Brandelli, A.; Rodrigues, E.; Flôres, S.H.; Cladera-Olivera, F. Characterization
of active biodegradable films based on cassava starch and natural compounds. Food Packag. Shelf Life 2018, 16, 138–147. [CrossRef]

45. Yun, D.; Cai, H.; Liu, Y.; Xiao, L.; Song, J.; Liu, J. Development of active and intelligent films based on cassava starch and Chinese
bayberry (Myrica rubra Sieb. et Zucc.) anthocyanins. RSC Adv. 2019, 9, 30905–30916. [CrossRef] [PubMed]

46. Rech, C.R.; da Silva Brabes, K.C.; Bagnara e Silva, B.E.; Bittencourt, P.R.S.; Koschevic, M.T.; da Silveira, T.F.S.; Martines, M.A.U.;
Caon, T.; Martelli, S.M. Biodegradation of eugenol-loaded polyhydroxybutyrate films in different soil types. Case Stud. Chem.
Environ. Eng. 2020, 2, 100014. [CrossRef]

47. Jaramillo, M.C.; Gutiérrez, T.J.; Goyanes, S.; Bernal, C.; Famá, L. Biodegradability and plasticizing effect of yerba mate extract on
cassava starch edible films. Carbohydr. Polym. 2016, 151, 150–159. [CrossRef] [PubMed]

48. Norcino, L.B.; Mendes, J.F.; Natarelli, C.V.L.; Manrich, A.; Oliveira, J.E.; Mattoso, L.H.C. Pectin films loaded with copaiba oil
nanoemulsions for potential use as bio-based active packaging. Food Hydrocoll. 2020, 106, 105862. [CrossRef]

49. Ren, W.; Qiang, T.; Chen, L. Recyclable and biodegradable pectin-based film with high mechanical strength. Food Hydrocoll.
2020, 129, 107643. [CrossRef]

50. Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv.
2008, 26, 246–265. [CrossRef]

51. Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of wasted bioplastics in natural and industrial environ-
ments: A Review. Sustainability 2020, 12, 6030. [CrossRef]

52. EN 13432:2000; Packaging—Requirements for Packaging Recoverable through Composting and Biodegradation—Test. Scheme
and Evaluation Criteria for the Final Acceptance of Packaging. European Committee for Standardization: Brussels, Belgium,
2000.

53. Alvarez-Zeferino, J.C.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A. Degradation of plastics in seawater in laboratory. Open J.
Polym. Chem. 2015, 05, 55–62. [CrossRef]

54. Pereira, D.G.M.; Vieira, J.M.; Vicente, A.A.; Cruz, R.M.S. Development and Characterization of Pectin Films with Salicornia
ramosissima: Biodegradation in Soil and Seawater. Polymers 2021, 13, 2632. [CrossRef]

55. Nisar, T.; Wang, Z.-C.; Alim, A.; Iqbal, M.; Yang, X.; Sun, L.; Guo, Y. Citrus pectin films enriched with thinned young apple
polyphenols for potential use as bio-based active packaging. CYTA-J. Food 2019, 17, 695–705. [CrossRef]

56. Accinelli, C.; Saccà, M.L.; Mencarelli, M.; Vicari, A. Deterioration of bioplastic carrier bags in the environment and assessment of
a new recycling alternative. Chemosphere 2012, 89, 136–143. [CrossRef]

57. Nakayama, A.; Yamano, N.; Kawasaki, N. Biodegradation in seawater of aliphatic polyesters. Polym. Degrad. Stab. 2019, 166,
290–299. [CrossRef]

58. Webb, H.K.; Arnott, J.; Crawford, R.; Ivanova, E.P. Plastic degradation and its environmental implications with special reference
to poly (ethylene terephthalate). Polymers 2013, 5, 1–18. [CrossRef]

59. Olaosebikan, O.O.; Alo, M.N.; Ugah, U.I.; Olayemi, A.M. Environmental effect on biodegradability of plastic and paper bags.
IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 22–29. [CrossRef]

60. Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation rates of plastics
in the environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [CrossRef]

61. Gonzalez-Rodriguez, M.N.; Sanz, J.J.; Santos, J.A.; Otero, A.; Garcia-Lopez, M.L. Bacteriological quality of aquacultured freshwater
fish portions in prepackaged trays stored at 3 ◦C. J. Food Prot. 2001, 64, 1399–1404. [CrossRef]

62. Qiu, X.; Chen, S.; Liu, G.; Yang, Q. Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4 ◦C by
chitosan coating incorporated with citric acid or licorice extract. Food Chem. 2014, 162, 156–160. [CrossRef] [PubMed]

63. Albertos, I.; Martin-Diana, A.B.; Burón, M.; Rico, D. Development of functional bio-based seaweed (Himanthalia elongata and
Palmaria palmata) edible films for extending the shelf-life of fresh fish burgers. Food Packag. Shelf Life 2019, 22, 100382. [CrossRef]

http://doi.org/10.1016/j.bcab.2021.101989
http://doi.org/10.1016/j.ijbiomac.2021.06.198
http://www.ncbi.nlm.nih.gov/pubmed/34229017
http://doi.org/10.1016/j.fpsl.2020.100550
http://doi.org/10.1111/j.1750-3841.2012.02655.x
http://doi.org/10.1016/j.foodhyd.2018.10.019
http://doi.org/10.1016/j.foodhyd.2018.12.015
http://doi.org/10.1016/j.fpsl.2018.03.006
http://doi.org/10.1039/C9RA06628D
http://www.ncbi.nlm.nih.gov/pubmed/35529351
http://doi.org/10.1016/j.cscee.2020.100014
http://doi.org/10.1016/j.carbpol.2016.05.025
http://www.ncbi.nlm.nih.gov/pubmed/27474554
http://doi.org/10.1016/j.foodhyd.2020.105862
http://doi.org/10.1016/j.foodhyd.2022.107643
http://doi.org/10.1016/j.biotechadv.2007.12.005
http://doi.org/10.3390/su12156030
http://doi.org/10.4236/ojpchem.2015.54007
http://doi.org/10.3390/polym13162632
http://doi.org/10.1080/19476337.2019.1640798
http://doi.org/10.1016/j.chemosphere.2012.05.028
http://doi.org/10.1016/j.polymdegradstab.2019.06.006
http://doi.org/10.3390/polym5010001
http://doi.org/10.9790/2402-08132229
http://doi.org/10.1021/acssuschemeng.9b06635
http://doi.org/10.4315/0362-028X-64.9.1399
http://doi.org/10.1016/j.foodchem.2014.04.037
http://www.ncbi.nlm.nih.gov/pubmed/24874371
http://doi.org/10.1016/j.fpsl.2019.100382


Int. J. Mol. Sci. 2022, 23, 8970 18 of 18

64. Jiang, G.; Hou, X.; Zeng, X.; Zhang, C.; Wu, H.; Shen, G.; Li, S.; Luo, Q.; Li, M.; Liu, X.; et al. Preparation and characterization
of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) Lam) anthocyanins for
monitoring fish freshness. Int. J. Biol. Macromol. 2020, 143, 359–372. [CrossRef]

65. Rico, D.; Albertos, I.; Martinez-Alvarez, O.; Lopez-Caballero, M.E.; Martin-Diana, A.B. Use of sea fennel as a natural ingredient of
edible films for extending the shelf life of fresh fish burgers. Molecules 2020, 25, 5260. [CrossRef]

66. Sahraee, S.; Milani, J.M.; Regenstein, J.M.; Kafil, H.S. Protection of foods against oxidative deterioration using edible films and
coatings: A review. Food Biosci. 2019, 32, 100451. [CrossRef]

67. Santak, V.; Zaplotnik, R.; Milosevic, S.; Klaric, E.; Tarle, Z. Atmospheric pressure plasma jet as an accelerator of tooth bleaching.
Acta Stomatol. Croat. 2014, 48, 268. [CrossRef]

68. Albertos, I.; Jaime, I.; Diez, A.M.; González-Arnáiz, L.; Rico, D. Carob seed peel as natural antioxidant in minced and refrigerated
(4 ◦C) Atlantic horse mackerel (Trachurus trachurus). LWT-Food Sci. Technol. 2015, 64, 650–656. [CrossRef]

69. Zhai, X.; Shi, J.; Zou, X.; Wang, S.; Jiang, C.; Zhang, J.; Huang, X.; Zhang, W.; Holmes, M. Novel colorimetric films based on
starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll. 2017, 69, 308–317.
[CrossRef]

70. Wu, C.; Sun, J.; Zheng, P.; Kang, X.; Chen, M.; Li, Y.; Ge, Y.; Hu, Y.; Pang, J. Preparation of an intelligent film based on chi-
tosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydr. Polym.
2019, 222, 115006. [CrossRef]

71. Albertos, I.; Martín-Diana, A.B.; Jaime, I.; Avena-Bustillos, R.J.; McHugh, T.H.; Takeoka, G.R.; Rico, D. Antioxidant effect of olive
leaf powder on fresh Atlantic horse mackerel (Trachurus trachurus) minced muscle. J. Food Process. Preserv. 2018, 42. [CrossRef]

72. Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic.
1977, 28, 49–55.

73. Arnous, A.; Markis, D.; Kefalas, P. Correlation of pigment and flavonol content with antioxidant properties in selected aged
regional wines from Greece. J. Food Compos. Anal. 2002, 15, 655–665. [CrossRef]

74. Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages,
natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [CrossRef]

75. Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol.
1995, 28, 25–30. [CrossRef]

76. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS
radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]

77. Bamdad, F.; Goli, A.H.; Kadivar, M. Preparation and Characterization of Proteinous Film from Lentil (Lens culinaris). Food Res. Int.
2006, 39, 106–111. [CrossRef]

78. Martins, J.T.; Cerqueira, M.A.; Souza, B.W.S.; Carmo Avides, M.D.; Vicente, A.A. Shelf-life extension of ricotta cheese using
coatings of galactomannans from nonconventional sources incorporating nisin against Listeria monocytogenes. J. Agri. Food Chem.
2010, 58, 1884–1891. [CrossRef]

79. AOAC. Official Methods of Analysis of AOAC International, 16th ed.; The Association of Analytical Communities: Arlington, VA,
USA, 1995; ISBN 978-093-558-480-6.

http://doi.org/10.1016/j.ijbiomac.2019.12.024
http://doi.org/10.3390/molecules25225260
http://doi.org/10.1016/j.fbio.2019.100451
http://doi.org/10.15644/asc48/4/4
http://doi.org/10.1016/j.lwt.2015.06.037
http://doi.org/10.1016/j.foodhyd.2017.02.014
http://doi.org/10.1016/j.carbpol.2019.115006
http://doi.org/10.1111/jfpp.13397
http://doi.org/10.1006/jfca.2002.1070
http://doi.org/10.1093/jaoac/88.5.1269
http://doi.org/10.1016/S0023-6438(95)80008-5
http://doi.org/10.1016/S0891-5849(98)00315-3
http://doi.org/10.1016/j.foodres.2005.06.006
http://doi.org/10.1021/jf902774z

	Introduction 
	Results and Discussion 
	Characterization of the Extracts 
	Characterization of the Developed Films 
	Thickness, Density, and Hardness 
	Color 
	Opacity 
	Color Changes at Different pH 
	Biodegradation Properties 

	Effect of Films Monitoring Freshness of Salmon Fillets 
	pH 
	Moisture 
	Fish Color 
	Film Color 

	Sensorial Analysis 

	Materials and Methods 
	Materials 
	Raw Materials 
	Development of Films with Berry Extracts 
	Preparation of Berry Extracts 
	Development of the Films 

	Characterization of the Antioxidant Properties of the Extracts 
	Total Phenols (TPs) Content 
	Total Flavonols Content 
	Total Anthocyanin Content 
	DPPH (1,1-Diphenyl-2-picrylhydrazyl) Radical Scavenging Activity 
	TEAC (Trolox Equivalent Antioxidant Capacity) 

	Characterization of the Developed Films 
	Film Thickness and Density 
	Hardness 
	Color 
	Opacity 
	Color Changes at Different pHs 

	Biodegradation Tests 
	Soil 
	Seawater 

	Monitoring the Shelf-Life of Salmon Fillets 
	Preparation and Treatments of Salmon Samples 
	pH 
	Moisture 
	Color Changes 
	Sensorial Analysis 

	Statistical Analysis 

	Conclusions 
	References

