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Abstract 19 

Customer:oriented production as a sawmill strategy requires up:to:date information on 20 

the available raw material resources. Bucking is a process where the tree stem is divided 21 

into products based on the roundwood user’s needs regarding products and their quality 22 

and dimensions. Optimization methods are employed in bucking to recover the highest 23 

value of the stem for a given product price matrix and requested length:diameter 24 

distribution. A method is presented here for assessing the value of harvestable timber 25 

stands based on their product yield. Airborne laser scanning, multispectral imagery and 26 

field plots were used to produce timber statistics for a grid covering the target area. The 27 

statistics for the plots were generated from this grid. The value of the estimated tree list 28 

was assessed using a bucking:to:value simulator together with a stem quality database. 29 

Different product yield simulations in terms of volumes, timber assortment recoveries, 30 

wood paying capabilities (WPC) and value estimations based on the presented method 31 

and extensive field measurements were compared. As a conclusion, this method can 32 

estimate WPC for pulpwood and sawlogs with root mean squared errors of 32.7 and 33 

38.5 per cent, respectively, relative to extensive field measurements.  34 

 35 

 36 

 37 

 38 

Keywords 39 

Timber stand valuation; bucking; diameter distribution; product yield pricing; timber 40 

assortment recovery.  41 
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Introduction 42 

Many Nordic sawmills employ a customer:oriented strategy in their production, which 43 

means that customer orders determine the length, small:end diameter and quality 44 

distributions of logs delivered to a sawmill (Helstad 2006). Thus assessments of 45 

harvesting output must be based not only on single volumetric figures, but also on 46 

comparisons between the demand and actual output length:diameter distributions of 47 

logs (Kivinen et al. 2005). 48 

Timber buyers have to make pricing choices when purchasing roundwood at a given 49 

stumpage price, those who can buy stands that best fit their industrial process will 50 

benefit, since in competitive markets side products have to be sold at or below cost 51 

price. 52 

Approximately 86% of Finland’s commercial roundwood is removed in stumpage sale 53 

fellings (Finnish Statistical Yearbook of Forestry 2014). The stumpage price (i.e. price 54 

per m3 of standing trees), determined separately for each sale, is somewhere between 55 

the buyer’s maximum willingness to pay and the seller’s minimum willingness to accept 56 

(Omwami 1986). Kolis et al. (2014), examining the effects that sale and site:specific 57 

characteristics have on the stumpage prices paid to non:industrial private forest owners 58 

in Finland, concluded that (1) buyers take differences in harvesting costs into account 59 

when making purchase offers, and (2) buyers are more interested in stands with a high 60 

percentage of sawlogs.  61 

Bucking is a process in which the tree stem is divided into products based on the 62 

roundwood user’s needs regarding products and their quality and dimensions. 63 

Optimization methods are used to recover the highest value for each stem with a given 64 

product price matrix (i.e. the unit price per length and diameter for each log dimension) 65 
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(see Table 2) and the requested length:diameter distribution (Näsberg 1985; Malinen 66 

and Palander 2004).  67 

When using cut:to:length methods, bucking decisions have to be made in the forest on 68 

the basis of the prices of and demand for timber assortments (Malinen et al. 2001). 69 

Different means of estimating timber assortments obtainable by cut:to:length methods 70 

have been proposed for use in boreal forests. For example, Kangas and Maltamo (2002) 71 

used height and taper curve models together with diameter distribution models and 72 

calibration, whilst Malinen et al. (2001) used the non:parametric k Most Similar 73 

Neighbour (k:MSN) method based on existing stem databases that included timber 74 

assortment recoveries and bucking simulations for individual stems. Cut:to:length 75 

harvesters collect a large amount of data which can be used for stem databases. The 76 

decision support system needed in the Nordic cut:to:length method requires detailed 77 

pre:harvest information, which is used to allot specific timber assortments required for 78 

raw materials and to plan harvesting operations to satisfy production needs. Its most 79 

important attributes are the availability of a stem diameter distribution for each tree 80 

species present in a stand and of quality information. This type of detailed pre:harvest 81 

information is not commonly used in practice, however (Vauhkonen et al. 2014), 82 

because of its costly input data requirements.  83 

There has been widespread discussion in the Finnish forest industry about the 84 

possibility of modifying timber pricing in a quality:based direction (see Malinen et al. 85 

2014). This could significantly affect the timber market and the accuracy of the 86 

inventory information required from the forests (Kankare et al. 2014). Moreover, timber 87 

prices could be more precise and contain user:specific values for each forest product. 88 

In the Nordic countries, stand:level forest inventories following a wall:to:wall approach 89 

(full:cover inventories) based on the use of airborne laser scanners (ALS) have been 90 
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operational since 2002 (Næsset et al. 2004), although the application of ALS remote 91 

sensing methods to the estimation of forest stand characteristics had been studied prior 92 

to that time. For example, Hyyppä et al. (1997) used the individual tree detection (ITD) 93 

approach to estimate stem volume accurately, reporting a coefficient of variation of 94 

26.5%. More recently, the extraction of forest variables has been divided into two 95 

categories: the area:based approach (ABA) and ITD (Kaartinen et al. 2012). They differ 96 

with respect to the unit to be estimated: in the ITD approach the forest variables are 97 

estimated at the tree level, whereas in the ABA mean forest variables are estimated at 98 

the plot (or grid cell or segment) level (Peuhkurinen 2011). The ITD approach requires 99 

denser ALS data than the ABA and it is effective for detecting trees in the dominant tree 100 

layer, whereas small, suppressed trees may remain undetected (Valbuena et al. 2014; 101 

Wang et al. 2016). Both approaches can be used to estimate complete tree lists (Hou et 102 

al. 2016).  103 

Peuhkurinen et al. (2007) demonstrated that it is possible to obtain accurate sawlog 104 

volume estimates with an ALS:based ITD method, while Korhonen et al. (2008) 105 

showed that direct regression models based on laser:scanned canopy height metrics are 106 

capable of producing satisfactory estimates of sawlog volumes in coniferous forests on 107 

a local scale. Peuhkurinen (2011) studied the use of ALS:based forest inventory 108 

methods for retrieving the information needed for wood procurement planning, and also 109 

investigated the possibility of using ALS:based methods to estimate stand:level 110 

diameter distributions. Moreover, Peuhkurinen (2011) examined the possibilities for 111 

using harvester:collected data as validation data and as an auxiliary data source in an 112 

ALS:based forest inventory, and developed and tested ALS:based methods for 113 

estimating theoretical and actual sawlog recoveries. Barth et al. (2015) compared the 114 

results of bucking simulations based on ALS data to actual production data from 115 
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harvesters, and demonstrated ALS:based inventory data can improve the prediction of 116 

product recovery. 117 

In addition, ALS has been used to estimate tree quality properties. Maltamo et al. 118 

(2009), for example, pointed out that variables describing tree quality were highly 119 

accurate when ALS:based variables were used together with non:parametric k:MSN 120 

modelling. However, this kind of approach requires detailed reference data, which are 121 

seldom available. 122 

Although detailed data including tree lists can be collected by means of field 123 

measurements, this approach has been found to be too laborious and expensive, and the 124 

same also concerns field measurement methods based on sampling (Uusitalo 1995). 125 

Despite the fact that non:parametric methods utilizing stem:wise dimension data 126 

collected by cut:to:length harvesters (Malinen et al. 2001; Malinen 2003) and further 127 

external quality databases (Malinen et al. 2014) reduce costs, they still require some 128 

input data to be collected in the field. Wood procurement planning and the purchasing 129 

of timber will be conducted more and more in a digitalized environment in the future, 130 

without possibilities for visiting all potential stands, and there is an emerging need to 131 

develop methodologies which offer information on the properties and value of a stand 132 

and the products obtainable from it. Such methodologies would help to reduce or 133 

remove the need for stand visits.  134 

The underlying hypothesis for this research was that useful estimates of wood paying 135 

capability (WPC) could be obtained if remote sensing data were used together with 136 

reference stem quality information, leading to more efficient buying performance. A 137 

methodology is thus presented here for defining the value of harvestable timber stands 138 

based on their product yield. Dimensions, quality and timber assortments for Scots pine 139 

(���������	
������L.) were considered when estimating the value of a given stand. ALS 140 
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and colour:infrared airborne spectral data were used to determine the value indicators, 141 

the goal being to present a sound methodology for timber stand valuation that could be 142 

used as a decision support tool by either timber buyers or sellers. 143 

Materials and methods 144 

The area of interest is located close to the rural district of Kiihtelysvaara in the province 145 

of Northern Karelia in Eastern Finland (62°31’N; 30°10’E; 130:153 m above sea level; 146 

707 ha) (Fig. 1). The main tree species in this area is Scots pine (���������	
����� L.), 147 

representing almost three:fourths of the total wood volume. Norway spruce [��

�����
��148 

(L.) H. Karst] is the second major species, followed by a minor proportion of 149 

broadleaved species, mainly birches (�
���� spp.). 150 

Since the proportions of Norway spruce in Nordic forests are highly dependent on the 151 

dimensions of the stems, Norway spruces are typically bucked by cut:to:length 152 

harvesters by means of “automated cutting”, emphasizing only the length:diameter 153 

distribution of the logs. Moreover, the main defect affecting the value of Norway 154 

spruce, root rot [�
�
����������� ������� (Fr.) Bref.], is not visible externally. The 155 

value of Scots pine, on the other hand, is highly dependent on the branchiness of the 156 

stems and external effects (Uusitalo et al. 2004). The proportion of the third species, 157 

birch, was very low in this area, and thus only Scots pine was chosen for investigation. 158 

The field survey data consisted of a stratified sample of 79 square:shaped plots, the 159 

location of which was determined subjectively in order to guarantee that the sample 160 

covered the full range of variability in the forest. The measurements were made in May 161 

and June 2010. The sample plots varied in size between 20 × 20, 25 × 25 and 30 × 30 m 162 

(i.e. 0.04 ha, 0.0625 ha and 0.09 ha, respectively) according to their stand development 163 

class. Height, diameter at breast height (DBH) and species (Scots pine, Norway spruce 164 

or birch) were recorded for all the trees inside the plots with a DBH above 4 cm or 165 
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height above 4 m. The main properties of the field data are presented in Table 1. 63 of 166 

the plots were situated within an area owned by UPM:Kymmene Oyj, while the 167 

remaining 16 plots belonged to 8 separate private owners (Valbuena et al. 2016).  168 

The spectral data were acquired on 31 May 2009 using a Vexcel camera at a flight 169 

elevation of 7500 m above ground level (AGL). The ground sample distance (i.e. spatial 170 

resolution) was 45 cm.  171 

The ALS data were collected on 26 June 2009 using an Optech ALTM Gemini laser 172 

scanning system from 600 m AGL with a field of view of 26° and a swath width of 320 173 

m. The sensor was pointed in the nadir direction. Side overlap was 55%. The pulse 174 

repetition frequency was 125 kHz, which resulted in an average point density of 11.9 175 

pulses·m:2. Multiple echoes were recorded for each pulse. The last ALS echoes were 176 

classified as ground data and interpolated into a Digital Terrain Model with 1 m 177 

resolution. The LAS files were pre:processed to alter the Z value to represent elevation 178 

AGL (dZ files). Echoes with heights above ground lower than 1 m and higher than 40 m 179 

were masked out, since the low echoes were considered to be mainly reflected from the 180 

ground and the high ones to be too elevated to represent the vegetation of that area. ALS 181 

metrics (Næsset 2002) were calculated at plot and grid cell level using the remaining 182 

echoes. Metrics at the grid cell level were computed over a regular grid of 25 m × 25 m 183 

cells covering the entire scanning area.  184 

A list of Scots pine stems was estimated with the ABA at grid level for the whole area 185 

by means of the ALS data and spectral data (Fig. 2), using the field data as a reference. 186 

The method generated an estimate of the entire DBH and height frequency distribution 187 

in discrete 2 cm:wide DBH classes, i.e. yDBH = {NDBH=2, NDBH=4, ..., NDBH=50}, y��  = 188 

{H�DBH=2, H�DBH=4, ..., H�DBH=50} (where NDBH=i was the proportion of stems in DBH class 189 

i, and H�DBH=i the mean height of the stems for the DBH class i). The error:level 190 
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estimates of the predicted stand density, DBH and height were obtained using k:MSN 191 

prediction and the leave:one:out method. K:MSN was also the statistical method used 192 

in the tree list estimation, where the 2 most similar neighbours were used to estimate the 193 

stand density, and the most similar neighbour for estimating the DBH and height 194 

frequency distributions, to avoid averaging between trees. For the final tree list, the trees 195 

in a given DBH class were divided evenly within that class to an accuracy of 1 mm. 196 

A geometric intersection between the plots and the overlapping grid cells was computed 197 

for validation purposes, and a tree list was generated by weighting the number of trees 198 

estimated in the intersected grid cells by their area. 199 

In a classical sampling survey a sample is planned within a population, and if there are 200 

plots outside the target population two different populations are considered. In practical 201 

timber procurement mapping, the large area covering all the plots has different 202 

characteristics compared to the situation in the small subareas. When plot based 203 

information are transferred from a large area to a subarea during the estimation process, 204 

design bias can easily appear because the populations are different. The plots used here 205 

were not exclusively from the area to be evaluated, and thus the effect of design bias at 206 

the plot level was examined by using under: and over:predictions of one standard 207 

deviation of the estimated DBH. For this purpose two more sets of tree lists were 208 

generated: one containing under:prediction (i.e. the estimated DBH minus one standard 209 

deviation) and the other over:prediction (the estimated DBH plus one standard 210 

deviation) (Fig. 2). 211 

The tapering of the stems was calculated using taper curve models expressed as a 212 

function of tree species, DBH and tree height (Laasasenaho 1982). The heights of the 213 

stumps were calculated using the models of Laasasenaho (1982) for stump height as a 214 

function of tree species and DBH (Fig. 2).  215 
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Characteristics of external quality that affect bucking were estimated for each Scots pine 216 

stem using the stem quality database and the MSN method (Malinen et al. 2014) (Fig. 217 

2). The database includes stem quality data for over 13 000 trees measured for 218 

dimensions and assessed for stem quality affecting bucking, based on visual estimation 219 

of the occurrence of technical defects (sweeps, scars, branchiness, crooks, etc.) and 220 

measuring their effective lengths. Technical defects in the target stems were estimated 221 

by selecting the most similar stem from the quality database by reference to the stand 222 

variables, tree DBH, and stem height (Malinen et al. 2014). The volume and value of 223 

the group of stems to be evaluated were assessed using a bucking:to:value simulator 224 

along with the stem quality database. The bucking simulations divided the tree stems 225 

into typical products of the Finnish forest industry, namely grade A butt logs, small:226 

diameter logs, other sawlogs and pulpwood.  227 

The search variables were the following: tree species, area, species proportion, effective 228 

temperature sum (threshold temperature +5%), DBH, dominant height, map coordinates 229 

(latitude and longitude) and basal area. All the variables describing the growing stock 230 

were expressed per species (Malinen et al. 2014). As stated by Malinen et al. (2001), the 231 

mean tree variables are the most important search variables, and the other variables are 232 

of minor significance. 233 

The minimum top:end diameter for Scots pine was 21 cm for grade A butt logs, 15 cm 234 

for other sawlogs, 12 cm for small:diameter logs, and 7 cm for pulpwood, while the 235 

minimum length was 3.7 m for other sawlogs and small:diameter logs and 2.8 m for 236 

grade A butt logs and pulpwood. The theoretical sawlog volume, which is the stem 237 

volume exceeding the minimum diameter, was calculated using the taper curve models 238 

of Laasasenaho (1982), with a minimum diameter of 15 cm and a minimum length of 239 

3.7 m (Table 3). The unit prices for the timber assortment volumes (TAV) were 58 €·m:240 
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3 for grade A butt logs, 55 €·m:3 for other sawlogs, 25 €·m:3 for small:diameter logs and 241 

17 €·m:3 for pulpwood. All the volumes considered here are solid volumes over bark, 242 

and the total volumes are calculated from the stump to the top of the stem. The prices 243 

were typical stumpage prices paid in Finland in week 4 of 2017 (Roundwood prices for 244 

standing sales 2017). 245 

The price lists used in the bucking simulations were based on WPC, which is considered 246 

the residual value that the forest product or industrial process can “pay” after all costs 247 

(excluding wood) have been deducted from the sales prices (Paavilainen 2002). An 248 

example of the tables used for calculating WPC (€·m:3) for Scots pine sawlogs is 249 

presented in Table 2. 250 

Timber assortments were calculated for four scenarios (tree lists), each produced using 251 

one of the following data sets: (1) the measured field data, (2) the estimated data, and 252 

when testing for design bias the evaluated tree list with under:prediction (3) or over:253 

prediction (4) of the estimated DBH by one standard deviation. The timber assortments 254 

produced from each of those scenarios are presented in Table 3. For validation 255 

purposes, this research is focused on the tree lists from the field plots and the estimated 256 

tree lists from the grid cells that overlapped geometrically with them (Fig. 2). 257 

The precision of the method was calculated in terms of the relative root mean squared 258 

error (RMSE%): 259 

(1) RMSE% = 100 × 

�∑ (�	
	�	�
	
)�	�
�� �
��	  260 

where yij is the measured value of the variable i in stand j, y��� is the estimated value of 261 

the variable i in stand j, and ��� is the average of the measured values of the variable i. 262 
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The accuracy of the method was measured in terms of the bias of the estimates as 263 

follows: 264 

(2) BIAS = 
∑ (���	�	����)	���� �  265 

The RMSE%, bias and standard deviation between the measured and estimated values 266 

were calculated for the timber assortments in order to compare volumes, WPC and 267 

values for: the field data versus the estimated data (case A), the field data versus 268 

combined data for the under:estimated, over:estimated and normal estimates (case B).  269 

Results 270 

Prediction error statistics for volumes, values and wood paying capabilities for the 271 

various timber assortments are shown in Tables 4, 5, 6 and 7. Table 4 does not contain 272 

the total values, as these were constant in all the cases: volume = 146.2 m3·ha:1; RMSE 273 

= 52.0%; bias = :8.4 m3·ha:1; standard deviation = 76.1 m3·ha:1. The maximum 274 

theoretical sawlog (scenario 1) was only used for volume. 275 

Tables 4, 5 and 7 show the difference between the maximum theoretical volume and 276 

value, and the volume and value based on bucking simulation, arising from the effect of 277 

the log length constraints. Use of the bucking objectives reduced the sawlog volume by 278 

1.0%. The bucking estimates based on dimensions and external quality (scenario 3) 279 

produced 30.0% less sawlog volume and 30.9% less sawlog value than those based only 280 

on dimensions (scenario 2). Due to the lower small end diameter requirements of small:281 

diameter logs, the total volume of all sawlog assortments combined (i.e. the sum of the 282 

volumes of grade A butt logs, sawlogs and small:diameter logs in scenario 4) was 283 

25.4% higher than the sawlog volume based on external quality without grade A butt 284 

logs and small:diameter logs (i.e. the sawlog volume in scenario 3). In the same way as 285 

for volume, the total value of the combined sawlog assortments (scenario 4) was 22.5% 286 
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higher than the sawlog value based on external quality without grade A butt logs and 287 

small:diameter logs (scenario 3).  288 

The RMSE% of the bucking estimates for sawlog volume when quality estimation was 289 

included (scenario 3) was 11.2 percentage points (pp) higher than when quality was not 290 

considered (scenario 2), and 12.2 pp higher for sawlog value. In the case of the 291 

estimates for both pulpwood volume and value, the RMSE% when considering quality 292 

(scenario 3) was 6.0 pp higher than when the bucking estimates were based only on 293 

dimensions (scenario 2) (Tables 4 and 5). 294 

Tables 8 and 9 show the effect of design bias at the plot level on volumes, values and 295 

WPC both excluding and including quality estimation. When quality estimation was 296 

excluded, the bias for volumes and values was negative for sawlogs but positive for 297 

pulpwood (Table 8); whereas when quality estimation was included it was negative for 298 

both sawlogs and pulpwood (Table 9). When quality estimation was included, the 299 

RMSE% of the bucking estimates for the differences between the field data and the data 300 

combined from under:estimated, over:estimated and normally estimated results (case B) 301 

was 2.5 pp lower than the RMSE% of the bucking estimates for the differences between 302 

the field data and the estimated data (case A) for sawlog volume, and 3.4 pp lower for 303 

sawlog value. When only dimensions were considered, the RMSE% was 5.9 pp higher 304 

for case B than for case A where sawlog volume was concerned, and 7.6 pp higher for 305 

sawlog value. Inclusion of the quality estimate for pulpwood did not change the 306 

RMSE% for volume and value with respect to the bucking estimate obtained only with 307 

dimensions, the RMSE% of case B being 11.8 pp higher than that of case A for the 308 

bucking estimate including quality and 6.2 pp higher for the bucking estimate obtained 309 

using only dimensions. 310 
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The residual errors in sawlog volume (Fig. 3A), sawlog value (Fig. 3B), pulpwood 311 

volume (Fig. 3C) and pulpwood value (Fig. 3D) when excluding or including the 312 

quality estimates are presented in Fig. 3. Figs. 3A and 3B show the residual errors 313 

decreased as the sawlog volume and value increased. Figs. 3C and 3D show that 314 

pulpwood follows a similar trend to that seen in sawlogs, but the relative errors were 315 

larger for pulpwood, especially for pulpwood value. 316 

Discussion 317 

The method presented here is intended to support wood procurement practices. There is 318 

an increasing need for information on diameter distributions among private forest 319 

companies. Several research papers have targeted this need, studying the estimation of 320 

diameter distributions, but the effect of quality and value on the diameter distribution 321 

estimates has not been studied so extensively (see Kotamaa et al. 2010). Such a method 322 

would have the potential to make roundwood markets more efficient by supplying each 323 

roundwood user with more suitable timber for processing. 324 

The focus of this research was on presenting a workable method and examining its 325 

ability to measure value and WPC accurately. The plot data were measured with high 326 

precision to allow full development and evaluation of the method, but as it does not 327 

conform with the typical operational methods used today, no comparison with 328 

traditional methods is included. A stem quality database can be used to replace 329 

expensive measurements, and field work can be partially replaced by remote sensing 330 

data. 331 

ALS data detect well trees in the dominant tree layer, which constitute the majority of 332 

the total volume (Peuhkurinen et al. 2011). In this sense the method supports decision:333 
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making and provides information on which stands are of the greatest interest and should 334 

be more carefully assessed.  335 

The results of the bucking of maximum theoretical sawlog volumes excluding quality 336 

estimation (scenario 1) and of sawlog and pulpwood volumes excluding quality 337 

estimation (scenario 2) are alike (Table 4), and the RMSE% results for volumes and 338 

values are quite similar, as seen in Tables 4 and 5. This is partially caused by the fact 339 

that the value estimate is a weighted version of the volume estimate (calculated by 340 

multiplying the volume by the unit prices for the TAV). The RMSE% becomes slightly 341 

higher if quality estimation is considered. In the approach that considers four timber 342 

assortments (scenario 4), the bucking objectives included grade A butt logs and small:343 

diameter sawlogs in addition to conventional sawlogs and pulpwood, and the more 344 

complicated bucking objectives certainly introduce some error into the estimates. On the 345 

other hand, raising the number of timber assortments increased the weighting on 346 

external quality. The RMSE% values show that the variables used are quite efficient in 347 

predicting dimensions but slightly less so in predicting log quality. On the other hand, 348 

the estimates that take account of quality include additional usable information for the 349 

decision:maker, even though their predictive ability is poorer. The estimates are more 350 

robust for pulpwood than for sawlogs (the errors are smaller), but RMSE% increases 351 

progressively as we introduce (1) bucking, (2) quality and (3) assortments. The 352 

presented method allows the recognition of grade A butt logs, the value of which is 353 

high, thus increasing the value and WPC of this timber assortment.  354 

WPC incorporates external quality and the size distribution of logs, and its estimates 355 

(Tables 6 and 7) are more precise than those for volume and value (Tables 4, 5 and 7) 356 

overall and for sawlogs and similar for pulpwood. This is because sawlog volume and 357 

value are affected only by the proportion of sawlogs by volume, while WPC is also 358 
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affected by the size of the logs: larger logs from longer and thicker trees are more 359 

valuable than small logs from shorter and thinner ones. Moreover, this method uses 360 

ALS data, which are more successful in assessing large trees than small or suppressed 361 

trees, which are not easily detected by ALS techniques (see Peuhkurinen et al. 2007). 362 

Also, WPC does not involve any volume estimation error. WPC is seldom used, 363 

however, as such values are rarely available and require bucking simulation, which is 364 

not commonly used in ALS survey.  365 

The differences between case A and case B in Tables 8 and 9 are very small, which 366 

means this is a precise and robust method. The method underestimates sawlogs and 367 

overestimates pulpwood when quality is not an issue (Table 8) and underestimates both 368 

when quality is considered (Table 9). It thus provides a conservative estimate for the 369 

total value of the stand. The database of stem dimensions had been collected from a 370 

large geographical area, of which the test site is a rather small part. Thus, a small:area 371 

approach of this kind is evidently more sensitive to local differences.  372 

The sawlog and pulpwood volumes and values that include quality involve a more 373 

complex estimation process and inevitably lead to larger estimation errors than those 374 

which exclude quality. It would have been useful to compare estimates including quality 375 

with actual harvesting recovery data, but figures of the latter type are seldom available. 376 

The problem in our comparisons is that the reference values are based on estimates for 377 

measured trees, and the RMSE% and bias may be underestimated. The errors in stand:378 

wise estimates are thought to be smaller than those in plot:wise estimates due to noise 379 

caused by the high variability between stem:wise external quality estimates. RMSE% is 380 

a variable that is affected if some errors are really high. 381 

Hou et al. (2016) estimated the ABA:derived diameter distribution in the same forest 382 

area as was used for this research but without applying any species identification 383 
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procedure in k:MSN and obtained the following RMSE% results for total, sawlog and 384 

pulpwood volumes, respectively: ~35%, ~40% and ~65% for Scots pine, ~90%, ~85% 385 

and ~190% for Norway spruce, and ~180%, ~230% and ~215% for deciduous species. 386 

When predicting DBH distributions in this way they set k = 3 and used 1 cm:wide DBH 387 

classes. In our case k was set to 1 to avoid averaging between trees, and 2 cm:wide 388 

DBH classes were used to ensure continuous DBH distributions with a relatively small 389 

number of trees per plot. More accurate estimates of DBH distributions could be 390 

achieved by examining more field plots. In this study, standard operational ALS data 391 

processing methodology was used and the approach presented by Hou et al. (2016) 392 

could slightly improve results. The forest concerned is predominantly pine and is a good 393 

area for studying the effect of using diameter distributions and product yield 394 

simulations, since the role of tree species is minimized even though it is still present to 395 

some extent. 396 

It is difficult to identify tree species directly from ALS measurements (McRoberts et al. 397 

2010; Vauhkonen et al. 2012), although multispectral and hyperspectral optical imagery 398 

may be used in an automated or semi:automated procedure to estimate species 399 

composition (Clark et al. 2005). Multispectral imagery usually has three or four broad 400 

bands in the red, green, blue and infrared parts of the spectrum, while hyperspectral 401 

imagery has dozens or even hundreds of narrow, contiguous spectral bands. 402 

Simultaneous collection of data from different sources such as ALS and multispectral 403 

imagery or ALS and hyperspectral imagery has gained in popularity in recent times (see 404 

Valbuena et al. 2013; Cook et al. 2013), which will allow the acquisition of these to 405 

become cost:efficient. Laser data provide accurate height information and support 406 

information on crown shape and size, while optical images give more details regarding 407 

spatial geometry and colour that can be used to classify tree species (Hyyppä et al. 408 
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2008). This study would have benefited from hyperspectral data being available instead 409 

of multispectral data (Table 1). The purpose here, however, was simply to present the 410 

methods and to improve species detection later on. 411 

Haara and Korhonen (2004), when estimating stem volume with a field inventory at the 412 

compartment level, reported the following RMSE% results for Scots pine: 29.3 for total 413 

volume; 52.0 for sawlogs; and 30.8 for pulpwood, and later�Korhonen et al. (2008), who 414 

used ALS data to estimate theoretical sawlog volumes for 14 coniferous stands where 415 

the tree species and the diameter distribution were known, obtained an RMSE% of 9.1 416 

for Scots pine and spruce at the stand level. Malinen et al. (2014) used empirical data 417 

from sample plots to assess the performance of a decision support tool for estimating of 418 

timber assortment recovery volumes and arrived at RMSE% values of 6.67 for grade A 419 

butt logs, 7.14 for other sawlogs, 2.48 for small:diameter logs and 7.09 for pulpwood. 420 

Siipilehto et al. (2016), who estimated stem volumes using a grid:level ABA based on 421 

ALS data and they compared these with tree taper data measured and recorded by the 422 

harvester’s measurement systems during the final cut, reported RMSE% values of 41.1 423 

for total Scots pine volumes, 40.1 for sawlogs and 52.8 for pulpwood.  424 

In conclusion, it may be said that tree species estimation is the main challenge. While it 425 

is easy to estimate total volumes using ALS, estimating volumes per species becomes 426 

much harder, and the relative errors increase further when timber assortments are 427 

estimated. To resolve this issue, ALS data should be combined with multispectral or 428 

hyperspectral images. Tree species recognition should be improved by directing 429 

attention to areas where species diversity is higher. The present method can be applied 430 

in practice in single:species forest stands, where the tree species is known, as is 431 

commonly the case in the Nordic countries. WPC values for pulpwood can be estimated 432 

with RMSE of 32.7% by this method, and for sawlogs with RMSE of 38.5:52.1%. 433 
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Although field estimation is more reliable than remote sensing methods, the cost:434 

efficiency of approaches supported by the latter can render them sufficient for practical 435 

planning operations. 436 
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�������� Means, standard deviations, minima and maxima of plot attributes.�

Variable Minimum Mean Maximum SD 

DBH (cm) 8.1 15.0 28.4 4.0 

Height (m) 8.7 14.4 24.1 3.3 

Density (stems·ha
*1

) 467 1259 2875 566 

Volume (m
3
·ha

*1
) 79.5 197.6 502.2 73.6 

Basal area (m
2
·ha

*1
) 13.8 24.6 40.1 6.2 

Pine basal area (m
2
·ha

*1
) 0.0 18.3 33.5 8.8 

Spruce basal area (m
2
·ha

*1
) 0.0 8.2 40.0 12.2 

Birch basal area (m
2
·ha

*1
) 0.0 3.3 22.7 5.4 

�	
�� DBH, diameter at breast height; SD, standard deviation. 
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�������� Example of a product price matrix used in calculating wood paying capability 

(€·m
�3

) for Scots pine sawlogs.�

Log 

length 

(m) 

Log top�end diameter class (cm) 

15 16 22 24 26 28 30 32 34+ 

3.7 57 62 66 70 73 76 78 79 80 

4 62 67 72 76 79 83 85 86 87 

4.3 67 72 77 82 85 89 91 92 93 

4.6 69 73 79 84 87 91 93 94 95 

4.9 70 74 80 85 89 92 94 96 96 

5.2 71 76 81 86 90 93 95 97 98 

5.5 71 76 81 86 90 93 95 97 98 

5.8 71 76 81 86 90 93 95 97 98 

6.1+ 71 76 81 86 90 93 95 97 98 
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�������� Value prediction error statistics for the timber assortments at plot level. 

  
Scenario 2 Scenario 3 Scenario 4 

Total 

Value (€·ha
�1

) 7522.5 5853.5 6811.1 

RMSE (%) 80.8 85.0 80.8 

Bias (€·ha
�1

) �1092.6 �634.0 �564.7 

SD (€·ha�1
) 6021.1 4967.2 5509.5 

Sawlogs 

Value (€·ha
�1

) 6641.5 4590.3 3572.6 

RMSE (%) 90.7 102.9 96.1 

Bias (€·ha
�1

) �1123.0 �550.3 �689.8 

SD (€·ha
�1

) 5956.4 4719.3 3385.7 

Pulpwood 

Value (€·ha
�1

) 881.1 1263.2 889.7 

RMSE (%) 31.7 37.7 49.4 

Bias (€·ha
�1

) 30.4 �83.7 �78.0 

SD (€·ha
�1

) 279.0 471.8 435.2 
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������ �� Wood paying capability (WPC) prediction error statistics for the timber 

assortments at plot level.�

  
Scenario 2 Scenario 3 Scenario 4 

Total 

WPC (€·m
"3

) 47.9 36.1 42.3 

RMSE (%) 48.2 47.9 44.4 

Bias (€·m"3
) "6.5 "3.2 "2.8 

SD (€·m
"3

) 12.1 9.0 10.2 

Sawlogs 

WPC (€·m
"3

) 74.7 73.5 75.2 

RMSE (%) 38.5 44.2 52.1 

Bias (€·m
"3

) "6.2 "6.8 "5.3 

SD (€·m
"3

) 3.2 3.5 3.2 

Pulpwood 

WPC (€·m
"3

) 17.0 17.0 17.0 

RMSE (%) 32.7 32.7 32.7 

Bias (€·m
"3

) "1.1 "1.1 "1.1 

SD (€·m"3
) 0.0 0.0 0.0 
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�������� Volume, value and wood paying capability (WPC) prediction error statistics 

for the detailed timber assortments in scenario 4 at plot level.  

  

Grade A butt 

logs 
Sawlogs Small#diameter logs Pulpwood 

Volume 

Volume (m
3
·ha

#1
) 9.5 46.7 24.9 52.3 

RMSE (%) 209.5 89.9 42.8 49.4 

Bias (m
3
·ha

#1
) 2.2 #8.2 0.3 #4.6 

SD (m
3
·ha

#1
) 19.8 41.4 10.7 25.6 

Value 

Value (€·ha
#1

) 1004.5 3572.6 1344.3 889.7 

RMSE (%) 231.2 96.1 42.3 49.4 

Bias (€·ha
#1

) 183.3 #689.8 19.7 #78.0 

SD (€·ha
#1

) 2329.6 3385.7 572.0 435.2 

WPC 

WPC (€·m
#3

) 103.1 75.2 53.8 17.0 

RMSE (%) 137.5 52.1 41.7 32.7 

Bias (€·m
#3

) 15.3 #5.3 #4.8 #1.1 

SD (€·m#3
) 7.3 3.2 3.1 0.0 

��� 
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���������Plot�level precision and accuracy statistics excluding quality estimation��

  

Volume 

A 

(m
3
·ha

�1
) 

Volume 

B 

(m
3
·ha

�1
) 

Value A 

(€·ha
�1

) 

Value B 

(€·ha
�1

) 

WPC A 

(€·m
�3

) 

WPC B 

(€·m
�3

) 

Total 

RMSE 

(%) 
52.0 53.7 80.8 87.0 48.2 46.6 

Bias  �8.4 �18.0 �1092.6 �2360.4 �6.5 �5.3 

SD  76.1 76.9 6021.1 6146.6 12.1 11.3 

Sawlogs 

RMSE 

(%) 
81.7 87.6 90.7 98.3 38.5 45.5 

Bias  �13.0 �28.0 �1123.0 �2486.8 �6.2 �1.5 

SD  69.8 70.7 5956.4 6077.6 3.2 3.5 

Pulpwoo

d 

RMSE 

(%) 
31.7 37.9 31.7 37.9 32.7 32.7 

Bias  1.8 7.4 30.4 126.4 �1.1 �1.1 

SD  16.4 18.3 279.0 311.2 0.0 0.0 

����	
��� A, differences between the field data and estimated data; B, differences 

between the field data and combined under�estimated, over�estimated and normal data; 

WPC, wood paying capability.�
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���������Plot�level precision and accuracy statistics including quality estimation.�

 

Volume 

A 

(m
3
·ha

�1
) 

Volume 

B 

(m
3
·ha

�1
) 

Value A 

(€·ha
�1

) 

Value B 

(€·ha
�1

) 

WPC A 

(€·m
�3

) 

WPC B 

(€·m
�3

) 

Total 

RMSE 

(%) 
52.0 53.7 85.0 82.8 47.9 46.1 

Bias  �8.4 �18.0 �634.0 �830.5 �3.2 �0.6 

SD 76.1 76.9 4967.2 4808.5 9.0 8.4 

Sawlogs 

RMSE 

(%) 
92.9 90.4 102.9 99.5 44.2 54.6 

Bias  �5.9 �5.3 �550.3 �571.7 �6.8 4.8 

SD 56.2 54.7 4719.3 4561.3 3.5 2.8 

Pulpwoo

d 

RMSE 

(%) 
37.7 49.5 37.7 49.5 32.7 32.7 

Bias  �4.9 �15.2 �83.7 �258.7 �1.1 �1.1 

SD 27.8 33.7 471.8 572.4 0.0 0.0 

����	
��� A, differences between the field data and estimated data; B, differences 

between the field data and combined under�estimated, over�estimated and normal data; 

WPC, wood paying capability. 
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��

�

�

������� A) Location of Kiihtelysvaara (●) within Finland (dark grey). B) Map of the Kiihtelysvaara forest area 
containing the sample plots.  
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