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Valuation theory has classically meant the study of valuations on a commu-
tative field. Such valuation theory has flourished for many decades, nourished by
its connections with number theory and algebraic geometry. But there is also a
noncommutative side of the subject in the study of valuations and valuation rings
on division rings. This aspect has blossomed only in the last twenty odd years,
and it is not so well known as its commutative counterpart. We give in this paper
a survey of valuations and valuation theory for division rings finite dimensional
over their centers. We describe the associated theory and also some of the most
significant constructions that have been given as applications.

The earliest use of valuations on noncommutative division rings, to my know-
ledge, was by Hasse in his work in [Ha] in 1931 on orders over central simple algebras
over p-adic fields. In the ’40’s and ’50’s there was a little further work with valua-
tions on division algebras over fields with complete discrete valuations. Also, there
was some discussion of valuations on division algebras in Schilling’s work [Schi1],
[Schi2], mostly observing that some results about valuations remain valid without
assuming that the ambient field be commutative. One can speculate that there
was little attention to valuations on division algebras because too often for the di-
vision algebras of interest there was no apparent valuation available. Additionally,
it was not fully clear what to take as the definition of a valuation on a division
ring, since the concepts of valuation and valuation ring are not equivalent in the
noncommutative setting.

It was not until the late 1970’s and the 1980’s that valuation theory on divi-
sion algebras began to develop substantially. This was due in large measure to the
realization that some of the major constructions of counterexamples in the 1970’s
could best be understood using valuation theory. This applies to Amitsur’s con-
struction of noncrossed product division algebras and also to the constructions of
division algebras with nontrivial SK1 by Platonov and by Yanchevskĭı. It began to
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2 A. R. Wadsworth

be recognized that while valuations on division algebras might be relatively rare,
when a valuation is present it can often be used to get more detailed arithmetic
information on a division ring than is readily available by other means. Indeed,
the greatest success of valuation theory on division algebras has been in the con-
stuction of specific examples of division algebras with interesting properties. This
has made it possible to settle a number of open questions about division algebras.
In pursuing these constructions, it became evident that there needed to be a more
systematic development of the theory of valuations on division algebras, and this
was carried out. Special attention was given to the case of Henselian valuations,
since it was known that a Henselian valuation on the center of a finite dimensional
division algebra D always extends (uniquely) to a valuation on D.

Another significant strand in noncommutative valuation theory has been the
study of Dubrovin valuation rings, which began with Dubrovin’s pioneering work in
the late ’70’s and ’80’s. Dubrovin introduced a more general concept of a valuation
ring for simple Artinian rings than what had been considered previously, and showed
many significant and nontrivial properties about them. His rings exist much more
abundantly than the classical valuation rings, but still have enough uniqueness to
carry significant arithmetic information. Results on Dubrovin valuation rings have
also been very useful in proving some results about the more classical valuation
rings.

Here is a brief overview of this paper. In §1 we describe some of the different
notions of valuation rings for a division ring. Each of these is a reasonable general-
ization of the valuation rings of a field. Thereafter until §9 we will work with the
most restrictive of the definitions (at the cost of having fewer examples), namely
with invariant valuation rings, which are those for which there is a valuation sat-
isfying the usual axioms. In §2 we describe some of the structure associated to a
valuation on a finite dimensional division algebra D. There is of course a value
group ΓD and a valuation ring VD and residue division ring D, but there are also
connections between ΓD and the center of D and the roots of unity in D. In §3
we fix a Henselian valuation on a field F and describe some of the special kinds of
valued division algebras over F . There is a nice homological interpretation for the
division algebras split by the maximal unramified extension of F with respect to
v. Also, when D is tame over F , there are decomposition results allowing D to be
described in terms of division algebras with simpler structure. Particular attention
is given in §4 to division algebras tame and totally ramified over the center. Such
division algebras are particularly easy to work with and have been used in some
major constructions, yet were not studied systematically until the 1980’s. In §§5–7
we describe some of the most important constructions that have been carried out
using valued division algebras. These include (in §5) noncrossed product algebras
and (in §6) division algebras D in which there are elements of reduced norm 1
not lying in the commutator group of D∗, i.e., SK1(D) is nontrivial. In §7 we
give brief discussions of some of the other constructions which have been carried
out using valuations on division algebras. The very short §8 has a few remarks
on valuations in connection with orderings on finite dimensional division algebras.
In §9 we briefly discuss total valuation rings, which are a more general class than
the invariant valuation rings associated with valuations on division algebras. Fi-
nally, §10 treats Dubrovin valuation rings, which are more general still than total
valuation rings. We record some of the highlights of the extensive and rich (but
difficult) theory that has developed for these rings. In writing this survey, I have
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restricted attention to valuations and valuation rings only on division algebras finite
dimensional over their centers. This is the area where the results have been most
extensive, and for which, to date, there have been the most applications. (It is also
the area that I have the most knowledge of.) As the reader can see there is plenty
to be said in just the finite-dimensional case! With the hope of making this survey
accessible to a wider audience, I have at various points recalled some well-known
facts on commutative valuation theory, and on division algebras. Experts can easily
enough skip over those points with which they are already familiar. Proofs, except
some very short ones, are mostly omitted, but I have tried to give specific references
where proofs can be found. There are many examples. The bibliography at the end
is quite extensive, but certainly still not complete. Several of the papers listed in
the bibliography are not specifically referred to.

I would like to thank P. Morandi and J.-P. Tignol for their careful reading of
and helpful comments on an earlier draft of this paper.

We now mention some of the terminology that will be used throughout the
paper:

(0.1) If R is a ring (always assumed to have a 1), we write Z(R) for the center
of R; Mn(R) for the n× n matrices over R; R∗ for the group of units of R; and
J(R) for the Jacobson radical of R. “Field” always means a commutative field. By
a central simple algebra over a field F , we mean a simple F -algebra A such that
Z(A) = F and dimF (A) < ∞. We write [A : F ] for dimF (A). By Wedderburn’s
theorem, for such A we have A ∼= Mn(D), where D is a division algebra over F (i.e.,
D∗ = D−{0}); this D is unique up to isomorphism. We call n the matrix size of A

and D the underlying division algebra of A. The degree of A is deg(A) =
√

[A : F ],
a positive integer; the (Schur) index of A is ind(A) = deg(D) = deg(A)/n. The
exponent of A, exp(A), is the order of the class [A] of A in the Brauer group Br(F )
of F . For central simple algebras A and B over F , we write A ∼ B if A and B
are Brauer equivalent, i.e., [A] = [B] in Br(F ). For any field L ⊇ F let Br(L/F )
denote the kernel of the scalar extension map Br(F ) → Br(L). We write D(F ) for
the collection of division algebras D with center F such that [D : F ] <∞.

(0.2) We will see that the roots of unity are significant in noncommutative
valuation theory. If F is a field, we write µ(F ) for the group of roots of unity in F .
For any natural number n, we write µn ⊆ F to say that F contains n n-th roots
of unity (so char(F ) � n). When this occurs, we write µn(F ) for the group of n-th
roots of unity in F , and µ∗

n(F ) for the set of primitive n-th roots of unity in F .
(0.3) If n is a positive integer and F is a field with µn ⊆ F , let ω ∈ µ∗

n(F ). For
any a, b ∈ F ∗, we write Aω(a, b;F ) for the “symbol algebra” which is the F -algebra
with generators i, j and relations in = a, jn = b, and ij = ωji. We call i and
j the standard generators of Aω(a, b;F ). It is well known (see, e.g., [D2, p. 78,
Th. 1]) that Aω(a, b;F ) is a central simple F -algebra of degree n, with F -base
{ikj� | 0 ≤ k, � ≤ n − 1}. If F ⊆ K is a Galois extension of fields (i.e., algebraic,
normal, and separable, but not necessarily of finite degree) we write G(K/F ) for
the Galois group of K over F , a profinite group. If [K : F ] = n < ∞ and G(K/F )
is cyclic, with σ a generator, and if b ∈ F ∗, we write (K/F, σ, b) for the cyclic F -
algebra generated by K and x with relations xc = σ(c)x for all c ∈ K and xn = b. It

is well known (see, e.g., [D2, p. 49, Lemma 6]) that (K/F, σ, b) =
n−1⊕
i=0

Kxi (K-vector

space direct sum), and that it is a central simple F -algebra of degree n.
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1 Different kinds of noncommutative valuation rings

When we consider valuation theory of fields, there are at least three different
but equivalent ways of formulating the foundations of the subject. Given a field F ,
one can consider

(i) a valuation on F , which is a function v : F ∗ → Γ satisfying appropriate
axioms, where Γ is a totally ordered abelian group;

(ii) a valuation ring of F , which is a ring V with quotient field F , such that
for every a ∈ F ∗ we have a ∈ V or a−1 ∈ V ;

(iii) a place on F , which is a function λ : F → L ∪ ∞ satisfying appropriate
axioms, where L is a field.
Our subject here is valuation theory on noncommutative division algebras finite
dimensional over their centers. An immediate challenge arises because the three
formulations listed above are no longer equivalent in the noncommutative setting.
Let us look more closely at how each concept can be defined for a division ring D.

(i) A valuation on D is a function v : D∗ → Γ, where Γ is a totally ordered
group (written additively), such that for all a, b ∈ D∗

(a) v(ab) = v(a) + v(b);
(b) v(a + b) ≥ min(v(a), v(b)), whenever b �= −a.

To any valuation v there is an associated ring V = {a ∈ D∗ | v(a) ≥ 0}∪{0}, which
satisfies the property that a ∈ V or a−1 ∈ V , for each a ∈ D∗. But further, because
v is a homomorphism on D∗ and Γ is totally ordered, one finds that aV a−1 ⊆ V
for all a ∈ D∗. A subring W of D such that for all a ∈ D∗ we have a ∈ W or
a−1 ∈W and also aWa−1 ⊆W is called an invariant valuation ring of D—invariant
because of the invariance under inner automorphisms. Given any such W , we have
aW = Wa of each a ∈ D∗; hence the set of principal fractional left (= right) ideals
Γ = {aW | a ∈ D∗} is a group, with operation (aW ) · (bW ) = abW , which is totally
ordered by reverse inclusion: aW ≤ bW iff aW ⊇ bW . (We could also describe Γ
as D∗/W ∗.) The natural map w : D∗ → Γ given by a �→ aW is clearly a valuation
on D with valuation ring W . Thus, the study of valuations on D satisfying axioms
(a) and (b) above is equivalent to the study of invariant valuation rings of D.

(ii) A total valuation ring of the division algebra D is a subring T of D such
that for each a ∈ D∗ we have a ∈ T or a−1 ∈ T . With a total valuation ring
T , the left ideals (resp. right ideals) are linearly ordered by inclusion, but the left
ideals will not coincide with the right ideals unless T is actually invariant. There
do exist division algebras finite dimensional over their centers with total valuation
rings which are not invariant—see Ex. 9.1 below. Such total valuation rings do not
have a valuation as described above, but Mathiak has shown (see [Mat, p. 5]) that
they have a valuation-like function whose image is a totally ordered set which is
not a group.

(iii) If A is a simple Artinian ring, a subring B of A is called a Dubrovin
valuation ring of A if B has an ideal J such that B/J is a simple Artinian ring,
and for each a ∈ A−B there are b, b′ ∈ B, such that ab ∈ B − J and b′a ∈ B − J .
One might think of the map λ : A → B/J ∪ ∞, given by b �→ b + J for b ∈ B,
and a �→ ∞ for a ∈ A − B, as a place in the category of simple Artinian rings.
This notion of a place is not the only one (see [vG] for others), but it has been
by far the most successful one for noncommutative valuation theory. Some of the
extensive theory of such valuation rings is described in §10 below. Clearly every
total valuation ring is a Dubrovin valuation ring. But Dubrovin valuation rings
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comprise a much wider class of rings. For example, if D ∈ D(Q), where Q is the
field of rational numbers, then for every discrete valuation ring V of Q there is a
Dubrovin valuation ring B of D with B ∩Q = V ; indeed B has these properties iff
B is a maximal order of V in D (see the comments after Th. 10.2 below). Such a
B is often not unique in D, but is unique up to conjugacy (see Th. 10.3). However,
there are at most finitely many discrete valuation rings V of Q (and perhaps none at
all, see Ex. 2.4(ii)) such that there is a total valuation ring T of D with T ∩Q = V .
When this occurs, T is actually an invariant valuation ring (since V has Krull
dimension 1, see the comments at the end of §9) and there is only one such T ; in
fact T = {d ∈ D | d is integral over V }. But, such a T exists iff D ⊗Q Q̂V is a
division ring, by the complete version of Th. 2.3, where Q̂V is the completion of Q
with respect to the valuation of V .

There are still other notions of valuations or places for division rings, such
as the matrix valuations of Mahdavi-Hezavehi (see, [MH1], [MH2]) and the places
considered in [vG], but they have not been so well adapted to finite dimensional
division algebras, and we will not pursue them here.

Each of the three types of valuation rings described above on a finite dimen-
sional division algebra D is a plausible generalization of the idea of a valuation ring
of a field. Each arises naturally in certain contexts. We will focus here primarily
on the first type, the invariant valuation rings arising from valuations on D, since
these are the ones that have to date been studied the most extensively and have
had the most applications. But we will discuss the other two types in §§9 and 10.
To simplify the terminology, henceforward (until §9) when we say “valuation ring”
without further qualification, it is understood that we mean an invariant valuation
ring.

2 Valuations and (invariant) valuation rings

Let us now take a closer look at valuations on division rings and their associated
(invariant) valuation rings. Let D be a division ring, and let F = Z(D), the center
of D. We assume throughout that [D : F ] < ∞; thus D ∈ D(F ) in the notation
of the Introduction. Let Γ be a totally ordered group, written additively, and let
v : D∗ → Γ be a valuation, which as noted in §1 is a function satisfying, for all
a, b ∈ D∗,

(i) v(ab) = v(a) + v(b),

(ii) v(a + b) ≥ min(v(a), v(b)) whenever a + b �= 0.
(2.1)

Associated to v is its valuation ring

VD = {a ∈ D∗ | v(a) ≥ 0} ∪ {0}; (2.2)

the unique maximal left (and maximal right) ideal of VD,

MD = {a ∈ D∗ | v(a) > 0} ∪ {0}; (2.3)

the group of valuation units,

UD = {a ∈ D∗ | v(a) = 0}; (2.4)

the residue division algebra,

D = VD/MD; (2.5)
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and the value group

ΓD = im(v) ⊆ Γ. (2.6)

It is convenient to index these objects by D, since we will usually be considering only
one valuation on D at a time. As we noted in §1, VD is an invariant valuation ring
of D in that for every a ∈ D∗ we have a ∈ VD or a−1 ∈ VD, and also aVDa−1 = VD.
Consequently, the left ideals of VD are linearly ordered by inclusion, and every left
ideal is a right ideal, and vice versa. Since MD is a maximal one-sided as well as
two-sided ideal of VD, the residue ring D is a division ring. Also, though we did not
assume Γ abelian, it is not hard to deduce from [D : F ] <∞ that ΓD is abelian (cf.
[W1]). When we restrict v to any F -subalgebra E of D, we obtain a valuation v|E
on the division ring E. The objects for v|E corresponding to those in (2.2)–(2.6)
for v are denoted VE , ME , UE , E, ΓE .

Before examining the structure of a valued division ring, let us consider the
question of existence. For D ∈ D(F ), any valuation on D restricts to a valuation
on F . But frequently one starts out with a valuation w on F and asks whether w
can be extended to a valuation on D. It is well known (see, e.g., [E, p. 62, Cor. 9.7])
that for any field K ⊇ F , w has at least one and often many different extensions to
valuations on K. (We consider the extensions different when their valuation rings
are different.) However, in the noncommutative setting, the story is very different.

Theorem 2.1 Let F be a field, and let D ∈ D(F ). If w is a valuation on F ,
then w extends to a valuation on D iff w has a unique extension to each (commu-
tative) field L with F ⊆ L ⊆ D. Hence, w has at most one extension to a valuation
on D (but perhaps none at all).

Indeed, when a valuation v on D exists, extending w on F , it satisfies the
formula, for all a ∈ D∗

v(a) = 1√
[D : F ]

w(Nrd(a)) ∈ ∆F , (2.7)

where Nrd : D → F is the reduced norm (cf. [Re, p. 116]), and ∆F = Q ⊗Z ΓF ,
which is the divisible hull of the torsion-free abelian group ΓF . (We identify ΓF

with its isomorphic image Z⊗Z ΓF in ∆F , then ∆F = Q ΓF . Recall that the total
ordering on ΓF has a unique extension to ∆F .) Th. 2.1 and formula (2.7) were
first proved by Ershov in [Er3], and were proved independently later in [W1]. It
follows easily from Th. 2.1 that when w on F extends to a valuation on D, then
VD = {a ∈ D | a is integral over VF }. It is quite an unusual occurrence in a
noncommutative division ring for the set of elements integral over a subring of the
center to form a ring. (But this also occurs with total valuation rings—see Th. 9.2
below.)

Th. 2.1 points up a significant difference in flavor between commutative and
noncommutative valuation theory. It shows that valuations on division algebras
are far rarer than valuations on fields. This is likely a major reason why non-
commutative valuation theory developed much later than the commutative theory—
in many cases, a valuation on the center of a division algebra of interest simply does
not extend to the division algebra.

But there is another viewpoint that Th. 2.1 suggests: While a valuation v on
a division algebra D may be a rather rare occurrence, the presence of v and its
associated valuation ring is a significant feature in the structure of D, and we can
use the valuation to gain much information about arithmetic properties of D that



Valuation Theory on Finite Dimensional Division Algebras 7

might be very difficult to get at in any other way. Notably, one of the most basic
ways of studying a division algebra is in terms of its commutative subfields. But it
is usually enormously difficult to describe or classify the subfields of a given division
algebra. A valuation on D imposes a major constraint on its possible subfields, and
this is sometimes sufficient to determine all the subfields of D (see, e.g., Th. 3.3
and Th. 4.5(c) below).

While valuation theory is not available for studying all finite-dimensional di-
vision algebras, it has led to the construction of many division algebras with a
rich but very well-understandable structure. This has led to the construction of
examples that have helped to settle major open questions about finite-dimensional
division algebras. We will describe some such constructions in §§5–7 below.

Th. 2.1 does not provide an easily testable criterion for the existence of a
valuation on a field F to a given D ∈ D(F ), but it does serve to highlight an
important class of valuations on F for which the extension criterion will always be
satisfied, namely Henselian valuations. Recall that a valuation w on a field K is
Henselian just when Hensel’s Lemma holds for w, i.e., for every monic polynomial
f ∈ VK [x], if its image f ∈ K[x] has a factorization f = g̃h̃ on K[x] with g̃, h̃ monic
and gcd(g̃, h̃) = 1, then there exist monic g, h ∈ VK [x] with f = gh, g = g̃, and
h = h̃. There are several other equivalent characterizations of Henselian valuations
(see [R3] for a very nice discussion of this); the one most relevant here is:

A valuation w on a field K is Henselian iff w has a unique
extension to each field L ⊇ K with L algebraic over K. (2.8)

(See [R3, Th. 3] or [E, Cor. 16.6] for a proof of (2.8).) The following corollary is
immediate from Th. 2.1 in light of (2.8):

Corollary 2.2 If a valuation w on a field K is Henselian, then w has a
(unique) extension to each division algebra finite-dimensional over K.

Cor. 2.2 was known long before Th. 2.1, tracing back at least to the work of
Schilling in [Schi2, p. 53, Th. 9].

The original and best-known examples of Henselian valuations are the complete
and discrete rank 1 valuations.∗ We will give further examples of Henselian valua-
tions in §3 below. The first use of valuations on noncommutative division algebras
seems to be in Hasse’s work [Ha] on maximal orders in central simple algebras over
p-adic fields. When a field F has a complete discrete valuation w, then for any
D ∈ D(F ), the unique maximal order in D over VF is precisely the valuation ring
VD.

For an arbitrary valuation w on a field F , there is a well-defined Henselization
(wh, Fh) of (w, F ). The field Fh is an algebraic extension of F (usually of infinite
degree), and wh is a Henselian valuation on Fh with wh|F = w. Moreover, wh is an
immediate extension of w, i.e., Fh = F and ΓF h = ΓF . (“The” Henselization can
be constructed as follows, see [E, p. 132, Cor. 17.12]: Let w̃ be any extension of w to
the separable closure Fsep of F , and let Fh be the decomposition field of w̃ over w
(i.e., the fixed field of subgroup {σ | w̃◦σ = w̃} of the Galois group G(Fsep/F ) ) and
let wh = w̃ |F h . The Henselization depends on the choice of w̃, but is unique up to

∗Recall that the rank of a valuation w on a field F is defined to be the Krull dimension of
its valuation ring VF . So, w has rank 1 iff MF is the only nonzero prime ideal of VF , iff ΓF is
isomorphic to a subgroup of the additive group of R. The valuation w is discrete rank 1 just when
ΓF maps to a discrete subgroup of R, i.e., just when ΓF

∼= Z.
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isomorphism.) The Henselization often plays the rôle for general valuations that the
completion plays for valuations of rank 1. When w has rank 1, a Henselization Fh

is obtainable as the separable closure of F in the completion F̂ of F with respect to
w; then wh = ŵ |F h (cf. [E, p. 135, Th. 17.18]). There is a criterion for extendability
of a valuation from the center in terms of the Henselization:

Theorem 2.3 Let Fh be the Henselization of a valuation w on a field F , and
let D ∈ D(F ). Then, w extends to a valuation on D iff D⊗F Fh is a division ring.
When this occurs, D ⊗F Fh = D and ΓD⊗F F h = ΓD, and the valuation on D is
the restriction of the valuation on D ⊗F Fh extending wh on Fh.

Th. 2.3 was first proved by Morandi in [M1, Th. 2]. Another proof can be found
in [Er4, Prop. 3], and yet another, more ring theoretic, in [MMU2, p. 43, Cor. 8.5].
Th. 2.3 holds also when w has rank 1 with Fh replaced by the completion F̂ . The
rank 1 version of Th. 2.3 using the completion was proved earlier by Cohn [C1,
Th. 1]. This theorem makes possible a useful approach to proving properties of
valued division algebras, namely first to prove the property when the valuation on
the center is Henselian.

Examples 2.4 (i) For any prime number p, let wp denote the p-adic discrete
valuation on the rational numbers Q, whose valuation ring is the localization Z(p)

of Z, and let Q̂p be the p-adic local field, which is the completion of wp on Q. Let
A be the quaternion algebra A =

(−1,−11
Q

)
(= A−1(−1,−11; Q) in the notation of

(0.3)). Then A⊗Q Q̂11 is a division algebra (as −1 is not a square mod 11), while
A ⊗Q Q̂p is split for p �= 11. Hence, w11 extends to a valuation on A (and one
can check that ΓA = 1

2Z when we take ΓQ = Z for w11), and A = Z/11Z(
√
−1).

Moreover, this is the only valuation on A, since the p-adic valuations are the only
valuations on Q, and for p �= 11 we have that wp does not extend to A.

(ii) Let ω ∈ µ∗
9(C), i.e., ω is a primitive 9-th root of unity in C∗, and let

L = Q(ω + ω−1), which is a cyclic Galois field extension of Q of degree 3, say
with σ a generator of G(L/Q). Let B be the cyclic algebra B = (L/Q, σ, 5) (see
(0.3) for the notation). Then, B⊗Q Q̂5 is a division ring, since [L · Q̂5 : Q̂5] = 3 (as
[Q̂5(ω) : Q̂5] = [Q(ω) : Q ] = 6) and 5 is not a norm from L ·Q̂5 to Q̂5 (as w5(5) = 1
and ΓL·Q̂5

= Γ
Q̂5

= Z). (Or, invoke Ex. 2.7 below.) But, B ⊗Q Q̂11 is split (as
3
√

5 ∈ Q̂11 by Hensel’s Lemma). Now, let D = A ⊗Q B, with the A of part (i).
So, D is a division ring, since this is true for A and B, which have relatively prime
degrees. But D ⊗Q Q̂p is not a division ring for any prime p. Thus, there is no
valuation on D at all.

(iii) For any noncommutative D ∈ D(Q), it is known from class-field theory
that D ⊗Q Q̂p is split for all but finitely many primes p (see [Pi, p. 358, Prop.]).
So there are at most finitely many valuations on D. Of course the same is true if
we replace the ground field Q by any algebraic number field or by any algebraic
function field in one variable over a finite field (cf. [Re, Th. 25.7]).

(iv) Let F be any field, and let D ∈ D(F ). Consider the division ring D(t) =
D⊗F F (t) ∈ D(F (t)) where t is transcendental over F . For each monic irreducible
f ∈ F [t] there is the f -adic discrete rank 1 valuation vf on F (t) with valuation ring
F [t](f); let F̂ (t)f be the completion of F (t) with respect to vf . Then, one can see

that vf extends to a valuation on D(t) iff D(t)⊗F (t) F̂ (t)f is a division ring (by the
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complete version of Th. 2.3), iff D ⊗F (F [t]/(f)) is a division ring (see Prop. 2.8
below for “if”). When this occurs, D(t) ∼= D⊗F (F [t]/(f)) and ΓD(t) = ΓF (t) = Z.
This holds, for example, whenever gcd(deg(D),deg(f)) = 1.

Further constructions of valued division algebras will be given at the end of
this section.

Now, let us return to the general setting of a division algebra D ∈ D(F ), with
a valuation v on D and associated structures as given in (2.2)–(2.6). Let E be an
F -subalgebra of D and consider the relationship between v on D and v|E on E.
Since clearly MD ∩ VE = ME , the canonical mapping E → D is injective, and we
view E as a subalgebra of D. Then, [D : E] (the left, and right, dimension of D as
an E-vector space) is the residue degree of D over E with respect to v. Also, ΓE

is a subgroup of ΓD, and the group index |ΓD : ΓE | = |ΓD/ΓE | is the ramification
index of D over E. The same argument as in the commutative case yields the
“fundamental inequality,”

[D : E]|ΓD : ΓE | ≤ [D : E] < ∞, (2.9)

so both the ramification index and the residue degree are finite. When we take
E = F , the inequality takes a more exact form given by an Ostrowski-type “defect
theorem,” which says that if we define the defect of D, δ(D), by

[D : F ] = [D : F ] |ΓD : ΓF | δ(D) , (2.10)

then, δ(D) is a positive integer and

δ(D) = ρc , (2.11)

where c is a nonnegative integer and ρ is the “characteristic exponent” of F , i.e.,
ρ = p if char(F ) = p > 0 and ρ = 1 if char(F ) = 0. Formula (2.11) was proved
by Draxl in [D3, Th. 2] if v|F is Henselian and deduced in general by Morandi in
[M1, Th. 3], by invoking Th. 2.3 above. The valuation v is said to be “defectless”
if δ(D) = 1. Clearly, v is defectless if char(F ) = 0. It is also known that if v|F is
discrete rank 1, then v is defectless; see [M6, p. 359] for a short proof of this using
Formaneck’s theorem; a different proof is given in [TY2, Prop. 2.2]. However, if
char(F ) = p > 0 and v|F is not discrete rank 1, then the defect can take any value
up to the p part of [D : F ]. See [TY2] and [M6] for studies of the possible values of
δ(D) and examples of defective division algebras.

Ostrowski’s original defect formula was given in [O, p. 355, Satz IV] for a finite
degree (commutative) field extension of a field with rank 1 Henselian valuation.

While we have stated the defect formula (2.11) for F = Z(D), observe that the
formula holds also when F is replaced by any F -subalgebra E of D. This follows
easily from the fundamental inequality (2.9) together with the defect equality for
D over F and for E over Z(E) together with the corresponding equality in the
commutative case for Z(E) over F (see [E, p. 170, Th. 20.21]).

For our valued division algebra D ∈ D(F ), we define the relative value group
of the valuation v on D to be

ΛD = ΓD/ΓF . (2.12)

This finite abelian group can provide information on the subfields of D (see, e.g.,
Th. 4.5(c) below). It is also related to the center of D. Since F = Z(D), clearly
Z(D) contains F , but the inclusion is often strict. However, Z(D) cannot be an
arbitrary extension field of F . For, given any a ∈ D∗, conjugation by a maps VD
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to itself, so its unique maximal ideal MD also goes to itself, yielding an induced
automorphism of D hence of Z(D). Conjugation by any element of UD or of F ∗ is
trivial on Z(D). Thus, there is a well-defined induced group homomorphism

θD : ΛD → G(Z(D)/F ) given by v(a) + ΓF �→ (z �→ aza−1). (2.13)

Proposition 2.5 For any valued field D ∈ D(F ), the field Z(D) is normal
over F , and the map θD of (2.13) is surjective. Hence, if Z(D) is separable over
F then Z(D) is abelian Galois over F .

See [JW2, Prop. 1.7] for a proof of Prop. 2.5. It follows, for example, that when
v|F is discrete rank 1, then the separable closure of F in Z(D) is cyclic Galois over
F . Prop. 2.5 shows that we have a short exact sequence

0 −→ ker(θD) −→ ΛD −→ G(Z(D)/F ) −→ 0 . (2.14)

There is also some further structure to ker(θD), at least away from char(F ). For
this, let ker(θD)′ denote the prime-to-char(F ) part of ker(θD). By this we mean
that ker(θD)′ = ker(θD) if char(F ) = 0. But, if char(F ) = p > 0, then ker(θD)′ is
the subgroup of the abelian torsion group ker(θD) consisting of all the elements of
order prime to p.

Proposition 2.6 There is a nondegenerate symplectic pairing on ker(θD)′ with
values in the group of roots of unity µ(F ). Hence, ker(θD)′ ∼= A×A for some abelian
group A, and F contains a primitive e-th root of unity, where e = exp(ker(θD)′).

See [JW2, Th. 1.10, Remark 1.13, Remark 1.14] for a proof of Prop. 2.6. We
will see in §4 below how the pairing on ker(θD) arises.

We will look more closely at the structure of valued division algebras when v|F
is Henselian in the next section. But before turning to that, we give a couple of
basic constructions of valued division algebras which can be used to build numerous
further examples of such algebras. The spirit of both Ex. 2.7 and Prop. 2.8 is that
if we have “sufficiently separate” valuations on two different pieces of a division
algebra, then we can combine the valuations on the pieces to obtain a valuation on
the whole of the division algebra.

Example 2.7 Let L be a cyclic Galois extension of a field F , and let σ be a
generator of G(L/F ). Let w be a valuation on L such that w ◦ σ = w (i.e., w is
the unique extension of w|F to L). Let n = [L : F ]. Suppose there is b ∈ F ∗ such
that the image of w(b) has order n in ΓL/nΓL. Then w extends (uniquely) to a
valuation v on the cyclic division algebra C = (L/F, σ, b) (see notation (0.3)). If y
is the standard generator of C, such that yn = b and y�y−1 = σ(�) for all � ∈ L,
then v is given by, for �i ∈ L, not all equal to zero,

v
(n−1∑

i=0

�iy
i
)

= min
0≤i≤n−1

{
w(�i) + i

nw(b) | �i �= 0
}

. (2.15)

We have C = L and ΓC = ΓL + 〈 1
nw(b)〉 in the divisible hull ∆L of ΓL. Here, L is

a field cyclic Galois over F with G(L/F ) generated by the image σ of σ. The map
θC of (2.13) sends 1

nw(b) + ΓF to σ, and ker(θC) =
(〈 [L : F ]

n w(b)
〉

+ ΓL

)/
ΓF .

We indicate how the assertions in Ex. 2.7 can be verified, since the argument
is a prototype of an approach that is often used in building valuations on division
algebras. We need to see that C is a division algebra and that formula (2.15) gives a
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valuation on C. In any case formula (2.15) does define a function v : C−{0} → 1
nΓL,

and it is easy to check that

v(a + b) ≥ min(v(a), v(b)), for all a, b ∈ C − {0}, with b �= −a, (2.16)

since this is true for w on L. Since v(a) = v(−a), it follows as usual from (2.16)
that

v(a + b) = min(v(a), v(b)), whenever v(b) �= v(a). (2.17)

A short calculation shows that for any �, m ∈ L∗ and any i, j ∈ Z,

v((�yi)(myj)) = v(�yi) + v(myj), (2.18)

since �yimyj = �σi(m)yi+j and w(σi(m)) = w(m). From (2.18) and (2.16), it
follows easily that for any a, b ∈ C with ab �= 0,

v(ab) ≥ v(a) + v(b). (2.19)

Note further that for any nonzero a =
n−1∑
i=0

�iy
i ∈ C (with �i ∈ L), we have v(a) =

min{v(�iy
i) | �i �= 0}, and each nonzero summand �iy

i has a different value because
the values of the yi are distinct modulo ΓL. Call the summand �jy

j of least value
the “leading term” of a. So, a = �jy

j + a′, where v(a) = v(�jy
j) and v(a′) > v(a)

or a′ = 0. Now take a second nonzero element b =
n−1∑
i=0

miy
i of C, say with leading

term mkyk; so b = mkyk +b′ with v(b) = v(mkyk) and v(b′) > v(b) or b′ = 0. Then,

ab = �jy
jmkyk + r,

where r is a sum of terms each of which is zero or by (2.19) has value strictly larger
than v(�jy

jmkyk). So, by (2.16), if r �= 0, then v(r) > v(�jy
jmkyk). Consequently,

r �= −�jy
jmkyk, which shows that ab �= 0. Thus, the central simple F -algebra C

has no zero divisors, showing that it is a division ring. Furthermore, by (2.17) and
(2.18), we have

v(ab) = v(�jy
jmkyk + r) = v(�jy

jmkyk) = v(a) + v(b),

proving, with (2.16), that v is a valuation on C. The other assertions about v in
Ex. 2.7 now follow at once since it is easy to determine VC and MC from (2.15).

Proposition 2.8 Let F be a field, let D1 ∈ D(F ), and let D2 be a division
ring with Z(D2) ⊇ F . Suppose there are valuations w1 on D1 and w2 on D2 such
that w1|F = w2|F and w1 is defectless. Suppose also that D1 ⊗F D2 is a division
ring and that ΓD1 ∩ ΓD2 = ΓF . Then, D1 ⊗F D2 is a division ring (with center
Z(D2)) and there is a unique valuation v on D1 ⊗F D2 such that v|Di = wi for
i = 1, 2. Also, D1 ⊗F D2

∼= D1 ⊗F D2 and ΓD1⊗F D2 = ΓD1 + ΓD2 (in the divisible
hull of ΓD2).

Prop. 2.8 appears in the paper [M1], where a full proof can be found, see [M1,
Th. 1]. The proof is along the same general lines as for Ex. 2.7 above, but there
are considerable technical complications. We here merely describe the valuation
on D1 ⊗F D2 in Prop. 2.8. For this, choose any b1, . . . , bn ∈ UD1 which map to
an F -base of D1, and choose any c1, . . . , cm ∈ D∗

1 whose values are a set of coset
representatives of ΓD1/ΓF . Then, {cibj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is an F -base of
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D1, since w1 is defectless. Every element a of D1 ⊗F D2 is expressible uniquely as

a =
m∑

i=1

n∑
j=1

cibj ⊗ �ij , with the �ij ∈ D2. Then v is given by (for a �= 0)

v(a) = min{w1(ci) + w2(�ij) | �ij �= 0}.
Note that in Prop. 2.8 the division algebra D2 need not be finite-dimensional

over F , and need not be noncommutative. For example, we could take D2 to be
the Henselization Fh of F with respect to w1|F . Since Fh = F and ΓF h = ΓF ,
Prop. 2.8 shows that whenever the valuation on D1 is defectless over F , we have that
D1 ⊗F Fh is a division ring. This gives a rather easy way of seeing the nontrivial
implication in Th. 2.3 above in the defectless case.

A generalization of Prop. 2.8 relaxing the requirement that D1 ⊗F D2 be a
division ring is given in Ex. 10.7 below.

The following corollary follows immediately from Prop. 2.8 and the defect for-
mula (2.11):

Corollary 2.9 Let F be a field with a valuation w, and let D1, D2 ∈ D(F )
with gcd(deg(D1),deg(D2)) = 1. If w extends to D1 and to D2, then w extends to
D1 ⊗F D2, with D1 ⊗F D2

∼= D1 ⊗F D2 and ΓD1⊗F D2 = ΓD1 + ΓD2 .

3 Division algebras over Henselian fields

Let F be a field with a Henselian valuation v. Then, as noted in §2, since v
has a unique extension to each field algebraic over F , v also has a unique extension
to each division algebra finite dimensional over F . We will describe in this section
some of the particular types of valued division algebras over F , and their special
properties. We also describe portions of the Brauer group of F . Indeed there is a
canonical filtration on Br(F ) induced by v:

IBr(F ) ⊆ SBr(F ) ⊆ TBr(F ) ⊆ Br(F ).

We will consider each of these pieces of Br(F ) in turn—see (3.6), (3.8), and (3.18)
below for the definitions. Most of the results given in this section about division
algebras over F and Br(F ) can be found, with proofs, in [JW2]. Some things in
this section appear also in [PY4] and [PY5], which the reader might wish to consult
for a somewhat different perspective.

Before looking at division algebras, let us recall some of the basic examples
of Henselian valued fields, and a few of their basic properties. Of course, the
classical example is that a complete discrete rank 1 valuation on a field is Henselian.
This includes the non-Archimedean local fields of number theory, for which Hensel
proved Hensel’s Lemma. Another basic example is the Laurent series field F ((x)) ={∑∞

i=k aix
i | k ∈ Z, all ai ∈ F

}
in an indeterminate x over a ground field F . It

is well-known that F ((x)) is complete with respect to the discrete rank 1 x-adic
valuation v given by v

( ∑∞
i=k aix

i
)

= min{ i | ai �= 0}. Indeed, F ((x)) is the
completion of the rational function field F (x) with respect to the x-adic valuation
whose valuation ring is the localization F [x](x) = {f/g | f, g ∈ F [x], g(0) �= 0}. For
the valuation on F ((x)) the associated valuation ring VF ((x)) is the formal power
series ring F [[x]], the residue field is F ((x)) ∼= F , and the value group is ΓF ((x)) = Z.

There is a generalization of F ((x)) which we will see frequently below: For any
natural number n, let x1, . . . , xn be n independent indeterminates over a field F ,
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and let F ((x1)) · · · ((xn)) be the n-fold iterated Laurent series field over F . This can
be defined inductively by setting F0 = F , F1 = F0((x1)), . . . , Fi = Fi−1((xi)), . . . ;
then

F ((x1)) · · · ((xn)) = Fn. (3.1)

We can describe the elements of Fn as suitable Laurent series in the xi: On
n∏

i=1

Z

define a total ordering by

(i1, . . . , in) < (j1, . . . , jn) just when there is a k such that
ik < jk and i� = j� for all � > k.

(3.2)

This is the right-to-left lexicographic ordering on Zn. Then,}
.(3.4)

well-ordered subset of (Zn,≤)}
.

Note that F ((x1)) · · · ((xn)) is not the quotient field of the iterated formal power
series ring F [[x1, . . . , xn]], and that F ((x1)) · · · ((xn)) is not symmetric in the order

of the xi. For example, F ((x1))((x2)) contains
∞∑

i=0

x−i
1 xi

2, but not
∞∑

i=0

xi
1x

−i
2 . There

is a valuation v on F ((x1)) · · · ((xn)) with value group Zn, ordered as in (3.2),
given by

v
(∑

i1

· · ·
∑
in

ci1···in
xi1

1 · · ·xin
n

)
= min{(i1, . . . , in) | ci1···in

�= 0}. (3.5)

So, v has rank n, with ΓF ((x1))···((xn)) = Zn and F ((x1)) · · · ((xn)) = F . We will
call v the standard valuation on F ((x1)) · · · ((xn)). The important fact we need is
that this standard valuation is Henselian, as can be seen very easily by viewing v
in terms of composite valuations. This is worth recalling briefly:

Let w be a valuation on a field K with valuation ring W and residue field W ,
and let π : W → W be the canonical epimorphism. Let y be a valuation on W
with valuation ring Y and residue field Y . Then, let V = π−1(Y ) ⊆ K. It is easy
to see that V is a valuation ring with quotient field K; the valuation v associated
to V is called the composite valuation of w and y. (More accurately, the place
associated to v is the composition of the places associated to w and y.) Note that if
P = ker(π), the maximal ideal of W , then P is a prime ideal of V , with V/P ∼= Y
and localization VP = W . Also, the prime ideals of V are the prime ideals of W
together with the π−1(Q), where Q is a prime ideal of Y . So, the Krull dimension
of V is the sum of that W and that of Y . Also, the residue field V ∼= Y , and for
the value groups we have a canonical short exact sequence

0 −→ Γy −→ Γv −→ Γw −→ 0 .

Most relevantly here, there is also good behavior regarding the Henselian property:

Proposition 3.1 For a composite valuation v of w and y as above, v is Hen-
selian iff w and y are each Henselian.
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See, e.g., [R2, p. 211, Prop. 10] for a proof of Prop. 3.1. Indeed, this follows
easily from the characterization of Henselian valuations by the uniqueness of their
extensions to algebraic field extensions of the ground field.

Now, returning to the iterated Laurent series field F ((x1)) · · · ((xn)) = Fn,
where F0 = F and Fi = Fi−1((xi)). We have the usual complete discrete rank 1
(so Henselian) x1-adic valuation on F1 = F ((x1)). On F2 = F1((x2)) we have
the complete discrete and rank 1 x2-adic valuation whose residue field is F1. We
compose this valuation with the x1-adic valuation on F1, to obtain the standard
valuation on F2 = F ((x1))((x2)) as described in (3.5) with n = 2. It is Henselian
by Prop. 3.1. The standard valuation on F ((x1)) · · · ((xn)) is obtained by iterating
this process, so it too is Henselian.

One can also obtain a Henselian valued field by Henselization, starting out from
any valuation on a field (cf. §2). But for most of the specific examples we consider
in the rest of this paper, it will suffice to consider Henselian valued fields like
F ((x1)) · · · ((xn)). However, it is important to allow n > 1, since some interesting
phenomena only show up when the value group has rational rank at least 2—for
example, the tame and totally ramified division algebras studied in §4 below.)

Now, let us consider any field F with a Henselian valuation v. We recall some of
the basic facts and terminology about extension fields of F . This will set the stage
for the appropriate analogues for division rings. Recall that a finite degree field
extension L of F is defined to be unramified over F (with respect to the unique
extension of v to L) if [L : F ] = [L : F ] and L is separable over F (hence L is
separable over F ). If L is algebraic over F of infinite degree, then L is defined to
be unramified over F if for each field L0 with F ⊆ L0 ⊆ L and [L0 : F ] < ∞ we
have L0 is unramified over F . It is well known that within a fixed algebraic closure
Falg of F there is a unique maximal unramified extension Fnr of F ; for every field
L with F ⊆ L ⊆ Falg, L is unramified over F iff L ⊆ Fnr. Indeed, Fnr is the
inertia field of the separable closure Fsep of F over F (with respect to the unique
extension of v to Fsep). Recall further that Fnr is a Galois extension of F (typically
of infinite degree) with Fnr

∼= F sep; also, ΓFnr = ΓF . Each F -automorphism σ of
Fnr maps VFnr to itself (as VFnr is the unique extension of VF to Fnr); hence, σ
induces an F -automorphism σ : Fnr → Fnr. The mapping σ �→ σ is a continuous
isomorphism G(Fnr/F )→ GF , where GF = G(F sep/F ) is the absolute Galois group
of F . Likewise, the map L �→ L gives a one-to-one degree-preserving and inclusion-
preserving correspondence between the unramified field extensions L of F in Falg

and the separable algebraic extensions L of F in F sep. We call L the inertial lift
of L over F . If a field K is any finite degree extension of F and L̃ is the separable
closure of F in K, then K contains a copy of the inertial lift of L̃ over F . The
assertions in this paragraph are all well known, and are given in or easily deducible
from the results in [E, §19].

There is a corresponding notion of unramified division algebras. For our Hen-
selian valued field F , let D be a division algebra finite-dimensional over F (we
allow Z(D) � F ). We say that D is unramified or inertial over F if, with respect
to the unique extension of v to D, we have [D : F ] = [D : F ] and Z(D) is separable
over F . The fundamental inequality (2.9) then shows that ΓD = ΓF . Moreover,
it is known that Z(D) = Z(D) (cf. [JW2, Lemma 2.2]). We have the following
characterizations of inertial division algebras with center F . See [JW2, Ex. 2.4(ii),
Prop. 2.5] for a proof:
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Theorem 3.2 Let F be a Henselian valued field, and let D ∈ D(F ). Then the
following are equivalent:

(i) D is inertial over F .
(ii) [D : F ] = [D : F ] and Z(D) = F .
(iii) VD is an Azumaya algebra over VF .
(iv) There is an Azumaya algebra A over VF with A ⊗VF

F ∼= Mn(D) for
some n.

We can now define the inertial part of the Brauer group of F : Set

IBr(F ) = { [D] ∈ Br(F ) | D ∈ D(F ) and D is inertial over F}. (3.6)

Note that IBr(F ) is a subgroup of Br(F ). Indeed, Th. 3.2 (iv) shows that IBr(F )
is the image of the canonical group homomorphism α : Br(VF ) → Br(F ) given
by [A] �→ [A ⊗VF

F ]. This map α is known to be injective (this is true even if
the valuation ring VF is not Henselian, see [JW2, Prop. 2.5] or [Sa5, Lemma 1.2]).
But further, because our VF is Henselian, it is known that the canonical map
β : Br(VF ) → Br(F ) given by [A] �→ [A ⊗VF

F ] is an isomorphism (cf. [JW2,
pp. 140–141]). This was proved by Azumaya in [Az, Th. 31]. (Azumaya’s argument
for the surjectivity of β is similar to the one given by Nakayama in the complete
discrete case in [Na, Satz 1].) Thus, by using the map β ◦ α−1, we have

IBr(F ) ∼= Br(F ) by the map [D] �→ [D], (3.7)

an index-preserving group isomorphism. Moreover, if K is any field containing F ,
and K has a Henselian valuation w with w|F = v (e.g., if [K : F ] < ∞), then the
scalar extension map Br(F )→ Br(K) sends IBr(F ) into IBr(K). This is clear from
Th. 3.2 (iv), since Br(VF ) maps to Br(VK).

Unramified division algebras are thus completely determined by their residue
division algebras. But it is important to know further that they exist inside other
division algebras whenever possible, just as in the commutative case:

Theorem 3.3 Let F be a Henselian valued field, and let Ẽ be a division algebra
finite dimensional over F with Z(Ẽ) separable over F . Then,

(a) there is a unique up to isomorphism division algebra E over F such that
E is unramified over F and E ∼= Ẽ. This E is called the inertial lift of Ẽ
over F .

(b) If B is any division algebra finite-dimensional over F and Ẽ is an F -
subalgebra of B, then B contains a copy of the inertial lift of Ẽ.

See [JW2, Th. 2.8(a), Th. 2.9] for a proof of Th. 3.3. Part (a) actually follows
easily from the isomorphism (3.7) above, but part (b) takes more work to prove.

For our Henselian field F , we have seen that the inertial part of Br(F ) is
completely determined by F . But IBr(F ) is usually only a small piece of Br(F ). In
the rest of Br(F ) there is a significant interplay between F and ΓF . This shows up
already in the algebras split by the maximal unramified extension Fnr of F , which
we now consider. If Fnr splits [D] ∈ Br(F ), we say that D is inertially split . Let

SBr(F ) = { [D] ∈ Br(F ) | D is inertially split} = Br(Fnr/F ). (3.8)

Clearly SBr(F ) is a subgroup of Br(F ). Moreover, IBr(F ) ⊆ SBr(F ). For, if
D ∈ D(F ) and D is unramified over F , then D contains as a maximal subfield the
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inertial lift L of a maximal subfield L̃ of D such that L̃ is separable over F ; since
L ⊆ Fnr and L splits D, Fnr splits D.

We have the following characterizations of the division algebras in SBr(F ) (see
[JW2, Lemma 5.1]):

Theorem 3.4 Let F be a Henselian valued field, and let D ∈ D(F ). Then the
following are equivalent:

(i) D is inertially split.
(ii) D has a maximal subfield L with L unramified over F .
(iii) Z(D) is separable (hence abelian Galois by Prop. 2.5) over F , the map

θD : ΓD/ΓF → G(Z(D)/F ) of (2.13) is an isomorphism, and [D : F ] =
[D : F ]|ΓD : ΓF |.

There is a homological characterization of SBr(F ), which was first given by
Scharlau in [Sch]. It is analogous to the classical homological description of the
Brauer group of a field with complete discrete rank 1 valuation, which is very well
presented in [S, Ch. XII, §3]. For the general Henselian case, let G = G(Fnr/F ) ∼=
GF , the absolute Galois group of F , a profinite group. There is a short exact
sequence of discrete G-modules given by the valuation v (since ΓFnr = ΓF )

1 −→ UFnr −→ F ∗
nr

v−→ ΓF −→ 0 , (3.9)

which leads to the following part of the long exact sequence of continuous cohomol-
ogy groups:

H1
c (G, ΓF ) −→ H2

c (G, UFnr)
γ′
−→ H2

c (G, F ∗
nr)

ε′
−→ H2

c (G, ΓF ) . (3.10)

(The subscript c indicates continuous cohomology.) Each of the terms in (3.10) has a
nice interpretation, which we indicate here; see [JW2, pp. 155–158] for proofs. Since
G acts trivially on ΓF , we have H1

c (G, ΓF ) = Homc(G, ΓF ) (continuous homomor-
phisms), and this group is trivial, since G is profinite and ΓF is torsion-free. Because
F is Henselian, it is known that the map H2

c (G, UFnr) → H2
c (G, Fnr

∗
) induced by

the canonical projection UFnr → Fnr
∗

is an isomorphism. Hence, as Fnr
∼= F sep,

we have, using (3.7), H2
c (G, UFnr) ∼= Br(F ) ∼= IBr(F ). For the next term in

(3.10) we have the standard isomorphism H2
c (G, F ∗

nr) ∼= Br(Fnr/F ) = SBr(F ).
Let ∆F = Q ⊗Z ΓF , the divisible hull of ΓF . Since ∆F is uniquely divisible (so
Hi

c(G, ∆F ) = 0 for all i > 0), H2
c (G, ΓF ) ∼= H1

c (G, ∆F /ΓF ) = Homc(G, ∆F /ΓF ).
Furthermore, explicit constructions (see the remark after Ex. 3.6 below) show that
the map ε′ of (3.10) is onto. Thus, (3.10) translates to the short exact sequence

0 −→ IBr(F )
γ−→ SBr(F ) ε−→ Homc(G, ∆F /ΓF ) −→ 0 , (3.11)

where γ coincides with the inclusion map. A striking interpretation of the map ε
was given in [JW2]:

Theorem 3.5 For a Henselian field F , and any inertially split D ∈ D(F ), let
hD = ε([D]) ∈ Homc(G, ∆F /ΓF ), where ε is the map of (3.11). Then, im(hD) =
ΓD/ΓF ; the fixed field of ker(hD) is Z(D); and the isomorphism G(Z(D)/F ) −→
ΓD/ΓF induced by hD is the inverse of the map θD of (2.13) induced by conjugation
by elements of D.

See [JW2, Th. 5.6(b)] for a proof of Th. 3.5. It is rather remarkable that
the map hD obtained cohomologically has such a direct interpretation within the
underlying division algebra D. For, a cocycle describing [D] yields a crossed product
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algebra which is matrices of some size over D, in which it is often difficult to detect
D itself. Note that by using Th. 3.5 we can easily compute Z(E), ΓE , and θE

whenever E is the underlying division algebra of a central simple algebra obtained
from an inertially split division algebra over F by scalar extension, or obtained as
a tensor product of inertially split division algebras.

When ΓF is a free abelian group the short exact sequence (3.9) is split exact, so
(3.11) is also split exact, though there is no canonical splitting map. In particular,
when the Henselian valuation v on F is discrete rank 1 (so ΓF

∼= Z) then the
last term in the exact sequence (3.9) is the continuous character group X(G) =
Homc(G, Q/Z). When, further, F is perfect, it is known that SBr(F ) is the full
Brauer group Br(F ). Hence, we recover the isomorphism

Br(F ) ∼= Br(F )⊕X(GF ), (3.12)

which was originally proved by Witt in [Wi] in the complete case. The isomorphism
in (3.12) is not canonical, since it depends on the choice of a uniformizing parameter
of VF , which determines the splitting map in (3.9). (For the equality SBr(F ) =
Br(F ) for v discrete rank 1 Henselian with F perfect, see [S, Ch. XII, §1, Th. 1;
§2, Prop. 2] for the case when v is complete. In the case that v is not complete,
then Cohn’s complete version of Th. 2.3 above [C1, Th. 1] shows that Br(F ) maps
injectively into Br(F̂ ), where F̂ is the completion of F ; also SBr(F ) maps onto
SBr(F̂ ) by (3.11), so SBr(F ) = Br(F ) since this holds for F̂ .)

Example 3.6 Given a Henselian valued field F , let L̃1, . . . , L̃k be cyclic Galois
extension fields of F such that L̃1⊗F · · ·⊗F L̃k is a field. Say [L̃i : F ] = ni. Let Li be
the inertial lift of L̃i over F , so each Li is cyclic Galois over F , say G(Li/F ) = 〈σi〉,
and L1 ⊗F · · · ⊗F Lk is a field. Let n = lcm(n1, . . . , nk), and suppose there are
a1, . . . , ak ∈ F ∗ such that the images of { n

n1
v(a1), . . . , n

nk
v(ak)} generate a subgroup

of ΓF /nΓF of (maximum possible) order n1 · · ·nk. Let

N = (L1/F, σ1, a1)⊗F · · · ⊗F (Lk/F, σk, ak). (3.13)

Then, N is an inertially split division algebra over F with N = L̃1⊗F · · ·⊗F L̃k and

ΓN = 〈 1
n1

v(a1), . . . , 1
nk

v(ak)〉+ ΓF , so that ΓN/ΓF
∼=

k∏
i=1

(Z/ni Z). For, each Di =

(Li/F, σi, ai) is a division algebra by Ex. 2.7, with Di = L̃i and ΓDi
= 〈 1

ni
v(ai)〉+

ΓF ; then the assertions about N follow by repeated application of Prop. 2.8. This
N is inertially split since it contains the maximal subfield L1 ⊗F · · · ⊗F Lk which
is unramified over F . Note that deg(N) = [N : F ] = |ΓN : ΓF | = n1 · · ·nk, while
exp(N) = exp(ΓN/ΓF ) = lcm(n1, . . . , nk) = n. For, clearly N⊗n is split, since each
D⊗n

i is split. But, Th. 3.5 shows that n = exp(ΓN/ΓF ) = exp(ε[N ])
∣∣ exp(N).

The division algebras constructed in Ex. 3.6 were dubbed “nicely semiramified”
in [JW2, §4], where some other characterizations of such algebras are given. Note
that for any h ∈ Homc(GF ,∆F /ΓF ) it is easy to construct an N as in Ex. 3.6 with
θN the inverse of the isomorphism GF / ker(h)→ im(h) induced by h; then, for the
map ε of (3.11), Th. 3.5 shows that ε([N ]) = h. This verifies the surjectivity of ε.
Nicely semiramified division algebras are a part of a useful (though noncanonical)
decomposition of any inertially split division algebra, which is described in the next
theorem. For part (e), we will need the Dec group introduced by Tignol in [T1].
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For L ⊆ K fields with K abelian Galois over L and [K : L] <∞,

Dec(K/L) =
∑

cyclic

Br(C/L) ⊆ Br(K/L) (3.14)

where the sum ranges over all fields C, with L ⊆ C ⊆ K and C cyclic Galois over
L. Then, Dec(K/L) is the subgroup of L-algebras that “decompose according to
K.” That is, we can express K = C1 ⊗L · · · ⊗L Ck with each Ci cyclic Galois over
L; then for any [E] ∈ Br(L), we have [E] ∈ Dec(K/L) iff E is Brauer equivalent to
some (C1/L, σ1, a1)⊗L · · · ⊗L (Ck/L, σk, ak).

Theorem 3.7 Let F be a Henselian valued field, let I, N ∈ D(F ) with N nicely
semiramified as in Ex. 3.6, and I unramified over F . Let D be the underlying
division algebra of I ⊗F N . Then,

(a) Z(D) = N , and D is the underlying division algebra of I ⊗F N .
(b) ΓD = ΓN and θD = θN .
(c) exp(D) = lcm(exp(ΓN/ΓF ), exp(I)).
(d) ind(D) = ind(I ⊗F N) · |ΓN/ΓF |.
(e) D is nicely semiramified iff I ∈ Dec(N/F ).
(f) If S ∈ D(F ) is any inertial split division algebra, then there is an unram-

ified I ∈ D(F ) and nicely semiramified N ∈ D(F ) such that S ∼ I ⊗F N
in Br(F ). Hence, exp(S)

∣∣ exp(S) and exp(ΓS/ΓF )
∣∣ exp(S).

See [JW2, Lemma 5.14, Th. 5.15] for a proof of Th. 3.7.
Inertially split division algebras have been used in a number of significant con-

structions, as we will see in §§5–7 below. Here is another example of such algebras,
the “Mal′cev-Neumann” algebras studied by Tignol and Amitsur in [TA1] and [T5].

Example 3.8 Let F0 ⊆ L be fields with L abelian Galois over F0, and let
n = [L : F0] < ∞. Let G = G(L/F0), let f : G × G → L∗ be any normalized
2-cocycle, and let ε : Zk → G be any group epimorphism. The corresponding
Mal′cev-Neumann algebra Df is defined by Df = L((y1)) · · · ((yk)) as an abelian
group, but with multiplication in Df being defined on monomials by, for �, m ∈ L,

(�yr1
1 · · · yrk

k )(mys1
1 · · · ysk

k )

= �ε(r1, . . . , rk)(m)f
(
ε(r1, . . . , rk), ε(s1, . . . , sk)

)
yr1+s1
1 · · · yrk+sk

k ; (3.15)

this multiplication is then extended in the obvious way to all of Df . The stan-
dard valuation v for L((y1)) · · · ((yk)) as in (3.5) above is also a valuation for
Df , and a leading monomial argument like that for Ex. 2.7 above shows that
Df has no zero divisors. Since Df is finite-dimensional over its central subfield
F1 = F0((yn

1 )) · · · ((yn
k )), it follows that Df is a division ring. Let F = Z(Df ) ⊇ F1.

So, }
.(3.17)

whenever (i1, . . . , ik) /∈ ker(ε)}
.

Since v|F1 is the standard Henselian valuation and [F : F1] < ∞, we have v|F is
Henselian. Note that Df = L and ΓDf

= Zk, while F = F0 and ΓF = ker(ε), so



Valuation Theory on Finite Dimensional Division Algebras 19

[Df : F ] = |ΓDf
: ΓF | = n. Also, θDf

: ΓDf
/ΓF → G(L/F0) is the isomorphism

induced by ε. Since Df contains the maximal subfield L·F which is unramified over
F , Df is inertially split. The center F of Df is determined by ε and not affected
by f . If we fix the map ε, there is a whole family of division algebras Df over
the same F , depending on the choice of f . In [T5, Th. 2.3], Tignol showed that
for any cocycle f , Df ∼ If ⊗F D1 in Br(F ), where D1 is the Mal′cev-Neumann
division algebra built as above from the trivial cocycle 1, and If is the inertial lift
over F of the division algebra Bf over F0 which corresponds to the class of f in
H2(G, L∗) ∼= Br(L/F0). Since it is easy to check that D1 is nicely semiramified,
this decomposition of Df is an example of the I ⊗N decomposition in Th. 3.7(f).
Although (for fixed ε) all the Df have the same center, the same residue field,
and the same value group, Tignol and Amitsur showed in [TA1] and [T5] that the
subfields of Df depend very much on the choice of f . Their work on the subfields of
Df was abstracted and put in a general valuation-theoretic framework by Morandi
and Sethuraman in [MS3].

For another perspective on Mal′cev-Neumann division algebras, and a more
general construction of them, see [L2, pp. 241–246].

When the value group of a Henselian field F is sufficiently big, there is a larger
part of Br(F ) beyond SBr(F ) which is amenable to analysis using the valuation.
This consists of the tame division algebras, which we consider next.

First, we recall the commutative analogue. A finite degree extension field L
of a field F with Henselian valuation v is said to be tamely ramified over F (with
respect to the unique extension of v to L) if char(F ) = 0 or char(F ) = p �= 0 and
L is separable over F , p � |ΓL : ΓF |, and [L : F ] = [L : F ]|ΓL : ΓF |. Such an L is
necessarily separable over F . If L is algebraic over F and [L : F ] = ∞, then L
is tamely ramified over F if each finite degree subextension of F in L is tamely
ramified over F . There is a unique maximal tamely ramified extension Ftr of F in
Fsep, which is the compositum of all the finite-degree tamely ramified extensions of
F . We have Ftr = F sep and, for ∆F = Q ⊗Z ΓF , we have ΓFtr/ΓF = (∆F /ΓF )′,
by which we mean the prime-to-p subgroup of the torsion abelian group ∆F /ΓF

if char(F ) = p �= 0, and all of ∆F /ΓF if char(F ) = 0. The field Ftr is a Galois
extension of F , usually of infinite degree, and Ftr contains the maximal unramified
extension Fnr of F . Indeed, if we consider the Galois extension Fsep of F and the
unique extension of v to Fsep (again denoted v), then Ftr is the ramification field of v
for Fsep over F (while Fnr is the inertia field, and F itself is the decomposition field,
as v is Henselian). Ftr is an abelian Galois extension of Fnr, with G(Ftr/Fnr) ∼=
Hom

(
(∆F /ΓF )′, µ(F )

)
, where the isomorphism is given by σ �→ fσ, where for

a ∈ Ftr, fσ(v(a) + ΓF ) = σ(a)a−1 ∈ µ(F ). When char(F ) = p �= 0, G(Fsep/Ftr) is
the unique p-Sylow subgroup of the profinite group G(Fsep/Fnr). When char(F ) =
0, Ftr = Fsep. See [E, §20] for proofs of the assertions in this paragraph, all of which
are well known.

The noncommutative version of a tamely ramified extension is given by the
following:

Proposition 3.9 Let F be a Henselian valued field, and let D ∈ D(F ). Sup-
pose char(F ) = p �= 0. Then the following are equivalent:

(i) Ftr splits D.
(ii) Fnr splits the p-primary component of D.
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(iii) Z(D) is separable over F , p � |ker(θD)|, where θD is the map of (2.13),
and [D : F ] = [D : F ]|ΓD : ΓF |.

(iv) D has a maximal subfield which is tamely ramified over F .

See [JW2, Lemma 6.1] and [HW2, Prop. 4.3] for a proof of Prop. 3.9. See also
[D3, Th. 3] for (i) ⇒ (iv). For D ∈ D(F ) with F Henselian, we say that D is tame
if char(F ) = 0 or if char(F ) = p �= 0 and D satisfies the equivalent conditions of
Prop. 3.9. The tame part of the Brauer group of F is defined to be

TBr(F ) = { [D]
∣∣ D ∈ D(F ) and D is tame} = Br(Ftr/F ). (3.18)

Note that TBr(F ) is a subgroup of Br(F ) containing SBr(F ) and containing the
entire q-primary component of Br(F ) for each prime q �= char(F ). In particular, if
char(F ) = 0, then TBr(F ) = Br(F ).

A special type of tame division algebra is of particular interest. Still assuming
that F is Henselian, we say that T ∈ D(F ) is tame and totally ramified (abbreviated
TTR) if |ΓT : ΓF | = [T : F ] and char(F ) � [T : F ]. We will devote all of §4 below
to TTR division algebras. For the present, we will focus on how arbitrary tame
division algebras are related to TTR division algebras.

Theorem 3.10 Let F be a Henselian valued field, and let D ∈ D(F ) with D
tame.

(a) There are S, T ∈ D(F ) with S inertially split and T TTR such that D ∼
S ⊗F T in Br(F ).

(b) For any S and T as in part (a), we have ΓD = ΓS +ΓT , ker(θD) = ΓT /ΓF ,
and Z(D) is the fixed field of θS

(
(ΓS ∩ ΓT )/ΓF

)
.

See [JW2, Lemma 6.2, Th. 6.3] for a proof of Th. 3.10. Note that the decompo-
sition D ∼ S ⊗F T is not canonical, and in general it is not possible to find such S
and T with D ∼= S⊗F T . Some consequences of this theorem are given in [JW2, §6].
We mention just one: Suppose F is Henselian and D ∈ D(F ) with D tame. Let
D⊗m denote the underlying division algebra of D ⊗F · · · ⊗F D (m times). Then,
(see [JW2, Prop. 6.9]),

ΓD⊗m = mΓD + ΓF . (3.19)

The proof of (3.19) depends on writing D ∼ S⊗F T as above and invoking the good
information about T⊗m we have because T is a tensor product of cyclic algebras
(see Th. 4.5(a) below), and about S⊗m, by virtue of Th. 3.5. It follows from (3.19)
that exp(ΓD/ΓF )

∣∣ exp(D) for D tame, as had been proved earlier in [PY3, (3.19)].
However, this divisibility does not hold in general if D is not tame—see [JW2,
Ex. 7.5] for a counterexample.

If the Henselian valuation v on F has rank 1 (as in the case of a complete discrete
valuation) then there are no nonsplit TTR division algebras over F—see Cor. 4.3
below. Therefore, for such valued fields, Th. 3.10 shows that TBr(F ) = SBr(F ).

One of the complications in dealing with valued division algebras D ∈ D(F ) is
that Z(D) may be strictly larger than F . When the valuation on F is Henselian,
and D is inertially split, we can at least say that [D] ∈ im

(
Br(F ) → Br(Z(D))

)
,

as is clear from Th. 3.5. However, this does not always hold when D is tame—see
[JW2, Ex. 7.1] for a counterexample. Nonetheless, it was shown in [W2] that if F
contains enough roots of unity, then for any tame D it is true that [D] lies in the
image of Br(F ).
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While the D ∼ S ⊗F T decomposition for D tame, and the S ∼ I ⊗F N
decomposition of an inertially split S are not canonical, there are certain canonical
pieces of a tame D, which are unique up to isomorphism and give some sense of
how such a D is built up. For this, take any tame D ∈ D(F ) with F Henselian.
Let I be an inertial lift of D over F , such that I ⊆ D. Such an I exists and is
unique up to isomorphism by Th. 3.3. Let Z = Z(I), which is an inertial lift of
Z(D) over F , and let C = CD(Z), the centralizer of Z in D. Let T = CC(I).
Then C ∼= I ⊗Z T by the Double Centralizer Theorem. Since C and I are tame,
so is T . We have T ⊆ D = I, but T ∩ I = Z by Th. 3.3(b) since T and I can
can contain no proper field extension of Z in common. Hence, T is TTR (with
center Z). Easy calculations show: Z = Z(D) and ΓZ = ΓF , so Z is unramified
abelian Galois over F with G(Z/F ) ∼= G(Z/F ) =
im(θD); I = D and ΓI = ΓF ; T = Z and
ΓT /ΓF = ker(θD); C = D and ΓC/ΓF = ΓT /ΓF =
ker(θD), so D is totally ramified over C and [D : C] =
|ΓD : ΓC | = [Z : F ], with ΓD/ΓC

∼= G(Z(D)/F ) via
θD. The Double Centralizer Theorem shows that
there is a one-to-one inclusion-reversing correspon-
dence between the fields Y such that F ⊆ Y ⊆ Z
and the division algebras E such that C ⊆ E ⊆ D,
given by Y ↔ E just when E = CD(Y ) (then also
Y = CD(E)).

D
|

C = I ⊗Z T
� �

I T
� �

Z
|
F

We have thus far considered only tame division algebras over a Henselian valued
field F , since these are the best understood. There has been only a little work on
wild (i.e., non-tame) division algebras over F . Partly this may be because there
are no wild division algebras over the local fields of number theory (see (3.12)
above). Additionally, computations with such algebras are quite difficult. But we
do want to mention a few results on wild division algebras. In view of the comments
after (3.18) above, Br(F )/ TBr(F ) is generated by wild p-primary division algebras,
where p = char(F ) > 0.

Consider first a Henselian valuation v on F with ΓF = Z and char(F ) = p > 0.
We noted above after (3.12) that if F is perfect, then Br(F ) = SBr(F ), so there
are no wild division algebras over F . But, when F is not perfect, Br(F ) has a
nontrivial wild part. For example, suppose char(F ) = p, let π ∈ F with v(π) = 1,
and let L = F (s), where sp − s − π−1 = 0. (That is, L = F (℘−1(π−1)), where ℘
is the Artin-Schreier map given by a �→ ap − a.) When we extend v to L, clearly
v(s) = − 1

p ; so L �= F , [L : F ] = |ΓL : ΓF | = p, and L is cyclic Galois over F with
G(L/F ) generated by σ with σ(s) = s + 1. Whenever F is not perfect, there is
b ∈ F with v(b) = 0 such that b /∈ F

p
. Then it is easy to check that D = (L/F, σ, b)

is a division algebra over F (since b is not a norm from L), with D = F (
p
√

b) and
ΓD = ΓL = 1

pΓF ; so D is wild. If, instead, char(F ) = 0, assume for simplicity
that F contains a primitive p-th root of unity ω. Take π, c ∈ F with v(π) = 1,
v(c) = 0, and c /∈ F

p
; then let L′ = F ( p

√
1 + π) and D′ = Aω(1 + π, c;F ). Let

m = 1− r ∈ L, where rp = 1 + π and r = 1; then an examination of the equation
(1 + m)p = 1 + π shows that (as v(m) > 0 and v(p) ≥ v(π)) p v(m) = v(π), so
|ΓL′ : ΓF | = [L′ : F ] = p. It follows that D′ is a division ring (as c is not a norm
from L′), with ΓD′ = ΓL′ = 1

pΓF and D′ = F ( p
√

c), so D′ is wild. Likewise, if
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[F : F
p
] ≥ p2, one can construct examples of wild division algebras E ∈ D(F ) with

E a field purely inseparable over F and [E : F ] = [E : F ] = p2 (see [Sa4, p. 1760,
Ex.; p. 1765, Th. 2.13]).

If F is a field with complete discrete rank 1 valuation v with char(F ) = char(F ),
then it is well known (see, e.g., [ZS, p. 307, Cor.]) that F ∼= F ((t)), with v
corresponding to the standard valuation on F ((t)). Yuan proved in [Yu, Th. 5.2]
that in this situation there is a split exact sequence

0 −→ Br(F [t−1]) −→ Br(F ((t))) −→ XGF
−→ 0 . (3.20)

This reduces to (3.12) above when F is perfect, since then Br(F [t−1]) = Br(F ) (see,
e.g., [OS, p. 100, Cor. 8.7]). For a field F with Henselian discrete rank 1 valuation
there is a split exact sequence analogous to (3.20) whenever F contains a copy of
F . This follows from (3.20) by passing to the completion, just as in the comments
after (3.12) above. Of course, this exact sequence can be difficult to work with,
since it is not so easy to determine Br(F [t−1]). An extensive analysis of the wild
division algebras of degree p over a field F with complete discrete rank 1 valuation
with char(F ) = p was given by Saltman in [Sa4].

Moving beyond the discrete case, Tignol analyzed in [T8] the defectless division
algebras D of degree p over a field F with Henselian valuation v with char(F ) =
p > 0. He worked with the height of D, defined by

h(D) = min{v(ab− ba)− v(a)− v(b) | a, b ∈ D∗} .

(This invariant was originally defined by Saltman in [Sa4] in the complete discrete
of rank 1 case; Saltman called h(D) the level of D.) Tignol showed, see [T8, p. 2]
that if char(F ) = 0, then 0 ≤ h(D) ≤ v(p)/(p − 1), while if char(F ) = p, then
0 ≤ h(D) < ∞. He proved in [T8, Th. 4.11] that D is a cyclic algebra except
possibly in the following cases: (a) D is tame and inertial over F ; (b) D is wild
with ΓD = ΓF (so D is a field purely inseparable over F ), and char(F ) = 0 and
h(D) = v(p)/(p− 1). For these exceptional cases: in (a), he proved in [T9, §2] that
D is a cyclic algebra iff D is cyclic; in (b) he gave in [T8, Th. 4.9] several conditions
equivalent to D being a cyclic algebra. He showed further in [T7, Cor. 3] that in
case (b) D is cyclic if p = 5 and the Henselian field F contains a primitive fifth root
of unity.

Aravire and Jacob considered in [AJ] central simple algebras A which are tensor
products of cyclic algebras of degree p over a maximally complete (so Henselian)
valued field F of characteristic p > 0 with F perfect. (A valued field F is maximally
complete if there is no extension of the valuation to any field L � F such that
ΓL = ΓF and L = F .) They showed that every such A is Brauer equivalent to
a tensor product of t cyclic p-algebras in a somewhat complicated standard form,
with t ≤ dimZ/pZ(ΓF /pΓF ); further, if dimZ/pZ(F/℘(F )) < dimZ/pZ(ΓF /pΓF ), then
t < dimZ/pZ(ΓF /pΓF ). This applies to fields of the form F = k((x1)) · · · ((xn)),
where k is a perfect field with char(k) = p, since it is known (see [Schi2, p. 51, Cor.
to Th. 8]) that such fields are maximally complete with respect to the standard
Henselian valuation.

4 Tame totally ramified division algebras

Recall that a division algebra D ∈ D(F ) with valuation v is said to be tame
and totally ramified (TTR) (over its center F ) if |ΓD : ΓF | = [D : F ] and char(F ) �
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[D : F ]. When v|F is Henselian, we will see that there is a very complete picture of
such D and its subalgebras; this makes such division algebras very convenient for
building examples with specified properties.

Before examining TTR division algebras, let us recall the basic facts about
the corresponding type of field extensions. This information will be crucial for the
examples in §5 below, and it also suggests what to expect with TTR division rings.
For fields F ⊆ K with [K : F ] < ∞, and with a valuation v on K, we say that K
is tame and totally ramified over F if [K : F ] = |ΓK : ΓF | and char(F ) � [K : F ].
When this occurs, the fundamental inequality shows that K = F . Recall the
conventions on roots of unity in (0.2) above.

Proposition 4.1 Let K be a field with a valuation v which is tame and totally
ramified over a subfield F .

(a) If K is a Galois over F , then there is a (well-defined) perfect pairing
G(K/F ) × ΓK/ΓF → µ(F ) given by (σ, v(a) + ΓF ) �→ σ(a)a−1. Hence,
µe ⊆ F , where e = exp(G(K/F )), and also G(K/F ) ∼= ΓK/ΓF (not can-
onically).

(b) Suppose v|F is Henselian. Then K is a radical extension of F . More specif-
ically, if ΓK/ΓF

∼= (Z/r1Z)×· · ·×(Z/rkZ), then there are a1, . . . , ak ∈ F ∗

such that K = F (r1
√

a1, . . . ,
rk
√

ak) and v(rj
√

aj) + ΓF maps to (0, . . . , 0,

1 + rjZ, 0, . . . , 0) in
k∏

i=1

Z/ri Z.

(c) Suppose v|F is Henselian. Then K is Galois over F iff µe ⊆ F , iff µe ⊆ F ,
where e = exp(ΓK/ΓF ).

Let us sketch a proof of Prop. 4.1. First, for (b) pick any c ∈ K∗ with v(c)+ΓF

mapping to (0, . . . , 1+rjZ, 0, . . . , 0) in the isomorphism ΓK/ΓF
∼=

k∏
i=1

Z/ri Z. Then,

v(crj ) ∈ ΓF , so v(crj ) = v(b) for some b ∈ F ∗. Since K = F as K is totally ramified
over F , there is d ∈ F ∗ with v(d) = 0 and d = crj /b in K. Let u = crj /bd ∈ UK .
Since u = 1 it follows by Hensel’s Lemma applied over K, since char(K) � rj , that
there is y ∈ K∗ with yrj = u. Then, set aj = bd ∈ F ∗. We have (c/y)rj =
crj /u = aj , so c/y = rj

√
aj ∈ K∗ and v(c/y) = v(c). Likewise, for each i there is

ai ∈ F ∗ with some ri-th root ri
√

ai ∈ K∗ with v(ri
√

ai) + ΓF mapping to (0, . . . , 0,

1+ri Z, 0, . . . , 0) ∈
k∏

i=1

Z/ri Z. Since [K : F ] = |ΓK : ΓF | = |ΓF (r1√a1,...,rk
√

ak) : ΓF | ≤
[F ( r1

√
a1, . . . ,

rk
√

ak) : F ] ≤ [K : F ], we have K = F (r1
√

a1, . . . ,
rk
√

ak) proving (b).
Note that (c) follows immediately from (b) by Kummer theory and Hensel’s Lemma.
Observe that (a) follows easily from (b) and (c) when v|F is Henselian, by compar-
ing the pairing of (a) with the perfect pairing of Kummer theory. Then (a) holds in
general, since the pairing is unchanged in passage from F to a Henselization of F .

Returning now to division rings, let D ∈ D(F ) be a valued division algebra
such that D is TTR. There is a canonical pairing on ΛD = ΓD/ΓF which keeps
track of the noncommutativity of D. The canonical pairing is the map

βD : ΛD × ΛD → F
∗

given by (v(a) + ΓF , v(b) + ΓF ) �→ aba−1b−1 ∈ F . (4.1)

Proposition 4.2 For any TTR valued division algebra D ∈ D(F ) the pair-
ing βD of (4.1) is well-defined, Z-bilinear, alternating, and nondegenerate, with
im(βD) = µe(F ), where e = exp(ΛD).
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Everything in Prop. 4.2 is easy to prove except for the assertion that βD is
nondegenerate. (That βD is alternating means that βD(γ, γ) = 0, for each γ ∈ ΛD.)
Since βD is Z-bilinear and ΛD is a finite group, the image of βD must consist of roots
of unity in F . For the nondegeneracy of βD, see [TW, Prop. 3.1]. The proof given
there is much like the one for Prop. 4.1(a) sketched above. The nondegeneracy of βD

when v|F is Henselian follows immediately from the cyclic algebra decomposition
given in Th. 4.5(a) below.

Let A be a finite abelian group (written additively), and let C be a finite
cyclic group (written multiplicatively) and let f : A × A → C be a nondegener-
ate Z-bilinear alternating pairing on A. Then, it is easy to prove that A has a
“symplectic base” relative to f , i.e., there exist a1, b1, . . . , ak, bk ∈ A such that
A = 〈a1〉 × 〈b1〉 × · · · × 〈ak〉 × 〈bk〉, with f(ai, aj) = f(bi, bj) = 1 for all i, j, also
f(ai, bj) = 1 whenever i �= j, and further, if we let ci = f(ai, bi) = f(bi, ai)−1 ∈ C,
then ord(ci) = ord(ai) = ord(bi) for each i, where ord means the order of the
element in its group. Furthermore, the ai and bi can be chosen so that ord(c2)

∣∣
ord(c1), . . . , ord(ck)

∣∣ ord(ck−1). It then follows that im(f) = 〈c1〉, a subgroup of
C of order equal to the exponent exp(A). Note also that the invariant factors of A
come in pairs: ord(c1), ord(c1), . . . , ord(ck), ord(ck). So, a finite abelian group A
can admit such a nondegenerate pairing into a cyclic group C iff A ∼= B × B for
some group B and exp(A)

∣∣ |C|.
The nondegeneracy noted in Prop. 4.2 together with the observations in the

preceding paragraph imply some significant constraints on the possible TTR di-
vision algebras over a valued field F . First, recall that the rational rank rrk(ΓF )
(= dimQ(Q⊗Z ΓF )) is an upper bound on the number of invariant factors of any fi-
nite homomorphic image of ΓF (since dimZ/pZ(ΓF /pΓF ) ≤ rrk(ΓF ) for every prime
number p). Hence, rrk(ΓF ) is also an upper bound on the number of invariant
factors of ΓD/ΓF for any valued division algebra D ∈ D(F ). Thus, in particular,

Corollary 4.3 If there is a TTR division algebra D over a field F with valu-
ation v, and if D �= F , then rrk(ΓF ) ≥ 2. Hence, if v on F is a discrete rank 1
valuation (i.e., ΓF

∼= Z) then there is no such D.

Cor. 4.3 perhaps explains why TTR valued division algebras were not studied
any sooner than they were. For, the most frequently occurring valuations on the
fields occurring in number theory and in algebraic geometry are discrete rank 1.
Such valuations admit no proper TTR division algebras.

Notice another constraint imposed by the nondegeneracy of the canonical pair-
ing: If D ∈ D(F ) is a TTR valued division algebra, and if e = exp(ΓD/ΓF ), then
we must have µe ⊆ F .

Despite these remarks, examples of TTR valued division are easy to construct
when ΓF is sufficiently large and F contains enough roots of unity. We illustrate
this with the next examples. See (0.2) and (0.3) above for our notation on roots of
unity and on symbol algebras.

Examples 4.4 (i) Let n be a natural number, let F be a field with val-
uation v, such that µn ⊆ F and char(F ) � n. Let a, b ∈ F ∗ such that the im-
ages of v(a) and v(b) generate a subgroup of order n2 in ΓF /nΓF . Choose some
ω ∈ µ∗

n(F ), and let D be the symbol algebra D = Aω(a, b;F ). Then D is a divi-
sion algebra, v extends to a valuation on D with respect to which D is TTR, and
ΓD = 〈 1

nv(a), 1
nv(b)〉+ΓF , so ΛD

∼= (Z/nZ)× (Z/nZ). For the standard generators
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i, j of the symbol algebra D, v(i) = 1
nv(a) and v(j) = 1

nv(b) in the divisible hull ∆F

of ΓF . Moreover, v(i) + ΓF and v(j) + ΓF form a symplectic base for the canonical
pairing βD. The fact that D is a division ring and v extends to D is a special case
of Ex. 2.7, when we take L = F (i) = F ( n

√
a). For, v has a unique extension to the

cyclic Galois extension L of F , with necessarily ΓL = 〈 1
nv(a)〉+ ΓF .

(ii) Let F = F0((x1)) · · · ((xm)) be the m-fold iterated Laurent power series field
over a field F0, and let v be the standard Henselian valuation on F (see (3.5)). Sup-
pose that for � ≤ m/2, we have positive integers n1, . . . , n� such that each µnk

⊆ F ,

and let ωk ∈ µ∗
nk

(F ). Let D =
�⊗

k=1

Awk
(x2k−1, x2k;F ). Then D is a division algebra

which is TTR with respect to the extension of v to D. For, part (i) shows that
each Aωk

(x2k−1, x2k;F ) is a division algebra TTR with respect to its extension of
v; if ik, jk are the standard generators of Aωk

(x2k−1, x2k;F ), then clearly v(ik) =
(0, . . . , 0, 1

nk
, 0, . . . , 0) and v(jk)=(0, . . . , 0, 1

nk
, 0, . . . , 0) (with nonzero entries in the

(2k−1)-st and 2k-th positions respectively) and Aωk
(x2k−1, x2k;F ) has value group

〈v(ik), v(jk)〉+ ΓF . Then, repeated applications of Prop. 2.8 yield that D is a divi-
sion algebra which is TTR. Observe that ΓD = 〈v(i1), v(j1), . . . , v(i�), v(j�)〉+ ΓF ,

hence ΛD
∼=

�∏
k=1

(Z/nk Z)× (Z/nk Z). Also, {v(ik) + ΓF , v(jk) + ΓF | 1 ≤ k ≤ �} is

a symplectic base for the canonical pairing on ΛD.

When D is TTR with respect to a Henselian valuation on its center, then the
next theorem shows that the canonical pairing βD carries enormous information
about the structure of D. It also shows that Ex. 4.4(ii) is very typical of the
Henselian situation. We will use the following terminology: A subgroup Λ′ of ΛD

is said to be totally isotropic relative to βD if βD(α, γ) = 1 for all α, γ ∈ Λ′.

Theorem 4.5 Let D ∈ D(F ) be a division algebra with valuation v such that
D is TTR and v|F is Henselian. Then,

(a)
D ∼= Aω1(a1, b1;F )⊗F · · · ⊗F Aω�

(a�, b�;F ) , (4.2)

where a1, b1, . . . , a�, b� ∈ F ∗ and ω1, . . . , ω� are primitive n1-st, . . . , n�-th
roots of unity in F . If ik, jk are the standard generators of Aωk

(ak, bk;F )
then v(ik) = 1

nk
v(ak) and v(jk) = 1

nk
v(bk), and {v(ik) + ΓF , v(jk) + ΓF |

1 ≤ k ≤ �} is a symplectic base for the canonical pairing βD on ΛD.
Conversely, for every symplectic base of ΛD with respect to βD, there is a
corresponding tensor product decomposition of D into symbol algebras as
in (4.2).

(b) For every field K with F ⊆ K ⊆ D, K is tame and totally ramified over F
(with respect to the unique extension of v|F to K), and ΓK/ΓF is a totally
isotropic subgroup of ΛD with respect to βD.

(c) There is a one-to-one correspondence between F -isomorphism classes of
fields K with F ⊆ K ⊆ D and totally isotropic subgroups of ΛD with
respect to βD.

(d) There is a one-to-one correspondence between F -isomorphism classes of
F -subalgebras of D and subgroups of ΛD.

See [D3, Th. 1] for a proof of part (a) of Th. 4.5; part (b) is evident from the
fundamental inequality; parts (c) and (d) are given in [TW, Th. 3.8]. Note that
part (c) gives a classification of the isomorphism classes of subfields of D containing
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F , and shows that there are only finitely many such isomorphism classes. It is a very
unusual situation to be able to get such complete information about the subfields
of a division algebra. Note that once we have a decomposition of D into a tensor
product of symbol algebras, we can use the standard generators of the symbol
algebras to obtain an “armature” A of D in the terminology of [TW, p. 229], i.e.,
A is an abelian subgroup of D∗/F ∗ such that |A| = [D : F ] and D is generated
as an F -vector space by inverse images of the elements of A. (Armatures, defined
a little differently, were introduced in [T2, §1].) Clearly, A can be chosen so that
A ∼= ΛD via the valuation map. Then for any subgroup Λ′ of ΛD, we can obtain a
subalgebra B of D with ΓB/ΓF

∼= Λ′ by taking B to be the subalgebra generated
by inverse images in D∗ of the elements of the subgroup of A isomorphic to Λ′ in
the isomorphism A ∼= ΛD.

In the strictly Henselian case we can say even more:

Theorem 4.6 Let F be a field with a strictly Henselian valuation v, i.e., v is
Henselian and F is separably closed. Then,

(a) For every D ∈ D(F ) with char(F ) � [D : F ], we have D is TTR with respect
to the extension of v to D, and D is determined up to F -isomorphism by
ΓD and the canonical pairing βD.

(b) An algebraic field extension L of F splits D iff L contains a maximal
subfield of D.

See [TW, Prop. 4.2, Cor. 4.6] for a proof of Th. 4.6. More is proved there
as well: (i) If A is a tensor product of symbol algebras over a strictly Henselian
valued field F and char(F ) � dimF (A), then an algorithm is given in [TW, Th. 4.3]
for computing the value group of the underlying division algebra D of A (i.e., the
D such that A ∼= Mn(D) ) and the canonical pairing on ΛD; thereby Th. 4.6(a)
shows that D is fully determined. This is quite an unusual situation in studying
central simple algebras, to be able to describe the underlying division algebra so
explicitly. (ii) Suppose a field F has a strictly Henselian valuation v and D ∈ D(F )
with char(F ) � [D : F ] (so D is TTR), and ΓD and βD are known, and L is any
algebraic field extension of F ; then the unique extension of v to L is also strictly
Henselian. An algorithm is given in [TW, Prop. 4.5] in terms of ΓD, βD, and ΓL for
determining the value group and canonical pairing (hence the isomorphism class)
of the underlying division algebra of D ⊗F L.

Remark 4.7 Let us return to Ex. 4.4(ii), where F = F0((x1)) · · · ((xm)) and

D =
�⊗

k=1

Aωk
(x2k−1, x2k;F ), where ωk ∈ µ∗

nk
(F0). Suppose that � ≥ 2 and that

there is a prime number p dividing at least two of the nk. Then, we can see easily
that D is not a cyclic algebra. For, if D had a maximal subfield L cyclic Galois
over F , then L would be totally and tamely ramified over F by the fundamental
inequality, so G(L/F ) ∼= ΓL/ΓF ⊆ ΛD, by Prop. 4.1(a). However, since the invari-
ant factors of ΛD occur in pairs and at least four are multiples of p, ΛD has no
cyclic subgroups of order

√
|ΛD|; so, there can be no such L. If we assume further

that F0 is separably closed, then Th. 4.6(b) shows that there is no cyclic Galois
extension field of F which splits D.



Valuation Theory on Finite Dimensional Division Algebras 27

5 Noncrossed product division algebras

Let K be a Galois extension of a field F with [K : F ] = n < ∞, and let
G = G(K/F ). Recall that from any 2-cocycle f ∈ Z2(G, K∗) one can build a
crossed product algebra (K/F, G, f) as

⊕
σ∈G

Kxσ with multiplication given by

(c xσ)(d xτ ) = c σ(d)f(σ, τ) xστ .

This (K/F, G, f) is a central simple F -algebra of dimension n2 over F , and it
contains a copy of K (as Kxid) as a maximal subfield. Conversely, one deduces
from the Skolem-Noether theorem that if A is a central simple F -algebra of di-
mension n2 and A contains a Galois extension field K ′ of F with [K ′ : F ] =
n, then A ∼= (K ′/F,G(K ′/F ), f) for some 2-cocycle f , whose cohomology class
in H2(G(K ′/F ), K ′∗) is uniquely determined. The crossed product construction
provides the isomorphism between the Brauer group Br(F ) and the continuous
cohomology group H2

c (GF , F ∗
sep), where Fsep is the separable closure of F and

GF = G(Fsep/F ). Besides this, knowing that a specific central simple algebra
A is a crossed product gives a concrete description of the multiplication in A that
can help us to understand A.

For several decades, the biggest open question in the theory of finite-dimen-
sional division algebras was whether every such algebra D is a crossed product.
Restated, the question was: Does every such D contain a maximal subfield which
is Galois over the center of D? This possibility seemed plausible in light of Köthe’s
theorem [K] (or see, e.g., [Re, Th. 7.15(ii)]) which says that D has a maximal
subfield which is separable over the center. Moreover, there was the great theorem
of the 1930’s, see [BHN], [AH], which says that every central simple algebra over
an algebraic number field is a cyclic algebra (i.e., a crossed product with cyclic
Galois group). Albert had given in [A2] an example of a tensor product of two
quaternion algebras which is not a cyclic algebra. (We have seen such an example in
Remark 4.7 above.) But, that had not ruled out the possibility of crossed products
with noncyclic Galois groups. Also, it had been proved by Wedderburn and Albert
that every division algebra of degree 2, 3, 4, 6, or 12 is a crossed product (cf. [Ro,
pp. 180–183]).

In 1972 Amitsur in [Am1] finally settled the crossed product question which
had been lingering since the 1930’s, by producing counterexamples. We will de-
scribe Amitsur’s noncrossed product construction both because it is a beautiful
argument in its own right and because it can be better understood using valuation
theory. (Noncommutative valuation theory was not invoked explicitly in Amitsur’s
construction, but is just under the surface there.) We will then describe some of
the more recent noncrossed product constructions, most of which have depended
heavily on valuation theory. Detailed accounts of Amitsur’s approach can be found,
e.g., in [Ja] or [Ro, pp. 175–196], or see Amitsur’s original paper.

Amitsur’s examples of noncrossed product division algebras are certain generic
division algebras, which are defined as follows: Let F be any ground field. For
positive integers n and k with k ≥ 2, let {x(�)

ij | 1 ≤ i, j ≤ n, 1 ≤ � ≤ k} be n2k

commuting indeterminates over F , and let L be the rational function field F ({x(�)
ij }).

Let X1, . . . , Xk ∈ Mn(L) be the generic matrices determined by the x
(�)
ij , i.e., X�

has ij-entry x
(�)
ij . Let A(F ;n) be the generic matrix algebra over F of degree n in

k generic matrices, i.e., the F -subalgebra of Mn(L) generated by X1, . . . , Xk. (Of
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course, A(F ;n) depends on k as well as n and F . But, for everything we do here,
the choice of k will be irrelevant, so long as k ≥ 2.) It is known that A(F ;n) has no
zero divisors, and that it satisfies the following important Specialization Property:

For any field K ⊇ F and any central simple K-algebra B of dimension
n2 over K, and any b1, . . . , bk ∈ B, there is a unique F -algebra homo-
morphism α : A(F ;n)→ B with α(X�) = b� for 1 ≤ � ≤ k. Moreover, if
|K| =∞, and if g is any nonzero element of A(F ;n), then there are
b1, . . . , bk ∈ B so that in the map α sending X� �→ b�, we have α(g) �= 0.

(5.1)

Since the generic matrix ring A(F ;n) is a prime ring satisfying all the identities
of n×n matrices but not all those of (n−1)× (n−1) matrices, the theory of prime
p.i.-rings shows that A(F ;n) has a classical ring of quotients which is a central
simple algebra of dimension n2 over its center. Furthermore, since A(F ;n) has no
zero divisors it is known that its ring of quotients is a division ring. The generic
(or universal) division ring UD(F ;n) of degree n over F is by definition the ring
of quotients of A(F ;n). (Again, in all respects of interest here, it does not matter
how many generic matrices we start with, so long as k ≥ 2.) From the theory
of prime p.i.-rings one knows that UD(F ;n) is the central localization of A(F ;n)
obtained by inverting all the nonzero central elements of A(F ;n). Thus, the center
of UD(F ;n) is the quotient field of the center of A(F ;n).

Let G be a finite group. We say that a central simple algebra A over a field F is
a crossed product with group G if A ∼= (K/F, G′, f) with Galois group G′ ∼= G. The
key result Amitsur proved in order to show that certain UD(F ;n) are not crossed
products is the following:

Theorem 5.1 Let G be a finite group with |G| = n. Suppose UD(F ;n) is a
crossed product with group G. Take any division algebra B of degree n (dimen-
sion n2) over any field M containing F ; then, B is also a crossed product with the
same group G.

This theorem is proved by showing that the property that D is a crossed product
with group G can be coded up into a system of equations defined over a finitely
generated central localization of A(F ;n), then using the Specialization Property
(5.1) to see that the corresponding equations hold in B.

To see that UD(F ;n) is not a crossed product, it suffices by Th. 5.1 to produce
division algebras B1 and B2 of degree n over fields M1 and M2 containing F such
that B1 and B2 are crossed products but not crossed products with the same
group. Here is where valuation theory is helpful. In fact, we have already seen such
examples in the preceding sections. We have the following specific case of Ex. 4.4(ii)
above:

Examples 5.2 Let p be a prime number, and let F be any field with
char(F ) �= p. Let M = F (ω)((x1)) · · · ((x6)), the 6-fold iterated Laurent power
series field over F (ω), where ω is a primitive p3-rd root of unity. We work with the
standard Henselian valuation v on M , with ΓM = Z6 and M = F (ω). Let ε = ωp2

,
a primitive p-th root of unity. Let B1 = Aε(x1, x2;M) ⊗M Aε(x3, x4;M) ⊗M

Aε(x5, x6;M) and let B2 = Aω(x1, x2;M). Then B1 and B2 are each division
algebras of degree p3 over M . However, B1 is a crossed product only with the
group (Z/p Z)3, while B2 is a crossed product only with the groups Z/p3 Z and
(Z/p2 Z) × (Z/p Z). For, Ex. 4.4(ii) shows that B1 is a division algebra which is
TTR with respect to the unique extension of v to B1, with ΓB1/ΓM

∼= (Z/p Z)6.
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If K1 is any maximal subfield of B1, then [K1 : M ] = p3, and K1 is tame and
totally ramified over M by the fundamental inequality. So, if K1 is Galois over M ,
then by Prop. 4.1(a) G(K1/M) ∼= ΓK1/ΓM which is a subgroup of ΓB1/ΓM , hence
elementary abelian of order p3. Likewise, B2 is a division algebra over M which
is TTR with ΓB2/ΓM

∼= (Z/p3Z)2, so if K2 is a Galois maximal subfield of B2,
then G(K2/M) ∼= ΓK2/ΓM which is a subgroup of (Z/p3 Z)2 of order p3, so not
elementary abelian.

Since the set of Galois groups for maximal subfields of B1 does not overlap that
of B2, Th. 5.1 yields:

Theorem 5.3 If p is a prime number and F is a field with char(F ) �= p, then
UD(F ; p3) is not a crossed product.

An easy variant of the examples in 5.2 allows us to see that if n is any integer
which is a multiple of p3 and F is a field with char(F ) � n, then UD(F ;n) is not
a crossed product. For, if n = prb with r ≥ 3 and p � b, we can use Ex. 4.4(ii) to
construct division algebras B1 and B2 of degree n over a suitable Henselian valued
field M ⊇ F , such that B1 and B2 are each TTR, with ΓB1/ΓM

∼= (Z/p Z)2r ×
(Z/b Z)2 and ΓB2/ΓM

∼= (Z/pr Z)2 × (Z/b Z)2. Since these relative value groups
have no common subgroups of order n, the argument in Ex. 5.2 shows that B1 and
B2 have no common Galois groups of maximal subfields. Thus, Th. 5.1 shows that
UD(F ;n) is not a crossed product.

Amitsur also showed that noncrossed products of degree p2 exist over fields not
containing a primitive p-th root of unity. The key added ingredient for the p2 result
is provided by the following example:

Example 5.4 Let p be a prime number, and let F be a field with char(F ) �= p
and µp �⊆ F , such that F has a cyclic Galois field extension L with [L : F ] = p2.
Let M = F ((x)), and let N = L((x)), which is cyclic Galois over M , with
G(N/M) ∼= G(L/F ). For any generator σ of G(N/M), let D = (N/M, σ, x). Then
D is a division algebra, and the standard complete discrete rank 1 valuation on
M extends to D with D = L and ΓD = 1

p2 Z (see Ex. 2.7 above). We claim
that if K is any maximal subfield of D which is Galois over M , then K is un-
ramified over M , and G(K/M) ∼= Z/p2 Z. For, since [K : M ] = p2, K is a tame
extension of the Henselian field M , so we know that if Y is the maximal unram-
ified extension of M in K, then K is tame and totally ramified over Y . Because
[Y : M ] = [Y : M ] which is a power of p and M = F , so that µp �⊆ M , we must
also have µp �⊆ Y . But, K is tame and totally ramified over Y with [K : Y ] = pa

for a = 0, 1, or 2. But if a ≥ 1, then µp ⊆ Y by Prop. 4.1(a) above. We have ruled
this out. Hence, a = 0, i.e., Y = K, so K is unramified over M . Since K ⊆ D = L
and p2 = [L : F ] = [D : M ] and also p2 = [K : M ] = [K : M ] we must have K = L,
so G(K/M) ∼= G(K/M) = G(L/F ) ∼= Z/p2 Z.

Since by using Ex. 4.4 we can construct an example of a division algebra of
degree p2 over F (µp)((x1)) · · · ((x4)) such that every Galois maximal subfield has
group Z/p Z × Z/p Z, Ex. 5.4 yields the following corollary to Th. 5.1. (The F in
Th. 5.5 need not have any cyclic extensions of degree p2. In that case, we apply
Ex. 5.4 to a field F ′ containing F such that µp �⊆ F ′ and F ′ has a cyclic extension
of degree p2.)
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Theorem 5.5 Let p be a prime number, and let F be a field with char(F ) �= p
such that µp �⊆ F (so p is odd). Then UD(F ; p2) is not a crossed product.

Examples 5.6 Let p be a prime number and let F be a field with char(F ) �= p
and µp �⊆ F . We now give some variations of the preceding examples to show that
UD(F ;n) is not a crossed product for any multiple n of p2. Say n = pab with a ≥ 2
and p � b.

(i) Let F ′ be a field containing F such that F ′ has a cyclic Galois extension
field L with [L(µp) : L] = [F (µp) : F ] > 1. Let G(L/F ′) = 〈σ〉. (For example, we
could take L to be the rational function field F (z1, . . . , zn) and σ an automorphism
of L such that σ|F = id and σ permutes the zi cyclically; then let F ′ be the
fixed field of σ.) Let F1 = F ′((x)) and let D1 = (L((x))/F1, σ, x). The complete
discrete rank 1 x-adic valuation v on F1 extends to the division algebra D1 with
D1 = L and ΓD1 = 1

nZ, by Ex. 2.7. Let K1 be a maximal subfield of D1 with
K1 Galois over F1, and let G1 = G(K1/F1). Let I be the inertia subgroup and R
the ramification subgroup of G1 for the extension K1/F1 with respect to v, and
let KI be the fixed field of I, and KR that of R. Then we have R ⊆ I ⊆ G1, and
I and R are each normal in G1; also, KI is the maximal unramified extension of
F1 in K1, and KR is the maximal tamely ramified extension, and R is the unique
q-Sylow subgroup of I if q = char(F ) �= 0 (while R is trivial if char(F ) = 0), see
[E, Th. 20.18]. Since KR is tame and totally ramified over KI , but µp �⊆ KI as
KI ⊆ D1 = L, we have p � [KR : KI ] = |I : R|, by Prop. 4.1(a). Since also p � |R|
as |R| is a power of char(F ) or |R| = 1, this shows p � |I|, so pa

∣∣ |G1/I|. But
G1/I ∼= G(KI/F1) ∼= G(KI/F1), so G1/I is cyclic as L/F ′ is cyclic Galois. Hence,
G1 has a cyclic homomorphic image of order pa. Therefore, every p-Sylow subgroup
of G1 is cyclic.

(ii) Let ω be a primitive p-th root of unity in Fsep. With the F ′ and L of
part (i), let L′ be the field with F ′ ⊆ L′ ⊆ L and [L′ : F ′] = b, and let L2 = L′(ω).
So, [L2 : F ′(ω)] = b and L2 is cyclic Galois over F ′(ω), say G(L2/F ′(ω)) = 〈τ〉. Let
F2 = F ′(ω)((x1)) · · · ((x2a))((y)), and let

D2 =
[ a⊗

k=1

Aω(x2k−1, x2k;F2)
]
⊗F2 (L2 · F2/F2, τ, y) .

Then, D2 is division algebra by Ex. 4.4(ii), Ex. 2.7, and Prop. 2.8, and the standard
Henselian valuation on F2 extends to D2 with D2

∼= L2 and ΓD2/ΓF2
∼= (Z/p Z)2a×

(Z/b Z). Let K2 be a maximal subfield of D2 which is Galois over F2, and let
G2 = G(K2/F2); let P be a p-Sylow subgroup of G2, let E be the fixed field of
P , and let C be the centralizer CD2(E). So, E ⊆ C, and [C : E] = p2a. We have
[C : E]

∣∣ gcd([C : E], [D2 : F2]) = 1; hence C = E. Therefore, C must be tame
and totally ramified over its center E, by (2.11). Since ΓC/ΓE is a subquotient of
ΓD2/ΓF2 of order p2a, we must have ΓC/ΓE

∼= (Z/p Z)2a. We have E ⊆ K2 ⊆ C,
and K2 is Galois over E. Since K2 must be tame and totally ramified over E,
Prop. 4.1(a) shows that P = G(K2/E) ∼= ΓK2/ΓE ⊆ ΓC/ΓE ; hence P must be
elementary abelian. Because no G1 in part (i) can be isomorphic to a G2 here,
since their p-Sylow subgroups cannot be isomorphic, Th. 5.1 shows that UD(F ;n)
is not a crossed product. These examples were adapted from ones given in [Ri4].

In his paper [Am1], Amitsur proved specifically only that UD(Q;n) is a non-
crossed product for any positive integer n such that 8 | n or p2

∣∣ n for p an odd
prime. His specific examples of crossed product algebras D with only certain groups
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appearing as Galois groups of maximal subfields were iterated twisted Laurent series
division algebras. In his argument there appear certain triangular integer valued
matrices whose diagonal entries are crucial. A close look at such D reveals that
they have a natural valuation, with respect to which D is TTR, and the diagonal
entries of the associated matrix are the invariant factors in a cyclic decomposition of
the relative value group of D. Thus, noncommutative valuation theory is implicit,
though not explicit, in Amitsur’s paper.

Valuation theory does not work so well for division algebras of degree pa where
p = char(F ). Nonetheless, Saltman proved in [Sa2] that UD(F ; pa) is a noncrossed
product for a ≥ 3 for any field F of characteristic p. He did this by proving
that certain generic abelian crossed product algebras over a field of characteristic
p (these algebras were defined in [AS]) for noncyclic abelian p-groups G have only
G occurring as the Galois group of a maximal subfield.

The first examples of noncrossed products over fields of prime characteristic
were given by Schacher and Small in [SS]. Papers [Am2], [Ri3] and [Ri4] gave
further examples of noncrossed products. All these noncrossed product division
algebras were generic division algebras UD(F ;n); all were proved to be noncrossed
products using Th. 5.1 or a generalization of Th. 5.1 noted in [FS], see also [Ri4,
Lemma 5], which says that if UD(F ;n) contains a Galois extension field of its
center with Galois group G, then every division algebra of degree n over any field
M ⊇ F contains a field Galois over M with group G. Saltman showed in [Sa1]
how these generic noncrossed products could be used to build further noncrossed
product algebras D where one could arrange that ind(D) exceeds exp(D). Here is an
abstraction of the key step in Saltman’s result, which appears in [JW2, Th. 5.15(b)]:

Proposition 5.7 Let D be an inertially split division algebra over a Henselian
valued field F . If D is not a crossed product, then D is not a crossed product.

This is proved by first showing that if K is a maximal subfield of D which
is Galois over F , then K · Z(D) is a maximal subfield of D which is normal over
Z(D). Then, one can invoke the following result of Saltman [Sa1, Lemma 3], which
is interesting in its own right, and not so easy to prove:

Proposition 5.8 Let F be any field, and let D ∈ D(F ). If D has a maximal
subfield K which is normal over F , then D has a maximal subfield L which is Galois
over F . (So D is a crossed product.)

What Saltman showed in [Sa1, Th. 2(d)] is that if D ∈ D(F ) and if L is a cyclic
Galois field extension of F such that D⊗F L is a noncrossed product division algebra
(e.g., D = UD(F ;n), so that D ⊗F L ∼= UD(L;n), which we know is a noncrossed
product for suitable n), then E = D ⊗F (L((x))/F ((x)), σ, x) is a division algebra
(see Th. 3.7(d) above). We have that E is inertially split with respect to the
complete discrete rank 1 valuation on its center F ((x)), and E ∼= D ⊗F L (see
Th. 3.7(a)); so by Prop. 5.7, since D⊗F L is not a crossed product, E is also not a
crossed product. But by Th. 3.7, deg(E) = deg(D) · [L : F ] while exp(E) = exp(D)
if [L : F ]

∣∣ deg(D). By iterating this process, one can obtain noncrossed product
division algebras with the degree exceeding the exponent by as large an amount as
one wishes.

All the noncrossed products we have described so far have been built from
generic division algebras. But, once the valuation theory behind these constructions
has been understood, another way of obtaining noncrossed products is suggested:
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Instead of using two different valued division algebras to show that a generic division
algebra is not a crossed product, find a division algebra D ∈ D(F ) with two different
valuations on it. Use the two valuations to obtain incompatible information about
G(K/F ) if K is a maximal subfield of D which is Galois over F . Hence, there can
be no such K, and D is not a crossed product. A typical result in this vein is:

Proposition 5.9 Let p be a prime number, and let D ∈ D(F ) be a division
algebra of degree p3 with char(F ) �= p, such that D has two different valuations v1

and v2, say with value groups ΓD,i for vi and ΓF,i for vi|F , for i = 1, 2. Suppose D is
TTR with respect to each vi, and suppose ΓD,1/ΓF,1

∼= (Z/p Z)6 while ΓD,2/ΓF,2
∼=

(Z/p3 Z)2. Then D is not a crossed product.

For, if K is a maximal subfield of D which is Galois over F , then K is tame and
totally ramified over F with respect to each vi|K . So, by Prop. 4.1(a), G(K/F ) ∼=
ΓK,i/ΓF,i for i = 1, 2, and ΓK,i/ΓF,i is a subgroup of order p3 of ΛD,i = ΓD,i/ΓF,i.
But ΛD,1 and ΛD,2 have no common subgroups of order p3, so there can be no such
K.

But how can one construct such a D as in Prop. 5.9? It is certainly not a tensor
product of cyclic algebras, since it is not a crossed product. An approach to this
was found in [JW1], where we started with a division algebra E0 over a ground field
F0 such that E0 is a tensor product of symbol algebras, and deg(E0) = pk for k > 3;
we then extended scalars by some field F ⊇ F0, so that E0 ⊗F0 F ∼= Mpk−3(D),
and D is the desired division algebra of degree p3. Of course, it is often difficult
(often very difficult) to get at the properties of the underlying division algebra of
a central simple algebra. We were able to do so in this case by taking F to be an
intersection of two Henselian valued fields and proving that a division algebra over
F is determined by its scalar extensions to the Henselian fields. This was done by
proving a “local-global” principle for Br(F ), which we now describe, since it is of
some interest in its own right.

Take a prime number p and a field F0 with µp ⊆ F0 with two independent
valuations w1 and w2 such that char(F0,i) �= p. (The independence means that
there is no valuation ring T �⊆ F0 such that T contains the valuation ring of each
wi.) Let Li be a field such that F0 ⊆ Li ⊆ F0 sep (the separable algebraic closure
of F0) such that Li has a Henselian valuation vi with vi|F0 = wi for i = 1, 2. Let
F = L1 ∩ L2, which has the induced valuations v1|F , v2|F . Let Gp(F ) = G(F̃p/F )
where F̃p is the maximal p-extension of F , which is the compositum of all the
finite Galois extensions of F of degree a power of p; so Gp(F ) is a pro-p-group.
Let Br(F )(p) denote the p-primary part of Br(F ). Since µpn ⊆ F̃p for all n, it
follows from the Merkurjev-Suslin Theorem that Br(F̃p)(p) = 0, so Br(F )(p) is
precisely the kernel of the map Br(F ) → Br(F̃p). For [A] ∈ Br(F )(p), let p-ind(A)
be the minimal degree over F of fields K ⊇ F such that K splits A and K ⊆ F̃p

(so ind(A) ≤ p-ind(A) ). The following local-global principle was proved in [JW1,
Th. 4.3, Th. 4.11].

Theorem 5.10 In the setup just defined,
(a) Gp(F ) ∼= Gp(L1) ∗p Gp(L2), where ∗p denotes the free product in the

category of pro-p groups.
(b) The scalar extension maps Br(F )→ Br(Li) induce an isomorphism

Br(F )(p) ∼= Br(L1)(p)× Br(L2)(p).



Valuation Theory on Finite Dimensional Division Algebras 33

(c) For any central simple algebra A over F with [A] ∈ Br(F )(p), we have

exp(A) = lcm
(
exp(A⊗F L1), exp(A⊗F L2)

)
and

p-ind(A) = lcm
(
p-ind(A⊗F L1), p-ind(A⊗F L2)

)
.

Example 5.11 With F0, Li, vi, and F = L1 ∩ L2 as in Th. 5.10, assume
µp3 ⊆ F0 and pick algebras B1 and B2 ∈ D(F0), each of degree p3 such that w1

on F0 extends to a valuation on B1 so that B1 is TTR with ΓB1/ΓF0,1
∼= (Z/p Z)6

and ΓB1 ∩ ΓL1 = ΓF0,1, while L2 splits B1; likewise, choose B2 so that L1 splits
B2 while w2 extends to a valuation on B2 so that B2 is TTR and ΓB2/ΓF0,2

∼=
(Z/p3 Z)2 and ΓB2 ∩ ΓL2 = ΓF0,2. (It is easy to build such B1 and B2 as a tensor
product of symbol algebras, using the approximation theorem to get the desired
conditions with respect to each valuation. See [JW1, §5] for details.) Then, let
D be the underlying division algebra of (B1 ⊗F0 B2) ⊗F0 F , so D ∈ D(F ). We
have [D ⊗F L1] = [B1 ⊗F0 L1] in Br(L1), while [D ⊗F L2] = [B2 ⊗F L2] in Br(L2).
The valuation on Bi shows that Bi ⊗F0 Li is a division algebra (see Prop. 2.8
above), and vi on Li extends to a valuation on Bi ⊗F0 Li with Bi ⊗F0 Li TTR and
ΓBi⊗F0Li/ΓLi

∼= ΓBi/ΓF0,i, so in particular, ind(Bi⊗F0Li) = p-ind(Bi⊗F0Li) = p3.
Hence, ind(D⊗F Li) = p-ind(D⊗F Li) = p3, for i = 1, 2. It follows by Th. 5.10(c)
that ind(D) = p-ind(D) = p3. Therefore, D ⊗F Li

∼= Bi ⊗F0 Li, so the valuation
on Bi ⊗F0 Li restricts to a valuation on D such that D is TTR, with ΓD,i/ΓF,i

∼=
ΓBi⊗F0Li/ΓLi

∼= ΓBi/ΓF0,i. So, the conditions of Prop. 5.9 are met, and D is not a
crossed product. Note that this occurs over a field F for which Br(F )(p) is relatively
well-understood, by Th. 5.10.

In the paper [JW1], by further application of Th. 5.10 and similar results when
we do not require µp ⊆ F , noncrossed products of index p2 were constructed (when
p �= char(F ) ), and also noncrossed products with index exceeding the exponent,
and also decomposable noncrossed product algebras.

In [Br1] E. Brussel found another way to play one valuation off against another
to build noncrossed product algebras. He thereby obtained noncrossed products
over L((x)) and L(x) for any algebraic number field L. This generalizes to show
(see [Br8]) that there are noncrossed product division algebras over any field F
finitely generated over its prime field P , provided that F has transcendence degree
at least 1 over P if char(F ) = 0, and transcendence degree at least 2 over P if
char(F ) > 0. Thus, we have a striking dichotomy between (i) division algebras
over algebraic number fields or over algebraic function fields in one variable over a
finite field—these division algebras are always cyclic crossed products; and (ii) divi-
sion algebras over any larger fields finitely generated over their prime fields—these
division algebras need not be crossed products.

The existence of noncrossed products over L((x)) for L an algebraic number
field is somewhat more surprising than over L(x). For, even though L((x)) is a
much bigger field than L(x) it is arithmetically much simpler, due to its Henselian
valuation.

Here is a sketch of Brussel’s approach. Let F0 be an algebraic number field,
and let F = F0((x)). Let B be a suitably chosen division algebra over F0 and let
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L be a cyclic Galois extension of F0, say with G(L/F0) = 〈σ〉. Then, let

E = (B ⊗F0 F )⊗F (L((x))/F, σ, x), (5.2)

and let D be the underlying division algebra of E. While E is always a crossed
product (since we can find a maximal subfield of B Galois over F0 and linearly
disjoint to L over F0), Brussel shows that under some conditions D will not be a
crossed product. He does this by getting different and incompatible information
about the Galois group G of a maximal subfield of D Galois over F , using properties
of B and L with respect to different p-adic completions of F0. Another, equivalent,
way of looking at this is to observe that the discrete valuation rings of F0 can
be composed with the standard complete discrete valuation on F0((x)) (see the
discussion preceding Prop. 3.1) to yield rank 2 valuations on F0((x)) with value
group Z×Z. One can arrange that D has different properties with respect to some
of these valuations to find incompatible constraints on G.

This approach yields noncrossed product algebras over F = F0((x)), for F0

an algebraic number field. But with a little care we also get noncrossed products
over F0(x). For, with the B and L as in (5.2), let E1 = (B ⊗F0 F0(x)) ⊗F0(x)

(L(x)/F0(x), σ, x), and let D1 be the underlying division algebra of E1. Since
E1 ⊗F0(x) F ∼= E, whenever ind(E1) = ind(E), and this is often easily arranged,
then D1⊗F0(x) F ∼= D. If D is a noncrossed product over F , then D1 is necessarily
a noncrossed product over F0(x).

We now give a specific example constructed by Brussel in [Br1]. We work in
the setup of (5.2). Note first that with respect to the standard complete discrete
(so Henselian) valuation on F = F0((x)), the E of (5.2) is the tensor product of
an inertial division algebra B ⊗F0 F and a nicely semiramified division algebra
(L((x))/F, σ, x). So, by Th. 3.7, for the underlying division algebra of D of E we
have ΓD = Γ(L((x))/F,σ,x) = 1

[L : F ]Z, and D = BL, the underlying division algebra
of B ⊗F0 L. So, [D : F ] = [BL : F0][L : F0] and exp(D) = lcm

(
exp(B), [L : F ]

)
.

Example 5.12 Fix a prime number p. For our algebraic number field F0, let
r and s be the maximal integers such that µpr ⊆ F0 and µps ⊆ F0(µpr+1). If r = 0,
set � = s + 1, m = 0, and n = s; if r > 0, set � = 2r + 1 and m = n = r. Pick
four prime spots q0, q1, q2, q3 of F0 not dividing 2 or p, such that q0 and q3 each
split completely in F0(µp�−n), q1 splits completely in F0(µpm) but not in F0(µpm+1),
and q2 splits completely in F0(µpn) but not in F0(µpn+1). (The Cebotarev Density
Theorem (see, e.g., [N, Ch. 5, Th. 6.4]) assures the existence of such qi.) Then, let
B be the F0-division algebra of degree p� with local invariants

inv(Bq0
) = inv(Bq1

) = − inv(Bq2
) = − inv(Bq3

) = 1/p� in Q/Z,

and inv(Bp) = 0 for all other prime spots p of F0. (One knows that such a B exists
because the sum of the local invariants is 0, cf. [CF, p. 188, Th. B].) Let L be a
cyclic Galois field extension of F0 of degree pn such that L has local degree pn at
each of the qi and L/F0 is unramified at q0, q1, and q3, and is totally ramified at
q2. Such an L exists by the Grunwald-Wang Theorem [AT, Ch. 10, Th. 5]. Then,
Brussel shows in [Br1, Lemma 5] that there is no Galois extension K of F0 of degree
p� such that K ⊇ L and K splits B. Then for the underlying division algebra D
of the central simple F -algebra E of (5.2), Brussel shows that D has degree p� and
deduces from the absence of K as just described that D is not a crossed product.
Note that the degree of D is p2r+1 if µp ⊆ F0, and is ps+1 if µp �⊆ F0.
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Brussel has built some interesting variations on this type of example in [Br1]
and subsequent papers. For example, in [Br1] he constructed a division algebra D
over F = F0((x)) (F0 an algebraic number field) such that D is a crossed product,
but every Galois group of a maximal subfield Galois over F is isomorphic to the
same nonabelian group of order p3. In [Br2] he gives an example of a division
algebra which not only is not a crossed product but cannot be embedded in any
crossed product algebra with the same center. In [Br3] he analyzes very thoroughly
the decomposability and the different possible tensor product decompositions of
every division algebra underlying the E as in (5.2). This work was based in part on
his analysis in [Br5] of the totally ramified subfields of tame division algebras over
F0((x)). The information he gets about the totally ramified subfields is remarkably
complete, given that there is no easy classification of such fields. This is in marked
contrast to the situation with unramified subfields of D, which correspond (up to
isomorphism) to the subfields of D which are separable over F .

The noncrossed product algebras constructed by Brussel over F0((x)) were all
inertially split with respect to the standard valuation on F0((x)) (indeed, in the
discrete rank 1 case everything is inertially split). Recently, T. Hanke in [Han] has
proved a nice criterion for inertially split algebras over any Henselian field to be
noncrossed products:

Theorem 5.13 Let D be an inertially split division algebra over a Henselian
valued field. Then D is a crossed product iff D has a maximal subfield which is
Galois over F (not just over Z(D)).

Recently, in [Br7], Brussel has given a construction of noncrossed product al-
gebras over Q̂p(x), where Q̂p is the p-adic completion of Q. For this, he did not
pull back from Q̂p((x)), because the residue field of its x-adic valuation, Q̂p, has
only one useful valuation; hence, there is no apparent possibility of playing off one
valuation against another over Q̂p((x)). (It is quite possible that every division
algebra over Q̂p((x)) is a crossed product.) However, there is another significant
discrete valuation on Q̂p(x), the so-called Gaussian valuation: Let vp be the usual

complete discrete rank 1 valuation on Q̂p, with Γ
Q̂p

= Z and Q̂p
∼= Z/p Z. For

f =
∑n

i=0 cix
� ∈ Q̂p[x] − {0}, define v(f) = min{ vp(ci) | ci �= 0}. It is easy to

check that v extends to a well-defined valuation v on Q̂p(x) via v(f/g) = v(f)−v(g),
with value group Z and residue field Z/p Z(x). This residue field is a global field,
with lots of discrete valuations to work with, which can be composed with v to yield
corresponding rank 2 valuations on Q̂p(x). Brussel uses the residue valuations to
construct noncrossed product algebras on the completion of Q̂p(x) with respect to
v, and arranges that his noncrossed products actually be defined over Q̂p(x). There
are significant technical obstacles in all of this, which we will not pursue here.

Very recently, there has been an interesting new construction of noncrossed
product algebras by Reichstein and Youssin, the first which does not involve either
generic methods or valuation theory. Instead, they use methods of invariant theory
and algebraic group actions on varieties. See their paper [RY] for details.
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6 SK1(D)

If A is a central simple algebra over a field F , then for any a, b ∈ A∗, we have
Nrd(aba−1b−1) = 1 in F ∗ since the reduced norm is multiplicative and the target
group is abelian. Thus, every product of commutators in A∗ has reduced norm 1.
It is natural to ask whether the converse is true. To formalize this, let SL(A) be
the special linear group of A

SL(A) = {a ∈ A∗ | Nrd(a) = 1}, (6.1)

let [A∗, A∗] denote the multiplicative commutator group of A, and let

SK1(A) = SL(A)
/
[A∗, A∗]. (6.2)

(This is the “special” subgroup of K1(A) = A∗/[A∗, A∗].) Our question then be-
comes whether SK1(A) is trivial.

The question of the triviality of SK1(A) was open for many years. It was
called the “Artin-Tannaka problem” in the Russian literature. It was rather a
surprise when Platonov gave in 1975 the first examples of central simple algebras
with nontrivial SK1 (see [P1], [P2], [P4]). For, it seems that the general feeling at
that time was that SK1(A) was probably always trivial. The results proved up to
then had seemed to point in that direction. For, it was known that when we express
A ∼= Mn(D) with D a division ring, then SK1(A) ∼= SK1(D) via the Dieudonné
determinant (see [D2, pp. 147–148, Cor. 1; p. 155, (3)]). Also, Wang had shown
in 1950 in [Wa] that if ind(A) is square-free, then SK1(A) is trivial. He showed
also in the same paper that if the ground field F is an algebraic number field, then
SK1(A) = 1 for every central simple algebra A over F . (The corresponding result
for F a local field had been done earlier by Nakayama and Matsushima in [NM].)
Also, in the late 1950’s papers had been published purporting to prove the triviality
of SK1(A) for every A over every field F .

A significant source of the interest in the question of the triviality of SK1(A)
came from the theory of algebraic groups. Let G be a quasisimple algebraic group
over a field F , and let G = G(F ), its group of F -rational points. (Quasisimple
means that every proper normal algebraic subgroup of G is finite.) If G is isotropic
(i.e., G has a subgroup isomorphic to the additive group of F ), let G+ be the nor-
mal subgroup of G generated by transvections. Then the factor group of G/G+ is
called the reduced Whitehead group of G over F , denoted W (G, F ). The Kneser-
Tits conjecture [Ti1, p. 315] was that W (G, F ) = 1 for every simply connected
quasi-simple algebraic group G over every field F . However, take any D ∈ D(F )
and let G = SLn(D) for n ≥ 2, i.e., G is the algebraic group with L-points
G(L) = SL(Mn(D ⊗F L)) for each field L ⊇ F . Then, G is simply-connected
and isotropic (as n ≥ 2), and G = G(F ) = SL(Mn(D)); also, one knows that
W (G, F ) = SK1(Mn(D)) ∼= SK1(D). Thus, examples of D with SK1(D) nontriv-
ial also yield counterexamples to the Kneser-Tits conjecture. See Tits’ Séminaire
Bourbaki report [Ti2] for more on W (G, F ) and SK1(D), including a discussion of
the classes of algebraic groups for which the conjecture is known to be true.

Building on his work on the nontriviality of SK1, Platonov was also able to give
counterexamples settling other significant open questions about algebraic groups.
He showed in [P8], [P9] that there exist division rings of arbitrary degree (> 1) over
a suitable field F with discrete rank 1 valuation v and completion F̂v, such that the
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closure of SL(D) in SL(D⊗F F̂v) is not all of SL(D⊗F F̂v). This defeated the pos-
sibility suggested by Kneser of a weak approximation theorem for simply connected
algebraic groups. Also, it had been an open question whether the underlying affine
variety of a simply connected algebraic group is rational (i.e., its function field is
purely transcendental over the ground field). Platonov had shown in [P10] that if
the variety of SL1(D) were rational, then there would be a finite upper bound n,
such that every element of SL(D) is a product of at most n commutators; hence,
SK1(D) would have to be trivial. Thus, for every division algebra D with SK1(D)
nontrivial, the variety of SL(D) is not rational.

A further interesting characterization of SK1(D) was given by Voskresenskĭı
in [V1] in terms of R-equivalence. If X is an irreducible variety over a field F ,
two points x, y of X(F ) (i.e., F -rational points of X) are said to be strongly R-
equivalent if there exist a morphism α : P1

F → X and F -rational points a, b of P1
F

such that α(a) = x and α(b) = y. Then, x and y are said to be R-equivalent
if there are x0, . . . , xn ∈ X(F ) with x0 = x, xn = y with each xi and xi+1

strongly R-equivalent. Clearly, R-equivalence is an equivalence relation, and one
writes X(F )/R for the set of R-equivalence classes. When X is an algebraic group,
X(F )/R has the structure of a group. R-equivalence was introduced by Manin in
[Ma], where he was studying cubic surfaces; this notion was first studied extensively
for algebraic groups by Colliot-Thélène and Sansuc in [CTS]. Voskresenskĭı showed
in [V1] (see also [V2, p. 186, Cor. 1]) that if A is a central simple algebra over a
field F , then (for the algebraic group G = SL1(A), for which G(F ) = SL(A) ),

SL(A)/R ∼= SK1(A).

Thus, it is all the more of interest not only to know when SK1(A) is nontrivial, but
also to compute SK1(A) when possible.

Valuation theory was a key part of Platonov’s original construction of division
algebras D with nontrivial SK1(D), and it has been used in most of the work on
this topic since then. We will here first give a very elementary example pointed
out by Draxl in [D2, p. 168, Th. 1] of a division algebra with SK1(D) nontrivial;
then we will describe Platonov’s construction; then we will sketch an approach of
Ershov, which gives a way of computing SK1(D) for D a tame division algebra
over a Henselian valued field.

Example 6.1 Let F0 be a field containing a primitive 4-th root of unity ω (so
char(F0) �= 2), let F = F0((x1))((x2))((x3))((x4)) with its standard Henselian val-
uation, and let D be the tensor product of quaternion algebras

(
x1,x2

F

)
⊗F

(
x3,x4

F

)
.

Then, Nrd(ω) = 1. But ω /∈ [D∗, D∗]. Hence SK1(D) is nontrivial. For, as
ω ∈ F and deg(D) = 4, Nrd(a) = ω4 = 1. By Ex. 4.4(ii) above D is a divi-
sion ring with ΓD = ( 1

2Z)4, and D is TTR. Thus, we have the canonical pairing
βD : ΛD × ΛD → µ(F ) of (4.1), where recall βD(v(a) + ΓF , v(b) + ΓF ) = aba−1b−1

in F . Since exp(ΛD) = 2, we have im(βD) ⊆ {±1}. (This is all elementary to
verify, and does not use the nondegeneracy of βD.) It follows that for the canonical
projection π : VD → D = F , we have π−1{±1} contains every commutator. Hence,
[D∗, D∗] ∈ π−1{±1}, while ω /∈ π−1{±1}.

In fact, |SK1(D)| = 2 here. This is not so easy to see, but follows from
Remark 6.2 below. It is quite remarkable that a question that had been open and
of interest for so long should have such an elementary counterexample. Of course,
in Ex. 6.1 we could have used F0(x1, . . . , x4) instead of the iterated Laurent power
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series field for the ground field F . Also, the same elementary construction can be
given, using two symbol algebras of degree n for any integer n ≥ 2 over a field
F0((x1)) · · · ((x4)) containing a primitive n2 root of unity to obtain a D of degree
n2 with SK1(D) nontrivial.

Ex. 6.1 is an elementary example of a tensor product of two quaternion algebras
with nontrivial SK1. Merkurjev has actually shown that this nontriviality holds
“in general.” Specifically, he proved in [Me1, Prop. 2] that if A is a central simple
division algebra over any field F of characteristic not 2, and if 4 | ind(A), then there
is a field L ⊇ F such that SK1(A⊗F L) is nontrivial.

Platonov’s original examples of division algebras D with SK1(D) nontrivial
were over twice iterated power series fields. We indicate the key steps in computing
SK1(D) for these examples without proof, following the description given in [Ti2],
where proofs can be found. Thorough treatments may also be found in [DK] or in
[P4].

We can analyze Platonov’s examples by first considering the case of a ground
field F with a Henselian discrete rank 1 valuation. Let D ∈ D(F ), and assume that
D is tame over F (see Prop. 3.9), which in this case means that Z(D) is separable
over F and char(F ) � |ker(θD)|. The comments after Th. 3.10 show that D is
inertially split. So, Th. 3.4 shows that Z(D) is cyclic Galois over F , and ΓD/ΓF

∼=
G(Z(D)/F ) via θD. The crucial result which allows one to express SK1(D) in terms
of residue data is the following inclusion (the “congruence theorem” in Platonov’s
terminology):

(1 + MD) ∩ SL(D) ⊆ [D∗, D∗]. (6.3)

(See [H2] for a nice short proof of (6.3) (assuming char(F ) � deg(D) ) using Wed-
derburn’s factorization theorem.) It follows immediately from (6.3) that (with bars
denoting images in D)

SK1(D) ∼= SL(D)
/
[D∗, D∗]. (6.4)

Fix any generator π of the maximal ideal MD of VD, and let γ : D
∗ → D

∗
be the

automorphism given by d �→ πdπ−1. For the terms in (6.4), one calculates that

SL(D) = {d ∈ D | NZ(D)/F (Nrd(d)) = 1} , (6.5)

where NZ(D)/F denotes the norm from Z(D) to F , and

[D∗, D∗] = {γ(d)d
−1 ∣∣ d ∈ D

∗} · [D∗
, D

∗
]. (6.6)

If we let N = Nrd(D
∗
) ⊆ Z(D)∗, A = {d ∈ N

∣∣ NZ(D)/F (d) = 1}, and B =

{γ(d)d
−1 ∣∣ d ∈ N}, then it follows that there is an exact sequence

SK1(D) −→ SK1(D) −→ A/B −→ 1 . (6.7)

In his original construction Platonov considered a ground field F = F0((x))((y))
and a pair of linearly disjoint cyclic Galois field extensions L1 and L2 of F0, say
with G(Li/F0) = 〈σi〉, i = 1, 2, and computed SK1(E) for

E = (L1 · F/F, σ1, x)⊗F (L2 · F/F, σ2, y). (6.8)

Since L1 and L2 are linearly disjoint over F0, we know by Ex. 2.7 and Prop. 2.8
that E is a division algebra over F ; clearly, deg(E) = [L1 : F ][L2 : F ]. We are used
to viewing F from the perspective of its standard rank 2 Henselian valuation, as
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in Ex. 3.6. But here instead, let v be the complete discrete rank 1 (so Henselian)
y-adic valuation on F , so VF = F0((x))[[y]] and F = F0((x)). For the extension of
this valuation to the E of (6.8), we have E is inertially split with ΓE = 1

[L2 : F0]
Z

and Z(E) = L2((x)), and

E = (L((x))/L2((x)), σ1, x),

where L = L1 · L2. Here, we can take a uniformizer π of VD to be the standard
generator of (L2 ·F/F, σ2, y) such that π[L2 : F0] = y and πcπ−1 = σ2(c) for c ∈ L2 ·F
(where σ2 acts on an iterated Laurent series by acting on the coefficients in L2).
So, the map γ on Z(E) = L2((x)) is σ2. Now, we have the complete discrete rank 1
x-adic valuation on Z(E), which extends to a valuation on E. If we let E be the
residue division algebra for this valuation on E, then E = L. We now invoke the
exact sequence (6.7) with E for D; since E is a field, Hilbert’s Th. 90 shows that
A = B in (6.7), so SK1(E) = 1. Another application of (6.7), now with E for D,
yields for the E of (6.8)

SK1(E) ∼= A/B, (6.9)

where N = Nrd(E
∗
) ⊆ L2((x)), A = {a ∈ N | NL2((x))/F0((x))(a) = 1}, and

B = {σ2(b)b−1 | b ∈ N}.
Platonov gives in [P4] a number of ways of reformulating (6.9) to make the

dependence of SK1(E) on the fields F0, L1, L2 clearer. For this, note that for the
A, B of (6.9), we have A, B ⊆ UL2((x)), the units with respect to the x-adic valuation
on L2((x)). Let A, B be the images of A, B in the residue field L2((x)) = L2. Then,
one finds that

A = {a ∈ im(NL/L2) | NL2/F0(a) = 1} and B = {σ2(b)b−1 | b ∈ im(NL/L2)}.

(For A use that a valuation unit of E has the form cu with c ∈ L and u ∈ 1 + ME ;
then Nrd(cu) = NL/L2(c) Nrd(u), with Nrd(u) ∈ 1 + ML2((x)). For B, take ρ

a standard generator of E such that ρ[L : L2] = x; then Nrd(ρ) = (−1)εx ∈ N ,
where ε = [L : L2] − 1. So, if we take any b ∈ N , then b = d[(−1)εx]i with
d ∈ UL2((x)), so d ∈ N and σ2(b)b−1 = σ2(u)u−1.) Furthermore, 1 + ML2((x)) ⊆
im(NL((x))/L2((x))) ⊆ N , as the valuation on L2((x)) is Henselian (cf. [Er2, Prop. 2]
or [S, Ch. V, §2, Prop. 3(a)]). It follows easily from this that the natural map
A → A induces an isomorphism

A/B ∼= A/B. (6.10)

For a group G and a G-module C, let Ĥ−1(G, C) denote the (−1)-st Tate
cohomology group of G with coefficients in C, i.e.,

Ĥ−1(G, C) = {c ∈ C |
∑

g∈G

g · c = 0}
/
〈{g · c− c | g ∈ G, c ∈ C}〉.

In the situation at hand, with L = L1 ·L2, and G(L/F0) = 〈σ1〉×〈σ2〉, this translates
to

Ĥ−1(G(L/F0), L∗) ∼= {c ∈ L∗ | NL/F0(c) = 1}
/
〈{σ1(c)c−1, σ2(c)c−1 | c ∈ L∗}〉.

(6.11)
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Thus, for the A and B of (6.10) the norm map NL/L2 induces an isomorphism

Ĥ−1(G(L/F0), L∗) ∼= A/B. (6.12)

The group of “special projective conorms” P(L, L2, F0) in Platonov’s terminol-
ogy [P4] is defined to be

P(L, L2, F0) = {a ∈ L∗
2 | σ2(a)a−1 ∈ NL/L2(L

∗)}
/(

F ∗
0 ·NL/L2(L

∗)
)
.

Observe that the group homomorphism a �→ σ2(a)a−1 induces an isomorphism

P(L, L2, F0) ∼= A/B. (6.13)

Also, Serre pointed out that

P(L, L2, F0) ∼= Br(L/F0)
/(

Br(L1/F0) + Br(L2/F0)
)
, (6.14)

where Br(L/F0) denotes the relative Brauer group ker(Br(F0) → Br(L)). See [P4,
§4] or [Su, Lemma 1.13(2)] for a proof of (6.14). By combining (6.9)–(6.14), we
have the following isomorphisms for the E of (6.8):

SK1(E) ∼= A/B ∼= A/B ∼= Ĥ−1(G(L/F0), L∗) ∼= P(L, L2, F0)
∼= Br(L/F0)

/(
Br(L1/F0) + Br(L2/F0)

)
.

(6.15)

If, for example, F0 is an algebraic number field or a local field, then one can use
(6.15) together with standard results in class-field theory to compute |SK1(E)| for
various choices of L1 and L2. Several cases of this type were treated in [P4].

If D ∈ D(F ) and ind(D) = pr1
1 · · · prk

k with the pi distinct primes and each
ri > 0, then Wang showed (see [Wa, p. 334] or [D2, p. 164, Th. 4]) that the abelian
group SK1(D) is torsion, with exponent dividing ind(D)/(p1 · · · pk). By using
(6.15) above, Gräbe has shown in [Gr] that every countably infinite torsion abelian
group of finite exponent occurs as SK1(D) for some division algebra D. (Draxl had
shown earlier in [D1] that every finite abelian group occurs as SK1(D).)

In [Er1] and [Er2] Ershov gave a calculation of SL1(D) for an arbitrary tame
D ∈ D(F ) for any Henselian valued field F . We describe his result here. For such
D, let

� =
√
|ker(θD)|, (6.16)

where θD is the map of (2.13) above. (So, � is an integer by Prop. 3.9(iii) and
Prop. 2.6, and � = 1 iff D is inertially split, cf. Th. 3.4.) As usual, let UD denote
the group of valuation units of D, and MD the maximal ideal of the valuation ring
VD. By using the fact that for any tamely ramified field extension K of F , we
have NK/F (1 + MK) = 1 + MF ([Er2, p. 65, Prop. 2]), Ershov verified that the
congruence theorem, (6.3) above, holds in this setting with the same proof as in
the discretely valued case; more precisely, in [Er2, Prop. 3] he shows,

(1 + MD) ∩ SL(D) ⊆ [UD, D∗] (= 〈{udu−1d−1 | u ∈ UD, d ∈ D∗}〉) . (6.17)

For d ∈ VD, we have Nrd(d) = (NZ(D)/F (Nrd(d)))� (see [Er2, p. 65, Cor. 2]) for the
� of (6.16). (The exponent � did not appear in the discrete case considered earlier,
since there every tame D is inertially split, so � = 1.) Ershov deduces [Er2, p. 66,
Lemma 1] that

SL(D) = {c ∈ D | NZ(D)/F (Nrd(c))� = 1} .
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Let
C = {u ∈ SL(D) | NZ(D)/F (Nrd(u)) = 1}

/
[UD, D∗]

∼= {c ∈ D | NZ(D)/F (Nrd(c)) = 1}
/

[UD, D∗] .

(The isomorphism follows from (6.17).) Then, Ershov proves in [Er2, (4)] that the
following diagram with the obvious maps has exact rows and columns:

1�
1 −→ K −→ SK1(D) −→ C −→ Ĥ−1(G(Z(D)/F ),Nrd(D

∗
)) −→ 1�

1 −→ [D∗, D∗]
/
[UD, D∗] −→ SL(D)

/
[UD, D∗] −→ SK1(D) −→ 1�

µ� ∩ F
∗

�
1

(6.18)

where K =
(
[UD, D∗] ∩ SL(D)

)/
[D

∗
, D

∗
] and µ� ∩ F

∗
denotes the group of those

�-th roots of unity which lie in F . He shows further [Er2, p. 69, 5.] that

The group [D∗, D∗]
/
[UD, D∗] is generated by commutators aba−1b−1 as

a and b range over representatives of generators of the group ΓD/ΓF .
(6.19)

Observe that for the E of (6.8) considered by Platonov, the formula SK1(E) ∼=
Ĥ−1(G(L/F0), L∗) in (6.15) falls out quickly from this, since then � = 1, [E∗, E∗] =
[UE , E∗] by (6.19) as ΓE/ΓF is cyclic, D = E = L, a field, and SK1(D) = 1.

Remark 6.2 Consider the case where F is a field with Henselian valuation
and D ∈ D(F ) is TTR. Then, the � in (6.16) equals deg(D), and the C in (6.18)
is trivial. By (6.19) it follows that the image of [D∗, D∗]

/
[UD, D∗] in µ� ∩ F

∗
in

(6.18) coincides with the image of the canonical pairing of (4.1) above. Since the
canonical pairing is nondegenerate, by Prop. 4.2, it follows from (6.18) that

SK1(D) is a cyclic group with |SK1(D)| = |µdeg(D) ∩ F
∗|

/
exp(ΓD/ΓF ) . (6.20)

In particular, we can see that for the D of Ex. 6.1 above, we have |SK1(D)| = 2,
but if we did not have µ4 ⊆ F0 there, then SK1(D) would be trivial.

For another perspective on SK1(D), the reader may wish to consult Suslin’s in-
teresting paper, [Su]. In particular Suslin conjectures [Su, Conj. 1.16]: If D ∈ D(F )
for any field F , and char(F ) � n where n = deg(D), then there is a canonical
homomorphism

f : SK1(D)→ H4(F, µ⊗3
n )

/(
[D] ∪H2(F, µ⊗2

n )
)

(where [D] is the image of D in H2(F, µn) ) such that Platonov’s description of
SK1(E) for the E of (6.8) over F0((x))((y)) would be obtainable by composing f
with successive residue maps associated with discrete valuations. Suslin does not
prove this conjecture but gets something very close (off by a factor of 2), assuming
that µn3 ⊆ F0, by using some sophisticated K-theoretic techniques.
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The simply connected algebraic groups of inner type with Dynkin diagram
of type An over a field F are all of the form SL1(A) where A is a central simple
algebra of degree n+1 over F . (That is SL1(A) is the algebraic group with K-points
SL1(A)(K) = SL(A⊗F K) for any field K ⊇ F .) The simply connected outer type
groups of type An are the special unitary groups SU(B, σ), where B is a central
simple algebra of degree n + 1 over separable quadratic extension L of F , and σ is
an L/F involution of the second kind on B, i.e., an involution on B such that σ|L
is the nontrivial F -automorphism of L. Then, (the F -points of) SU(B, σ) equals
{b ∈ B∗ | Nrd(b) = 1 and bσ(b) = 1}. The associated reduced Whitehead group
for SU(B, σ) is W (SU(B, σ)) = B∗/Σσ(B), where Σσ(B) = 〈{b ∈ B∗ | σ(b) = b}〉.
There is a theory for these groups W (SU(B, σ)) analogous to that for SK1(B),
developed principally by Yanchevskĭı and Platonov. Again, the reduced Whitehead
group can be nontrivial, but has been computed for certain cases, such as for the
E of (6.8) over F0((x))((y)). See, e.g., [Y4], [Y5], [PY3].

7 Other constructions

We give in this section some further examples of division algebras with inter-
esting properties which have been obtained using valuation theory.

(a) indecomposable division algebras.
A division algebra D ∈ D(F ) is said to be decomposable if D ∼= D1 ⊗F D2

where each deg(Di) > 1. It is obviously desirable to know whether a given D is
decomposable, since if so D can be studied in terms of the smaller division algebras
Di. Of course, one always has the primary decomposition of D (also called the
“Sylow decomposition” of D): If deg(D) = pr1

1 . . . prk

k where the pi are distinct
primes, then D ∼= D1 ⊗F · · · ⊗F Dk where deg(Di) = pri

i , and each Di is uniquely
determined up to isomorphism (though typically there are many different copies of
each Di in D). Thus, the study of decomposability is immediately reduced to the
case where deg(D) is a prime power. Valuation theory has been used in many of
the constructions of indecomposable division algebras.

The first serious investigation of decomposability in the prime power case seems
to have been given by D. Saltman in [Sa3]. Suppose deg(D) = pn, where p is
prime. It is immediate that if exp(D) = deg(D), then D is indecomposable. So,
the interesting division algebras for decomposability questions are those of degree
pn and exponent pm where m < n. Saltman gave in [Sa3] the first example of such
a division algebra which is indecomposable. His approach is analogous to Amitsur’s
noncrossed product constructions. Namely, he first constructed a division algebra
R(pn, pm) which is generic among division algebras of degree pn and exponent
pm in that there is a specialization property for them analogous to the one for
UD(F ;n) given in (5.1) above. Using this, he showed that if there is a nontrivial
decomposition R(pn, pm) = A1 ⊗ A2 then every division algebra D of degree pn

and exponent dividing pm over any field L ⊇ F admits a decomposition D ∼=
E1 ⊗L E2 with deg(Ei) = deg(Ai) for i = 1, 2. Thus, to show that R(pn, pm) is
indecomposable, it suffices to exhibit division algebras D1, D2 satisfying the index
and exponent conditions, which may be decomposable, but do not admit tensor
factors of the same degree. We have already seen such algebras in §4:

Example 7.1 (a) Let D1 be a TTR division algebra over a Henselian val-
ued field F , with ΛD1 = ΓD1/ΓF

∼= (Z/p3 Z)2 × (Z/p Z)2; so deg(D1) = p4 and
exp(D1) = exp(ΛD1) = p3. Then if D1

∼= A ⊗F B we have ΛD1
∼= ΛA × ΛB ,
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by Th. 4.5(c), (d) (which shows ΛA ∩ ΛB = (0)) and Prop. 2.8. Since A and B
must be TTR, each must have a nondegenerate canonical pairing (see Prop. 4.2)
so the invariant factors for ΛA and ΛB occur in pairs. Thus, the only possibility is
ΛA

∼= (Z/p3 Z)2 and ΛB
∼= (Z/p Z)2, so deg(A) = p3 and deg(B) = p, or vice versa.

(b) Likewise, let D2 be a TTR division algebra over F with ΛD2
∼= (Z/p2 Z)4.

Then, if D2
∼= S ⊗F T nontrivially, then we must have ΛS

∼= ΛT
∼= (Z/p2 Z)2, so

deg(S) = deg(T ) = p2.

We can build such Di as in Ex. 7.1, for example, with F = F0((x1)) · · · ((x4)),
where F0 is a field with µp3 ⊆ F0 (see Ex. 4.4(ii)). It follows by Saltman’s special-
ization result that for any field F with char(F ) �= p, the division ring R(p4, p3) over
F is indecomposable.

Another way to produce indecomposable division algebras is to build a division
algebra D ∈ D(F ) with two different valuations v1 and v2 which produce incompat-
ible constraints on the size of a tensor factor of D. For example, if D is TTR with
respect to each vi and has ΓD/ΓF like D1 in Ex. 7.1(a) relative to v1 and like D2

for v2, then the same reasons as given there show that D must be indecomposable.
Such a D can be constructed where F is the intersection of two Henselian valued
fields by the methods used to build noncrossed products in [JW1], cf. Ex. 5.11
above.

Another constraint on the decomposability of D was pointed out by Saltman
in [Sa3, Lemma 3.2]: For n ∈ N, let D⊗n denote the underlying division algebra of
n⊗

i=1

D. An old result of Albert [A5, p. 76, Lemma 7] says that if a prime number

p | ind(D), then p ind(D⊗p) | ind(D). Saltman noted that if ind(D) is a power of
p and ind(D⊗p) = ind(D)/p, then D is indecomposable. For, if D = A ⊗F B is a
nontrivial decomposition, then

ind(D⊗p) = ind(A⊗p ⊗B⊗p)
∣∣ ind(A⊗p) · ind(B⊗p)

∣∣ ind(D)/p2,

contrary to the assumption on ind(D⊗p). This observation can be combined with
the index reduction formula for function fields of Brauer-Severi varieties to obtain
further indecomposable division algebras, as described in Ex. 7.2 (no valuation
theory is used here).

Example 7.2 Let p be a prime number, and let E ∈ D(F ) with ind(E) =
exp(E) = pn for n ≥ 3. For any integer i, 2 ≤ i ≤ n− 1, let K be the function field
of the Brauer-Severi variety of E⊗pi

. So, K is a generic splitting field of E⊗pi

. Let
D = E ⊗F K. Then,

ind(D) = pn, exp(D) = pi, and ind(D⊗p) = pn−1. (7.1)

Hence, D is indecomposable by the remarks above. To verify the assertions in (7.1),
first note that ind(E⊗p) = pn−1 since pn−1 = exp(E⊗p) | ind(E⊗p) | ind(E)/p.
Likewise, ind(E⊗pj

) = exp(E⊗pj

) = pn−j for 0 ≤ j ≤ n. Then, one can invoke the
index reduction formula of Schofield and van den Bergh [SB, Th. 1.6] which says
that for any central simple algebra A over F ,

ind(A⊗F K) = gcd
1≤k≤exp(E⊗pi )

(
ind(A⊗F E⊗pik)

)
. (7.2)

(That is, the index reduction of A on passing to K is no more than what is forced
by the fact that K splits E⊗pi

.) It follows that ind(D⊗pj

) = ind(E⊗pj

) = pn−j for
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0 ≤ j < i, while K splits E⊗pi

, yielding 7.1. For more on index reduction formulas
on passage to certain kinds of function field extensions, see [MPW1], [MPW2],
[Me2], and the references given there.

The preceding examples yield indecomposable division algebras of degree pn

and exponent pi for 2 ≤ i ≤ n−1, but do not yield indecomposables of exponent p.
The first examples of indecomposable division algebras D of prime exponent were
constructed by Amitsur, Rowen, and Tignol in [ART] for p = 2 (with deg(D) = 8)
and by Tignol in [T6] for p odd (with deg(D) = p2). In light of Albert’s result in
[A3, Th. 6] that a division algebra of degree 4 and exponent 2 is a tensor product
of two quaternion algebras, the value of deg(D) in the [ART] paper was as small
as possible. The constructions in these papers are also easier to understand using
valuation theory, even though valuations did not appear explicitly in them. The
key point is given in the following proposition; for this, recall from (3.14) above the
group Dec(K/F ) for an abelian Galois extension K of a field F .

Proposition 7.3 Let p be a prime number and let F be a Henselian valued
field with µp ⊆ F . Take any p-Kummer extension L of F , and any division algebra
B ∈ Br(L/F ) with exp(B) = p. Let I ∈ D(F ) be the inertial lift of B to F ,
let N be any nicely semiramified division algebra over F with N ∼= L, and let D
be the underlying division algebra of I ⊗F N . Then D = L, ind(D) = [L : F ],
and exp(D) = p. Furthermore, D is a tensor product of p-symbol algebras iff
[B] ∈ Dec(L/F ).

The information on D, ind(D), and exp(D) in Prop. 7.3 follows from Th. 3.7
above. The last assertion of the proposition follows by [JW2, Prop. 4.8, Th. 5.15(c)].
Note that the required N will exist whenever |ΓF /pΓF | ≥ [L : F ]. Thus, we can
assure that such an N is available if we take, say F = F ((x1)) · · · ((xk)) with k
sufficiently large. Prop. 7.3 shows that in order to find an indecomposable division
algebra D of degree p2 for p odd, it suffices to find a p-Kummer extension L of a
field F with [L : F ] = p2 and B ∈ Br(L/F ) − Dec(L/F ) with exp(B) = p. This,
which is still by no means easy, was done by Tignol in [T6]. Likewise, in [ART] a
2-Kummer field L of F was found with [L : F ] = 8 and a B ∈ Br(L/F )−Dec(L/F )
with exp(B) = 2. The corresponding D given by Prop. 7.3 is then indecomposable
since otherwise Albert’s result on division algebras of degree 4 and exponent 2
would show that D is a tensor product of quaternion algebras, which is ruled out
by Prop. 7.3.

In [J2] B. Jacob used an elaboration of this technique to construct indecompos-
able division algebras of index pn and exponent p for any prime p and any n ≥ 2
(n ≥ 3 if p = 2). Specifically, he constructed an example of a p-Kummer extension
L of a field F with µp ⊆ F and [L : F ] = pn, and a division algebra B over F such
that exp(B) = p and [B] ∈ Br(L/F ), but [B] /∈ Dec(L/F ) + Br(L1/F ) + Br(L2/F )
for any proper subfields L1, L2 of L such that L1 ∩ L2 = F . For the I, N , and D
built as in Prop. 7.3 from B and L over a Henselian valued field F with residue
field the given F , it is shown in [J2, Th. 3.3] that D is indecomposable of exponent
p and index pn.

The examples of indecomposables of prime exponent given in [ART], [T6], and
[J2] were all over fields of characteristic 0, because they required F to have charac-
teristic 0 since they used arithmetic properties of a valuation on F with residue field
of characteristic p in order to obtain the desired B /∈ Dec(L/F ). Another approach
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to obtaining indecomposable division algebras of prime exponent, not using valua-
tion theory, was given subsequently by N. Karpenko. Let E be a division algebra
over a field F (of any characteristic) with ind(E) = exp(E) = pn where p is prime
and n ≥ 2 (n ≥ 3 if p = 2). Let K be the function field of the Brauer-Severi variety
of E⊗p. Then, exp(E⊗F K) = p, and the Schofield-van den Bergh index reduction
formula given in (7.2) above (where now i = 1) shows that ind(E ⊗F K) = pn, i.e.,
E ⊗F K is a division algebra. By using Chow group calculations, Karpenko shows
in [Ka1, Th. 3.1] that E ⊗F K is indecomposable.

(b) common subfields.
If D1, D2 ∈ D(F ), their tensor product D1⊗F D2 is often not a division algebra.

When possible, one would like to find what it is that relates D1 and D2 and “causes”
the zero divisors in D1⊗F D2. The most apparent circumstance preventing D1⊗F D2

from being a division algebra is if each Di contains a copy of a field L � F . For,
then D1⊗F D2 contains L⊗F L, which always has zero divisors, as 1 < [L : F ] <∞.
The question naturally arose long ago whether all appearances of zero divisors in
D1 ⊗F D2 could be accounted for in this way:

If D1 ⊗F D2 is not a division ring, must D1 and D2 contain a common
subfield L � F? (7.3)

This did not seem very likely. But there was the positive result of Albert in 1931
in [A1, Th. 3] saying that the answer is yes if D1 and D2 are both quaternion
algebras, i.e., deg(D1) = deg(D2) = 2. Risman gave a generalization of Albert’s
result in [Ri2] by showing that if D2 is a quaternion algebra and D1 ⊗F D2 is
not a division ring, then either D1 and D2 contain a common field L � F or D1

contains a splitting field K of D2 with [K : F ] > 2 (or both). Risman also gave an
example where the second case occurs but not the first. The difficulty in obtaining
an example lies in the fact that the Di can contain so many subfields that they are
difficult to classify or even to describe completely. The first example providing a
negative answer to question (7.3) for division algebras Di of the same degree was
given in [TW] in 1987. Here is that example:

Example 7.4 Let n > 1 be an odd integer. Let F0 be a field with µn ⊆ F0 and
let ω ∈ µ∗

n(F0). Let t, x, y be independent indeterminates, let F = F0(t)((x))((y)),
and let D1 = Aω(x, y;F ) and D2 = Aω(x(t − 1)/y, xt;F ). Then, with respect to
the standard Henselian valuation on F with F = F0(t) and ΓF = Z×Z, we have D1

and D2 are each tame totally ramified division algebras (see Ex. 4.4(i)). One can
check that D1⊗F D2

∼= Mn(Aω(xts, ty2/(t−1);F )), where s = (n+1)/2. However,
the subfields L of each Di are determined up to isomorphism by ΓL, by Th. 4.5(c),
so it is easy to enumerate them and to check that there is no L � F shared by D1

and D2.

At the time this example appeared in [TW, Prop. 5.1], D. Saltman pointed out
that for these Di, even though D1 ⊗F D2 is not a division algebra, Dop

1 ⊗F D2 is
a division algebra, where Dop

1 is the opposite algebra of D1. Thus, since D1 and
Dop

1 have the same subfields, they can have none in common with D2. This led
to suggestions by Saltman and Rowen that a more reasonable question than (7.3)
might be:

If ind(D1 ⊗F D⊗k
2 ) < ind(D1) · ind(D2) for all k, 1 ≤ k < exp(D2), must

D1 and D2 have a common subfield L � F?
(7.4)
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Mammone gave a negative answer to this question in [Mam, §3] with the following
example:

Example 7.5 For any n > 1, let F0 be a field with Nn ≤ F0, and let ω ∈
µ∗

n(F0). Let x, y, z, t1, t2 be independent indeterminates, and let F =
F0(x, y, z)((t1))((t2)) with its standard Henselian valuation with F = F0(x, y, z)
and ΓF = Z× Z. Let

D1 = Aω(x(1− y), t1;F )⊗F Aω(x(1− z), t2;F ) and D2 = Aω(x, yz;F ) ,

which are division algebras over F , by Ex. 3.6 and Ex. 2.7. Then, D2 is unramified
over F , while D1 is semiramified with D1 = F

(
n
√

x(1− y), n
√

x(1− z)
)
. Mammone

pointed out that in Br(F ),

D1 ⊗F D⊗k
2 ∼ Aω(x(1− y), t1yk;F )⊗F Aω(x(1− z), t2zk;F ) ,

which has index at most n2. However, a nontrivial common subfield of the Di

would have to be unramified over F . Mammone ruled this out by showing that if
L is any minimal proper field extension of F in D1, then L⊗F D2 is a division ring
(so L⊗F D2 is a division ring by Prop. 2.8 above).

Question (7.4) was particularly tantalizing in the case where D1 and D2 each
have prime index. A negative answer for this case was given in [JW3]. The key to
obtaining a counterexample was provided by the following proposition (see [JW3,
Th. 1]). Here, we write NF0(a) for the image of the norm map N : F0( p

√
a)→ F0.

Proposition 7.6 Let p be a prime number, and let F0 be a field with µp ⊆ F0,
and let ω ∈ µ∗

p(F0). Let a, c, d ∈ F ∗
0 with a, c /∈ F p

0 and F0( p
√

a) �= F0( p
√

c). Let
F = F0((x)), and let D1 = Aω(a, x;F ) and D2 = Aω(c, dx;F ), which are each
division algebras of degree p over F . Then,

(a) For 1 ≤ i ≤ p−1, D⊗i
1 ⊗F D2 isnot a divisionalgebra iff Aω

(
c, d;Fi(

n
√

aic)
)

is not a division algebra;
(b) D1 and D2 have no common subfield L � F iff d /∈ NF0(a) ·NF0(c).

As in so many constructions using valuation theory, Prop. 7.6 reduces question
(7.4) for D1 and D2 to a more stringent question concerning the residue algebras:
Can we find a field F0 with elements a, c, d such that Aω(c, d;F0(

p
√

aic)) is split for
1 ≤ i ≤ p−1 but d /∈ NF0(a) ·NF0(c)? In [JW3] an example was given for each odd
prime p of a field F0 with a, c, d satisfying these conditions. The argument used a
valuation in F0 such that the residue field has characteristic p.

Further light has been shed on common subfield questions in an interesting
recent paper [Ka2] by Karpenko, which uses Chow group calculations and non-
trivial results in algebraic geometric intersection theory. Among other things,
Karpenko shows: Let A be division algebra of prime degree p over a field F , and let
B1, . . . , Bp−1 be division algebras of degrees pn1

1 , . . . , p
np−1
p−1 ; let n = n1 + · · ·+np−1.

If no A ⊗F Bi is a division algebra, then there is a field extension E of F with
[E : F ] ≤ pn such that E splits each of A, B1, . . . , Bp−1. Notice that when p = 2
this recovers Risman’s generalization of Albert’s result.

8 Orderings on finite dimensional division algebras

Valuation theory has been a key tool in the study of orderings on fields, see, e.g.,
[L1], [Pr]. Some of this has been generalized to orderings on division algebras infinite
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dimensional over their centers, as in the work of M. Marshall and his associates in
[LMZ], [MZ1], and [MZ2]. However, our focus here is on finite dimensional division
algebras. For these, one might think that the consideration of orderings was ended
by Albert’s theorem in [A4] (or see [L2, Th. 18.10, Cor. 18.11]), which says that
there is no ordering on a noncommutative division ring finite dimensional over its
center—that is, no total ordering satisfying the usual conditions that the sum and
the product of positive elements is positive. Nonetheless, there has been some work
in the finite dimensional case. Albert’s result has been sidestepped by considering
division algebras D with an involution σ, and defining orderings so that a sign
is attached to every element d ∈ D with σ(d) = d, but not to all elements of
D. Different possible definitions of such orderings have been given, and valuation
theory has been helpful in understanding them. The reader can find an extensive
account of this topic in the paper [Cr7] by Craven in these proceedings. Therefore,
we will not pursue it here.

9 Total valuation rings

In the preceding sections, we have considered the invariant valuation rings
associated with valuations on finite dimensional division algebras. We now turn to
more general types of valuation rings, for which there is no associated valuation,
at least in the familiar sense. In this section we will consider total valuation rings.
Recall that a subring V of a division ring D is called a total valuation ring of D
if for every d ∈ D∗, we have d ∈ V or d−1 ∈ V . The terminology seems to be
due to P. M. Cohn [C1]. It follows that the left ideals of V are linearly ordered by
inclusion, since this holds for the principal ideals; likewise for the right ideals. But,
the left ideals are not the same as the right ideals, unless V is actually an invariant
valuation ring. Clearly, if E is any sub-division ring of D, then V ∩ E is a total
valuation ring of E. While every invariant valuation ring is also a total valuation
ring, the following example demonstrates that there do exist non-invariant total
valuation rings on finite dimensional division algebras. The first such example was
constructed by Gräter in [G1].

Example 9.1 Let F be a field, and let D ∈ D(F ) such that D has an invariant
valuation ring WD, with residue ring D, and πD : WD → D the canonical projec-
tion. Set WF = WD ∩ F , a valuation ring of F , say with residue field F , and let
πF : WF → F be the canonical map. Suppose D is a field; then D is normal over
F by Prop. 2.5. Suppose that D strictly contains F , and that there is a valuation
ring Y of F , such that Y has k different extensions to D, call them Z1, . . . , Zk,
with k > 1. Let Vi = π−1

D (Zi), for 1 ≤ i ≤ k, and let VF = π−1
F (Y ). The Vi

are “composites” of the Zi and WD, analogous to the commutative case described
before Prop. 3.1 above. An easy calculation shows that each Vi is a total valuation
ring of D with Vi ∩ F = VF . Since each Zi extends Y , there is σi ∈ G(D/F ) with
σi(Z1) = Zi. Then for the surjective (see Prop. 2.5) map θD : ΓD/ΓF → G(D/F )
of (2.13) associated with its invariant valuation ring WD, if we take any ai ∈ D∗

with θD(v(ai) + ΓF ) = σi, then aiV1a
−1
i = Vi. Consequently, V1, . . . , Vk are all

conjugate in D, and, as k > 1, the Vi are not invariant valuation rings. It is known
(see Th. 10.3(b) below) that since WD is an invariant valuation ring, it is the only
total valuation ring of D contracting to WF in F . From this it follows easily that
V1, . . . , Vk are the only total valuation rings of D contracting to VF in F .
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Let us give a more specific example illustrating Ex. 9.1. Let n be any positive
integer, with n > 1. Let F0 be a field containing a primitive n-th root of unity ω.
Let x and y be indeterminates, and let F = F0(x)((y)). Let D = Aω(1+x, y;F ). By
Ex. 2.7 above, the complete discrete rank 1 y-adic valuation of F (with valuation
ring WF = F0(x)[[y]] and residue field F = F0(x) ) extends to a valuation on
the division ring D, with valuation ring say WD, and residue ring the field D =
F0( n

√
1 + x). Because 1 + x is a 1-unit with respect to the x-adic valuation on

F0(x) (whose valuation ring is Y = F0[x](x)), this x-adic valuation has n different
extensions to D, one for each of the maximal ideals of the ring Y [ n

√
1 + x], which

is the integral closure of Y in D. So, Ex. 9.1 yields n different but conjugate total
noninvariant valuation rings of D, each contracting to the rank 2 valuation ring
VF = F0[x](x) + y(F0(x)[[y]]) of F .

Theorem 9.2 Let F be a field, and let V be a valuation ring of F ; let D ∈
D(F ). Then, there is a total valuation ring W of D with W ∩ F = V iff the
set T = {d ∈ D | d is integral over V } is a ring. When this occurs, there are only
finitely many different total valuation rings, say W1, . . . , Wk, of D with Wi∩F = V .
Furthermore, W1 ∩ · · · ∩Wk = T and k is the matrix size of D⊗F Fh, where Fh is
the Henselization of F with respect to the valuation of V . Hence, k | deg(D).

The matrix size of D⊗F Fh means the integer k such that D⊗F Fh ∼= Mk(E),
where E is a division ring. See [W4, Th. G, Th. A] or [MMU2, Th. 8.11, Th. 8.12,
Th. 8.14] for proofs of Th. 9.2. Most of Th. 9.2, except for the formula for k as a
matrix size, were proved originally in [BG1], where it was proved that k ≤ deg(D).
For the division algebra E over Fh such that D ⊗F Fh ∼= Mk(E) the Henselian
valuation ring on Fh extends to an invariant valuation ring VE on E, and the
residue division algebra E of VE coincides with the residue division ring of each
Wi, and ΓE is isomorphic to a suitable notion of value group for Wi. This will
be discussed in the more general context of Dubrovin valuation rings in the next
section (see Th. 10.4).

Regrettably, there does not seem to be any good effective criterion for when a
valuation ring of a field F extends to a total valuation ring of a given D ∈ D(F ).

The example in Ex. 9.1 is rather typical of noninvariant total valuation rings.
Specifically, it is known that such rings W can arise only for D ∈ D(F ) when for
V = W ∩ F , there is a localization of V at a nonmaximal prime ideal P such that
VP extends to an invariant valuation ring Y on D and the valuation ring V/P of the
residue field VP has more than one extension to the center of the residue division
algebra Y . See [W4, Th. D, Th. E] for more precise information. In particular, if V
is a rank 1 valuation ring of F , then any total valuation ring W of D ∈ D(F ) with
W ∩ F = V is actually invariant. This was proved earlier by Cohn in [C1, Th. 3].

10 Dubrovin valuation rings

One of the major difficulties in working with invariant or total valuation rings
is their relative scarcity. Given D ∈ D(F ) and a valuation ring V of F there
is often no invariant or even total valuation ring W of D with W ∩ F = V . A
further challenge arises because invariant and total valuation rings are defined only
in division algebras, and not for general central simple algebras. Even when we start
out with division algebras, very often we need to work with central simple algebras
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with zero divisors, which arise, e.g., from scalar extensions or tensor products of
division algebras.

A very nice way of overcoming these difficulties was found by N. Dubrovin
in [Du2], [Du3]. He introduced a general concept of a valuation ring based on
the notion of a place in the category of simple Artinian rings. (His definition is
close to that of Manis in [Man] for valuation rings in commutative rings with zero
divisors.) There is in general no valuation associated with Dubrovin’s rings (but
see Th. 10.5, Th. 10.6 below), but he showed that they enjoy many properties
similar to those of valuation rings on fields (see Th. 10.1, Th. 10.2 below). These
rings occur much more frequently than invariant or total valuation rings, yet still
enjoy a certain amount of uniqueness (see Th. 10.3). Since Dubrovin’s pioneering
work, a substantial theory of these rings has been developed, and connections have
been established with invariant and total valuation rings. In some cases, theorems
about invariant valuation rings have been proved where essential and seemingly
unavoidable use has been made of Dubrovin valuation rings.

We can here only indicate some of the results that have been proved about
Dubrovin valuation rings. The proofs are in many cases quite difficult. Fortunately,
there is now a book by Marubayashi, Miyamoto, and Ueda [MMU2] which brings
together many of the major results about Dubrovin valuation rings, with complete
proofs. In a number of cases, the book gives later published proofs of results which
are considerably simplified and clearer than the original proofs, though still by no
means easy.

We begin with the definition: Let S be a simple Artinian ring (we do not
assume that dimZ(S) S < ∞). A subring B of S, with Jacobson radical J(B), is
called a Dubrovin valuation ring of S if

(i) B/J(B) is a simple Artinian ring;

(ii) For every s ∈ S −B there exist r, r′ ∈ B such that rs, sr′ ∈ B − J(B).
(10.1)

(Think of B as the ring of a place λ from the simple Artinian ring S to the simple
Artinian ring B/J(B), i.e., λ : S → B/J(B)∪∞, where λ(b) = b + J(B) for b ∈ B
and λ(s) = ∞ for s ∈ S − B.) It is easy to check that a Dubrovin valuation ring
B of S is a total valuation ring iff B/J(B) is a division ring. Hence, if S is a
(commutative) field, then the Dubrovin valuation rings of S are exactly the usual
valuation rings of S. Dubrovin proved in [Du2], [Du3] the further characterizations
of Dubrovin valuation rings given in Th. 10.1, and the significant properties given
in Th. 10.2.

Theorem 10.1 Let S be a simple Artinian ring, and let B be a subring of S.
Then, the following conditions are equivalent:

(i) B is a Dubrovin valuation ring of S.
(ii) B/J(B) is simple Artinian, every finitely generated right ideal of B is

principal, and B is a right order in S.
(iii) B/J(B) is simple Artinian, every finitely generated right ideal of B is

projective, and B is a right order in S.
(iv) B/J(B) is simple Artinian and B is a right n-chain ring of S, where n

is the matrix size of B/J(B), i.e., for every s1, . . . , sk ∈ S with k ≥ n,
the B-module s1B + · · ·+ skB is generated by some n of the si.
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Of course, (i) is equivalent also to the “left” versions of (ii), (iii), and (iv). That
B is a right order in S means that the units B∗ of B form a right Ore set in B, and
the right ring of quotients BB∗ ∼= S. See [MMU2, Th. 5.11] for a proof of Th. 10.1.

Theorem 10.2 Let B be a Dubrovin valuation ring of a simple Artinian ring
S. Then,

(a) (two-sided ideals) The two-sided ideals B are linearly ordered by inclusion,
as are the B-B-bimodules lying in S. For any two such bimodules I, J , we
have I · J = J · I.

(b) (Morita invariance) If S ∼= Mn(T ), then B ∼= Mn(A), where A is a Du-
brovin valuation ring of T . Furthermore, Mm(B) is a Dubrovin valuation
ring of Mm(S) for every positive integer m. Also, if e is any nonzero
idempotent of S, then eBe is a Dubrovin valuation ring of eSe.

(c) (composition of places) If C is a subring of B with J(B) ⊆ C, then C is
a Dubrovin valuation ring of S iff C/J(B) is a Dubrovin valuation ring
of B/J(B).

(d) (overrings) If A is any overring of B, i.e., B ⊆ A ⊆ S, then A is a
Dubrovin valuation ring of S, and J(A) is a prime ideal B with J(A) ⊆
J(B). Also, A is the right (and left) localization of B with respect to the
Ore set of elements of B regular modJ(A), and B/J(A) is a Dubrovin
valuation ring of A/J(A).

(e) (relation with center) Let F = Z(S), a field, and suppose dimF (S) < ∞.
Let V = B ∩ F . Then, V = Z(B) and V is a valuation ring of F with
maximal ideal J(B)∩F . For any prime ideal Q of B, let P = Q∩V . Then,
P is a prime ideal of V ; the central localization BP of B (i.e., localization
with respect to the set V − P ) is an overring of B (so is a Dubrovin
valuation ring); and J(BP ) = Q. There are one-to-one correspondences:
{prime ideals of B} ↔ {prime ideals of V } ↔ {overrings of B}.

See [MMU2, Prop. 6.4, Prop. 5.14, Prop. 6.16, Th. 6.6, Th. 7.8] for proofs of
the assertions in Th. 10.2. Among the examples of Dubrovin valuation rings are the
following: Every invariant valuation ring and every total valuation ring is clearly
a Dubrovin valuation ring. Every Azumaya algebra over a commutative valuation
ring is a Dubrovin valuation ring (see [MMU2, Prop. 7.13]). Also, if V is a discrete
rank 1 valuation ring with quotient field F and S is a central simple F -algebra,
then a subring B of S is a Dubrovin valuation ring of S with B ∩ F = V iff B
is a maximal order of V in S (cf. [W4, Ex. 1.15]). Thus, it is unsurprising that
Dubrovin valuation rings have been used in studies of orders over central valuation
rings in central simple algebras. In addition to the examples of Dubrovin valuation
rings just mentioned, many more Dubrovin valuation rings can be constructed by
“composing” valuation rings using Th. 10.2(c).

A significant feature of the Dubrovin valuation rings of a central simple algebra
A is that they are determined up to isomorphism by their centers, which can be
any valuation ring of (i.e., with quotient field) Z(A):

Theorem 10.3 Let A be a central simple algebra over field F , and let V be
any valuation ring of F . Then,

(a) There is a Dubrovin valuation ring B of A with B ∩ F = V .
(b) If B′ is another Dubrovin valuation ring of A and B′ ∩ F = V = B ∩ F ,

then there is a ∈ A∗ with B′ = aBa−1.
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The existence theorem, Th. 10.3(a), was proved by Dubrovin in [Du3]; see
also [MMU2, Th. 9.4], which gives the improved proof from [BG2, Th. 3.8]. The
conjugacy theorem, Th. 10.3(b), was proved by Brungs and Gräter in [BG2, Th. 5.4]
for V of finite Krull dimension, and proved in general in [W4, Th. A]; see [MMU2,
Th. 9.8] for the improved proof from [G5, Th. 3.3]. Th. 10.3 suggests that Dubrovin
valuation rings should be usable in analyzing the arithmetic properties of central
simple algebras, much as valuation rings are used for fields.

There are close connections between Dubrovin valuation rings of central simple
algebras and invariant valuation rings, which one can see via passage to the Hensel-
ization. This was first shown in [W4]. To describe this, we observe first that there
are structures associated to a Dubrovin valuation ring analogous to ones we have
seen for invariant valuation rings. Let B be a Dubrovin valuation ring of a central
simple algebra A over a field F , and let V = B ∩ F = Z(B). We write now MV ,
V = V/MV and ΓV for the objects associated with V , instead of the notation MF ,
F , and ΓF used earlier. Now, our ring B has a canonically associated residue ring

B = B/J(B),

a simple Artinian ring. Let

tB = the matrix size of B, (10.2)

i.e., B ∼= MtB
(E) for some division ring E. Since there is no valuation attached

to B, it might be a little surprising that there is still an associated value group, as
defined in [W4]: Let

st(B) = {a ∈ A∗ | aBa−1 = B}, (10.3)

the stabilizer of B for the group action of A∗ by conjugation on the set of Dubrovin
valuation rings of A; st(B) is also the normalizer of B∗ as a subgroup of A∗. Then
set

ΓB = st(B)/B∗,

which we call the value group of B. Note that ΓB classifies the two-sided fractional
ideals I of B of the form I = aB = Ba for some a ∈ A∗, and the operation in ΓB

corresponds to multiplication of these ideals. It follows from Th. 10.2(a) that ΓB is
an abelian group, which is totally ordered (by aB∗ ≤ a′B∗ just when aB ⊇ a′B); so,
we write the group operation in ΓB additively. Note that there is also a well-defined
group homomorphism

θB : ΓB/ΓV −→ G(Z(B)/V )

given by, for a ∈ st(B) and c ∈ B with c ∈ Z(B), θB(a + ΓV )(c) = aca−1; this is
analogous to the θD of (2.13) above. Now, let Fh be the Henselization of F with
respect to the valuation ring V = B ∩ F , and let V h be the valuation ring of Fh

which is the Henselization of V . Let

nB = matrix size of A⊗F Fh, (10.4)

so A⊗F Fh ∼= MnB
(Dh) where Dh ∈ D(Fh). Define the defect of B by

δ(B) = [A : F ]
/(

[B : V ]|ΓB : ΓV |(nB/tB)2
)
. (10.5)

Because V h is Henselian, we know from Cor. 2.2 that there is a unique invariant
valuation ring R of Dh with R∩Fh = V h. We write MR, R, ΓR, θR for the objects
associated with R that were earlier denoted MDh , Dh, ΓDh , θDh . Of course, R has
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a defect δ(R) defined by (10.5) with R replacing B, etc.; but since nR = tR = 1,
note that δ(R) coincides with the defect δ(Dh) defined in (2.10) above. We have
the following basic connections between the Dubrovin valuation ring B of A and
the invariant valuation ring R of Dh.

Theorem 10.4 For B and R as above,
(a) B ∼= MtB

(R).
(b) ΓB

∼= ΓR, as ordered groups.
(c) nB/tB is a positive integer.
(d) There is a commutative diagram

ΓB/ΓV

∼=−−−−→ ΓR/ΓV h

θB

� �θR

G(Z(B)/V )
∼=−−−−→ G(Z(R)/V

h
).

(e) δ(B) = δ(R) = ρc, where c is a nonnegative integer and ρ = char(V ) if
char(V ) �= 0, and ρ = 1 if char(V ) = 0.

Th. 10.4 was proved in [W4, Th. B, Th. D, Th. C]. An immediate consequence
is that the assertions about Z(R) and the roots of unity in V given in Prop. 2.5
and Prop. 2.6 apply correspondingly for the Dubrovin valuation ring B. Part (e) of
Th. 10.4 justifies calling δ(B) the defect of B. See Th. 10.11 below for a significant
interpretation of the integer nB/tB .

While there is no valuation corresponding to a noninvariant Dubrovin valuation
ring, Morandi found a somewhat less stringent type of function associated to certain
Dubrovin valuation rings. For this, let A be a central simple algebra over a field
F , let Γ be a totally ordered abelian group, and let w : A− {0} → Γ be a function
satisfying, for all a, b ∈ A− {0},

(i) w(a + b) ≥ min(w(a), w(b)), whenever b �= −a;

(ii) w(ab) ≥ w(a) + w(b), whenever ab �= 0;

(iii) w(−1) = 0;

(iv) im(w) = w(st(w)), where st(w) = {a ∈ A∗ | w(a−1) = −w(a)};
(v) let Bw = {a ∈ A− {0} | w(a) ≥ 0} ∪ {0}, a subring of A, and

Jw = {a ∈ A− {0} | w(a) > 0} ∪ {0}, an ideal of Bw; we require
that Bw/Jw be a simple Artinian ring.

(10.6)

A function w satisfying conditions (i)–(v) is called a value function of A.

Theorem 10.5 If w is a value function on a central simple algebra A as in
(10.6) above, then Bw is a Dubrovin valuation ring of A which is integral over its
center. Furthermore, Jw = J(Bw), and st(Bw) = st(w), and ΓB = im(w).

Th. 10.5 was proved by Morandi in [M2]; see also [MMU2, Th. 23.3]. This theo-
rem has proved very useful in building Dubrovin valuation rings; see Ex. 10.7 below
for one example, and papers [M2], [MW1] for others. Th. 10.5 also provides some
hint that Dubrovin valuation rings integral over their centers are rather special. In
fact, we have the following characterizations of such rings:

Theorem 10.6 Let B be a Dubrovin valuation ring of a central simple alge-
bra A, let Z(A) = F , and let V = B ∩ F = Z(B). Let Fh (resp. V h) be the
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Henselization of F (resp. V ) with respect to V . Then, the following conditions are
equivalent:

(i) B is integral over V .
(ii) There is a value function w : A − {0} → Γ as in (10.6) above such that

B = Bw.
(iii) Every principal two-sided ideal of B is principal as a left ideal and as a

right ideal.
(iv) Every two-sided ideal of B is generated by elements of st(B).
(v) For every ring T with B ⊆ T ⊆ A (so T is Dubrovin by Th. 10.2(d)),

for W = T ∩ F = Z(T ), the valuation ring V/J(W ) of W has a unique
extension to a valuation ring of Z(T ).

(vi) nB = tB.
(vii) B ⊗V V h is a Dubrovin valuation ring of A⊗F Fh.
(viii) There is a Dubrovin valuation ring Bh of A⊗F Fh with Bh ∩A = B.

This theorem was proved in [W4, Th. F]; see also [MMU2, Th. 12.3, Cor. 23.4].
Note in particular that whenever a commutative valuation ring V has rank 1, then
for any Dubrovin valuation ring B of a central simple algebra such that Z(B) = V ,
we have B is integral over V ; for, condition (v) of Th. 10.6 holds trivially. Also,
if V is a Henselian commutative valuation ring of arbitrary rank, then again for
any Dubrovin valuation ring B of a central simple algebra such that V = Z(B), we
have B is integral over V .

Example 10.7 Let V be a valuation ring of a field F , and let Bi be a Dubrovin
valuation ring of a central simple F -algebra Ai such that Bi ∩ F = V for i = 1, 2.
Suppose Z(B1) is separable (hence abelian Galois) over V and δ(B1) = 1. Let

L = Z(B1)∩Z(B2). Let ρi be the composition ΓBi → ΓBi/ΓV

θBi−−→ G(Z(Bi)/V )→
G(L/V ), where the right map is given by restriction. Suppose ΓB1∩ΓB2 = ΓV . If B
is a Dubrovin valuation ring of A1⊗F A2 with B ∩F = V , then Z(B) ∼= Z(B1)⊗L
Z(B2), B is Brauer equivalent to B1 ⊗L B2, and ΓB = {γ1 + γ2 | ρ1(γ1) = ρ2(γ2)}.
This example is taken from [MW1, Cor. 3.12], where it is verified by reducing to the
case where V is Henselian via Th. 10.4 above; then the Bi are integral over V and
explicit constructions using value functions can be carried out to obtain a Dubrovin
valuation ring of A1 ⊗F A2. Note that the separability and defect hypotheses here
are satisfied whenever V is Henselian and S1 is a division algebra tame over F with
respect to V .

When working with several valuation rings over a given field, the Approxima-
tion Theorem is a basic tool, see [R1] or [R2, p. 136, Th. 3] for the general version.
Morandi proved the corresponding approximation theorem for Dubrovin valuation
rings—see Th. 10.9 below—in [M3]. At the same time, independently, Gräter stud-
ied in [G5] what he called the Intersection Property for finite families of Dubrovin
valuation rings, and it became apparent that the condition he found was equivalent
to the one Morandi had identified as needed for the approximation theorem to hold.
Gräter used the Intersection Property to illuminate properties of semilocal Bézout
orders (see [G7]), as well as clarifying integral extensions of commutative valuation
rings in central simple algebras, and also providing a significant new interpretation
of the integer nB/tB associated to a Dubrovin valuation ring B.

To describe these results, we need some more terminology. Recall first that
two valuation rings V1, V2 of a field K are said to be independent if there is no
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valuation ring W of K with each Vi ⊆ W and W 
 K; that is, the ring generated
by V1 and V2 is all of K. Now, let Bi and Bj be Dubrovin valuation rings of
a central simple algebra A. Let Bij = Bi · Bj , the subring of A generated by
Bi and Bj . This Bij is a Dubrovin valuation ring of A by Th. 10.2(d) (possibly
Bij = A), with J(Bij) ⊆ Bi ∩ Bj . If we set B̃i = Bi/J(Bij) and B̃j = Bj/J(Bij),
then by Th. 10.2(c), B̃i and B̃j are each Dubrovin valuation rings of the central
simple algebra Bij = Bij/J(Bij). Let B(Bi) denote the set of rings T such that
Bi ⊆ T ⊆ A.

Theorem 10.8 Let B1, . . . , Bk be pairwise incomparable Dubrovin valuation
rings of a central simple algebra A over a field F . Let R = B1 ∩ B2 ∩ · · · ∩ Bk.
Then the following conditions are equivalent.

(i) There is a well-defined order-reversing bijection B(B1) ∪ · · · ∪ B(Bk) →
{prime ideals of R} given by T �→ J(T ) ∩R.

(ii) For every ring T ∈ B(B1)∪ · · · ∪ B(Bk), J(T )∩R is a prime ideal of R.
(iii) For each distinct i and j, if we let Bij = Bi ·Bj and set B̃i = Bi/J(Bij)

and B̃j = Bj/J(Bij) as above, then Z(B̃i) and Z(B̃j) are independent
valuation rings of Z(Bij).

Following the terminology of Gräter in [G5], we say that B1, . . . , Bk have the
Intersection Property if they satisfy the equivalent conditions of Th. 10.8. Of the
three conditions in Th. 10.8, (i)⇒(ii) is clear, (ii)⇒(i) was proved by Y. Zhao in
[Z], and (i)⇔(iii) was proved by Gräter in [G5, Cor. 6.2, Prop. 6.3, Cor. 6.7]; see
also [MMU2, Cor. 16.9].

Theorem 10.9 (Approximation Theorem) Let B1, . . . , Bk be pairwise
incomparable Dubrovin valuation rings of a central simple algebra A such that
B1, . . . , Bk have the Intersection Property. Let Bij = Bi · Bj. Let Ii be a right
ideal of Bi, for 1 ≤ i ≤ k, such that IiBij = IjBij for all distinct i, j. Take any
a1, . . . , ak ∈ A such that ai − aj ∈ IiBij for all distinct i, j. Then, there is an
x ∈ A, such that x− ai ∈ Ii for all i.

The Approximation Theorem was proved by Morandi in [M3, Th. 2.3], working
from condition (iii) in Th. 10.8; see also [MMU2, Th. 15.2]. Morandi also showed in
[M3, Prop. 2.1] that the Approximation Theorem fails to hold whenever B1, . . . , Bk

do not have the Intersection Property. The approximation theorem for total valu-
ation rings in a division ring had been proved earlier by Gräter in [G3, Satz 4.1].

The next three theorems indicate the ring theoretic significance of the Inter-
section Property.

Theorem 10.10 Let A be a central simple algebra over a field F , and let
V1, . . . , Vn be pairwise incomparable valuation rings of F . Let T = V1∩· · ·∩Vn.

(a) For some k, 1 ≤ k ≤ n, let B1, . . . , B� be Dubrovin valuation rings of
A satisfying the Intersection Property, such that B1 ∩ · · · ∩ B� ∩ F =
V1 ∩ · · · ∩ Vk. Then, there exist Dubrovin valuation rings B�+1, . . . , Bm of
A such that B1, . . . , Bm satisfies the Intersection Property, and for R =
B1 ∩ · · · ∩Bm, we have R ∩ F = T and R is integral over T .

(b) Assume the B1, . . . , Bm of part (a) are pairwise incomparable. If B′
1, . . . , B

′
q

is another set of pairwise incomparable Dubrovin valuation rings of A sat-
isfying the Intersection Property such that for R′ = B′

1 ∩ · · · ∩B′
q we have



Valuation Theory on Finite Dimensional Division Algebras 55

R′ ∩ F = T and R′ is integral over T , then q = m and there is a ∈ A∗

such that R′ = aRa−1.

Th. 10.10 was proved by Gräter in [G5, Th. 6.11, Th. 6.12], see also [MMU2,
Th. 16.14, Th. 16.15]. The theorem shows in particular that if we have a finite family
of Dubrovin valuation rings of A which satisfy the Intersection Property, then we
can iteratively add to the family while preserving the Intersection Property and
the intersection with F = Z(A), until a point is reached where the intersection of
the Dubrovin valuation rings is integral over the intersection with F . When this
point is reached (which will occur after at most finitely many nontrivial steps),
one cannot add to the collection of Dubrovin valuation rings nontrivially without
losing the Intersection Property or shrinking the intersection with the center; also,
the intersection of Dubrovin valuation rings obtained at this point is unique up to
isomorphism.

In studying subrings of a central simple A, the set of all elements integral over
a subring T of Z(A) is usually not a subring of A. Thus, one instead studies orders
of A integral over T as an approximation to an integral closure of T in A. Th. 10.10
suggests that when T is a finite intersection of valuation rings of Z(A), then the
ring R described there, with R integral over T , R ∩ Z(A) = T , and R a finite
intersection of Dubrovin valuation rings having the Intersection Property, could be
considered the most natural candidate for an “integral closure of T in A.” This R
is usually not unique, but, as Th. 10.10(b) shows, it is unique up to isomorphism.

Consider now a single valuation ring V of the center F of a central simple
algebra A. Th. 10.10 shows that there is a unique associated positive integer k such
that there are k Dubrovin valuation rings B1, . . . , Bk of A satisfying the Intersection
Property with each Bi∩F = V , but there are no k+1 such Bi. Moreover, whenever
we have k such Bi, their intersection is integral over V and is uniquely determined
up to isomorphism. Gräter defined this k to be the extension number of V to A.

Theorem 10.11 Let B be a Dubrovin valuation ring of a central simple algebra
A over a field F , and let k be the extension number to A of the valuation ring B∩F .
Then k = nB/tB.

Gräter proved Th. 10.11 in [G5, Prop. 7.4]; see also [MMU2, Prop. 19.2]. At
the same time Gräter gave a new proof of the Ostrowski-type defect theorem for
Dubrovin valuation rings, Th. 10.4(e) above, using the extension number in place
of nB/tB .

There are also nice characterizations of the rings which arise as intersections of
Dubrovin valuation rings with the Intersection Property:

Theorem 10.12 Let R be an order in a central simple algebra A. The follow-
ing conditions are equivalent:

(i) R = B1 ∩ · · · ∩ Bn, where B1, . . . , Bn are Dubrovin valuation rings with
the Intersection Property.

(ii) R is semilocal (i.e., has just finitely many maximal two-sided ideals) and
every finitely generated right (resp. left) ideal of R is principal.

(iii) R is semilocal and for every prime ideal P of R, the set C(P ) = {r ∈ R |
r +P is regular in R/P} is a regular right and left Ore set of R, and the
right (= left) localization RC(P ) is a Dubrovin valuation ring.

The implications (i)⇔(ii) and (i)⇒(iii) in Th. 10.12 were proved by Gräter in
[G7, Cor. 3.5, Th. 3.6, Th. 2.6], while (iii)⇔(ii) was proved in [MUZM]; see also
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[MMU2, Th. 17.3]. Also, Morandi proved in [M3, Lemma 3.2, Th. 3.4] a version of
(i)⇒(ii), where instead of (i) he used the equivalent condition (iii) of Th. 10.8.

The theorems stated in this section give a number of the fundamental results
concerning Dubrovin valuation rings and suggest the richness in the theory of these
rings. They have been applied in a number of contexts, which we mention only
briefly. As one might expect, Dubrovin valuation rings have been used in the study
of orders in central simple algebras over central valuation rings, including maximal
orders, semihereditary orders, extremal orders, Bézout orders, and Prüfer orders,
see [HM], [HMW], [K1], [K2], [K3], [MMU2], [MMUZ], [MU1], [MUZM], [M4], [M5].
Dubrovin valuation rings were also needed in showing in [HW2] that the tame part
of the Brauer group of a field F with Henselian valuation ring V is isomorphic to
the graded Brauer group of the associated graded ring of V (this ring is actually a
graded field). For more on the connections between valued and graded algebras, see
also [B1], [B2], [B3], [HW1]. Dubrovin valuation rings had also been applied earlier
in [W5] in proving an algorithm for computing the residue algebra and the value
group for the valuation ring (or Dubrovin valuation ring) of a tensor product of
symbol algebras over a field with valuation. In the last two mentioned applications,
Dubrovin valuation rings are not involved in the statement of the results, but seem
essential for their proofs.
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135, 165–176.

[A1] A. A. Albert [1931] On the Wedderburn norm condition for cyclic algebras, Bull.
Amer. Math. Soc. 37, 301–312.

[A2] A. A. Albert [1932] A construction of non-cyclic normal division algebras, Bull. Amer.
Math. Soc. 38, 449–456.

[A3] A. A. Albert [1932] Normal algebras of degree four over an algebraic field, Trans.
Amer. Math. Soc. 34, 363–372.

[A4] A. A. Albert [1940] On ordered algebras, Bull. Amer. Math. Soc. 46, 521–522.
[A5] A. A. Albert [1961] Structure of Algebras, Rev. ed., Amer. Math. Soc., Providence.
[A6] A. A. Albert [1972] Tensor product of quaternion algebras, Proc. Amer. Math. Soc.

35, 65–66.
[AH] A. A. Albert and H. Hasse [1932] A determination of all normal division algebras over

an algebraic number field, Trans. Amer. Math. Soc. 34, 722–726.
[Am1] S. A. Amitsur [1972] On central division algebras, Israel J. Math. 12, 408–420.
[Am2] S. A. Amitsur [1974] The generic division rings, Israel J. Math. 17, 241–247.
[AS] S. A. Amitsur and D. Saltman [1978] Generic abelian crossed products and p-algebras,

J. Algebra 51, 76–87.
[ART] S. A. Amitsur, L. H. Rowen, and J.-P. Tignol [1979] Division algebras of degree 4 and

8 with involution, Israel J. Math. 33, 133–148.
[AJ] R. Aravire and B. Jacob [1995] p-algebras over maximally complete fields, K-Theory

and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras
(Santa Barbara, 1992) (B. Jacob and A. Rosenberg, eds.), Proc. Sympos. Pure Math.,
vol. 58, Part 2, American Math. Soc., Providence, pp. 27–49.

[AJM] R. Aravire, B. Jacob, and P. Mammone [1993] On the u-invariant for quadratic forms
and the linkage of cyclic algebras, Math. Z. 214, 137–146.

[AT] E. Artin and J. Tate [1967] Class Field Theory, Addison-Wesley, Reading, Mass.
[Az] G. Azumaya [1951] On maximally central algebras, Nagoya J. Math. 2, 119–150.
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[KY] V. I. Kaskevich and V. I. Yanchevskĭı [1987] The structure of the general linear group
and the special linear group over Henselian discretely valued Azumaya algebras, Dokl.
Akad. Nauk BSSR 31, 5–8, 92. (Russian)

[K1] J. S. Kauta [1997] Integral semihereditary orders, extremality, and Henselization, J.
Algebra 189, 226–252.

[K2] J. S. Kauta [1997] Integral semihereditary orders inside a Bézout maximal order, J.
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ders and strongly Prüfer orders in a central simple algebra, Math. Japon. 43, 377–382.
[MYa] A. P. Monastyrny̆ı and V. I. Yanchevskĭı [1989] The Whitehead groups of algebraic
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(1976/77), Lecture Notes in Math., vol. 677, Springer, Berlin, 1978, pp. 218–236.

[TY1] I. L. Tomchin and V. I. Yanchevskĭı [1990] On the defect of valued skew-fields, Dokl.
Akad. Nauk SSSR 314, 1082–1084 (Russian); English transl.: Soviet Math. Dokl. 42
(1991), 612–614.
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[Y5] V. I. Yanchevskĭı [1979] Reduced unitary K-theory. Applications to algebraic groups,
Mat. Sb. (N.S.) 110 (152), 579–596 (Russian); English transl.: Math USSR-Sb. 38
(1981), 533–548.
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