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1. Introduction

Suppose that (R,mR) is a Noetherian local domain, with quotient field K, and ν is
a valuation of K which dominates R. Let Γν be the value group of ν. We consider the
problem of determining the valuation semigroup

Sν(R) = {ν(f) | f ∈ R \mR}.
We give some general results and examples, and give a complete discription in the case
of regular local rings of dimension 2. This generalizes the classification of valuation semi-
groups of regular local rings of dimension two with algebraically closed residue fields
obtained by Spivakovsky in

S
[46].

This article presents recent results of the author, in joint work with Bernard Teissier,
Kia Dalili, Olga Kashcheyeva and Vinh An Pham. It is a write up of a lecture given at
the second international valuation theory conference.

2. Value Groups

Suppose that K is a field. A valuation of K is a surjective map ν : K∗ → Γν where Γν
is a totally ordered abelian group such that for a, b ∈ K∗,

1) ν(ab) = ν(a) + ν(b)
2) ν(a+ b) ≥ min{ν(a), ν(b)}.

Set ν(0) =∞.
The valuation ring of ν is Vν = {f ∈ K | ν(f) ≥ 0}. The unique maximal ideal of Vν is

mν = {f ∈ K | ν(f) > 0}.

We will consider valuations ν which dominate a Noetherian local domain R whose
quotient field is K; that is R ⊂ Vν and mν ∩R = mR.

There is a complete description of the groups Γν which are attained.

Theorem 2.1. (Maclane and Schilling
MS
[41], Zariski

ZS
[53], Kuhlmann

K
[36]) The groups Γν

attained by such K and R are the ordered abelian groups of finite rational rank.

A totally ordered abelian group G has rational rank e if GQ = G ⊗Z Q has dimension
e as a rational vector space. A fundamental result is Abhyankar’s Inequality (

Ab1
[1],

ZS
[53]):

rat rank ν + trdegR/mRVν/mν ≤ dimR

If equality holds then Γν ∼= Z rat rank ν (as an unordered group) and Vν/mν is a finitely
generated field extension of R/mR.

The rank of ν is defined as

r = rank ν = length of the chain of prime ideals inVν

Partially supported by NSF.

1



{0} = Pr+1 ⊂ Pr ⊂ · · · ⊂ P1 ⊂ Vν .

We have an order preserving embedding Γν ⊂ (Rr)lex.
The Convex Subgroups of Γν are

Φi = Γν \ {±ν(f) | f ∈ Pi+1} =
(
0r−i × Ri

)
∩ Γν ,

where 0r−i is the zero vector of length r − i. We thus have a chain

{0} = Φ0 ⊂ Φ1 ⊂ · · · ⊂ Φr = Γν .

3. Extension of valuations to the completion

Theorem 3.1. (William Heinzer and Judith Sally
HS
[32]) Suppose that ν is a valuation

dominating an analytically normal local domain R. Then either ν extends uniquely to a
valuation dominating the completion R̂ of R or there are infinitely many such extensions,
of at least two different ranks.

Suppose that K is a field, and V is a valuation ring of K. We say that the rank of
V increases under completion if there exists an analytically normal local domain T with
quotient field N such that V dominates T and there exists an extension of V to a valuation
ring of the quotient field of T̂ which dominates T̂ and which has higher rank than the rank
of V .

Theorem 3.2. (C and Olga Kashcheyeva
CK
[16], Spivakovsky

S
[46] in the case when R/mR is

algebraically closed) Suppose that V dominates an excellent two dimensional local ring R.
Then the rank of V increases under completion if and only if V/mV is finite over R/mR

and V is discrete of rank 1.

Blowing up may be necessary to obtain an increase in rank.
This gives an interesting case which cannot occur for R with algebraically closed residue

field:

If the algebraic closure of the residue field k = R/mR is not finite over k, then there
may exist valuations with value group Z and an algebraic residue field extension which
dominate R such that the rank does not increase under completion.

4. Valuation semigroups

The valuation semigroups

SR(ν) = {ν(f) | f ∈ R \ {0}}

are not so well understood, although they contain much information about the singularity
type of R and the ideal theory of R.

Question 4.1. Is it possible to characterize the semigroups which occur as valuation
semigroups of a valuation dominating a Noetherian domain?
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5. Zariski’s necessary condition

Theorem 5.1. (Zariski, in Appendix 3 to Volume II of
ZS
[53]) Suppose that R is a noe-

therian local domain which is dominated by a valuation ν of the quotient field of R. Then
the semigroup SR(ν) is a well ordered subset of the positive part of the value group Γν , of
ordinal type at most ωh, where ω is the ordinal type of the well ordered set N, and h is the
rank of ν.

6. Regular local rings of dimension two

We obtain the following necessary and sufficient condition for a semigroup and field
extension to be the semigroup and residue field extension of a valuation dominating a
complete regular local ring of dimension two in the following theorem.

Theorem 6.1. (C and Pham An Vinh
CV
[22]) Suppose that R is a complete regular local

ring of dimension two with residue field R/mR = k. Let S be a subsemigroup of the
positive elements of a totally ordered abelian group and L be a field extension of k. S is
the semigroup of a valuation ν dominating R with residue field Vν/mν = L if and only if
there exist finite or countable sets of elements βi ∈ S and αi ∈ L such that

1) The semigroup S is generated by {βi} and the field L is generated over k by {αi}.
2) Let

ni = [G(β0, . . . , βi) : G(β0, . . . , βi−1)] and

di = [k(α1, . . . , αi) : k(α1, . . . , αi−1)].
Then there are inequalities

βi+1 > nidiβi > βi

with ni <∞ and di <∞.

Here G(β0, . . . , βi) is the subgroup generated by β0, . . . , βi.
The assumption that R is complete only appears in the above theorem in the case when

the value group is Z and the residue field extension is finite. This case cannot occur when
R is complete, but may appear if R is not complete.

We give a necessary and sufficient condition for a semigroup to be the semigroup of a
valuation dominating a regular local ring of dimension two in the following theorem.

Theorem 6.2. (C and Vinh An Pham
CV
[22], Spivakovsky

S
[46] when R/mR is algebraically

closed) Suppose that R is a regular local ring of dimension two. Let S be a subsemigroup
of the positive elements of a totally ordered abelian group. Then S is the semigroup of a
valuation ν dominating R if and only if there exists a finite or countable index set I, of
cardinality Λ = |I| − 1 ≥ 1 and elements βi ∈ S for i ∈ I such that

1) The semigroup S is generated by {βi}i∈I .
2) Let

ni = [G(β0, . . . , βi) : G(β0, . . . , βi−1)].
There are inequalities

βi+1 > niβi

with ni <∞ for 1 ≤ i < Λ. If Λ <∞ then nΛ ≤ ∞.

We deduce from the above theorem a generalization of a result of Noh
N
[45].
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Corollary 6.3. Suppose that R is a regular local ring of dimension two and ν is a valuation
dominating R such that ν is discrete of rank 1. Then SR(ν) is symmetric.

Example 6.4. (C and Vinh An Pham
CV
[22]) There exists a semigroup S which satisfies the

sufficient conditions 1) and 2) of the above theorem, such that if (R,mR) is a 2-dimensional
regular local ring dominated by a valuation ν such that SR(ν) = S, then R/mR = Vν/mν ;
that is, there can be no residue field extension.

The proof of the above theorem gives an algorithm to construct a generating sequence
of ν in the two dimensional regular local ring R, and it gives an algorithm to expand a
given element of R in terms of the generating sequence, and thus compute it’s value.

Suppose that ν is a valuation dominating a noetherian local ring R. For ϕ ∈ Γν , define
valuation ideals

Pϕ(R) = {f ∈ R | ν(f) ≥ ϕ},

and
P+
ϕ (R) = {f ∈ R | ν(f) > ϕ}.

The associated graded ring of ν on R is

grν(R) =
⊕
ϕ∈Γν

Pϕ(R)/P+
ϕ (R).

Suppose that f ∈ R and ν(f) = ϕ. Then the initial form of f in grν(R) is

inν(f) = f + P+
ϕ (R) ∈ [grν(R)]ϕ = Pϕ(R)/P+

ϕ (R).

A set of elements {Fi} such that {inν(Fi)} generates grν(R) as a k-algebra is called a
generating sequence of ν in R.

Corollary 6.5. (C, Kia Dalili and Olga Kashcheyeva
CDK
[13], C and Vinh An Pham) Suppose

that R is a regular local ring of dimension two and ν is a rank 1 valuation dominating R.
Embed the value group of ν in R+ so that 1 is the smallest nonzero element of SR(ν). Let
ϕ(n) = |SR(ν) ∩ (0, n)| for n ∈ Z+. Then

lim
n→∞

ϕ(n)
n2

exists. The set of limits which are obtained by such valuations ν dominating R is the real
half open interval [0, 1

2).

7. Normal surface singularities

At this point we ask if some variation of our necessary and sufficient conditions 1) and
2) for a semigroup to be the valuation semigroup of a regular local ring of dimension two
holds for the local ring R of a normal surface singularity. For instance, if

a0 < a1 < · · · < ai <

is the minimal set of generators of the semigroup SR(ν) of a rational valuation ν, is

ai+1 > 2ai for i� 0?

Do the minimal generators (at least) become further apart as i increases?
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Example 7.1. (C and Vinh An Pham
CV
[22]) Suppose that k is a field and R is the local-

ization of k[u, v, w]/uv − w2 at the maximal ideal (u, v, w). Then there exists a rational
valuation ν dominating R such that if

a0 < a1 < · · ·
is the sequence of minimal generators of SR(ν), then given n ∈ N, there exists i > n such
that

ai+1 = ai +
a0

3
and ai+1 is in the group generated by a0, a1, . . . , ai.

So the minimal generators can be close together, although they must differ by at least
a0
3

Lemma 7.2. Let k be an algebraically closed field, and let A = k[x2, xy, y2], a subring of
the polynomial ring B = k[x, y]. Let m = (x2, xy, y2)A and n = (x, y)B. Suppose that ν is
a rational valuation dominating Bn, such that ν has a generating sequence

P0 = x, P1 = y, P2 . . .

in k[x, y] such that each Pi is a k-linear combinations of monomials in x and y of odd
degree, and

β0 = ν(x), β1 = ν(y), β2 = ν(P2), . . .
is the increasing sequence of minimal generators of Sν(Bn), with βi+1 > niβi for i ≥ 1,
where ni = [G(β0, . . . , βi) : G(β0, . . . , βi−1)]. Then

Sν(Am) =
{
a0β0 + a1β1 + · · ·+ aiβi | i ∈ N, a0, . . . , ai ∈ N
and a0 + a1 · · ·+ ai ≡ 0 mod 2

}
.

We define the desired valuation ν on B = k[x, y] by constructing a generating sequence:

P0 = x, P1 = y, P2 = y3 − x5, P3 = P 3
2 − x18y, · · ·

where
Pi+1 = P 3

i − xaiPi−1

with ai an even positive integer, and β0 = ν(x) = 1, β1 = ν(y) = 5
3 , βi = ν(Pi) = bi + 5

3i

with bi ∈ Z+, for i ≥ 2, by requiring that 3 divides ai + bi−1 and

bi =
ai + bi−1

3
> 3bi−1

for i ≥ 2. ai, bi satisfying these relations can be constructed inductively from bi−1.

8. Extension of valuation semigroups under a finite extension

In a finite field extension, the quotient of the valuation group of an extension of a
valuation by the value group is always a finite group. This raises the following question:
Suppose that R→ T is a finite extension of regular local rings, and ν is a valuation which
dominates R. Is ST (ν) a finitely generated module over the semigroup SR(ν)?

The answer is no.

Example 8.1. (C and Vinh An Pham
CV
[22]) There exists a finite extension R→ T of two

dimensional regular local rings and a valuation ν dominating T such that ST (ν) is not a
finitely generated SR(ν) module.
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9. Extension of valuation semigroups under a quadratic transform

Finite generation also fails under a quadratic transform.

Example 9.1. (C and Bernard Teissier
CT1
[20]) There exists a quadratic transform A→ B

of regular local rings of dimension two and a valuation ν dominating B such that SB(ν)
is not a finitely generated SA(ν) module.

10. Regular local rings of dimension 3

The semigroups attainable on a regular local ring of dimension 3 are even more com-
plicated.

Example 10.1. (C, Kia Dalili and Olga Kashcheyeva
CDK
[13]) There exists a rational valu-

ation ν dominating a regular local ring R of dimension 3 such that if

a0 < a1 < · · ·
is the sequence of minimal generators of SR(ν), then given ε > 0, there exists i > n such
that

ai+1 − ai < ε.

In this example new generators get closer and closer together.

11. An upper bound for growth of real (rank 1) valuations

Theorem 11.1. (C, Olga Kashcheyeva and Kia Dalili
CDK
[13], C and Bernard Teissier

CT2
[21])

Suppose that R is a local domain which is dominated by a real valuation, and suppose that
a0 is the smallest element of SR(ν). Then for n ∈ Z+,

|SR(ν) ∩ (0, na0)| < `(R/mn
R).

In particular, for n� 0,
|SR(ν) ∩ (0, na0)| < pR(n)

where pR(n) is the Hilbert polynomial of R. Thus growth is bounded above by a polynomial
of degree d = dim R.

12. Zariski’s necessary condition is not sufficient

Corollary 12.1. (C, Kia Dalili and Olga Kashcheyeva
CDK
[13], C and Bernard Teissier

CT2
[21])

There exists a well ordered subsemigroup U of Q+ such that U has ordinal type ω and
U 6= SR(ν) for any valuation ν dominating a local domain R.

Proof. Take any subset T of Q+ such that a0 = 1 is the smallest element of T and
nn ≤ |T ∩ (0, n)| <∞ for all n ∈ N. For all positive integers r, let

rT = {a1 + · · ·+ ar | a1, . . . , ar ∈ T}.
let U = ωT = ∪∞i=1rT be the semigroup generated by T . U is well ordered of ordinal
type ω. By the bound on the previous slide, U cannot be the semigroup of a valuation
dominating a local domain. �

Question 12.2. Suppose that S ⊂ R+ is a semigroup which contains a smallest element
a0. Suppose there exist c > 0 and d ∈ N+ such that

|S ∩ (0, na0)| < cnd

for all n ∈ N. Is S the semigroup of a valuation dominating a noetherian local ring?
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Of course the dimension of R could be much larger than d.

A semigroup S satisfying the above condition satisfies Zariski’s necessary condition: S is
well ordered of ordinal type ω and has rational rank ≤ d.

Question 12.3. Suppose that ν is a real valuation which dominates a local ring R of
dimension d. Let a0 be the smallest element of SR(ν). Does the limit

eq2eq2 (1) lim
n→∞

|SR(ν) ∩ (0, na0)|
nd

∈ R

exist?

The limit exists if R is a regular local ring of dimension 2 by
CDK
[13] and

CV
[22]. In fact, the

limit exists quite generally for a domain which is a regular local ring or an excellent local
domain with an algebraically closed residue field, by a very recent result in

C1
[12].

13. Higher Rank Valuations

Suppose that R is a regular local ring, and ν is a rank 2 valuation dominating R. Let
Φ1 ⊂ Γν be the nontrivial convex subgroup of Γν , and let P1 ⊂ Vν be the nontrivial, non
maximal prime ideal of Vν . Let ν1 be the induced composite valuation with valuation ring
Vν1 = (Vν)P1 , and valuation group Γν1 ∼= Γν/Φ1.

We have a natural surjection λ : Γν → Γν1 . Given ϕ ∈ Sν1(R), define

ϕ̃ = min{ν(f) | f ∈ R and ν1(f) = ϕ}.
Suppose that R is a regular local ring of dimension 2, dominated by a rank 2 valuation

ν. By Abhyankar’s Theorem, we have that Γν ∼= (Z2)lex. We have that SR(ν) is a finitely
generated semigroup, and the function ϕ̃ is eventually linear.

However, the situation is much more complicated when R has higher dimension.

Example 13.1. (C and Bernard Teissier
CT1
[20]) There exists an example of a valuation ν

dominating a regular local ring of dimension three, whose value group is Γν = (Z2)lex, and
the semigroup SR(ν) is not a finitely generated semigroup.

Further, the function ϕ̃ can be extremely wild, as shown in the following example.

Example 13.2. (C and Bernard Teissier
CT2
[21]) Suppose that f : N → Z is a decreasing

function, g : N → Z is an increasing function, and K is a field. Then there exists
a rank 2 valuation ν of the five dimensional rational function field K(x, y, u, v, z) with
value group (H × Z)lex, where H = ( 1

2∞Z + 1
2∞Z
√

2) ⊂ R, which dominates the regular
local ring R = K[x, y, u, v, z](x,y,u,v,z), such that for any valuation ω equivalent to ν with
value group (H × Z)lex, for all sufficiently large n ∈ N, there exists λ1 ∈ H ∩ [0, n[
such that π2(λ̃1) < f(n) and there exists λ2 ∈ H ∩ [0, n[ such that π2(λ̃2) > g(n), where
π2 : H × Z→ Z is the second projection.

14. A polynomial bound for growth of valuations of rank > 1.

Define prime ideals pi in R by
pi = Pi ∩R

and for ϕ ∈ Γν , define valuation ideals in R

Pϕ = {f ∈ R | ν(f) ≥ ϕ}
7



and
P+
ϕ = {f ∈ R | ν(f) > ϕ}.

For a < b ∈ Γν , define
[a, b[ = {x ∈ Γν | a ≤ x < b}.

Theorem 14.1. (C and Bernard Teissier
CT2
[21]) Let R be a local domain and ν a valuation

of R which is of rank n. There exist functions sn(ε) and si(ε, yi+1, yi+2, . . . , yn) for 1 ≤
i ≤ n− 1, such that ∑

ϕn∈[0,tnyn[

∑
ϕn−1∈[ϕ̃n,ϕ̃n+tn−1yn−1[ · · ·∑

ϕ1∈[ϕ̃2,ϕ̃2+t1y1[ em0((Pϕ1/P+
ϕ1

)p0)

≤ (1 + ε)
∏n
i=0 emi ((R/pi+1)pi )∏n
i=1(dim(R/pi+1)pi )!

∏n
i=1 y

dim(R/pi+1)pi
i

for yn, yn−1, . . . , y1 ∈ N satisfying

yn ≥ sn(ε), yn−1 ≥ sn−1(ε, yn), . . . , y1 ≥ s1(ε, y2, . . . , yn).
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C2 [11] On unique and almost unique factorization of complete ideals II, Inventiones Math. 98 (1989),
59–74.

C1 [12] Multiplicities associated to graded families of ideals, eprint arXiv.1206.4077.
CDK [13] S.D. Cutkosky, Kia Dalili and Olga Kashcheyeva, Growth of rank 1 valuation semigroups,

Communications in Algebra 38 (2010), 2768 – 2789.
CE [14] S.D. Cutkosky and S. El Hitti, Formal prime ideals of infinite value and their algebraic

resolution, to appear in Annales de la Faculté des Sciences de Toulouse, Mathemématiques.
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