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Abstract VALUE is an open European network to validate and compare downscaling methods for
climate change research. VALUE aims to foster collaboration and knowledge exchange between clima-
tologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling
community. A key deliverable of VALUE is the development of a systematic validation framework to enable
the assessment and comparison of both dynamical and statistical downscaling methods. In this paper, we
present the key ingredients of this framework. VALUE's main approach to validation is user- focused: start-
ing from a specific user problem, a validation tree guides the selection of relevant validation indices and
performance measures. Several experiments have been designed to isolate specific points in the down-
scaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical
and dynamical methods compare? How do methods perform at different spatial scales? Do method:s fail
in representing regional climate change? How is the overall representation of regional climate, includ-
ing errors inherited from global climate models? The framework will be the basis for a comprehensive
community-open downscaling intercomparison study, but is intended also to provide general guidance
for other validation studies.

1. Introduction

The need for adaptation to the impacts of a changing climate has long been recognized. The United
Nations Framwork Convention on Climate Change from 1992 states that “all parties shall cooperate

in preparing for adaptation to the impacts of climate change; develop and elaborate appropriate and
integrated plans for coastal zone management, water resources and agriculture, and for the protec-
tion and rehabilitation of areas [ ... 1" [United Nations, 1992]. In response, the World Meteorological
Organisation established the Global Framework for Climate Services in 2009 (www.gfcs-climate.org),
and several countries have developed adaptation strategies. For instance, the US Environmental Pro-
tection Agency released a draft climate change adaptation plan for public comment in February 2013
(www.epa.gov/climatechange/impacts-adaptation/ fed-programs.html), and the European Commission
adopted the EU strategy on adaptation to climate change in April 2013 [European Commission, 2013]. The
EU strategy acknowledges the need to take adaptation measures at all levels ranging from national to
regional and local levels. Yet at the same time, it highlights the need for bridging key knowledge gaps, in
particular regional and local-level analyses and risk assessments.

Scenarios of regional climate change are in general based on downscaled atmosphere ocean coupled
general circulation models (AOGCMs, in the following simply referred to as GCMs), also called global cli-
mate models. The downscaling is either based on regional climate models [RCMs, Rummukainen, 2010],
statistical methods [Fowler et al., 2007; Maraun et al., 2010], or a combination of both [Maraun et al., 2010].

Barsugli et al. [2013] and Hewitson et al. [2013] point out that users of regional climate change
scenarios are not hindered by a lack of, but rather, the abundance of available downscaling studies,
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often with highly uncertain or even contradictory results. Hewitson et al. [2013] emphasize the ethical
dimension of providing climate change projections that are used in impact and adaptation projects.

If taken seriously, climate projections will be used as the basis for decisions to spend real money, to
make real changes to infrastructure, society and the environment, that affect real people and ecosystems.

In the light of our limited knowledge of regional climate change, debates have flared up whether
state-of-the-art climate models are actually ready to provide input for impact studies [Kundzewicz and
Stakhiv, 2010; Wilby, 2010] and how to include information from (regional) climate simulations into adap-
tation planning [Lempert et al., 2004; Prudhomme et al., 2010; Wilby and Dessai, 2010; Brown et al., 2012].
Approaches have been advocated that emphasize the importance of first screening different adaptation
options for different types of vulnerabilities; only if options turn out to be vulnerable to climate change,
downscaling studies are potentially employed to identify robust options [e.g., Lempert et al., 2004; Wilby
and Dessai, 2010; Brown et al., 2012]. Dessai [2009] and Wilby and Dessai [2010] argue that many options
can be implemented without detailed knowledge of climate change. The scientific questions of skill are of
course related to questions regarding the decision process, but should be kept mentally separate. In many
cases, regional climate change information is relevant for adaptation planning. Also in many cases, down-
scaling does add value to GCM simulations in representing regional climate [e.g., Deser et al., 2011]. In spe-
cific cases such as extreme summer precipitation, advanced downscaling methods might even be essen-
tial to correctly represent key processes and therefore the correct climate change [e.g., Kendon et al., 2014].

Our current knowledge —despite a wealth of experience of international bodies such as the world
bank [Worldbank Independent Evaluation Group, 2012]—is limited about where and to what extent
state-of-the-art regional climate change scenarios add value to adaptation planning. In general, the
answer depends on the region of interest, the variable of interest, the time horizon of interest, and the
skill required by the particular user. Decisions that consider regional projections of change, account-
ing comprehensively and appropriately for the uncertainties in these projections, will be more robust
and cost effective in many cases, as well as procedurally more defensible, than decisions that neglect
this information. The precise question therefore is where, for which variables, and for which particular
adaptation problem downscaling provides actionable and defensible information.

To guide practitioners with credible regional climate change simulations, a thorough understanding

of their uncertainties and limitations is therefore indispensible. Key limitations of individual products,
their applicability in different contexts, as well as differences between products should be made pub-
licly available in an easily accessible way. Such publications need to go beyond previous qualitative and
unspecific—and thereby potentially misleading—inventories [e.g., UNFCCC, 2008]; in particular the skill
in providing regional climate change information in a given context needs to be evaluated as thoroughly
as possible.

For a given emission scenario, the skill of regional climate change projections is limited by uncertainties
mainly due to model errors and internal climate variability [Stainforth et al., 2007]. In the context of
downscaling, the question of skill can therefore be broken down into three sub-questions:

1. How well do GCMs simulate the input for regional climate change projections?

2. How well do downscaling methods work, in particular under climate change?

3. How strong is the signal-to-noise ratio between climate change trends and internal climate variability
at regional scales?

In response to the first of these sub-questions, Déqué et al. [2007] showed that the GCM error is an
important source of uncertainty in regional climate projections. For instance, European climate is affected
by dynamical processes such as the polar jet stream, the North Atlantic storm tracks, stationary planetary
waves or sudden stratospheric warmings; all are represented in GCMs with fairly high uncertainties
[Woollings, 2013]. Some biases are common to the majority of GCMs and thereby limit the usefulness of
even the most comprehensive model ensembles. A prominent example is the North Atlantic sea surface
temperature cold bias that in turn causes a biased response of the atmospheric circulation [Keeley et al.,
2012].

Second, the downscaling method itself is often a considerable source of uncertainty [Maraun et al., 2010;
Casanueva et al., 2013]. RCMs represent sub-grid processes by parameterizations—semi-empirical models
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that are tuned to best represent typical present day weather conditions across a whole model domain.
Statistical downscaling methods represent complex scale interactions by relatively simple empirical mod-
els. How accurately downscaling methods under these limitations can capture climate change is a matter
of current research. For instance, recent research suggests that, e.g., convection parameterizations might
not correctly represent the response of extreme convective precipitation to climate change [Kendon et al.,
2014].

Finally, internal climate variability has recently been identified as a major source of uncertainty of regional
climate projections [Hawkins and Sutton, 2009; Deser et al., 2012; Maraun, 2013]. Any externally forced
climate response is superimposed by internally generated climate fluctuations. The amplitude of these
fluctuations depends on the variable, the region, season, temporal, and spatial scale considered. In con-
trast to model errors, uncertainties due to internal variability are fundamentally irreducible beyond the
timescales at which they are predictable. Thus, even if a hypothetically perfect climate model were avail-
able, climate projections for lead times of several decades could be dominated by random fluctuations
rather than climate change trends, especially at regional scales.

As spread in regional climate simulations caused by model uncertainties on the one hand and internal
climate variability on the other hand is fundamentally different, their different effects on the decision
process in a specific context have to be precisely understood.

A comprehensive effort to assess the credibility of regional climate change scenarios has to address the
three sources of uncertainty discussed above. Such an effort can build upon existing downscaling inter-
comparison projects such as STARDEX [Goodess et al., 2010], ENSEMBLES [van der Linden and Mitchell,
2009], NARCCAP [Mearns et al., 2009, 2012] or CORDEX [Giorgi et al., 2009], that already provide a wealth
of information and actual high resolution climate simulations. Yet additionally, the wealth of statistical
downscaling methods developed by individual climatologists, hydrologists, and statisticians [Maraun
et al., 2010] has to be integrated and compared relative to each other as well as with dynamical down-
scaling methods. Furthermore, the validation should in particular consider aspects that have received
limited attention so far, such as extreme events, spatial-temporal dependencies and inter-variable rela-
tionships. The design of the validation experiment, the choice of meteorological variables and the aspects
to be validated should be guided by user requirements. For Europe, the European Union Cooperation in
Science and Technology (EU COST) Action ES1102 VALUE (www.value-cost.eu) attempts such an effort.
COST Actions are funded networks that aim to coordinate existing research. They are therefore the ideal
tool to develop common standards and to foster scientific dialogue.

VALUE addresses robust adaptation, GCM errors, and internal climate variability in a series of workshops.
Yet the main focus of VALUE is to develop a common framework for the validation of downscaling meth-
ods. VALUE carries out its work in close interaction with users and thus helps to actively transfer scientific
knowledge to stakeholders. In this paper, we present the validation framework designed by VALUE over
the last two years. Starting with a scientific workshop in March 2012, statistical and dynamical downscalers
together with statisticians as well as hydrologists, forestry, and agricultural scientists, representatives of
environment agencies and international authorities have been involved in the design of the research
agenda and the framework development. In the following, we refer to all latter users of downscaling
products, whether they are scientists interested in modelling climate change impacts or decision makers
having to consider climate change, simply as users.

2. Rationale and Overview

The climate system is complex and high-dimensional, and models are not intended to be isomorphisms
of nature [Stainforth et al., 2007]; thus no climate model or downscaling method can be expected to
reproduce all aspects of the system perfectly, and a validation of all aspects would be practically impos-
sible. However, in any given application only a small part of the system will be relevant: specific vari-
ables or phenomena, at specific space and time scales in a specific region. A user focused approach to
validation must therefore start by identifying the phenomena and scales of interest; with respect to these,
it must seek to identify the key strengths and weaknesses of a method. For a given application, it has to
give advice whether a method performs well or even better than other methods, and where it is likely to
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fail. In this way, users can determine whether a particular method is appropriate for their application, and
can compare methods.

The details will be application-dependent in any such user-focused approach to validation. Yet some gen-
eral requirements can be formulated for a comprehensive user-focused intercomparison of downscaling
methods for climate change studies. Thus the validation framework should (1) be transparent and pro-
vide relevant and defensible guidance for users; (2) assess the performance of the method under climate
change as far as possible; (3) allow, in principle, for a comparison of all different types of dynamical and
statistical downscaling approaches.

The first requirement implies the calculations involved in the exercise to be as simple as possible, with a
clear documentation of the considered model and the validation procedure. Furthermore, it demands for
readily available and high quality observational reference data. The second requirement implies an assess-
ment whether a method correctly captures long-term variability, in particular the response to changes in
external forcing. The third requirement has basically two implications: not all phenomena simulated by
RCMs can be validated; the validation is restricted to phenomena that are represented by typical statistical
downscaling models. Thus, although very important for enhancing our understanding and developing
improved climate models, the validation of specific physical processes within RCMs is not part of the
VALUE validation framework. Furthermore, it restricts the choice of performance measures. For instance,
many stochastic downscaling methods provide time-varying probability density functions (pdfs) of a local
predictand; these pdfs could be validated using sophisticated measures that have been developed to
assess the skill of probabilistic weather forecasts [Jolliffe and Stephenson, 2003]. However, these measures
are not easily applicable to RCMs and deterministic statistical downscaling methods, which provide a sin-
gle downscaled field or sequence for a given GCM run. Yet stochastic methods allow for random sampling
of multiple time series, which can be handled as an ensemble of deterministically downscaled fields. Thus,
the framework relies solely on measures that are applicable to deterministic output.

The validation framework is intended to serve two purposes. First, VALUE will implement it to carry out

a comprehensive intercomparison study. This exercise will be open to the scientific community—every
developer and user of a downscaling method can contribute to the study by following the procedure laid
out below and uploading the downscaled results to the VALUE webpage. Yet independent of our spe-
cific implementation, the VALUE framework is intended as a guideline for other validation studies, e.g., in
regions and for variables different to those considered by VALUE. As the complete framework is rather
complex, the actual implementation is separated into three tiers that will be carried out successively.
Tier | comprises the most essential experiments and aspects of the validation that should be consid-
ered in any validation exercise. Tier Il will address sub-daily time scales as well as spatial dependence and
inter-variable aspects. These may be required in more specialized applications, and not all downscaling
methods are designed to reproduce them. Additionally, tier Il will cover the validation in a pseudo reality:
future climate model simulations will be used as a testbed for downscaling methods. Tier Ill will assess the
overall performance including GCM errors.

Core to our user-focused validation approach is a validation tree to select appropriate validation indices.
It will be explained in Section 3. The validation itself is organized in specific experiments to isolate dif-
ferent aspects of the representation of regional climate. These experiments and their implementation
will be laid out in Section 4. The reference observations cover both station and gridded data across
different European climates. Daily data are complemented by a selection of sub-daily data to validate
sub-daily downscaling methods. Pseudo reality data will be used to assess the performance of statis-
tical methods in different climates. The specific data sets used for the validation will be presented in
Section 5.

3. Validation Tree

A validation ultimately consists of deriving climate indices from model output, comparing these indices
to reference indices calculated from observational data and quantifying the mismatch with the help of
suitable performance measures (we use the term “index” in a very general way, including not only sin-
gle numbers but also vectors such as time series). Often, however, aspects of a downscaling method
have been validated that are of only little relevance for the problem to be addressed by the method (for
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instance, the 95th percentile of daily precipitation has frequently been used as an index for extreme pre-
cipitation, even though the corresponding events occur every 20 wet days).

User Problem

1 Which climatic phenomena are
relevant for my problem?

@

Phenomena

2 Which aspects of the model output
make up these phenomena?

®

Marginal ‘ Temporal ‘ Spatial Inter-Variable

Aspects

3 | What indices should be used to
quantify these aspects?

(&

Indices

4 How do | measure the performance
to simulate these indices?

(&

Performance Measures

Figure 1. Validation Tree. Grey arrows: selection questions. Beige: tier |
aspects; gray: tier Il aspects.

0.10
0.08 0.004
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> 0.06 0.0024H
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© 0044 | — .
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precipitation [mm]

Figure 2. Marginal aspects. Histogram of observed summer daily precipitation
at a grid-box in Norway, at 60.18°N and 5.52°E. Blue lines: empirical median
and 98th percentile for wet days. The subpanel magnifies values beyond the
98th percentile. Black line: Generalized Pareto (GP) distribution for exceedances
of 98th percentile. Red line: 20 summer return level based on GP distribution.

To guide the selection of relevant
indices for different user problems,
VALUE has therefore developed a deci-
sion tree for the selection of relevant
indices and performance measures
(Figure 1). From a user perspective, one
would start by choosing phenomena
relevant for the problem under con-
sideration. Phenomena can be, e.g.,
extreme rainfall events, growing season
or heat waves. Note that these phe-
nomena might be compound. In the
next step, one would consider the cli-
mate system as a multivariate distribu-
tion having marginal, temporal, spatial,
and inter-variable aspects (for explana-
tions and examples, see the end of this
section). One would then ask which of
these aspects are involved in the con-
sidered phenomena. For instance, the
validation of extremes might involve
marginal aspects such as the intensity,
temporal aspects such as the season-
ality or the length of extreme spells,

or spatial aspects such as the spatial
extent of an event. In the third step,
one would select indices to quantify the
considered aspects. Finally one would
select appropriate performance mea-
sures, such as biases or skill scores, to
compare indices derived from model
data with those from observations.

As example for a user problem con-
sider the construction of a new hydro-
electric dam. To inform the design of
the dam about potential future cli-
matic conditions, downscaled climate
model output could be used to drive

a hydrological model that simulates
the inflow into the reservoir. For a reli-
able estimate of the average power
potential provided by the dam, overall
precipitation is the meteorological phe-
nomenon of interest. To avoid overflow
of the reservoir, not only mean precip-
itation but also extreme precipitation

events and their antecedent conditions are relevant. Finally, the risk of the reservoir falling dry is relevant,

i.e., the risk of drought.

Consequently, relevant marginal aspects are average and extreme precipitation. Figure 2 shows the empir-
ical marginal distribution of observed daily summer (June-August) precipitation at a grid box in Norway,
at 60.18°N and 5.52°E (based on the gridded data set presented in Section 5). The left blue line indicates
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the median of the empirical distribution,
a typical index measuring the core of the
distribution. The right blue line indicates
the empirical 98th percentile, a measure
for heavy precipitation. The subpanel
magnifies the distribution beyond the
98th percentile. The black line is the
probability density derived from a Gen-
eralized Pareto distribution, fitted to

all data beyond the 98th percentile. As
an index for extreme precipitation, the
red line finally indicates the 20-summer
return level calculated from the General-
ized Pareto distribution.
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62N —
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60N —

The temporal aspect of drought can be

measured by indices characterizing dry

I I | I I I spells. Long, but not extreme dry spells

6E 8& 10E 128 14E 16E could, e.g., be characterized by the 90th
longitude percentile of the distribution.

[ " EEEEEEEN | | | Depending on the catchment charac-

5101520253035404550 2 3 4 5 6 7 teristics and size [Segond et al., 2007],
precipitation [mm/day] spatial aspects might also be relevant in
10dm the example outlined above. An extreme
flow event might be caused by heavy
0.8 rainfall over a small area, but as well by
widespread precipitation over the entire
0.6 ;N catchment. Thus, not only extremes at
individual locations (=marginal aspects)
. B are relevant, but also the risk of simul-
i LN I taneously high precipitation at different
N locations. To illustrate this point, con-
sider Figure 2. The left panel depicts
an individual event, namely daily pre-
T T T T T cipitation on 23 June 2000 (filled grid
0 20 40 60 80 boxes), overlaid by the climatological
distance [km] daily average rainfall (reference period

. ) . o 1980-2010, colored contour lines). Typ-
Figure 3. Spatial aspects. Top panel: filled grid boxes: total precipitation on . ) .
23 June 2000. Contour lines: climatological average daily summer 'ca"y rainfall in Southern Norway, even
precipitation (1980-2010). Bottom panel: empirical tail dependence during summer, is dominated by Iarge
coefficient as function of grid-box distance along the black line in left panel. scale precipitation along with the west-

58N —

"
0.4

tail dependence

0.2 1

0.0

erly flow. On average, therefore, precipi-
tation is highest in the mountainous regions along the west coast, and lower in the rain shadow towards
the hilly regions in the east. We refer to these climatological spatial patterns as systematic spatial varia-
tions (their characterization is discussed in Section 4.6).

During the event depicted in the top panel of Figure 3, a low pressure system over the North Sea moved
moist air into Southern Norway, causing heavy precipitation in particular along the South coast and even
further inland. In other words, precipitation (and other climatic processes) at different locations is not
independent, but tends to co-vary across space. We refer to these co-varying anomalies about the clima-
tological patterns as residual spatial dependence. They make up the spatial aspects. An index to measure
the residual spatial dependence with a focus on extreme events could be based on the tail dependence
coefficient. This index measures the probability that a high threshold is exceeded, given that a threshold
at another location (or in another variable/at another time step, etc.) is exceeded simultaneously. The
bottom panel of Figure 3 shows the empirical tail dependence of daily summer precipitation as a function
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Table 1. List of Example Indices?

Aspect Index Performance Measure
Marginal mean bias/relative error
variance relative error
20 season/year return level bias/relative error
number of threshold exceedances bias
Temporal time series mean squared error/ correlation
ACFlag 1,23 N.A.
median of spell length distribution bias
90th percentile of spell length distrib. bias
minimum/maximum of annual cycle bias/relative error
Spatial decorrelation length relative error
variogram range relative error
decay length of tail dependence relative error
Multivariate Pearson/rank correlation N.A.
probability of joint exceedances N.A.
indices conditional on (no) exceedance as above

aThe complete list of indices may be found on www.value-cost.eu/indices. In some cases, model and observational
indices will be affected by high uncertainties. Here no performance measures will be calculated (N.A. in the table),
but just the index values will be given.

of grid-box distance along the black line shown in the top panel. As threshold, the 98th percentile of
daily precipitation has been chosen individually for each grid box; the estimate for a specific distance
is based on all grid box pairs of that distance. A derived index could, e.g., be the distance at which

the tail dependence decays to 1/e. Equally, one could investigate the decay in North—South direction.

Additionally, one might be interested in multivariate aspects. We interpret this aspect rather broadly,
including local relationships between different predictand variables, but also teleconnection relationships
between large-scale variability and local predictand variables. In the example, one might be interested

in the relationship between temperature and precipitation to investigate whether precipitation correctly
falls as snow or rain. Additionally, one might be interested whether the relationship of local precipita-
tion with typical precipitation-causing weather patterns is correctly modelled, such as with the winter

or summer North Atlantic Oscillation. In statistical downscaling, the latter relationships would ideally be
accounted for by a careful selection of large-scale predictors. In practice, however, the response might
not be correctly represented. This might also hold for RCMs that are not tuned to correctly simulate such
relationships.

Finally, the performance of a model to represent these indices would then be measured typically by
biases or relative errors between simulated and observed indices. The list of indices and corresponding
performance measures is available from the VALUE website (www.value-cost.eu/indices) and will be
continually updated. For an illustrative subset, see Table 1. In tier | of VALUE, only marginal and temporal
aspects of the downscaled output will be considered. In tier II, the validation will be extended to spatial
and inter-variable aspects.

4, Experimental Setup

Different experiments have been designed to identify different problems that might occur in the down-
scaling procedure: what is the isolated downscaling skill? How do statistical and dynamical methods
compare? How do methods perform at different spatial scales? Do methods fail in representing regional
climate change? How is the overall representation of regional climate, including errors inherited from
GCMs? The experiments therefore differ in the type of predictor data and boundary conditions, the
predictand data, and the space and time scales considered. For each applicable experiment, contributors
will select a set of predictors or boundary conditions as input to their downscaling method, and upload
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the downscaled results to the VALUE website for a centralised validation. For statistical methods, the
downscaled results for validation will be generated according to a prescribed cross validation
procedure.

4.1. Experiment 1: Perfect Predictor

This is a standard experiment to validate the isolated downscaling skill regardless of errors in the large
scale predictors or boundary conditions. Predictors are supposed to perfectly represent real weather

at the synoptic scale. In practice, of course, they are taken from reanalysis data, which themselves are
affected by errors due to limitations and changes in the underlying observational network, the assimi-
lation technique and the employed general circulation models [Brands et al., 2012]. RCM grid box out-
put in general represents area averages; differences compared to station observations therefore result
not only from model errors, but also from the scale gap between grid box and point scale. The latter
discrepancy—which is not a model error—is known as the representativeness problem [Klein Tank et al.,
2009; Zwiers et al., 2011].

4.1.1. Station Data (Tier | +11)

The aim of this experiment is to specifically test how well downscaling methods are able to represent
point data, i.e., it will provide an overall assessment of model error and representativeness problem. The
experiment will use reference data from a selection of at least 85 weather stations representative of the
different climates and a variety of local characteristics in Europe. These data are selected based on expert
judgment from the different countries accounting for representativeness, completeness, and the provision
of different variables. In tier I, only marginal aspects will be considered, whereas in tier Il marginal aspects
along with inter-variable relationships will be considered.

4.1.2. Gridded Data (Tier | + 11)

To isolate the downscaling performance from the representativeness problem, we will consider predic-
tand data that are (re-)gridded to the same resolution as the considered RCM output. For statistical down-
scaling methods, the experiment will be carried out—depending on their purpose —across the complete
regions (if the aim is to provide an alternative to RCMs across a large domain) or on a selection of grid
boxes corresponding to a subset of the 85 selected stations (if the aim is to provide an alternative to RCMs
for a small domain only). In tier I, only marginal aspects will be considered, in tier Il also large-scale residual
spatial dependence and inter-variable relationships.

4.1.3. Nested Station Data (Tier Il)

This experiment is a variant of experiment 1(a) to specifically test the performance to simulate residual
spatial dependence at different spatial scales ranging from the size of a whole country down to small
regions. It is, e.g., conceivable that RCMs could outperform statistical methods in simulating residual
spatial dependence at large scales, but at small scales could fall behind spatial statistical models that
are specifically calibrated for a considered topography. This experiment will be carried out on example
regions with a high station density.

4.1.4. Sub-Daily Data (Tier Il)
This experiment is similar to experiment (a), but with the aim of testing downscaling methods at the
sub-daily scale.

4.2, Experiment 2: Pseudo Reality (Tier Il)

The ultimate goal of many downscaling studies is to downscale climate change simulations. Yet vali-
dating the skill of a downscaling method under climate change is difficult. Long series of high-quality
observational reference data, as required to characterize past trends reliably, are scarce. Equally impor-
tant, the availability of predictor data sets that cover a sufficiently long time period without temporal
inhomogeneities, is also limited. As an additional test we therefore apply a pseudo reality, often called
perfect model approach [Charles et al., 1999; Frias et al., 2006; Vrac et al., 2007; Maraun, 2012; Réisédnen and
Rdity, 2013]. A simulation of present and future climate with a specific GCM, downscaled with a specific
RCM, is considered as pseudo reality—a testbed to identify potential problems of downscaling methods.
For a given pseudo reality, different experiments are possible to test for different types of problems. In
each case, the “pseudo-observed” predictands are taken from the RCM used in the pseudo reality.
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4.2.1. Perfect Predictor (Same GCM/Same RCM)

This variant is designed to assess whether statistical downscaling and correction methods that use pre-
dictors from a GCM capture the climate change signal given perfect information on future predictors. To
this end the predictors are taken from the same GCM that has been used to construct the pseudo reality.
This experiment can reveal whether predictors necessary to simulate the response to climate change are
missing, and whether the statistical model structure is unsuitable for extrapolations towards unobserved
state space regions.

4.2.2, Imperfect Predictor (Same GCM/Different RCM)

This variant is designed to test whether an RCM bias correction method is able to correct RCM errors. To
separate RCM errors, the predictors are taken from an RCM that is driven by the same GCM that has been
used to construct the pseudo reality. The remaining RCM errors are mostly localized and stem from prob-
lems with parameterizations and surface boundary conditions such as orography [Eden et al., 2012].

4.2.3. Imperfect Predictor (Different GCM/Same RCM)

This variant tests whether a correction of GCM biases, i.e., errors in the large scale boundary conditions is
possible. To this end, the predictors are chosen from the same RCM that has been used to construct the
pseudo reality, but driven with a different GCM. This test assesses the fundamental problems of GCM bias
correction rather than the performance of individual bias correction methods. It will therefore be carried
out with a limited number of example bias correction methods.

Other experiments are of course conceivable, e.g., an imperfect predictor experiment for statistical
downscaling methods with GCM predictors, and similarly an imperfect predictor experiment for RCM bias
correction methods with different GCM and RCM as in Rdisédnen and Rdty [2013]. These experiments
would assess the most realistic situation, yet they would not test downscaling model performance but
rather the spread of GCMs. Therefore we will not consider these experiments.

4.3. Experiment 3: GCM Predictor (Tier Ill)

As discussed above, large errors in regional climate change projections are often inherited from the driv-
ing GCM. Therefore, validating only the downscaling performance is not sufficient to test the credibility
of regional climate change scenarios. As a consequence, VALUE will also validate the combined GCM and
downscaling performance. To avoid representativeness problems, gridded data will be taken as obser-
vational reference. The value of this experiment, however, is limited by internal climate variability. Differ-
ences between model output and observations—also on climatological time scales—will in general be a
superposition of systematic model biases and a substantial contribution of internal variability.

4.4. Cross Validation

In order to avoid artificial skill, statistical models have to be validated on data that have not been used
for calibration. For statistical downscaling models in experiment 1, a five-fold cross validation will there-
fore be applied: the chosen time period (1979-2008) will be divided into five non-overlapping blocks. In
turn, the statistical models will be calibrated against four of these blocks and used to predict the remain-
ing block. In total this yields one cross-validated model prediction. In case of pseudo reality experiments,
the calibration period will cover simulated present day climate, whereas the validation period will cover
simulated future climate. For experiment 3, no cross validation will be carried out: here it is essential to
minimize the influence of internal climate variability on the validation results; therefore the selection of
very long calibration and validation periods is more important than the elimination of artificial skill.

In general, the development of a statistical model requires a thorough selection of the model structure
based on statistical measures, i.e., a selection of predictors and how these act upon the model parameters
[Davison, 2003; Maraun et al., 2010]. Strictly speaking, this selection would have to be carried out for each
block. To reduce the computational burden, in particular for complex statistical models, we suggest to
derive the model structure once from the whole data set, and then apply the cross validation keeping
the model structure identical for each block. Of course, for dynamical downscaling no cross validation is
required.
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4.5. Upload and Validation

Each contributor is free to select the experiments to carry out, and the variables and time scales to pro-
vide. For each chosen experiment, grid box or station, season, and variable a contributor will upload
downscaled time series to a central data server. In case of stochastic downscaling methods, 100 realiza-
tions have to be uploaded to reconstruct the resulting downscaled distribution. Indices and performance
measures will be calculated in a centralized manner in order to avoid inconsistencies of program codes.
The selection of validation indices will be determined by the meta-data provided by the contributor to
avoid meaningless or misleading evaluations. Additionally, contributors have the option to comment on
the validation results. The portal will offer three modes: a private mode to check the validation results, a
VALUE mode to share the results internally for further research, and a public mode. Every upload will be
logged for version tracking. The VALUE mode is designed for cases where the validation results are bad
because of obvious and easily correctable shortcomings of a method, but where these shortcomings are
of scientific interest. For instance, important predictors might be missing in a model version. Understand-
ing the predictor influence might be of scientific interest, but the contributor might not want the model
to be applied in any real-world applications, or might not want the model output to be misinterpreted.
Details of data policies will be formulated in detail and made available on the VALUE portal. VALUE delib-
erately chose a grass roots approach not to be limited to a few selected downscaling methods, but to be
as open as possible to the whole downscaling community. VALUE is aware of the fact, that misconduct in
such a design cannot be fully excluded.

4.6. Presentation of Results and Summary Statistics

If a method has not been validated for a particular index or region, a default “N.V.” will be set to indicate
that the method has not been validated, and therefore the developer of the method does not recommend
to use the method in that context. This default setting can in particular be used to avoid an unnecessary
validation for aspects a method is not designed to correctly simulate (e.g., multi-site aspects in case of a
single-site method).

Some users might be interested in the performance for a specific grid box or station only, others will prefer
to focus on the performance over a larger region. Therefore, spatial summary performance measures for
each index will be considered, such as spatial root mean squared errors, mean biases, ratios of standard
deviations, and pattern correlations. Also the local performance measures themselves will be averaged in
space.

5.Validation Data

To enable a fair comparison that reveals relative strengths and weaknesses of different methods, the
selected validation data span different climatic regions across Europe and consist both of station and grid-
ded data. The default temporal resolution is daily, but sets of sub-daily data have been selected to validate
sub-daily downscaling methods. To keep the exercise as open as possible, we restricted the selection to
data that could be made publicly available either on the VALUE website itself, or—after registration—on
the webpage of the respective weather service. The only exception are observations from Switzerland;
these data are only available for use by VALUE members, but have nevertheless been selected because
they are currently the only dense and reliable gridded data set covering an Alpine area in Europe. Finally,
transient RCM data will be used as pseudo realities to assess the performance of statistical methods in dif-
ferent climates. The different regions covered by the observational data sets are shown in Figure 4. The
validation domains and choice of data might be subject to future changes depending on the availability
of additional reference data and quality issues that might occur.

Predictor data will be taken from ERA-Interim [Dee et al., 2011], and the RCM ensemble participating in
the validation will be taken from EURO-CORDEX [Jacob et al., 2014]. The ERA-Interim driven experiments
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carried out in EURO-CORDEX in
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Figure 4. Validation Domains and Data. Green: gridded data without resources to address these issues prior
registration; blue: gridded data with registration; orange: sub-daily station data.  to the validation exercise—some

Red: gridded data for use by VALUE members only. Additionally, publicly might even be de facto unsolvable. In
available daily station data across Europe will be selected. Black dots: selection

of 85 stations. the course of the exercise, however,

the importance of selected obser-
vational uncertainties will be studied.

5.1. Gridded Data

For validating downscaling methods in experiment 1(a), gridded observational data representing the spa-
tial resolution of RCM output are required. The investigated RCM experiments will be provided by the
high-resolution ERA-Interim driven RCM ensemble of the EURO-CORDEX initiative [Kotlarski et al., 2014]
carried out at a grid resolution of 0.11° on a rotated grid (approximately 12 km x 12 km). European-scale
observational reference data on that spatial scale and at daily resolution are not available. Therefore, the
VALUE validation exercise will focus on selected sub-domains of the European continent for which reliable
high-resolution gridded temperature and precipitation data at daily resolution exist and if possible can
be made publicly available. We require the underlying station network to be as dense as possible to keep
uncertainties in the gridding procedure as low as possible. The selected sub-domains should sample the
diversity of the European climate. Presently, gridded reference data at daily resolution have been obtained
for Spain, France, Norway, Poland and —for VALUE members— Switzerland and have been (or will soon
be) regridded to the 0.11° RCM resolution. These data sets will be provided for VALUE participants for
calibration and validation purposes.

5.2. Station Data

The European Climate Assessment (ECA) dataset [Klein Tank et al., 2002] provides series of daily obser-
vations at meteorological stations throughout Europe and the Mediterranean for a number of variables.
Data are freely available for non-commercial research at thousands of stations for precipitation and tem-
perature, with varying density across countries. The number of stations for alternative variables (e.g., wind
and cloud cover) is low and restricted to a few countries. Only data for selected countries covering the ref-
erence ERA-Interim period 1979-2008 with less than 5% of missing values will be used. A sub-selection of
currently 85 high-quality station time series has been chosen (see Figure 4).

5.3. Sub-Daily Data

The availability of reference data at sub-daily resolution is very limited. Validation exercises targeting
quantities at sub-daily resolution will therefore only be carried out over a limited set of individual stations,
potentially spread across Europe. Currently, sub-daily station data are available for Emilia-Romagna.
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5.4. Pseudo Reality

For the pseudo-reality experiment 2, GCM-driven RCM simulations carried out within the EURO-CORDEX
initiative at grid resolutions of approximately 12 and 50 km will be used [Jacob et al., 2014]. These
experiments represent multi-GCM-multi-RCM -multi-emission-scenario ensembles. In total, these
ensembles will consist of about 45 experiments (12 km) and 70 experiments (50 km), respectively; about
one-third of each ensemble is currently available via the Earth System Grid Federation archive (e.g.,
http://esgf-data.dkrz.de). For the purpose of VALUE, however, only a sub-ensemble will be used. A pseudo
reality is not required to be a perfect copy of the real world; however, the simulated climate needs to be
plausible in the sense that relevant processes are realistically simulated. This requirement limits the choice
of indices for some predictand variables. For instance, the RCMs chosen as pseudo realities arguably
underestimate the response of extreme summer convection to climate change [Kendon et al., 2014],
hence extreme precipitation will not be considered.

5.5. Predictor Data

Standard predictor data from ERA-Interim will be provided for the perfect predictor experiment 1 via

the VALUE website. Contributors wishing to use predictors derived from other fields may do so; the only
requirement is that the predictor data must be derived from the ERA-Interim reanalysis so as to guarantee
that differences between downscaled fields are not due to the use of different reanalysis products. Model
versions using different predictors count as different methods and can be validated for comparison.

6. Concluding Remarks

VALUE aims to provide a platform for the validation of regional climate scenarios and to foster networking
between the different communities involved in the generation and application of these scenarios. VALUE
is an open network and a community effort. We welcome contributions to VALUE from researchers and
users across Europe and beyond. Please visit our webpage for advice how to join us. The VALUE framework
is under continual development, and we are grateful for constructive comments and criticism.

The experiments carried out within VALUE will provide a comprehensive validation database of a wide
range of state-of-the-art downscaling methods. For Europe, VALUE will give precise information about
downscaling skill for a range of variables, for different aspects of these variables, for a representative selec-
tion of climates. End-users can enquire this data base to select suitable method and to quantitatively learn
about limitations of these methods for a particular problem. The essential results of the experiments will
be distilled in a series of scientific papers. Additionally it is anticipated to provide a guidance document
written for users with different levels of scientific background knowledge. All in all, VALUE will provide
urgently needed information for impact modelling and decision planning, no matter which stance one
might assume in the debates highlighted in the introduction.

The framework presented in this paper has emerged from many wide-ranging discussions involving repre-
sentatives from across Europe, with different backgrounds and priorities. During these discussions, many
issues were raised that have not been incorporated into the framework described here, either because
they were too complex to integrate them into a formalized framework to compare different types of
downscaling approaches, because they seemed impracticable, because of limited resources, limited pub-
licly available validation data, or simply because they were deemed irrelevant. For instance, the issue of
validating the representation of physical processes in RCMs that are not simulated by typical statistical
models has been discussed, and VALUE acknowledges the importance of such a validation. Yet it cannot
be included in a generic framework that aims to compare dynamical and statistical downscaling. It has
also been discussed to carry out a blind validation, i.e., providing reference observations without reveal-
ing the geographical location or other station identifier, and without providing the validation reference
data. Yet the geographical location is in principle identifiable if only publicly available data sets are used;
also a four-fold cross validation would be impossible without having a complete reference data set; finally,
the geographical location is important for an educated predictor choice.

Even though not complete, VALUE is probably the most comprehensive effort to compare downscaling
methods to date. With the experience gained over the last two years and the first results expected soon,
we hope VALUE will make an important contribution to regional climate research. With this experience we
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believe the VALUE framework can be integrated into and inspire other international validation exercises,
such as the newly funded CORDEX-ESD.
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