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In this chapter we describe a rational, but low resolution, model of probability. We
do this for two reasons: first, to show how a naive theory, using only discrete categories,
can still explain how people think about uncertainty, and second, as a model for fitting
discrete theories of valuation (which arise in many other contexts from moral judgments
to household finance) into the overall 41 ang framework. In 5.1 we introduce likeliness,
which we take to be a valuation of propositions on a discrete (seven-point) scale. In
5.2 we turn to the inference mechanism supported by the naive theory, akin to Jeffreys-
style probability updates, and argue that valuations are, for the most part, computed
rather than learned. After these preparations, in 5.3 we address what we take to be the
central concern for any cognitively inspired theory, learnability. We divide the problem
in three parts, learning of (hyper)nodes, learning of edges, and learning of valuations.
We argue for a system powered by embodied cognition, with all three parts operating
simultaneously.

5.1 The likeliness scale

Historically, the theory of probability emerged from the efforts of Pascal and Fermat in
the 1650s to solve problems posed by a gambler, Chevalier de Méré (Rényi, 1972; De-
vlin, 2008), and reached its current form in Kolmogorov, 1933. Remarkably, not even
highly experienced gamblers can extract high precision probability estimates from ob-
served data: one of de Méré’s questions concerned comparing the probabilities of getting
at least one 6 in four rolls of one die (p = 0.5177) and getting at least one double-6 in
24 throws of a pair of dice (p = 0.4914). Four decades later, Samuel Pepys is ask-
ing Newton to discern the difference between at least two 6s when 12 dice are rolled
(p = 0.6187) and at least 3 6s when 18 dice are rolled (p = 0.5973).
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Here we make this phenomenon, the very limited ability of people to deal with prob-
abilities, the focal point of our inquiry. These limitations, we will argue, go beyond
the well understood limits of numerosity (Dehaene, 1997), and touch upon areas such
as cognitive limits of deduction (Kracht, 2011a) and default inheritance (Etherington,
1987). We introduce likeliness, which we take to be a valuation of propositions on a
discrete (seven-point) scale. We defer the issue of “computing” with these values, the
inference mechanism supported by the naive theory, to 5.2. For the case at hand (low
resolution probabilities, this will be much like Jeffreys-style probability updates, but the
same mechanism is available for other, non-probabilistic updates as well.

We use the term ‘likeliness’ for a valuation on a 7-point scale 0,...,6 which only
roughly corresponds to a discretized notion of probability (we avoid the more natural-
sounding ‘likelihood’ as this already has a well-established technical sense). O is as-
signed to impossible events, [(e) = 0, and 6 to necessary ones. Note that in this regard [
corresponds better to everyday usage in that zero probability events (p(e) = 0) do occur,
and p(e) = 1 guarantees only that the event e has measure zero exceptions of occurring.
l(e) = 2 means unlikely: an example would be traffic accidents. I(e¢) = 1 means con-
ceivable, events that are unlikely in the extreme, but not forbidden by physical law. An
example would be being struck by a meteorite.

There is a duality between x and 6 — x as in Lukasiewicz Lz, so [(e) = 4 is assigned
to likely events such as traveling without an accident and I(e) = 5 to typical or expected
ones. Almost all lexical knowledge falls in this last category: chairs are by definition
furniture that support a seated person, and if a particular instance collapses under ordi-
nary weight we say it failed (whereas we don’t conclude that my car failed when I get
in a traffic accident — alternative hypotheses such as driver error are readily entertained).
Events that are neither likely nor unlikely are assigned the value 3.

Clearly, using exactly 7 degrees is somewhat arbitrary, but it is evident that using
only 3 (say impossible, unknown, possible) would be a gross oversimplification of how
people deal with probability, and using a very fine scale would create illusory precision
that goes beyond people’s actual abilities. With 7, we stick to a relatively small but de-
scriptive enough scale. Even if one could argue that, say on cognitive grounds, 5 or 9
degrees would be better, the overall methodology would be the exact same, and every-
thing below could be easily modified and worked out with that scale. Altogether, our
choice of having a 7-degree scale is more of an illustration than a commitment, albeit
one well supported by practical experience with semantic differentials (Osgood, Suci,
and Tannenbaum, 1957).

The commonsensical valuation, which is our object of study here, differs from proba-
bilities in several respects. The most important from our perspective is lack of additivity.
At this point, it is worth emphasizing that the theory of likeliness valuation is not in-
tended as a replacement of the standard (Kolmogorov) notion of probability, which we
take to be the correct theory of the phenomena studied under this heading, but rather as
an explanatory theory of how the naive worldview accounts for these phenomena. The
fact that as a computational device the standard theory is superior to the naive theory is
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no more a reason to abandon study of the naive theory than the superiority of eukaryotes
is reason to abandon study of prokaryotes.

By lack of additivity we don’t just mean lack of o-additivity, but something that is
already visible on finite sums. Consider the Law of Total Probability, that p(A) can be
computed as Y p(A|B;)p(B;) where the B; provide a (typically finite) partition of the
event space. The equivalent formulation with likeliness normed to 1 would be

I(A) = @Z(Bi) ®U(B; — A) (5.1

Here we retain the assumption that likeliness is a valuation in a semiring where addition
@® and multiplication ® are defined, but instead of conditional probability we will speak
about relevant implication — having a valuation of its own. The semiring of greatest
interest is the one familiar from n-valued logic, where ® is min, and @ is max. In this
simplified model, we allow two types of propositions only: standalone sentences A and
sentences in the form of an implication A — B (see 5.2).

To put lack of additivity in sharp relief, consider the following commonsensical ex-
ample: all men are mortal. If we take A to be eventual death, we have [(A) = 6. If we ask
people to elicit causes of death B;, they will produce a handful of causes such as cancer
or heart attack that they consider likely (I = 4); some like accidents or tropical dis-
eases they consider neither very likely nor very unlikely (I = 3); some like autoimmune
diseases or freezing to death they consider less likely (I = 2); and some they consider
conceivable but extremely unlikely such as murder/suicide or terrorism (I = 1). Need-
less to say, such valuations are not precisely uniform across people, but they do have
high intrasubjective consistency (as measured e.g. by  statistics). Since [(B; — A) is
by definition 6, we are left with an enumeration of causes:

(A) = PUBi) =& Dup;)=i (5.2)

The problem here is that no amount of heaping on more of less likely causes will increase
the @ above the valuation of its highest term. The phenomenon is already perceptible at
the low end: if we collect all conceivable causes of death from lightning strike to shark
attack, we have ‘death by (barely) conceivable causes’ which itself is unlikely, not just
conceivable.

In actual mortality tables, this phenomenon is reflected in the proliferation of cate-
gories like ‘unknown’, ‘unspecified’, and ‘other’, which take up the slack. Depending
on the depth of tabulation, the catchall category typically takes up between .5% and 5%
of the total data, which corresponds well to the lack of sensitivity below 1% observed in
the de Méré and Pepys examples we started with.

Another obvious difference between the standard and the naive theory is the way
extremely low or extremely high probability events are treated. When we want to draw
the line between impossible and conceivable events, we don’t rely on a single numeri-
cal cutoff. But if we take the proverbial ‘one in a billion chance’ as marking, in some
fuzzy sense, the impossible/conceivable boundary, and use log odds scale, as argued by
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Jaynes, 2003, the next natural order of magnitude (Gordon and Hobbs, 2017) brings us
to p = 0.0014, which we can take to mark the conceivable/unlikely boundary, and the
one beyond that to p = 0.1118, which marks the unlikely/neutral boundary.

In this reckoning everything between p = 0.1118 and p = 0.8882 is considered
I = 3, neither particularly likely nor particularly unlikely. Likely events are between
p = 0.8882 and p = 0.9986, while typical events are above that limit though still with a
one in a billion chance of failure. As at the low end, the naive theory lacks the resolution
to distinguish such failure rates from necessity (total absence of failure).

We should emphasize here that it is the overall logic of the scheme that we are vested
in, not the particular numbers. For example, if we assume an initial threshold of one in
a million instead of one in a billion, the limits will be at 0.0125 and 0.2008 (and by
symmetry at 0.7992 and 0.9875), but the major characteristics of the system, such as
the ‘neither likely nor unlikely’ category takes up the bulk of the cases, or that [ = 2
cases are noticeable, whereas [ = 1 cases are barely detectable, remain unchanged.
Further, we should emphasize that such limits, however we set them, are not intended as
a crisp characterization of human classification ability, the decision boundaries are fuzzy.
Returning to lack of additivity, there may well be several likely causes of death beyond
cancer and heart attack, but no closed list of such is sufficient for accounting for the fact
that eventual death is typical (as assumed by Christian doctrine that posits Jesus as an
exception), let alone necessary, as assumed by the irreligious. For this, we need a slack
variable that lifts the @ of the likely [ = 4 causes to ! = 5 or [ = 6, which we find in B,
‘death by other causes’. We note that historically old age was seen as a legitimate cause
of death, and only very recently (since the 1980s) do US coroner’s reports and obituaries
find it necessary to list the failure of a specific organ or subsystem as the cause of death,
and a catchall category, geriatric malady, remains available in many countries.

Finally, in contradistinction to the standard theory, @ can extend only to a handful of
terms, especially as the terms are implicitly assumed independent. By the above reck-
oning, it takes less than 80 unlikely causes to make one neutral, and less than 8 neutral
to make a likely one. The geometry of the likeliness space is tropical (Maclagan and
Sturmfels, 2015), with the naive theory approximating the log odds (max) semiring.

5.2 Naive inference (likeliness update)

We have two types of propositions: stand alone sentences A and sentences in the form
of an implication A — B. A context is a (finite) collection of propositions, which can
be represented by a directed graph: nodes of the graph denote propositions A and edges
of the graph denote implications A — B. The likeliness function is an evaluation act-
ing on the graph: both vertices and edges can have numeric values between 0 and 6, 0
representing impossibility, 6 representing necessity.

Values [(A — B) belong to the inner model (adult competence, see 5.3) therefore
they are hardly subject to change. Take the following example as an illustration. Snow-
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bird is a ski resort in Utah. Say, for a typical European, Snowbird is related to traveling,
skiing, and snowing with the likeliness

[(Snowbird — traveling) = 5
[(Snowbird — skiing) = 5

[(Snowbird — snowing) = 5

Such likelinesses express typicality of these relations. Skiing is related to some extent,
say, to ski-accident, and ski-accident to death. Take the example below (for the sake of
example we differentiate between ski-accidents and accidents; the latter excludes acci-
dents occurring while skiing).

travehng

/\3
\ accident ——— ski-accident ——— death
/ \ / e

Snowbird 4> skiing _ -3
Fig. 5.1: Skiing, accidents, Snowbird

In a typical scenario one does not have any likeliness of the implication Snowbird—death
inside the inner model. However, naive inference works: Snowbird typically implies ski-
ing; skiing is likely to imply ski-accident; finally, it is neither likely nor unlikely that ski-
accident results in death. Therefore, one may say [visiting] Snowbird is neither likely
nor unlikely to result in death, i.e.

[(Snowbird — death) = 3

In a similar manner, one could obtain the likeliness /(skiing—death) = 3 by saying that
skiing is likely to ensure a ski-accident, while it is neither likely nor unlikely that ski-
accident results in death.

In virtue of the examples above we give a formal model. Let assume we have a finite
directed graph G = (V, E) and an evaluation | : £ — {0,...,6}. We would like to
evaluate edges of the complete graph on V' that are not in E. Pick two vertices a,b e V,
a # b and suppose (a,b) ¢ E.Let p = (v1,...,v,) be a path in G from a = v; to
b = v,,. We write

I(p) = min {l{(v; > vi41): i=1...n—1} (5.3)
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The value [(p) expresses how likely the inference a — b is in case we are relying
on the chain of already evaluated implications belonging to the path p. Then the value
l(a — b) is obtained by

I(a — b) = min {I(p) : pisapathinG from a to b} (5.4)

In the example above vertices of the graph did not have likelinesses. Suppose we
get new information about John: he is likely to be in Snowbird, i.e. [(Snowbird) = 4.
What consequences can we draw? Being a typical European, if John is in Snowbird,
then he must be traveling and it is really typical that people travel to Snowbird to ski. The
information that /(Snowbird) = 4 propagates via the edges of the graph: the likeliness of
those propositions that are related to Snowbird (that is, they are connected by an edge in
the graph to Snowbird) will be updated given new information: {(traveling) and [(skiing)
become 4. In the formal model, given the value [(a) and a path p = (vy,...,v,) from
a = v to b = vy, using the definition of /(p) in equation (5.3) we can update the
likeliness of b writing

[(b) = max {l(a),l(p) : pisapathin G froma to b} (5.5)

This process of updating iterates: neighbors of just updated vertices get updates in
the next round, etc. Supposing the graph is connected, all vertices are assigned with
likeliness:

3

4
travehng /—4\ 3
3

acmdent 4> ski-accident — > death
4 L7

Snowblrd 4> skung _____ -3
4

Fig. 5.2: John in Snowbird

Let us now suppose that we learn that John died abroad. The first column of Table 1
describes the default likelinesses we assign to various causes of death, with subsequent
columns showing the updates based on whether we learn (I = 6) that the death took
place in Reykjavik, Istanbul, or on a tourist trip, destination unspecified. Some rows are
easy to explain: for example death at home in bed is considered likely, but if we know
that John was on a tourist trip the implication is that he is not at home, and the likeli-
ness is demoted to 1. Not 0, because there are extremely unlikely but not inconceivable
scenarios whereby he fell in love with the place, bought a home, and resettled there, cf.
Jaynes, 2003 5.2.2. This is a scenario that is, perhaps, worth considering if we know only
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that John went to Reykyavik or Istanbul and tourism was merely an inferred, rather than
explicitly stated, goal of the trip, but if we know it was a tourist trip and nothing more
(last column) this is logically incompatible with being at home.

Cause of death  |Default|Reykjavik |Istanbul|trip
in hospital 4 4 5 4

by forces of nature
by ski accident

by accident (non-ski)| 4 4 4 5
at home in bed 4 1 1 0

in war 1 0 0 1

by homicide 1 1 1 1

by suicide 2 2 2 1

1 4 1 2

1 2 1 1

Table 5.1: Likeliness of cause of death

The same logic is operative in the next row (war): since we know there is no war in
Reykjavik or Istanbul the likeliness is demoted to 0, but for a generic trip it is not, since
we do know that there are war zones on the globe and John may have visited one of
these.

We obtain that death by ski accident is less likely in Reykjavik (2) than in Snowbird
(3) not because skiing is inherently more safe in Iceland, but simply because one can
travel to Reykjavik for many reasons, and the likeliness that one goes skiing there is 3,
perhaps 4, whereas to ski in Snowbird is typical (5). In connection of Reykjavik we are
much more likely to think of death by forces of nature, as there are many natural dangers
nearby, from volcanoes to geysers and sneaker waves, indeed this class rises to the top
category (4).

This line also illustrates the nonmonotonic nature of the calculus: in general we con-
sider death by forces of nature conceivable but unlikely in the extreme (1), knowing that
John went to a tourist trip increases this to 2, but further learning that he went to Istanbul,
not particularly known as a natural danger zone, demotes this back to 1.

With this, our rational reconstruction of the naive theory of probability is complete. This
theory is not as powerful computational device as the standard theory, and generally only
leads to rough estimates of likeliness. However, it is better suited for studying human
cognitive behavior, as it requires very little data, and extends to a broad range of cases
where the statistical data undergirding the standard theory is unavailable.

Importantly, the idea of updates extends well beyond probability/likeliness. Equa-
tion 5.2 and the update formulas remain meaningful for all other kinds of valuations.
Following Osgood, May, and Miron, 1975 in essence, but not in terminology, we take
the first principal component of their analysis as our primary example. Unluckily for the
present discussion, they called this factor EVALUATION, but here we use a more specific
name, GOOD/BAD, since it is just one (though clearly the most important) of many val-
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uations. We take the evolutionary roots of this valuation to be hardwired. In we
wrote:

The pain/pleasure valuation is largely fixed. A human being may have the power
to acquire new tastes, and make similar small modifications around the edges,
but key values, such as the fact that harming or destroying sensors and effectors
is painful, can not be changed.

In terms of the thought vector analysis we sketched in 2.3, a word like good is
strongly anchored as the density center of the projection of pleasurable mind states on
the linguistic subspace, and a word like bad is similarly anchored as the density center
of painful mind states. These two may not be orthogonal (clearly a mind state, includ-
ing external and proprioceptive sensor states, can be both pleasurable and painful at the
same time), but their existence is sufficient for setting up an initial valuation (say, on a
scale of —3 to +3) that applies to novel mind states as well. It requires further acquisi-
tion work to generalize this from current sensory state to anticipation of future events,
which is what our definition of bad as cause_ hurt assumes. This requires nothing
far-fetched, given that primary linguistic data, parents’ utterances of bad, will typically
refer to events and behaviors which, upon continuation, would indeed lead to bodily
harm. Other valuations, such as Osgood et al.’s POTENCY or ACTIVITY are also richly
embedded in sensory data, making them quite learnable early on. As the likeliness case
shows, we don’t actually need for every word (fixed linguistic data) or set of proposi-
tions (transient linguistic data) to have a stored valuation: it is sufficient for there to be
deductive methods for dynamically computing such valuations on stored data.

5.3 Learning

How the adult system of mental representation, called the ‘inner model’ above, is formed
in regards to probabilities? Before we turn to the theory of learning, a word of caution
is in order: it is not our goal to supplant the existing theories such as (Tomasello, 2003),
especially not when it comes to descriptive detail of child language acquisition. Rather,
our goal is to provide explanatory adequacy in the sense of Chomsky (1973) who states
this quite clearly:

[t]he fundamental empirical problem of linguistics is to explain how a person
can acquire knowledge of language.

To paraphrase (Hertz, Krogh, and Palmer, 1991) whom we quoted in 2.3, we will speak
of children, because much of the inspiration for learning comes from developmental
psychology, not because we are concerned with actual persons as opposed to algorithms.
“Brain modeling is a different field and, though we sometimes describe biological analo-
gies, our prime concern is with what the artificial networks can do, and why.” When we
say we consider something ‘innate’, what this means is that we assume a learning al-
gorithm that has its search space restricted ab initio. This way, explanatory adequacy
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becomes the issue of how an algorithm, as opposed to a person, can acquire human lan-
guage, and all we can promise is to keep appeals to ‘innate’ material within the same
bounds for algorithms as are routinely assumed for humans.

Recall that the elementary building blocks of 41ang, the vertices of a graph, cor-
respond to words or morphemes. There is a considerable number, about 10°, of these,
and we add an empty (unlabeled) node -. These are connected by three types of directed
edges: ‘0’ (is, isa); ‘1’ (subject); and ‘2’ (object). Our theory of types is rather skele-
tal, especially when compared to what is standard in cognitive linguistics (Jackendoff,
1983) or situation theory (Barwise and Perry, 1983; Devlin, 1991), theories we share
with a great deal of motivation, especially in regards to common-sense reasoning about
real world situations. When we say that a node is (defeasably) typed as Location or Per-
son, this simply means that a 0-edge runs from the node in question tothe place/1026
or man/ 659 node (see 2.1). This applies not just to nodes assumed present already, but
also to hypernodes (set of nodes with internal structure, see Definition 5 in 1.5) created
during text understanding.

There can be various relations obtaining between objects but, importantly, relations
can also hold between things construed as objects, such as geometrical points with no
atomic content. Consider the corner of the room is next to the window — there is no actual
physical object ‘the corner of the room’. Relational arguments may also include complex
motion predicates, as in flood caused the breaking of the dam, and so on. To allow for
this type-theoretical looseness, arguments of relations will be called matters, without
any implication that they are material. We use edges of type 1 and 2 to indirectly anchor
such higher relations, so the subject of causing will have a 1-edge running from the
vertex cause/ 3290 to the vertex £1ood/85, and the object, the bursting of the dam,
will have a 2-edge running from the cause /3290 node to the head of the construction
where dam (not in 41ang) is subject of burst /2709. For ditransitive and higher arity
relations, which are tangential to our main topic here, we use decomposition (see 2.4).

In general, we define valuations as partial mappings from graphs (both from vertices
and from edges) to some small linear order L of scores. There is no analogous ‘truth
assignment’ because in the inner models that are central to the theory, everything is true
by virtue of being present. On occasion we may be able to reason based on missing
signifiers, the dog that didn’t bark, but this is atypical and left for later study. Learning,
therefore, requires three kinds of processes: the learning of nodes, the learning of edges,
and the learning of valuations. We discuss each in turn.

Learning new vertices We assume a small, inborn set of nodes roughly corresponding
to cardinal points of the body schema (Head and Holmes, 1911) and cardinal aspects
of the outside world such as the gravity vertical (Campos, Langer, and Krowitz, 1970),
to which further nodes are incrementally adjoined (see 3.1). This adjunction typically
happens in one shot, a single exposure to a new object like a boot /413 is sufficient to
set up a permanent association between the word and the object, likely including sensory
snapshots from smell to texture and a prototypical image (Rosch, 1975). The association
is thus between a phonologically marked point, something that, by virtue of being so
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marked, is obtained by projecting the entire thought vector on the persistent linguistic
subspace L (see 2.3).

As the child is repeatedly exposed to new instances of the category, or even pre-
existing instances but seen from a different perspective, against a different background,
etc. they gradually obtain a whole set of vectors in L, together forming a point cloud
that is generally (but not always, see radial categories below) describable by a proba-
bility distribution with a single peak, the prototype. This model is very well suited for
the Probably Approximately Correct (PAC) theory of learning (Valiant, 1984), and is
commonly approximated in machine learning by Gaussian density models. This is not to
say that Gaussians are the only plausible model — density estimation offers a rich variety,
and remarkably, many of the approaches are directly implementable on artificial neural
networks.

On rare occasions, children may learn abstract nodes, such as color /2207, based
on explicit enumerations ‘red isa color, blue isa color,...’, but on the whole we don’t
have much use for post hoc taxonomic categories like footwear. Many of these tax-
onomies are language- and culture-dependent, for example Hungarian has a category
nyildszdro szerkezet ‘closure device’ which in English is overtly conjunctive: doors and
windows. In this particular case, the conjuncts are explicitly nameable, but cognitive se-
mantics considers many other cases that Lakoff (1987) calls radial categories, where no
single prototype can be identified. Here we illustrate the phenomenon based on (Hanks,
2000), where the homonymy/polysemy distinction is considered from the perspective of
the lexicographer, using a standard example:

bank/227 bank/1945

is an institution is land

is a large building is sloping

for storage is long

for safekeeping is elevated

of finance/money situated beside water
carries out transactions

consists of a staff of people

Hanks, much as Lakoff and Wittgenstein before him, pays close attention to the fact

that radial categories may be explained in terms of a variety of conditions that may

or may not be sufficient. The actual 41ang definitions are more sparse bank bank

argentaria bank 227 u N institution, money inversus bank part
ripa brzeg 1945 u N land, slope, at river. We could use defaults to

extend this latter definition with <long> or perhaps even elevated, though we do not

at all see how to derive this latter condition for submerged banks such as the famous

Dogger Bank.

More important than the details of this particular definition are the fact of common
‘metaphorical usage’ (snow bank, fog bank, cloud bank) which, many would argue, are
presentin bank /1945 as well, with metonymic usage of the institution for the building,
or perhaps conversely, using the building metonymically for the institution, as in The
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Pentagon decided not to deploy more troops. One way or another, this is the key issue
for radial categories: surely a large building does not consist of a staff of people.

In a plain intersective theory of word meaning we would simply have a contradiction:
as long as bank /227 is defined as the intersection of the building set and the carries out
transactions set, we obtain as a result the empty set, since buildings don’t carry out trans-
actions. We will illustrate how 41ang solves the problem on the definition of institu-
tion intelzmelny institutio instytucja 3372 e N organize at,

institution

work at, has purpose, system, society/2285 has, has long(past),

building, people in, conform norm. This is a lot to unpack, but we con-
centrate on the seeming contradiction between system and building. Our under-
standing of real-life institutions is assumed to be encoded in very high-dimensional
thought vectors, and the word institution is only the projection of these vectors on the
permanent (stable) linguistic subspace L given to us as the eigenspace of the largest
eigenvectors (see our discussion of Little (1974) in 2.3). Within L there is a whole sub-
space S, spanned by vectors (words) related to systems such as machine, automatism,
process, behavior, period, attractor, stability, evolution, and so on. There is also a sub-
space B devoted to buildings, spanned by words such as wall, roof, room, cellar, corri-
dor, brick, mortar, concrete, window, door and so on and so forth. By accident, there may
be some highly abstract words such as component that are applicable in both S and B,
but we may as well assume that the two subspaces are disjoint. However, thought vec-
tors can have non-zero projection on both of these subspaces at the same time, and our
claim is that this is exactly what is going on with institution. Since by definition
bank /227 is_a institution, the word sense bank /227 just inherits this split
without any special provision.

This has nothing to do with the homonymy between bank /227 and bank/1945:
we have two disjoint polytopes for these, rather than one polytope with a rich set of pro-
jections. There is no notion of ‘bank’ of which bank/227 and bank/1945 could be
obtained by projection as there is a single sense of institution of which both the building
and the system are projections. Importantly, humans perform contextual disambiguation
effortlessly: Hanks (2000) makes this point using real life examples

people without bank accounts; his bank balance; bank charges; gives written
notice to the bank; in the event of a bank ceasing to conduct business; high
levels of bank deposits; the bank’s solvency; a bank’s internal audit department;
a bank loan; a bank manager; commercial banks; High-Street banks; European
and Japanese banks; a granny who tried to rob a bank

on the one hand, and

the grassy river bank; the northern bank of the Glen water; olive groves and
sponge gardens on either bank; generations of farmers built flood banks to create
arable land; many people were stranded as the river burst its banks; she slipped
down the bank to the water’s edge; the high banks towered on either side of us,
covered in wild flowers
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on the other. Compare this to the case the bank refused to cash the check. The victim
is typically quite unable to say whether it was the system that is to blame or the staff,
actually acting against the system in an arbitrary and capricious manner. There may be
some resolution based on a deeper study of financial regulations and the bank’s bylaws,
but this takes ‘slow thinking’, what Kahneman (2011) calls ‘System 2’, as opposed to
the ‘fast thinking’ (System 1) evident in the 227/1945 disambiguation process, and
requires access to a great deal of non-linguistic (encyclopedic) knowledge.

In fact, the learning of nouns corresponding to the core case of concrete objects is
now solved remarkably well by systems such as YOLO9000 (Redmon et al., 2016) and
subsequent work in this direction, lending credence to the insight of Jackendoff (1983)
taking “individuated entities within the visual field” as the canonical case for these.
Outside this core, the recognition of abstract nouns like treason or attitudes like scornful
are still in their infancy, though sentiment analysis is making remarkable progress.

Learning new edges Again, we assume a small, inborn set of edges (0,1,2), and an
inborn mechanism of spreading activation. The canonical edge types are learned by a di-
rect mechanism. Let us return to boot /413 for a moment and assume a climate/cultural
background where the child has already learned shoe /377 first. Now, seeing the boot
on a foot, and having already acquired the notion of shoe /377, the child simply adds
a ‘0’ edge ‘boot isa shoe’ i.e. a ‘0’ edge to the graph view of their inner model. In vec-
tor semantics, it is the task-specific version of Eq. 2.6 that is added to the system of
equations that characterizes the inner model:

Pr(t+ 1) = Pg(t) + s|boot){shoe| (5.6)

The case of ‘1’ edges, the separation of subject from predicate, is a bit more com-
plex, especially as two-word utterances are initially used in a variety of functions that
the adult grammar will treat by separate construction types such as possessives dada
chair ‘daddy’s chair’; spatials ricky floor ‘Ricky is on the floor’; imperatives papa pix
‘daddy, fix (this)’ and so on. Subjects/subjecthood may not fully emerge until the system
of pronouns is firmed up, but our central point here is that what Tomasello (1992) calls
“second-order symbols” (for him including not just nominative and accusative linkers
but all case markers) are learnable incrementally, on top of the system of what he calls
first order symbols (typically, nouns). What is learned by learning verbs is not just some
actions, but an entire Fillmorean frame with roles, and markers for these roles. Remark-
ably, machine learning systems such as Karpathy and Li (2014) are now capable of
recognizing and correctly captioning action shots with verbs like play, eat, jump, throw,
hold, sit, stand,. .., see Karpathy’s old webpage for some examples.

In 3.1 we speculated that subjects and objects are initially undifferentiated, and it is
the same action that we see either performed by the body John turns or on something
within arms reach John turns the wheel for a large class of motion verbs showing intran-
sitive/transitive alternation. But the same incrementality applies to all adpositions/case
markers that act as second order entities, e.g. that the dative would indicate the recipient.
Let us consider the situations boot on foot, which has direct visual support, and
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boot for_ excursion, which also has strong contextual support, but outside the
visual realm.

If the parents are skinheads, the association ‘boot for excursion’ may never get
formed, since the parents wear the boots on all occasions. But if the boots are only
worn for excursions (or construction work, or any other specific occasion already iden-
tified as such by the child) we will see the boot and the excursion or construction work
nodes jointly activated, which will prompt the creation of a new purposive link between
the two, just as a joint visual input would trigger the appropriate locative linker.

Again we emphasize that the gradual addition of links described here is not intended
as a replacement for actual child language acquisition work such as (Jones, Gobet, and
Pine, 2000), but rather as an indication of how such a mechanism, relying on training
data of the same sort, can proceed. We note that the ab initio learning of semantic frames
(Baker, Ellsworth, and Erk, 2007) is still very hard, but the less ambitious task of seman-
tic role labeling is by now solved remarkably well (Park, 2019).

Learning valuations Probabilities are by no means the only valuation we see as rel-
evant for characterizing human linguistic performance, and using a seven point scale
s = {0,...,6} is clearly arbitrary. Be it as it may, similar scales are standardly used in
the measurement and modeling of all sorts of psychological attitudes since Osgood, Suci,
and Tannenbaum, 1957, and there is an immense wealth of experimental data linking lin-
guistic expressions to valuations. Perhaps the simplest of these would be the GOOD/BAD
scale we discussed in 5.2. For improved modeling accuracy, we may want to consider
this a three-point scale good, neutral, bad, since most things, in and of themselves, are
neither particularly good nor particularly bad.

Another valuation of great practical interest would be TRUST. For this we can as-
sume a set of fixed (or slowly changing) sources like people, newspapers, etc., and a
set of nonce propositions coming from these. Sometimes the source of a proposition is
unclear, but quite often we have information on which proposition comes from which
source. By a trusted source we mean one where we positively upgrade our prior on the
trustworthiness of the propositions coming from them, and by a distrusted one we mean
one that triggers a downgrade (negative upgrade) in the trustworthiness of the propo-
sition. As (dis)confirmation about particular propositions comes in, we can gradually
improve our model of sources in the obvious manner, by backpropagating the confirma-
tion values to them. This can be formulated in a continuous model using probabilities,
but the essence of the analysis can be captured in terms of discrete likeliness just as well.

Of particular technical interest is the ACTION POTENTIAL valuation taking values in
A ={-1,0,1,2}, where -1 means ‘blocked’ or ‘refractory’, 0 means ‘inactive’, 1 means
‘active’, and 2 means ‘spreading’. These can be used to keep track of the currently active
part of the graph and implement what we take to be the core cognitive process, spreading
activation (Quillian, 1969; Nemeskey et al., 2013). Here we will not pursue this devel-
opment (see 7.4 for further details), but note that we don’t see this valuation as formally
different from e.g. the probability valuation, except that innateness is plausible for the
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former but not the latter. To paraphrase Dedekind’s famous quip, spreading activation
was created by God, the other valuations are culturally learned.

Unlike the lexicon itself, valuations are not permanent. The inputs to a valuation
are typically nonce hypernodes ‘death at Snowbird’ and the linguistic subspace L only
serves as a basis for computing the mapping from the hypernodes in question to the
scale s. We assume that the activation mechanism is unlearned (innate), but this still
leaves open the question of how we know that forces of nature are a likely cause of
death in Reykjavik but not in Istanbul? Surely this knowledge is not innate, and most of
us have not studied mortality tables and statistics at this level of specificity, yet the broad
conclusion, that death by natural forces is more likely in Reykjavik than in Istanbul, is
present in rational thinking at the very least in a defeasible form (we will revise our naive
notions if confronted with strong statistical evidence to the contrary).

Part of the answer was already provided in 5.2, where we described the mechanism to
compute these values. Aside from very special cases, we assume that such valuations are
always computed afresh, rather than stored. What is stored are simpler building blocks,
such as ‘volcano near Reykjavik’, ‘volcano isa danger’ from which we can easily obtain
‘danger near Reykjavik’. A great deal of background information, such that danger is
connected to death, must be pulled in to compute the kind of valuations we described in
Table 5.1, but this does not alter the main point we are making here, that inner models
are small information objects (the entire mental lexicon is estimated to be about 1.5MB,
see Mollica and Piantadosi, 2019).

From the foregoing the reader may have gathered the impression that learning of nodes
is relatively easy, learning of edges is harder, and learning of valuations is the hard-
est, something doable only after the nodes and edges are already in place. The actual
situation is a bit more complex: any survey of the lexicon will unearth nodes that are
learnable only with the aid of valuations. The strict behaviorist position that learning
is simply a matter of stimulus-response conditioning has been largely abandoned since
Chomsky, 1959. Whether the alternative spelled out by Chomsky, an innate Universal
Grammar (UG) makes more sense is a debate we need not enter here beyond noting the
obvious, that lexical entries are predominantly language-particular. This is no doubt the
main reason why Chomsky places the lexicon in the “marked periphery”, outside “core
grammar”.

Children acquiring a language acquire its lexicon, and there is no reason to believe
that this process relies on innate knowledge of concepts (nodes) for the most part. In
keeping with our approach to consider the entire lexicon, we begin with a brief survey
of the semantic fields used by Buck, 1949:
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1. Physical World 12. Spatial Relations

2. Mankind 13. Quantity and Number

3. Animals 14. Time

4. Body Parts and Functions 15. Sense Perception

5. Food and Drink 16. Emotion

6. Clothing and Adornment 17. Mind and Thought

7. Dwellings and Furniture 18. Language and Music

8. Agriculture and Vegetation 19. Social Relations

9. Physical Acts and Materials 20. Warfare and Hunting
10. Motion and Transportation 21. Law and Judgment
11. Possession and Trade 22. Religion and Beliefs

The list offers whole semantic fields like 4, 12, 14, and 15, where we have argued (see
3.1) that the best way to make sense of the data is by reference to embodied cognition, a
theory that comes very close to UG in its insistence of there being an obviously geneti-
cally determined component of the explanation. The same approach can be extended to
several other semantic fields: we discuss this on 6: Clothing, Personal Adornment, and
Care.

We start from an embodied portion, 4, and proceed by defining shoe as ‘clothing,
worn on foot’; leggings as ‘clothing, worn on legs’; shirt as ‘clothing, worn on trunk’;
etc. We begin by noting that clothing ‘the things that people wear to cover their body
or keep warm’ is already available in 41ang as cloth, on body, human has
body, cause_ body[warm]. Using this, a good number of Buck’s keywords fit
this scheme: 6.11 clothe, dress; 6.12 clothing, clothes; 6.21 cloth; 6.41 cloak; 6.412
overcoat;, 6.42 woman’s dress; 6.43 coat; 6.44 shirt; 6.45 collar; 6.46 skirt; 6.47 apron;
6.48 trousers; 6.49 stocking, sock; 6.51 shoe; 6.52 boot; 6.53 slipper; 6.55 hat, cap;
6.58 glove; and 6.59 veil. For some of these case our definition of clothing would need
a bugfix to include the ‘modesty’ aspect (which is actually culture-specific) by merg-
ing in our definition of cover =agt on =pat, protect, cause_[lack{gen
see =pat}] to yield an additional clause e.g. for veil cause_ [lack{gen see
facel}].

This analysis illustrates the point about highly abstract units we made in 1.2: ob-
viously boot means different things for different cultures, and the Roman legionnaire
would not necessarily recognize the caligae in the skinhead’s DMs. But the conceptual
relatedness is clearly there, and as we discussed above, the word can be learned as a
node in a network composed of abstract units such as cover and foot organ, leg
has, at ground which we need anyway.

This is not to say that the 54 main headings covered in Chapter 6 of Buck, 1949
are all automatically covered in 41ang, especially as many are listed in this chapter
only because the lexicographer had to put them somewhere, and this seemed the best
place. In addition to the core entries discussed so far, we have a wide variety of cloth-
ing materials: 6.22 wool; 6.23 linen, flax; 6.24 cotton; 6.25 silk; 6.26 lace; 6.27 felt;

cover
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6.28 fur; 6.29 leather. For the most part we treat these as genus material, e.g. wool
material, soft, sheep has, butsometimes we place them under other genera.
e.g. fur hair/3359, cover skin, mammal has.

Buck also lists here some professions (6.13 tailor; 6.54 shoemaker, cobbler); ac-
tivities characteristic of cloth- and clothing-making (6.31 spin; 6.33 weave; 6.35 sew;
6.39 dye (vb.)); professional tools (6.34 loom; 6.32 spindle; 6.36 needle; 6.37 awl; 6.38
thread). We have discussed professions like cook in 2.2, and for a typical tool we of-
fer needle artifact, long, thin/2598, steel, pierce, has hole,
<sew ins_>.

More challenging are the ‘accessories’ or ‘adornments’ which are not, strictly speak-
ing, items of clothing in and of themselves (6.57 belt, girdle; 6.61 pocket; 6.62 button;
6.63 pin; 6.71 adornment (personal); 6.72 jewel; 6.73 ring (for finger); 6.74 bracelet,;
6.75 necklace; 6.81 handkerchief) as well as culture-specific items that are associated to
clothing and adornment only vaguely (6.82 towel; 6.83 napkin; 6.91 comb; 6.92 brush;
6.93 razor; 6.94 ointment; 6.95 soap; 6.96 mirror). First, we need to consider what is an
accessory ‘something such as a bag, belt, or jewellery that you wear or carry because it is
attractive’. This is easily formulated in 41ang as person wear, attract. Simi-
larly with adornment ‘make something look more attractive by putting something pretty
on it’. The key idea is to define attract as =agt cause_ {=pat want {=pat
near =agt}}. Once this is done we are free to leave it to non-linguistic (culturally
or genetically defined) mechanisms to guarantee that nice-smelling ointments and pretty
jewelry will be attractive. The example highlights the need for a realistic theory of ac-
quiring highly abstract concepts. In we wrote:

the pattern matching skill deployed during the acquisition of those words denot-
ing natural kinds cannot account for the entirety of concept formation. People
know exactly what it means to betray someone or something, yet it is unlikely in
the extreme that parents tell their children “here is an excellent case of betrayal,
here is another one”. Studies of children’s acquisition of lexical entries such as
McKeown and Curtis (1987) have made it clear that natural kinds, however gen-
erously defined so as to include cultural kinds and artifacts, make up only a small
fraction of the vocabulary learned, even at an early age, and that children’s ac-
quisition of abstract items “but not concrete word learning, appears to occur in
parallel with the major advances in social cognition” (Bergelson and Swingley,
2013).

While our remarks on the subject must remain somewhat speculative, it seems clear that
attract is learned together with attraction, attracting, attractive i.e. without special refer-
ence to the fact that the root happens to be verbal. In fact, there is every reason to suppose
that abstract terms are root-like, and it is only the syntax that imposes lexical category
on them. Consider responsible has control, has authority, has blame.
The Hungarian version proceeds from a verb felel ‘respond’ through an adjective felelds
‘is responsible’ to a noun feleldsség ‘responsibility’. In Chinese, we begin with a noun
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ze2rend Ti1E, form a verb fu ze2rend 11 53 1E, and proceed to the adjectival fud ze2rend
de M LR

We also have roots that are neutral between verbal and adjectival forms, for exam-
ple open, cool, warm. Common to them is the ability to treat the adjective as the result
state of the verb, for example open move[can/1246], move through, lack
shut/2668 and after (=pat open/1814); cool temperature, normal
er_, er_ cold and after(cold); warm temperature (er_ gen) and
after (warm/1655) . The nominal forms warm/warmth, join/joint, cool/cold, heat/hot,

. are remarkably close, but perhaps not close enough without making recourse to the
kind of stratal morphology that makes a strong distinction between stem-level and word-
level morphology (Kiparsky, 2016).

The use of =agt and =pat in the definition of attract makes clear that it is essential
to have two items in attraction, i.e. the relation is binary. Our theory of learning must
start with an elementary act of recognizing attraction, just as we recognize nearness,
one thing being on top of another, and a host of other relations. Clearly, there is huge
evolutionary advantage to recognizing nearness to us, as this will be a primary signal
of whether something can attack us and/or whether we can manipulate it to our advan-
tage. We consider proximity marking (near, see 3.1) to be a reasonable candidate for
universality.

We also consider the other two components of our definition, a naive theory of needs
and wants (6.2), and a naive theory of causation (2.4) as evolutionarily highly motivated:
clearly, being able to model what other actors in the environment are likely to do, based
on their needs/wants, will hugely improve our own chances for surviving and thriving,
and a theory, even a naive theory, of causation has a similar salutary effect. The chal-
lenge here is to put together three highly abstract theories to produce a fourth one for
attraction.

While our remarks must remain somewhat speculative, what we believe is that the
putting together is driven by valuations. We recognize attraction by first seeing increas-
ing nearness, after (=agt nearer =pat), next by attributing this change to the
desire of the patient, =pat want {=pat near =agt}, and finally the desire itself
as being aroused by the property of attractiveness lodged in the agent. At some point, the
after clause is converted to the cause_ by means of the naive analysis of causation.

The micro-analysis of how these steps are built on one another during language ac-
quisition requires further study, and will clearly involve polarity: nearness is GOOD for
good things, but BAD for bad things. Since we expect all beings, not just self, to want
good things, we must assume that attracting something is itself a good thing (as it is,
unless =pat is bad). In certain cases, we can expect these valuations to play out on pri-
mary linguistic and sensory data: to the extent something is pleasant to the touch a baby
may want to touch it and thereby bringing it near, or even put it in their mouth, to bring
it even nearer. Signaling of attractiveness is already evident in flowers, and signaling of
badness, aposematism, is common in the animal kingdom. Where earlier generations of
researchers may have seen the theory of causation as something only the properly trained

open/1814
open/1815
coo0l/1103
cool/1101
warm/1655
warm/878
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mind is capable of (Kant even assumed some innate human capacity), we see a perfect
Darwinian continuity connecting humans to far simpler life forms.
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