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1. Introduction

Although there has been a large literature dealing with numerical methods for American
options on stocks [1] and references cited therein, [2], there are not many papers for American
options on default-free bonds, see, for example, [3–7], and so on. Numerical methods such as
finite differences, binomial tree methods and Least-Square Monte Carlo simulations are still
widely used. However, these methods have several shortcomings including time consuming,
unbounded domain and discontinuous derivative with respect to the variate of payoff
function. The most recent papers, like [8–11] provide different types of methods.

In this paper we consider an alternative form of American option in which the buyer
pays a smaller up-front premium and then a constant stream of installments at a certain rate
per unit time. So the buyer can choose at any time to stop making installment payments by
either exercising the option or stopping the option contract. This option is called American
continuous-installment (CI) option. Installment options are a recent financial innovation that
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helps the buyer to reduce the cost of entering into a hedging strategy and the liquidity
risk. Nowadays, the installment options are the most actively traded warrant throughout the
financial world, such as the installment warrants on Australian stock and a 10-year warrant
with 9 annual payments offered by Deutsche bank, and so on. There is very little literature on
pricing the installment option, in particular, for pricing the American CI options. Ciurlia and
Roko [12], and Ben-Ameur et al. [13] provide numerical procedures for valuing American CI
options on stock under the geometric Brownian motion framework. However, in practice
the option on bond is more useful than option on stock, and pricing the former is more
complicated, because it is dependent on interest rates variable which is modelled by many
economical models.

The aim of this paper is to present an approximation method for pricing American
CI put option written on default-free, zero-coupon bond under Vasicek interest rate model.
This method is based on Kim integral equations using quadrature formula approximations,
such as the trapezoidal rule and the Simpson rule. The layout of this paper is as follows.
Section 2 introduces the model and provides some preliminary results. In Section 3 we
formulate the valuation problem for the American CI put option on bond describe as a free
boundary problem and describe the Kim integral equations. Numerical method and results
are presented in Section 4. Section 5 concludes.

2. The Model and Preliminary Results

In the one-factor Vasicek model [14], the short-term interest rate rt is modeled as a mean-
reverting Gaussian stochastic process on a probability space (Ω,F, P) equipped with a
filtration (Ft)t≥0. Under the the risk-neutral probability measure Q, it satisfies the linear
stochastic differential equation (SDE)

drt = κ(r∞ − rt)dt + σdWt, (2.1)

where (Wt)t≥0 is a standard Q-Brownian motion, κ > 0 is the speed of mean reversion, r∞ > 0
is the long-term value of interest rate, and σ is a constant volatility.

Consider a frictionless and no-arbitrage financial market which consists of a bank
account At with its price process given by dAt = rtAtdt and a T1-maturity default-free, zero-
coupon bond B(t, r, T1) = Bt with its no-arbitrage price at time t given by

B(t, r, T1) = EQ
{
e−

∫T1
t ruduFt

}
=̂EtQ

[
e−

∫T1
t rsds

]
, (2.2)

where EQ is the expectation under the risk-neutral probability measure Q. Vasicek [14]
provides the explicit form of the zero-bond as follows:

B(t, r, T1) = a(T1 − t)e−b(T1−t)rt (2.3)
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with

a(u) = exp

{
−
[
R∞u − R∞b(u) +

σ2

4κ
b2(u)

]}
,

b(u) =
1 − e−κu

κ
, R∞ = r∞ − σ2

2κ2
.

(2.4)

From (2.3), we are easy to obtain the following partial differential equation (P.D.E.):

∂Bt
∂t

+ κ(r∞ − r)∂Bt
∂r

+
1
2
σ2 ∂

2Bt
∂r2

− rBt = 0 (2.5)

with terminal condition B(T1, r, T1) = 1.
The payoff of a European-style put option without paying any dividends written on

the zero-coupon bond B(t, r, T1) with maturity T (T < T1), and strike price K is h(T, r) =
max{K − B(T, r, T1), 0}. The no-arbitrage price at time t (0 ≤ t ≤ T) of this option is denoted
by pe(t, r,K; T). Following Jamshidian [15], the price of this option can generally be expressed
as follows:

pe(t, r,K; T) = EtQ
[
e−

∫T
t rsdsh(T, r)

]
= KB(t, r, T)N(−d2) − B(t, r, T1)N(−d1), (2.6)

where N(·) is the 1-dimensional standard cumulative normal distribution, and

d1,2 =
1
σ0

ln
B(t, r, T1)
KB(t, r, T)

± 1
2
σ0,

σ0 = σb(T1 − T)
√

1 − e−2κ(T−t)

2κ
.

(2.7)

Now we consider a CI option written on the zero-coupon bond B(t, r, T1). Denote the
initial premium of this option to be Vt = V (t, r; q), which depends on the interest rate, time
t, and the continuous-installment rate q. Applying Ito’s Lemma to Vt, the dynamics for the
initial value of this option is obtained as follows:

dVt =

[
∂Vt
∂t

+
1
2
σ2 ∂

2Vt
∂r2

+ κ(r∞ − rt)∂Vt
∂r

− q
]
dt + σ

∂Vt
∂r

dWt. (2.8)

Theorem 2.1. In the Vasicek interest rates term structure model (2.1). The contingent claim V (t, r; q)
satisfies the inhomogeneous partial differential equation

∂Vt
∂t

+
1
2
σ2 ∂

2Vt
∂r2

+ κ(r∞ − rt)∂Vt
∂r

− rVt = q. (2.9)
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Proof. We now consider a self-financing trading strategy ψ = (ψ1, ψ2), where ψ1 and ψ2

represent positions in bank account and T1-maturity zero-coupon bonds, respectively. It is
apparent that the wealth process πt satisfies

πt = ψ1At + ψ2Bt = Vt, (2.10)

where the second equality is a consequence of the assumption that the trading strategy ψ
replicate the option. Furthermore, since ψ is self-financing, its wealth process πt also satisfies

dπt = ψ1dAt + ψ2dBt, (2.11)

so that

dπt = ψ1rt Atdt + ψ2

[
∂Bt
∂t

+ κ(r∞ − rt)∂Bt
∂r

+
1
2
σ2 ∂

2Bt
∂r2

]
dt + σψ2

∂Bt
∂r

dWt. (2.12)

From (2.8) and (2.10), we get

[
∂Vt
∂t

+
1
2
σ2 ∂

2Vt
∂r2

+ κ(r∞ − rt)∂Vt
∂r

− q − rVt
]
dt + σ

∂Vt
∂r

dWt

= ψ2

[
∂Bt
∂t

+ κ(r∞ − rt)∂Bt
∂r

+
1
2
σ2 ∂

2Bt
∂r2

− rBt
]
dt + ψ2σ

∂Bt
∂r

dWt.

(2.13)

Setting ψ2 = (∂Bt/∂r)/(∂Vt/∂r) the coefficient of dWt vanishes. It follows from (2.5) that, Vt
satisfies (2.9).

3. Kim Equations for the Price of American CI Put Option

Consider an American CI put option written on the zero-coupon bond Bt with the same
strike price K and maturity time T (T < T1). Although the underlying asset is the bond,
the independent variable is the interest rate. Similar to American continuous-installment
option on stock [12], there is an upper critical interest rate rut above which it is optimal
to stop the installment payments by exercising the option early, as well as a lower critical
interest rate rlt below which it is advantageous to terminate payments by stopping the option
contract. We may call rut to be exercising boundary and rlt to be stopping boundary. Denote
the initial premium of this put option at time t by P(t, r; q) = Pt, defined on the domain
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D = {(rt, t) ∈ [0,+∞) × [0, T]}. It is known that P(t, r; q), rut and rlt are the solution of the
following free boundary problem [4]:

∂Pt
∂t

+
1
2
σ2 ∂

2Pt
∂r2

+ κ(r∞ − rt)∂Pt
∂r

− rPt = q, ∀(r, t) ∈ C,

P
(
t, r; q

)
= 0, (r, t) ∈ S,

P
(
t, r; q

)
= K − B(t, r, T1), (r, t) ∈ E,

P
(
T, r; q

)
= h(T, r), r ≥ 0,

P
(
t, rut ; q

)
= K − B(t, rut , T1

)
,

P
(
t, rlt ; q

)
= 0, t ∈ [0, T],

(3.1)

where C = {(rt, t) ∈ (rlt , r
u
t ) × [0, T)} is a continuation region, S = {((rt, t) ∈ [0, rlt] × [0, T]} is a

stopping region, and E = {((rt, t) ∈ [rut ,+∞) × [0, T]} is a exercise region.

Remark 3.1. Due to the decreasing property of the price B(t, r, T1) on the state variable r, the
strike price K should be strictly less than B(T, 0, T1). Otherwise, exercise would never be
optimal.

It should be noted that although the value of the American CI put option has been
expressed through the use of PDEs and their boundary conditions, there is still no explicit
solution for the P.D.E. in (3.1). Numerical methods must be applied to value the price of
the American CI option on bond. In the following we will solve this problem (3.1) with
the integral equation method discussed in [8–12]. This method expresses the price of the
American option as the sum of the price of the corresponding European option and the early
exercise gains depending on the optimal exercise boundary. Jamshidian [3] uses this method
to value the American bond option in Vasicek model.

Theorem 3.2. Let the short interest rate rt satisfy model (2.1). Then the initial premium of the
American CI put option , P(t, r; q), can be written as

P
(
t, r; q

)
= pe(t, r,K; T) + q

∫T

t

B(t, r, s)N
(
e
(
r, rls

))
ds

+
∫T

t

B(t, r, s)

{
−qN(e(r, rus )) +K[rus − σ1e(r, rus )]N(−e(r, rus ))

+
Kσ1√

2π
exp

{
−e

2(r, rus )
2

}}
ds.

(3.2)
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Moreover, the optimal stopping and exercise boundaries, ru and rl, are solutions to the following
system of recursive integral equations:

K − B(t, ru, T1) = pe(t, ru,K; T) + q
∫T

t

B(t, ru, s)N
(
c
(
ru, rls

))
ds

+
∫T

t

B(t, ru, s)

{
−qN(e(ru, rus )) +K[rus − σ1e(ru, rus )]N(−e(ru, rus ))

+
Kσ1√

2π
exp

{
−e

2(ru, rus )
2

}}
ds,

0 = pe
(
t, rl, K; T

)
+ q

∫T

t

B
(
t, rl, s

)
N

(
c
(
rl, rls

))
ds

+
∫T

t

B
(
t, rl, s

){
−qN

(
e
(
rl, rus

))
+K

[
rus − σ1e

(
rl, rus

)]
N

(
−e

(
rl, rus

))

+
Kσ1√

2π
exp

{
−e

2(rl, rus
)

2

}}
ds,

(3.3)

subject to the boundary conditions

B(T, ru, T1) = K, B
(
T, rl, T1

)
= K, (3.4)

where e(r, r∗s) = ((r∗s−rt)−κ(rt−r∞)b(s−t)+(1/2)σ2b2(s−t))/σ1) and σ2
1 = (σ2/2κ)(1−e−2κ(s−t)).

Proof. Let Z(s, r) = e−
∫s

0ru duP(s, r; q) be the discounted initial premium function of the
American CI put option in the domain D. It is known that the function Z(s, r) ∈ C1,2(D).
We can apply Ito Lemma to Z(s, r) and write

Z(T, r) = Z(t, r) +
∫T

t

[
∂Z(s, r)
∂s

ds +
∂Z(s, r)
∂r

dr +
1
2
σ2 ∂

2Z(s, r)
∂r2

ds

]
. (3.5)

In terms of P(t, r; q) this means

e−
∫T
t rsdsP

(
T, r; q

)
= P

(
t, r; q

)
+
∫T

t

e−
∫s
t rudu

[
∂Ps
∂s

+
1
2
σ2 ∂

2Ps
∂r2

+ κ(r∞ − r)∂Ps
∂r

− rPs
]
ds

+
∫T

t

e−
∫s
t ruduσ

∂Ps
∂r

dWs.

(3.6)
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From (3.1) we know that P(T, r; q) = h(T, r) and P(s, r; q) = P(s, r; q)1(r,s)∈C+P(s, r; q)1(r,s)∈S+
P(s, r; q)·1(r,s)∈E = P(s, r; q)1(r,s)∈C+[K−B(s, r, T1)]1(r,s)∈E. Substituting and taking expectation
under Q on both sides of (3.6) give

pe(t, r,K; T) = EtQ
[
e−

∫T
t rsdsg(T, r)

]

= P
(
t, r; q

)
+
∫T

t

EtQ

{
e−

∫s
t rudu

[
∂Ps
∂s

+
1
2
σ2 ∂

2Ps
∂r2

+ κ(r∞ − r)∂Ps
∂r

− rPs
]}

ds

= P
(
t, r; q

)
+ q

∫T

t

EtQ

[
e−

∫s
t rudu1(rls<rs<rus )

]
ds −K

∫T

t

EtQ

{
e−

∫s
t rudurs1(rs≥rus )

}
ds.

(3.7)

From (2.1), it is easy to obtain that the state variable rs follows

rs = rte−κ(s−t) + r∞
(

1 − e−κ(s−t)
)
+ σ

∫s

t

e−κ(s−u)dWu (3.8)

for every s > t. Then the state variable rs follows the normal distribution. Furthermore,
using s-forward measures discussed in [16] and the normal distribution produces the
representation (3.2). The recursive equations (3.3) for the optimal stopping and exercise
boundaries are obtained by imposing the boundary conditions P(t, rut ; q) = K−B(t, rut , T1) and
P(t, rlt ; q) = 0. The boundary conditions (3.4) hold since the limitation for (3.3) as t ↑ T .

Remark 3.3. From (3.2), when rlt and rut are obtained by (3.3), the value of American CI put
option is also derived. However, (3.3) are Volterra integral equations and can be solved
numerically. Notice that the stopping and exercise boundary functions, rlt and rut , cannot be
proved to be monotone function of time t. So we use trapezoidal rule method to deal with
them.

4. Numerical Method and Results

In this section we provide our method for pricing American CI put option by solving the Kim
equations and present numerical results. This method consists of the following three steps.
The first is to approximate the quadrature representations in (3.3) by using the trapezoidal
rule. The second step is needed to find the numerical values of both the stopping and exercise
boundaries, rlt and rut from the equations approximated above with the Newton-Raphson
(NR) iteration approach. When the values of rlt and rut are obtained, the third step, numerical
integration of (3.2), yields the value of a given American CI put option. This method is widely
used to value American option by several authors, for example, [8, 11].

We now divide the time interval [0, T] into N subintervals: ti = iΔt, i =
0, 1, 2, . . . ,N, Δt = T/N. Denote rlti = rli and ruti = rui for i = 0, 1, 2, . . . ,N. Since TN = T ,
we get by (2.3) and(3.4)

rlN = ruN =
1

b(T1 − T) ln
a(T1 − T)

K
. (4.1)
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We define the integrand of (3.3) as the following functions:

f(t, r, s, r∗s) = B(t, r, s)
{
−qN(e(r, r∗s)) +K[r∗s − σ1e(r, r∗s)]N(−e(r, r∗s))

+
Kσ1√

2π
exp

{
−e

2(r, r∗s)
2

}}
,

g(t, r, s, r∗s) = qB(t, r, s)N(c(r, r∗s)).

(4.2)

We use the trapezoidal rule to represent the system of recursive integral equations (3.3) as
follows:

p
(
ti, r

u
i , K; T

)
+ Δt

⎡
⎣1

2
g
(
ti, r

u
i , ti, r

l
i

)
+

N−1∑
j=i+1

g
(
ti, r

u
i , tj , r

l
j

)
+

1
2
g
(
ti, r

u
i , tN, r

l
N

)
⎤
⎦

+ Δt

⎡
⎣1

2
f
(
ti, r

u
i , ti, r

u
i

)
+

N−1∑
j=i+1

f
(
ti, r

u
i , tj , r

u
j

)
+

1
2
f
(
ti, r

u
i , tN, r

u
N

)
⎤
⎦

+ B
(
ti, r

u
i , T1

) −K = 0,

p
(
ti, r

l
i , K; T

)
+ Δt

⎡
⎣1

2
g
(
ti, r

l
i , ti, r

l
i

)
+

N−1∑
j=i+1

g
(
ti, r

l
i , tj , r

l
j

)
+

1
2
g
(
ti, r

l
i , tN, r

l
N

)
⎤
⎦

+ Δt

⎡
⎣1

2
f
(
ti, r

l
i , ti, r

u
i

)
+

N−1∑
j=i+1

f
(
ti, r

l
i , tj , r

u
j

)
+

1
2
f
(
ti, r

l
i , tN, r

u
N

)
⎤
⎦

= 0, i = 0, . . . ,N − 1.
(4.3)

Since there are nonlinear system equations, one can solve it using the NR iteration. In a similar
way, numerical values of both rli and rui , i =N−1,N−2, . . . , 0 can be obtained recursively from
(4.3). We denote the representation of left side in (4.3) by F1(rli , r

u
i ) and F2(rli , r

u
i ), respectively.

Then, by the NR iteration the values (rli , r
u
i ) have approximations (rli(k), r

u
i (k)) of order k,

where k = 0, 1, 2, . . .

(
rli(k + 1)

rui (k + 1)

)
=

(
rli(k)

rui (k)

)
−

⎛
⎜⎜⎝

∂F1

∂x

∂F1

∂y
∂F2

∂x

∂F2

∂y

⎞
⎟⎟⎠

−1

·
(
F1

(
x, y

)

F2
(
x, y

)
)
|(x,y)=(rli (k),rui (k)), (4.4)

where ∂Fj/∂x and ∂Fj/∂y, j = 1, 2 are, respectively, partial derivatives of functions Fj(x, y)
with respect to x and y. When the values of all (rli , r

u
i ) for i = N, . . . , 0 are obtained, using
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Table 1: Value of parameters.

κ r∞ σ K T T1

0.05 0.083 0.015 0.95 1 5

Table 2: Initial premium of option on bond.

r0
European
put option

American CI put option
q = 1 q = 10 q = 30

0.04 0.0782 0.4409 0.3766 0.0893
0.10 0.2193 0.5928 0.4432 0.2296
0.15 0.3057 0.6556 0.4953 0.3258

Simpson’s rule for (3.2) we get the approximation, P̂0(r, q), of the value at time t = 0 for the
American CI put bond option in the following way: assuming N is an even number we have

P̂0
(
r, q

)
= p(0, r,K; T) +

Δt
3

[
g
(

0, r, 0, rl0
)
+ 4g

(
0, r, t1, rl1

)
+ 2g

(
0, r, t2, rl2

)

+ 4g
(

0, r, t3, rl3
)
+ · · · + 2g

(
0, r, tN−2, r

l
N−2

)

+4g
(

0, r, tN−1, r
l
N−1

)
+ g

(
0, r, T, rlT

)]

+
Δt
3

[
f
(
0, r, 0, ru0

)
+ 4f

(
0, r, t1, ru1

)
+ 2f

(
0, r, t2, ru2

)
+ 4f

(
0, r, t3, ru3

)
+ · · ·

+2f
(
0, r, tN−2, r

u
N−2

)
+ 4f

(
0, r, tN−1, r

u
N−1

)
+ f

(
0, r, T, ruT

)]
.

(4.5)

In Table 1, we describe the parameters in this section. In our example, we take N = 6.
Table 2 provides the initial premium of this put option on bond for different installment rate
q = 1, 10, and 30 with different initial interest rate r0 = 0.04, 0.10, and 0.15.

Table 2 shows that the larger the initial interest rate is, the higher the price of American
CI put option on bond is. However, the larger the installment rate is, the lower the price of
this option is.

Figure 1 displays the curves of both the optimal stopping and exercise boundaries
versus different installment rates q. We find out that the two boundaries decrease when
the installment rate is arising. That shows that the larger the installment rate is, the higher
probability the exercising of the option is.

5. Conclusions

A simple approximated method for pricing the American CI option written on the zero-bond
under Vasicek model is proposed. Numerical example is provided to analyze the effects of
the installment rate q on the price of this option and the optimal stopping and exercise
boundaries. However, the Vasicek model allows for negative values of interest rate. This
property is manifestly incompatible with reality. For this reason, work is ongoing to extend
them to other models.
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Figure 1: Optimal stopping and exercise boundaries for different installment rates.
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