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Abstract-- Significant uncertainty surrounds the future 

development of electricity systems, primarily in terms of size, 

location and type of new renewable generation to be connected. 

In this paper we assess the potential for flexible network 

technologies, such as phase-shifting transformers, and non-

network solutions, such as energy storage and demand-side 

management, to constitute valuable interim measures within a 

long-term planning strategy. The benefit of such flexible assets 

lies not only in the transmission services provided but also in the 

way they can facilitate and de-risk subsequent decisions by 

deferring commitment to capital-intensive projects until more 

information on generation development becomes available. A 

novel stochastic formulation for transmission expansion planning 

is presented that includes consideration of investment in these 

flexible solutions. The proposed framework is demonstrated with 

a case study on the IEEE-RTS where flexible technologies are 

shown to constitute valuable investment options when facing 

uncertainties in future renewable generation development. 

Index Terms—Benders decomposition, energy storage, 

stochastic programming, transmission expansion planning.  

NOMENCLATURE 

HE mathematical symbols in this paper are as follows.   

A.  Sets and indices 

   Set of scenarios. 

   Set of scenario tree nodes, indexed  . 

   Set of epochs, indexed  . 

   Set of demand blocks, indexed  . 

  
  Set of periods in demand block b, indexed  . 

   Set of system buses, indexed  . 

   Set of generation units, indexed  . 

   Set of transmission lines, indexed  . 
   Set of reinforcement options, indexed  . 

   The first period of demand block  . 

   The epoch to which node   belongs. 

  
  

A time-ordered set that contains all parents of 

node  , including   as the last element. 

  
 

 

A time-ordered set that contains all parents of 

node  , from the first stage up to stage  

    , where   is integer. 

B.  Input parameters 

 ̅    
Maximum stable generation for unit g under 

scenario node   (MW). 

  
  Operating cost of generating unit   (£/MWh). 
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     Demand at bus   in period   (MW). 

  
  Initial capacity of transmission line   (MW). 

   Susceptance of transmission line   (p.u.). 

   Start node for line l. 

   Destination node for line l. 

   Length of line   (km). 

     Bus-to-line incidence matrix. 

     Bus-to-generation incidence matrix. 

   Probability of scenario node  . 

   Time duration of period   (hours). 

 ̅  
Maximum capacity provided by expansion 

option   (MW). 

  Maximum angle of phase-shifter. 

  
Maximum charge/discharge rate of storage 

device (MW). 

  Energy capacity of storage device (MWh). 

  
  

Annual capital cost of reinforcement option w 

(£/km-yr). 

   Annual capital cost of one phase-shifter (£/yr). 

   
Annual capital cost of one storage device 

(£/yr). 

  
  Build time of reinforcement option w. 

   Build time of a phase-shifting transformer. 

   Build time of a storage device. 

  
  

Cumulative discount factor for investment cost 

in epoch e. 

  
   

Cumulative discount factor for operation cost 

in epoch e.  

  System balance penalty constant (£/MWh). 

C.  Decision variables 

      
 

Binary variable signifying the choice of 

reinforcement option w in scenario node   for 

line  . 

 ̃    
State variable of aggregate extra capacity 

available to line l in scenario node  . 

    
 

Binary variable signifying installation of 

phase-shifter on line l in scenario node  . 

 ̃    

Aggregate binary state variable denoting 

presence of phase-shifter on line l in scenario 

node  . 

     
Binary variable signifying installation of 

storage device at bus   in scenario node  . 

 ̃    

Aggregate binary state variable denoting 

presence of storage at bus   in scenario node 

 . 

       Output of unit   at operating point      . 

       Power flow on line   at operating point      . 
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       Bus angle of   at operating point      .  

       
Angle of phase-shifter at line    at operating 

point      . 

       
Output of storage device at bus   at operating 

point      .  

 ̃      
State of charge of storage device at bus   at 

operating point      . 

       
Curtailed demand at bus n at operating point 

     . 
  

I.  INTRODUCTION 

Many countries across the world have committed to a 

decarbonisation of their electricity system with legally binding 

targets. For example, the European Council has adopted a bill 

that dictates 20% reduction in CO2 emissions and 20% uptake 

of renewables in total energy consumption by 2020 [1]. Under 

this global drive towards renewable energy sources, the 

transmission infrastructure becomes one of the pillars of 

efficient energy markets and a key enabler for meeting new 

public policy goals. Given the unprecedented level of 

transmission investment needed for a transition towards a low- 

carbon economy, it is essential to ensure that planning 

decisions are supported by a framework that encourages long-

term economic efficiency and considers the new challenges 

and opportunities that arise within modern energy systems. 

 Historically, network planning has involved little 

uncertainty regarding future plant developments. However, the 

rapid growth of renewable energy sources entails significant 

uncertainty regarding the type and size of new generators, 

rendering the network planner unable to make fully-informed 

commitments to long-term projects. In addition, renewable 

generators are typically located further away from load centers 

and have shorter construction times than conventional plants. 

In many jurisdictions, this situation is further aggravated by 

the growing public opposition towards establishing new power 

corridors; new entrants may be connected to the system faster 

than the main grid can be upgraded to accommodate them, 

while planners are entrenched in time-consuming processes to 

secure planning permissions [2]. The result of keeping a 

reactive stance is constrained access to merit plants, mounting 

congestion costs and reduced utilization of low-carbon energy 

sources.  

Under this new paradigm, network planners must depart 

from traditional planning practices and adopt an anticipatory 

framework, where expansion projects are undertaken beyond 

the immediate system needs. In response to this new reality, 

recent advances in planning models have moved from 

deterministic to stochastic approaches, where optimal 

decisions are taken on the basis of future adaptability against a 

set of envisaged scenarios. However, the irreversible nature of 

such capital-intensive investments gives rise to a material risk 

of stranded assets or premature lock-in to sub-optimal 

investment paths in the case of unfavorable scenario 

realizations. Long build times of transmission assets further 

exacerbate these risks, severely limiting the viability of 

adopting a ‘wait-and-see’ approach. 

However, along with the challenges that arise within 

contemporary system planning, new opportunities are enabled 

by novel technologies. Although conventional capacity 

reinforcements are the backbone for enabling large power 

transfer between areas, investment in non-network 

technologies such as storage and demand-side management 

(DSM) can form a viable strategy for alleviating congestion. 

DSM is capable of rescheduling energy consumption of 

flexible loads, while storage devices enable arbitrage between 

periods of low and high energy scarcity and congestion, both 

enhancing the ability of the system to accommodate 

intermittent renewables [3]. In a similar manner, phase-

shifting transformers can alleviate congestion by controlling 

flow of power over the network [4].  

One chief aspect of the afore-mentioned technologies is that 

they enable higher utilization of the existing network 

infrastructure by providing flexibility in managing the 

demand-supply balance. Furthermore, they can be 

instrumental in preserving system security through provision 

of post-fault corrective actions [5]. This results not only in 

more economic operation than when relying solely on 

preventive generation dispatch, but also in a reduced need for 

transmission investment, which is traditionally driven by 

security considerations.  

Beyond the afore-mentioned benefits of investment and 

operation cost savings, there is a less-documented aspect of 

interest. When examined in a stochastic setting, one far-

reaching advantage of incorporating such flexible assets in the 

planning process is the possibility to defer commitment to 

major conventional projects until the need for such investment 

is fully established. Investment options that are not part of the 

optimal investment plan due to the availability of more 

efficient long-term alternatives (such as establishing a new 

power corridor), may become integral parts of a long-term 

investment strategy when the planner is facing uncertainty. In 

other words, interim measures can be useful in ‘buying time’ 

until more information regarding the generation system 

evolution is available, thus rendering viable a ‘wait-and-see’ 

strategy that would otherwise be too costly.  

This paper aims at demonstrating that investment in non-

conventional assets can hold significant value due to the 

ability to keep future options open and defer commitments to 

costly reinforcements. In addition, we show that deterministic 

planning approaches can systematically undervalue the benefit 

that such flexible assets can provide. To demonstrate the 

above concepts we propose a novel model for multi-stage 

stochastic transmission planning. We assume that a central 

planner responsible for maximizing expected social welfare is 

facing exogenous uncertainty on future renewable generation 

connections. The model identifies the optimal investment 

policy across multiple asset types while abiding to the N-1 

security criterion. The contributions of this paper are three-

fold: 

 A comprehensive stochastic planning framework is 

proposed for evaluating different investment options 

under uncertainty. 

 An integrated algorithm that addresses the model’s 

increased computational complexity is developed.  
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 The presented case studies provide insight in the role that 

flexible and non-conventional assets can play in 

accommodating renewables and their option value is 

quantified. 

The remaining sections of this paper are organized as 

follows: Section II explores existing approaches for modelling 

transmission planning under uncertainty and highlights the 

contributions of the present research. Section III presents the 

problem formulation and proposed solution approach. Section 

IV showcases numerical results obtained by case studies on 

the IEEE-RTS. Section V provides recommendations for 

future work and concludes. 

II.  LITERATURE REVIEW  

Transmission planning under uncertainty is an active 

research area that has received considerable attention in the 

past. However, most existing formulations (e.g. [6], [7]) are 

limited to a static description of uncertainty, employing 

probabilistic models. Such frameworks are limiting due to the 

inherent inability to consider openings for strategic action. 

Strategic opportunities arise in all dynamic decision systems 

under uncertainty and are due to the inter-temporal resolution 

of uncertainty [8]. It follows that a multi-stage problem 

formulation is required to shift from ‘now-or-never’ decisions 

to an integrated strategy that considers the value of delaying 

decisions until more information is known. The importance of 

managerial flexibility in capital budgeting decisions is 

recognized by many researchers [9] and has been crystallized 

in a valuation framework known as Real Options Analysis 

(ROA), with several applications on transmission planning 

(e.g. [10]). Although Real Options Analysis can take many 

forms, from binomial trees to Monte Carlo simulation, its 

application scope is usually limited to a small set of candidate 

options. Tackling larger systems requires a shift from 

valuation techniques to a systematic optimization framework. 

The tight links between option theory and stochastic 

programming have been highlighted [11]; it is the appropriate 

framework for modeling the path-dependency problem that 

characterizes real option valuation. In this vein, some recent 

studies have employed multi-stage stochastic programming to 

model transmission investment under uncertainty, as in [12] 

and [13]. However, in all existing formulations, uncertainty is 

modeled via a scenario fan that may limit the resolution of 

uncertainty to only the first state transition. As discussed in 

[14], this approach simplifies the underlying uncertainty 

structure and is not suitable for describing a stage-wise 

decision process. In this paper we enhance existing approaches 

by providing a generic stochastic problem formulation for 

arbitrary scenario tree structures with multiple nodes and 

stages, in line with proposals in [15] and [16]. Note that our 

model focuses solely on exogenous uncertainty and ignores 

the potential interactions between transmission and generation 

strategic investment decisions, although these interactions 

exist and may have a significant impact on investment as 

shown in [17] and [18]. However, full consideration of such 

interactions makes the model too complex and can lead to 

intractability, rendering problematic the long-term strategic 

analysis of even simple systems. 

III.  MATHEMATICAL FORMULATION  

We formulate the stochastic planning problem as a mixed 

integer-linear problem (MILP). Uncertainty is modelled in the 

form of a multi-stage scenario tree of |  | nodes spanning 

|  | epochs (equivalent to stages) and portrays the possible 

states and transition probabilities. For the purposes of this 

research we adopt the node-variable approach, where 

investment and operation variables are defined in terms of 

decision points, foregoing the introduction of non-

anticipativity constraints [19]. In general, a scenario tree 

provides a coherent description of the future evolution of one 

or more system parameters. It is usually the product of expert 

opinion, industry surveys and analysis of the underlying 

market dynamics. In the presented model, the scenario tree 

describes the evolution of generation capacity and is 

incorporated in the model by introducing the node-variable 

input parameters  
   

. It follows that other sources of 

uncertainty can be included in a similar manner. For example, 

a bivariate scenario tree that describes future evolution of 

phase-shifter and storage device investment costs can be 

constructed instead and incorporated in the model by 

rendering the corresponding parameters    and    to vary 

across different scenario nodes, as in   
 

 and   
 . Naturally, 

scenario trees grow exponentially with the number of 

variables they describe and thus appropriate reduction or 

sampling techniques should be applied (e.g.[14]). 

A.  Computational Challenges 

One of the key challenges of stochastic problem 

formulations is problem size; the number of operational and 

investment variables and the associated constraints grows 

rapidly with the number of scenarios and stages. One way to 

address this issue is to use a decomposition technique. The 

application of Benders decomposition [20] in the context of 

power systems has been carried out successfully in the past 

[21]. Transmission and generation planning models in 

particular exhibit problem structures highly exploitable by 

such decomposition methods [22]. Benders is an iterative 

method that decomposes the original problem into a master 

problem (transmission investment) and several sub-problems 

(power system operation). The objective function of the 

master problem is derived by substituting the operating cost 

component of the original problem with an estimate. At each 

iteration  , the master problem determines all investment 

decisions. In turn, all the operational sub-problems are solved 

subject to these decisions. The Lagrange multipliers of the 

sub-problems’ complicating constraints are then used to build 

the Benders cuts which are appended to the master problem. In 

the classical Benders approach, one extra constraint is 

generated per iteration. Here, we have employed a multicut 

Benders decomposition formulation [23], where a set of 
|  ||  | cuts is produced per iteration, improving 

representation of operational costs in the master problem and 

leading to faster convergence at the expense of additional 

constraints. 
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To maintain a tractable operation problem size, we assume 

that each year consists of several representative demand 

blocks; time-coupling is considered within periods of the same 

block but ignored in-between blocks. This is a reasonable 

assumption in the case of storage devices, which are typically 

scheduled on an intra-week basis. 

Another major source of computational complexity is 

consideration of N-1 security criteria. The traditional security-

constrained optimal power flow (SCOPF) involves exhaustive 

modelling of N-1 security constraints; this entails the 

introduction of extra variables and constraints to represent 

post-fault system operation. To address this issue, several 

different methods have been proposed in the literature (see 

[24] for a comprehensive overview). The basic idea is that 

only a few contingencies are binding and require preventive 

and/or corrective re-dispatch; post-fault constraints related to 

non-binding contingencies are redundant and can be ignored 

(e.g.  [25], [26]). However, all existing methods consider 

operation problems in isolation, not dealing with investment 

decisions that impose a more limiting coupling structure. In 

this research we propose an iterative contingency screening 

approach that is efficiently combined with the investment-

operation Benders decomposition scheme. The detailed 

mathematical formulation follows. 

B.  Investment Master Problem 

The master problem is independent of non-complicating 

variables and approximates the subproblem value using the 

scalar decision variables     . As Benders cuts are being 

added to the master problem, the subproblem is built up from 

below until the master problem equals the original problem. 
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Equation (1a) is the master problem objective function that 

corresponds to the expected discounted system cost over the 

study horizon. Our model assumes that system operations take 

place in a perfectly competitive power market. The objective 

function consists of probability-weighted investment costs 

related to line reinforcements, phase-shifters and storage 

devices as well as an approximation of the expected operating 

cost, progressively informed through the appended Benders 

cuts. Constraint (1c) states that the amount of transmission 

capacity available at node   is the aggregated capacity 

constructed over all previous epochs of the corresponding 

scenario path, while considering commissioning delays due to 

build time. Constraints (1d)-(1e) impose a similar relation 

between control and state variables for investment in phase-

shifters and storage. The binary nature of investment decision 

variables is stated in constrains (1f)-(1h). Constraints (1i) are 

the Benders cuts appended to the master problem at the     

iteration. Each cut provides a lower bound estimate for the 

operating cost of block      . It is formulated in terms of the 

trial investment solutions of the previous iteration      , the 

optimal objective value  of each operation subproblem     
    

and the Lagrange multipliers of subproblem constraints that 

couple investment decisions to operation.  

C.  Operation Subproblem 

At each iteration  , the subproblem utilizes the master’s trial 

solution (i.e. investment state variables  ̃   ̃   ̃ ) in the 

constraints that couple investment with operation. Note that 

operation subproblems can be run in parallel. 
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|        
 |  {    

           

          
, 
     

 

     
 (2p) 

|        
 |      

  ,      
        (2q) 

        
      

  ̅        ,      
         (2r) 

 

The objective function (2a) is the sum of generation costs 

and penalized curtailed demand. The latter term communicates 

the need for investment to the master problem when the trial 

decisions cannot enforce system balance under all intact and 

N-1 conditions. Constraints (2b)-(2d) force the subproblem 

auxiliary investment decision variables       and    to be 

equal to the optimal decisions supplied by the master problem 

at iteration  ; an approach similar to the one adopted in [27]. 

The resulting Lagrange multipliers       and    are used to 

construct the Benders cuts to be appended in the next iteration.  

Constraints (2e)-(2l) refer to pre-fault system operation. The 

system balance equation (2e) states that at each bus, the local 

generation and net of incoming/outgoing flows satisfy demand 

while considering operation of storage devices. The demand 

curtailment variable   acts as a slack variable to avoid 

problem infeasibility and is penalized in the objective function 

according to the large positive constant . Constraint (2f) 

provides limits on generation dispatch; time-variable limits 

should be introduced in the case of intermittent plants such as 

wind. Equation (2g) defines how power is distributed over the 

network according to the dc formulation, while taking into 

account the effect of phase-shifters. Note that in the presented 

model we consider investments only in existing lines and 

ignore the effect of reinforcements on line reactance. If 

alternative corridors are to be considered, suitable disjunctive 

constraints should be included to enforce Kirchhoff’s Voltage 

Laws on the candidate lines. Constraints (2h)-(2j) are the 

complicating constraints between investment and operation, 

ensuring that operation decision variables are limited by the 

investments commissioned at the corresponding scenario tree 

node. More precisely, constraint (2h) bounds line flows 

according to the existing capacity and trial solution of the 

master problem. Constraint (2i) allows operation of a phase-

shifter only in the case that the phase-shifter is part of the trial 

investment solution (i.e.     
   ).  In a similar fashion, 

constraint (2j) defines charge/discharge limits of each storage 

device as dependent on the corresponding investment 

decisions. Constraint (2k) limits the total energy stored 

according to the device’s energy capacity  . Equation (2l) 

states that the state of charge of a storage device is the 

summation of its previous state and the energy being 

charged/discharged in the current period. For simplicity 

reasons, our model assumes full efficiency in charging and 

discharging the storage units. Note that an initialization 

equation explicitly defining the state of charge at the first 

period of each block must be included in the formulation. 

Constraints similar to (2j-2l) can be used to model operation 

of DSM devices. 

Constraints (2m)-(2r) refer to post-fault system operation. 

Note that post-fault constraints are included only for post-fault 

operating points found in the list of binding contingencies  ̃. 

To model the corrective capabilities of phase-shifters and 

storage devices, post-fault operation variables are introduced; 

they are denoted by the superscript   and an extra index 

    , that corresponds to line   being in outage. Equation 

(2m) describes system balance after a line outage by coupling 

preventive generation dispatch with post-fault line flows and 

any available corrective actions. Constraints (2n)-(2q) are 

similar to their pre-fault counterparts (2g)-(2j), while also 

explicitly stating that by definition, when    , flow and 

phase-shift over the faulty line is zero. In addition, constraint 

(2r) ensures that the post-fault actions of storage abide to 

energy availability at the time.  

D.  Benders Convergence Criterion 

The Benders convergence criterion (3a) is defined in terms of 

the difference between upper and lower problem bounds. 
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 (3c) 

The threshold value   should be a value close to 0, in order to 

ensure close matching between the bounds of the problem.  

E.  Contingency Screening Module 

Once convergence is achieved, the optimal investment and 

operation decisions should allow for feasible post-fault 

operation across all credible contingencies; each post-fault 

operating point         is simulated and classified as binding 

or non-binding. This can be determined by evaluating the 

violation of the post-fault system balance equation while using 

the master problem’s investment solution {  ̃    ̃  ̃ } and 

subproblem’s pre-fault operation solution {       }. An 

optimization problem for each post-fault operating point 

        is formulated as follows.  

  

       
   

     {∑(        
          

 )

  

} (4a) 

 

Subject to constraints (2m)-(2r). The post-fault system balance 

equation (2m) is modified to incorporate two infeasibility 

slack variables;    and    signifying violations in the 

negative and positive direction respectively.  

 

∑           

  

∑            
    

  

     

        
          

          
 

 
      

 (4b) 

 

Classification is achieved through quantification of the two 

slack variables and comparison with a threshold value  , 

appropriately set close to 0, as shown below. 

 

       {                  

              
 (4c) 

 

In the case that ∑                 , meaning that there are 

some post-fault violations, the problem must be solved again 



 6 

with an expanded list of binding-contingencies. To this end, 

equation (4d) is applied. 

 

 ̃            ̃              (4d) 

 

Note that according to the expression above, if a post-fault 

operating point is clear under the current solution (        ) 

but has been found to be binding in the past, its status is 

reinstated as binding. This ensures that any potentially-binding 

contingencies are always considered explicitly and the 

algorithm does not oscillate between solutions.  

F.  Solution Algorithm 

For the sake of clarity, the complete solution algorithm is 

presented below. 

 

Algorithm 1 Benders with Decomposed SCOPF   

Step 1.  ̃       ,         . 
Step 2. Set Benders iteration index     and discard all 

appended Benders cuts from the master problem. 

Step 3.  Solve the master problem subject to all appended 

Benders cuts. 

Step 4. Solve all operation subproblems utilizing master 

problem’s trial investment decisions. 

Step 5. Check the convergence criterion (3a). If false, 

construct and append all relevant Benders cuts, 

update index       and go to Step 3. 

Step 6. Screen all post-fault operating points         
subject to the optimal investment and pre-fault 

operating decisions and determine binding status 

of each point according to (4c). 

Step 7. If ∑                 , go to Step 8. Otherwise 

update the  ̃ vector according to (4d) and go to 

Step 2. 

Step 8. END 

IV.  IEEE-RTS CASE STUDY 

In this section we present a case study to showcase how the 

proposed stochastic framework can evaluate the benefit of 

different expansion options. By comparing system costs when 

allowing investment solely in conventional network 

reinforcements and when considering alternative technologies, 

we can investigate how the availability of flexible assets can 

impact transmission planning under uncertainty.  

A.  Description 

The studies of this paper have been conducted using the 

IEEE 24-bus reliability system (IEEE-RTS) [28] that consists 

of 24 buses, 38 lines and 32 generation units. The topology 

has been preserved the same as in the original paper, with 

minimum stable generation for all units set to 0 MW. For the 

sake of model simplification, hydro units installed at bus 22 

have been removed and all line lengths have been set to 50km. 

In addition, all lines have been initialized with just enough 

capacity to allow N-1 secure operation with no congestion in 

the first epoch. To avoid islanding, an extra line connecting 

buses 7-8 has been added. The operating cost of the three 

generation technologies, nuclear, coal and oil, have been set to 

6, 50 and 150£/MWh respectively. Total conventional 

generation capacity in the first epoch is 3,105MW while 

system peak load is assumed to stay unchanged at 2,850MW. 

The study horizon comprises of 3 five-year epochs over 

which an uncertain amount of wind generation is connected to 

bus 24. It is assumed that following suitable consultation and 

analysis, a scenario tree describing the possible future capacity 

evolution has been constructed, shown in Fig. 1. S1 represents 

full deployment of 1600MW of wind capacity, while no wind 

capacity is built under S4. The other two scenarios result in 

800MW but differ in terms of time of deployment. Note that 

the presented case study focuses solely on the uncertainty 

regarding future penetration of renewables and thus all other 

parameters are considered to not vary across scenario nodes. 

Additional uncertainty sources can be incorporated in a 

straightforward manner, as outlined in section III.  

To capture the different operating conditions, five demand 

blocks (168 hours each – equivalent to a week) are used; one 

for each calendar season and an extra block capturing peak 

demand conditions in late December. Each block is assumed 

to repeat 12.5 times (peak week occurs only once), with the 

corresponding sub-problems weighted accordingly. To ensure 

realistic inter-temporal behavior and dependence structure, the 

weekly wind and loading time series were extracted from 

measurements of Great Britain’s aggregate wind production 

and electricity demand in 2012. Annual mean wind and 

demand factors are 32.5% and 65.8% respectively. 

 
  Fig. 1. Scenario tree for IEEE-RTS case study. Transition 

and node probabilities are shown. 

 

In terms of investment, the planner can choose to invest in the 

conventional reinforcement options shown in Table I  and 

alternative asset types shown in Table II. Conventional assets 

have been modeled with a build time delay of 1 epoch. 

Although they constitute an inexpensive way to accommodate 

oncoming generation, they suffer from ‘information lag’ and 

entail stranding risks. Note that each corridor can be upgraded 

only once per scenario. In contrast, storage devices and phase-

shifters are assumed to be free of lengthy permission processes 

and can be deployed with minimum delay. Maximum angle 

for phase-shifters   is set to 30°, while storage devices have a 

total capacity  ̅ of 1600MWh and a maximum 

charge/discharge rate   of 400MW. A penalty value   of 

30,000£/MWh was used for all simulations. The choice of   

does not influence the simulation result as long as it is a large 

and positive value that ensures satisfaction of the intact and 
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post-fault system balance equations without demand 

curtailment. In addition, a discount rate of 5% has been used 

throughout; for example, the total cost for building 

reinforcement A over the 15-year horizon is £16.3m.  
TABLE I 

TRANSMISSION LINE REINFORCEMENT OPTIONS 

Asset Type 
Reinforcement 

Capacity [MW] 

Annualized Capital 

Cost [£/year] 
Build Time 

Option A 200 1,500,000 1 epoch 

Option B 400 2,500,000 1 epoch 

TABLE II 

ALTERNATIVE INVESTMENT OPTIONS 

Asset Type 
Annualized Capital 

Cost [£/year] 
Build Time 

Phase-shifter 600,000 0 epochs 

Storage device 15,000,000 0 epochs 

 

In order to investigate system evolution under the 

deterministic and stochastic paradigms as well as quantify the 

benefit of considering investment in alternative asset types, we 

test three different models: 

 D-I: Deterministic planning model where all asset types 

are allowed. 

 S-I: Stochastic planning model where only investment in 

line reinforcements is allowed. 

 S-II:  Stochastic planning model where investment in all 

asset types is allowed. 

Note that the stochastic model presented in Section III can be 

transformed to a deterministic model in a straightforward 

manner, by employing a scenario tree of 3 nodes and setting 

all node probabilities to 1. All models have been developed 

using FICO Xpress 7.1 and run on a Xeon 3.46GHz computer, 

allowing for a parallel implementation on 10 processors. The 

Benders convergence criterion   ̅ was set to 0.1%. Table III 

displays investment decisions for all runs; for example ‘A (3-

9)’ signifies reinforcement of the corridor connecting buses 3 

and 9 with option A. Phase shifters are denoted PS and storage 

devices as STOR. In addition, we show investment (IC), 

operation (OC) and total costs (TC) for all runs. E{ } denotes 

the expectation operator.  

B.  Optimal Deterministic and Stochastic Planning 

The deterministic case studies enable us to identify the 

optimal decisions when the planner has full information on 

future generation additions. Under the high-deployment 

scenario S1, the planner chooses to invest in the main wind 

exporting corridors (3-9), (3-24) and (15-24) from the very 

first epoch; the cost of first-stage commitments is £70.8m. 

Some further investment take place in subsequent stages, 

taking advantage of phase shifters’ capability for corrective 

control. Under S2 the planner invests again in the main 

exporting corridors, but this time option A is sufficient to 

accommodate the arising flows. The same conventional 

upgrades are chosen under S3, but the later wind deployment 

allows the planner to defer commitments to epoch 2. No 

investment is warranted under S4.       

In contrast, case studies S-I and S-II employ the full 

stochastic formulation outlined in Section III. In the case of S-

I, the only first-stage commitment is to corridor (3-24) that 

connects the wind generator to high-load bus 3. The decisions 

following the high-growth transition (from node 1 → node 2) 

is a combination of option A and B reinforcements targeted at 

the same exporting corridors as in D-I. Additional investment 

in branches (14-16) and (15-16) are due to the lack of 

corrective control provision. Under S3 and S4, no further 

investments are made in later epochs. 

When investment in alternative asset types is allowed, first-

stage commitments are deferred to the second epoch. In case 

of the high-growth transition, the wind-exporting bus 24 is 

equipped with a storage device that charges during high-wind 

periods and discharges in periods of high demand, 

considerably improving utilization of the available wind 

power. In addition, a mix of conventional reinforcements are 

built and commissioned in epoch 3. Phase-shifters are also 

installed under both S1 and S2 to provide corrective control. 

In essence, the possibility for contingent deployment of 

flexible assets enables the planner to manage congestion due 

to the 800MW wind generation addition in node 2 without 

having to pre-maturely commit to a large investment in (3-24) 

as in S-I. The low-growth transition (node 1 → node 3) does 

not warrant investment in storage. An investment in corridor 

(3-24) is preferred instead, but this time option A is chosen.  

It is important to note that first-stage investment levels in 

both S-I and S-II are considerably lower when compared to 

the deterministic cases. This is because reinforcement 

decisions, especially when taken in the root node, entail a 

large risk of asset stranding; the planner chooses to be more 

conservative when facing uncertainty. This is relaxed in 

subsequent stages due to the inter-temporal uncertainty 

resolution. It is also important to underline that even though 

expected investment cost is higher in S-II, flexible assets lead 

to a reduction of total costs under all realizations. Naturally, 

expected total cost is lower in S-II and the option value of 

incorporating flexible assets is £17.6m.  

Another value of interest is the benefit of adopting the 

optimal stochastic strategy instead of naively following a 

deterministic plan when facing uncertainty. For the purposes 

of this comparison, we enforce first-stage decisions suggested 

by the four plans under D-I to the full stochastic model S-II 

and examine the extent to which the initial deterministic 

commitments can impede system development. Regarding the 

first-stage commitments suggested by D-I under S3 and S4, 

both studies recommend making no first-stage decisions, as 

also found in the optimal stochastic strategy. As a result, 

adopting one of these plans to guide first-stage decisions 

would not impose further costs. However, it is important to 

stress that this is essentially a coincidence and not a feature of 

deterministic planning. On the contrary, naively planning 

against a single eventuality can lead to over-commitment due 

to the inability to consider a ‘wait-and-see’ approach, resulting 

in substantial regret in the case of adverse realizations. This is 

the case when following the first-stage commitments 

suggested by S1 and S2, which entail considerable first-stage 

investments in conventional assets. 
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TABLE III 

CASE STUDY INVESTMENT DECISIONS AND SYSTEM COSTS 

    Investment Decisions Costs (£m) 

    Epoch 1 Epoch2 Epoch 3 IC OC TC E{IC} E{OC} E{TC} 

D
 -

 I
 

S1 A (3-9), B (3-24), 
B (15-24) 

A (3-9), 
PS (3-9), PS (11-14) 

PS (15-16) 91.3 4957.4 5048.8 

44.9 5603.8 5648.7 

S2 A (3-9), A (3-24), 

 A (15-24) 

PS (11-14) - 52.9 5267.7 5320.6 

S3 - A (3-9), A (3-24), 

A (15-24) 

PS (9-12), PS (10-12), 

PS (11-13) 

33.6 5834.9 5868.6 

S4 - - - 0.0 6295.1 6295.1 

S
 -

 I
 

S1 B (3-24) A (1-3), A (3-9), A (14-16), 
B (15-16), B (15-24) 

- 87.6 5078.7 5166.3 

57.4 5665.9 5723.3 
S2 B (3-24) A (1-3), A (3-9), A (14-16), 

B (15-16), B (15-24) 

- 87.6 5336.5 5424.1 

S3 B (3-24) - - 27.2 5897.1 5924.4 

S4 B (3-24) - - 27.2 6295.1 6322.3 

S
 -

 I
I 

S1 - A (3-9), B (3-24), B (15-24), 
PS (12-13), PS (16-19), 

STOR (24) 

PS (3-9), PS (8-9), 
PS (16-17) 

149.2 5009.9 5159.1 

79.6 5626.1 5705.7 
S2 - A (3-9), B (3-24), B (15-24), 

PS (12-13), PS (16-19), 
STOR (24) 

PS (9-11), PS (10-12) 147.6 5253.7 5401.3 

S3 - A (3-24) PS (9-11), PS (13-23) 12.9 5875.4 5888.3 

S4 - A (3-24) - 9.5 6295.1 6304.6 

 

By carrying out two further studies, we find that the 

corresponding expected system cost is £5719.7m and 

£5708.9m respectively. As a result, we can quantify the 

expected benefit of adopting a stochastic over a deterministic 

decision framework to determine first-stage commitments at 

£5.4m. This further underlines the importance of incorporating 

strategic flexibility in early commitments through the use of a 

stochastic planning framework. 

Finally, it is imperative to highlight that the benefits of 

enabling investment in flexible assets persist even when 

security constraints are not enforced. When ignoring N-1 

constrains, system costs under S-I and S-II are £5609.7m and 

£5596.6m respectively, giving rise to a substantial option 

value of £13.1m. Most notably, the main investment decision 

under S-II is the construction of a storage device at bus 24, 

similar to the strategy shown in Table III. This showcases that 

although corrective control provision is a significant 

advantage of the alternative technologies examined, the 

operational benefits stemming from the ability to control flows 

and manage the inter-temporal system-balance during intact 

operation can also be significantly large, warranting 

investment in their own right.  

In its exhaustive formulation (i.e. no contingency 

screening), S-II is a MILP with 987 binary investment 

variables and 24.6 million continuous variables. In terms of 

model performance, S-II was solved in 30 minutes, after 4 

iterations of the contingency-screening module. As discussed 

in Section III, contingencies were initially ignored and then 

binding operating points were progressively added. The first 

screening detected 17,840 binding points (out of a total 

possible of 229,320), with small further additions in the 

subsequent iterations. In an effort to solve the same problem 

with an exhaustive consideration of post-fault constraints, 

solution times exceeded the maximum time of 6 hours. This 

highlights the computational benefits of the proposed 

decomposition scheme for modelling N-1 secure operation. 

C.  Discussion 

The presented case study has shown that deterministic plans 

that ignore uncertainty lead to long-term commitments so as to 

take full advantage of the scale economies present in 

transmission investment. Stochastic planning takes a more 

conservative approach, where first-stage commitments are 

reduced to minimize the cost of stranded assets. What is 

interesting to underline is that even though some particular 

investments (in this case storage) may be sub-optimal under 

deterministic studies, the introduction of uncertainty can 

render them valuable strategic options. Investment in flexible 

assets such as phase-shifters and storage devices with reduced 

build times render the planner capable of taking a ‘wait-and-

see’ approach. Long-term commitments to line reinforcements 

can be deferred to the future, while interim system operation is 

facilitated and secured through the contingent deployment of 

flexible assets providing congestion management and 

corrective control.   

V.  CONCLUSIONS AND FUTURE WORK 

The present paper describes a tool for transmission 

planning under generation uncertainty. We have extended the 

existing models (such as [13]) by considering a multi-stage 

scenario tree, investment in non-conventional assets that entail 

inter-temporal constraints, inclusion of N-1 security 

constraints and by proposing a suitable decomposition scheme 

to render the problem tractable. It is important to note that 

even though the proposed modeling framework focuses on 

generation uncertainty, uncertainty in other system 

parameters, such as load growth or fuel prices can be 

accommodated in a straightforward manner. 

Through a case study on IEEE-RTS we investigate the 

potential for non-conventional assets to accommodate new 

sources of renewable energy, analyze their benefits and 

demonstrate that such valuable investment opportunities can 

remain undetected under deterministic approaches. The 
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envisaged low carbon future can be greatly facilitated by these 

technologies, granting planners the ability to react swiftly to 

the unfolding uncertainty and accommodate new generation in 

a timely manner, while limiting the need for anticipatory 

commitments.   

In future work, there may be significant value in moving 

beyond the current risk-neutral formulation towards 

incorporating risk-averse decision criteria such as the 

minimization of the maximum regret experienced over all 

scenario realizations, in line with propositions in [15] and 

[29]. Another area for improvement is the consideration of 

uncertainty at operating timescales related to intermittent 

generation. Finally, an aspect of high interest that could be 

modeled is the fact that capital cost of new technologies tends 

to reduce not only over time, but may also depend on 

deployment rate. Such a study would underline the importance 

of exploring and analyzing all possible paths to a low-carbon 

future. 
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