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Abstract

In this paper, we consider discrete-time infinite horizon problems of optimal control to a terminal set of

states. These are the problems that are often taken as the starting point for adaptive dynamic programming.

Under very general assumptions, we establish the uniqueness of solution of Bellman’s equation, and we

provide convergence results for value and policy iteration.

1. INTRODUCTION

In this paper we consider a deterministic discrete-time optimal control problem involving the system

xk+1 = f(xk, uk), k = 0, 1, . . . , (1.1)

where xk and uk are the state and control at stage k, lying in sets X and U , respectively. The control uk

must be chosen from a constraint set U(xk) ⊂ U that may depend on the current state xk. The cost for the

kth stage is g(xk, uk), and is assumed nonnnegative and real-valued:

0 ≤ g(xk, uk) <∞, xk ∈ X, uk ∈ U(xk). (1.2)

We are interested in feedback policies of the form π = {µ0, µ1, . . .}, where each µk is a function mapping

every x ∈ X into the control µk(x) ∈ U(x). The set of all policies is denoted by Π. Policies of the form

π = {µ, µ, . . .} are called stationary , and for convenience, when confusion cannot arise, will be denoted by

µ. No restrictions are placed on X and U : for example, they may be finite sets as in classical shortest path

problems involving a graph, or they may be continuous spaces as in classical problems of control to the origin

or some other terminal set.

Given an initial state x0, a policy π = {µ0, µ1, . . .} when applied to the system (1.1), generates a unique

sequence of state control pairs
(
xk, µk(xk)

)
, k = 0, 1, . . . , with cost

Jπ(x0) = lim
k→∞

k∑
t=0

g
(
xt, µt(xt)

)
, x0 ∈ X, (1.3)

[the limit exists thanks to the nonnegativity assumption (1.2)]. We view Jπ as a function over X, and we

refer to it as the cost function of π. For a stationary policy µ, the corresponding cost function is denoted by

Jµ. The optimal cost function is defined as

J*(x) = inf
π∈Π

Jπ(x), x ∈ X,
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and a policy π∗ is said to be optimal if it attains the minimum of Jπ(x) for all x ∈ X, i.e.,

Jπ∗(x) = inf
π∈Π

Jπ(x) = J*(x), ∀ x ∈ X.

In the context of dynamic programming (DP for short), one hopes to prove that J* satisfies Bellman’s

equation:

J*(x) = inf
u∈U(x)

{
g(x, u) + J*

(
f(x, u)

)}
, ∀ x ∈ X, (1.4)

and that an optimal stationary policy may be obtained through the minimization in the right side of this

equation. One also hopes to obtain J* by means of value iteration (VI for short), which starting from some

function J0 : X 7→ [0,∞], generates a sequence of functions {Jk} according to

Jk+1 = inf
u∈U(x)

{
g(x, u) + Jk

(
f(x, u)

)}
, ∀ x ∈ X, k = 0, 1, . . . . (1.5)

Another possibility to obtain J* and an optimal policy is through policy iteration (PI for short), which

starting from a stationary policy µ0, generates a sequence of stationary policies {µk} via a sequence of policy

evaluations to obtain Jµk from the equation

Jµk(x) = g
(
x, µk(x)

)
+ Jµk

(
f
(
x, µk(x)

))
, x ∈ X, (1.6)

interleaved with policy improvements to obtain µk+1 from Jµk according to

µk+1(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jµk

(
f(x, u)

)}
, x ∈ X. (1.7)

We implicitly assume here is that Jµk satisfies Eq. (1.6), which is true under the cost nonnegativity assump-

tion (1.2) (cf. Prop. 2.1 in the next section). Also the minimum in Eq. (1.7) should be attained for each

x ∈ X, which is true under some compactness condition on either U(x) or the level sets of the function

g(x, ·) + Jk
(
f(x, ·)

)
, or both.

In this paper, we will address the preceding questions, for the case where there is a nonempty stopping

set Xs ⊂ X, which consists of cost-free and absorbing states in the sense that

g(x, u) = 0, x = f(x, u), ∀ x ∈ Xs, u ∈ U(x). (1.8)

Clearly, J*(x) = 0 for all x ∈ Xs, so the set Xs may be viewed as a desirable set of termination states that

we are trying to reach or approach with minimum total cost. We will assume in addition that J*(x) > 0 for

x /∈ Xs, so that

Xs =
{
x ∈ X | J*(x) = 0

}
. (1.9)

In the applications of primary interest, g is taken to be strictly positive outside of Xs to encourage asymptotic

convergence of the generated state sequence to Xs, so this assumption is natural and often easily verifiable.

Besides Xs, another interesting subset of X is

Xf =
{
x ∈ X | J*(x) <∞

}
.

Ordinarily, in practical applications, the states in Xf are those from which one can reach the stopping set

Xs, at least asymptotically.
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For an initial state x, we say that a policy π terminates starting from x if the state sequence {xk}
generated starting from x and using π reaches Xs in finite time, i.e., satisfies xk̄ ∈ Xs for some index k̄. A

key assumption in this paper is that the optimal cost J*(x) (if it is finite) can be approached with policies

that terminate from x. In particular, throughout the paper we assume the following.

Assumption 1.1: The cost nonnegativity condition (1.2) and stopping set conditions (1.8)-(1.9)

hold. Moreover, for every x ∈ Xf and ε > 0, there exists a policy π that terminates starting from x

and satisfies Jπ(x) ≤ J*(x) + ε.

Specific and easily verifiable conditions that imply this assumption will be given in Section 4. A

prominent case is when X and U are finite, so the problem becomes a deterministic shortest path problem

with nonnegative arc lengths. If all cycles of the state transition graph have positive length, all policies π

that do not terminate from a state x ∈ Xf must satisfy Jπ(x) = ∞, implying that there exists an optimal

policy that terminates from all x ∈ Xf . Thus, in this case Assumption 1.1 is naturally satisfied.

When X is the n-dimensional Euclidean space <n, a primary case of interest for this paper, it may

easily happen that the optimal policies are not terminating from some x ∈ Xf . This is true for example in

the classical linear quadratic optimal control problem, where X = <n, U = <m, g is positive semidefinite

quadratic, and f represents a linear system of the form xk+1 = Axk + Buk, where A and B are given

matrices. However, we will show in Section 4 that Assumption 1.1 is satisfied under more easily verifiable

conditions. For example, it is satisfied assuming that g is strictly positive outside Xs in the sense that for

each δ > 0 there exists ε > 0 such that

inf
u∈U(x)

g(x, u) ≥ ε, ∀ x ∈ X such that dist(x,Xs) ≥ δ,

where for all x ∈ X, dist(x,Xs) denotes the minimum distance from x to Xs,

dist(x,Xs) = inf
y∈Xs

‖x− y‖, x ∈ X,

and also that for every ε > 0, there exists a δε > 0 such that for each x ∈ Xf with dist(x,Xs) ≤ δε, there is

a policy π that terminates from x and satisfies Jπ(x) ≤ ε. The latter condition is a “local controllability”

assumption implying that the state can be steered into Xs with arbitrarily small cost from a starting state

that is sufficiently close to Xs, and can be easily checked in many applications.

Our main results are given in the following three propositions. In our terminology, all equations,

inequalities, and convergence limits involving functions are meant to be pointwise. Regarding notation, we

denote by E+(X) the set of all functions J : X 7→ [0,∞], and by J the set of functions

J =
{
J ∈ E+(X) | J(x) = 0, ∀ x ∈ Xs

}
. (1.10)

Note that in view of Eq. (1.8), J contains the cost function Jπ of all policies π, as well as J*.

Proposition 1.1: (Uniqueness of Solution of Bellman’s Equation) The optimal cost function

J* is the unique solution of Bellman’s equation (1.4) within the set of functions J .
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Examples where there are additional solutions Ĵ of Bellman’s equation with Ĵ ≥ J* are well known.

Particularly simple two-state shortest path examples of this type are given in [Ber13], Section 3.1.2, and in

[BeY15], Example 1.1.

Proposition 1.2: (Convergence of VI)

(a) The VI sequence {Jk} generated by Eq. (1.5) starting from any function J0 ∈ J with J0 ≥ J*

converges pointwise to J*.

(b) Assume further that U is a metric space, and the sets Uk(x, λ) given by

Uk(x, λ) =
{
u ∈ U(x) | g(x, u) + Jk

(
f(x, u)

)
≤ λ

}
,

are compact for all x ∈ X, λ ∈ <, and k, where {Jk} is the VI sequence {Jk} generated by

Eq. (1.5) starting from J0 ≡ 0. Then the VI sequence {Jk} generated by Eq. (1.5) converges

pointwise to J* starting from any function J0 ∈ J .

Easily verifiable assumptions implying the compactness assumption of part (b) above will be given

later. Note that when there are solutions to Bellman’s equations in addition to J*, VI will not converge to

J* starting from any of these solutions. However, it is possible that Bellman’s equation has J* as its unique

solution within the set of nonnegative functions, and yet VI does not converge to J* starting from the zero

function because the compactness condition of Prop. 1.2(b) is violated (there are several examples of this

type in the literature, and Example 4.3.3 of [Ber13] is a deterministic problem for which Assumption 1.1 is

satisfied).

Proposition 1.3: (Convergence of PI) The sequence {Jµk} generated by the PI algorithm (1.6),

(1.7), satisfies Jµk(x) ↓ J*(x) for all x ∈ X.

It is implicitly assumed in the preceding proposition that the PI algorithm is well defined in the sense

that the minimization in the policy improvement operation (1.7) can be carried out for every x ∈ X. Easily

verifiable conditions that guarantee this also guarantee the compactness condition of Prop. 1.2(b), and will

be noted following Prop. 2.1 in the next section. Moreover, in Section 4 we will prove a similar convergence

result for a variant of the PI algorithm where the policy evaluation is carried out approximately through a

finite number of VIs. There are simple two-state shortest path examples where the PI sequence Jµk does

not converge to J* if Assumption 1.1 is violated (see, e.g., [Ber13], Section 3.1.2, or [BeY15], Example 1.1).

The paper is organized as follows. In Section 2 we provide background and references, which place in

context our results and methods of analysis in relation to the literature. In Section 3 we give the proofs

of Props. 1.1-1.3. In Section 4 we discuss special cases and easily verifiable conditions that imply our

assumptions, and we provide extensions of our analysis.

We finally note that the ideas of this paper stem from more general ideas regarding the convergence

of VI, which were developed in the context of abstract DP; see the recent book [Ber13]. The paper [Ber15]

views the preceding propositions as special cases of more general abstract DP results.
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2. BACKGROUND

The issues discussed in this paper have received attention since the 60’s, originally in the work of Blackwell

[Bla65], who considered the case g ≤ 0, and the work by Strauch (Blackwell’s PhD student) [Str66], who

considered the case g ≥ 0. For textbook accounts we refer to [BeS78], [Put74], [Ber12], and for a more abstract

account, [Ber13]. These works showed that the cases where g ≤ 0 (which corresponds to maximization of

nonnegative rewards) and g ≥ 0 (which is most relevant to the control problems of this paper) are quite

different in structure. In particular, while VI converges to J* starting for J0 ≡ 0 when g ≤ 0, this is not so

when g ≥ 0; a certain compactness condition is needed for this to be guaranteed [see part (d) of the following

proposition]. Moreover for the case g ≥ 0, Bellman’s equation may have solutions J̃ 6= J* with J̃ ≥ J*, and

VI will not converge to J* starting from such J̃ . In addition it is well-known that in general, PI need not

converge to J* and may instead stop with a suboptimal policy (see for instance [BeY15], Example 1.1). The

following proposition gives the standard results for our problem when g ≥ 0 (see [BeS78], Props. 5.2, 5.4,

and 5.10, [Ber12], Props. 4.1.1, 4.1.3, 4.1.5, 4.1.9, or [Ber13], Props. 4.3.3, 4.3.9, and 4.3.14).

Proposition 2.1:

(a) J* satisfies Bellman’s equation (1.4), and if J ∈ E+(X) is another solution, i.e., J satisfies

J(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, ∀ x ∈ X, (2.1)

then J* ≤ J .

(b) For all stationary policies µ we have

Jµ(x) = g
(
x, µ(x)

)
+ Jµ

(
f
(
x, µ(x)

))
, ∀ x ∈ X. (2.2)

(c) A stationary policy µ∗ is optimal if and only if

µ∗(x) ∈ arg min
u∈U(x)

{
g(x, u) + J*

(
f(x, u)

)}
, ∀ x ∈ X. (2.3)

(d) If U is a metric space and the sets

Uk(x, λ) =
{
u ∈ U(x) | g(x, u) + Jk

(
f(x, u)

)
≤ λ

}
(2.4)

are compact for all x ∈ X, λ ∈ <, and k, where {Jk} is the sequence generated by the VI

(1.5) starting from J0 ≡ 0, then there exists at least one optimal stationary policy, and we have

Jk → J* for all J ∈ E+(X) with J ≤ J*.

Actually, only the assumption g ≥ 0 is needed for the preceding proposition, and the other parts

of Assumption 1.1 are not necessary. Compactness assumptions such as the one of part (d) above, were

originally given in [Ber75], [Ber77], and in [Sch75]. They have been used in several other works, such as
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[BeT91], [Ber12], Prop. 4.1.9. In particular, the condition of part (d) holds when U(x) is a finite set for all

x ∈ X. The condition of part (d) also holds when X = <n, and for each x ∈ X, the set

{
u ∈ U(x) | g(x, u) ≤ λ

}
is a compact subset of <m, for all λ ∈ <, and g and f are continuous in u. The proof consists of showing by

induction that the VI iterates Jk have compact level sets and hence are lower semicontinuous.

Let us also note a recent result from [YuB13], where it was shown that J* is the unique fixed point of

T within the class of all functions J ∈ E+(X) that satisfy

0 ≤ J ≤ cJ* for some c > 0, (2.5)

(we refer to [YuB13] for discussion and references to antecedents of this result). Moreover it was shown that

VI converges to J* starting from any function satisfying the condition

J* ≤ J ≤ cJ* for some c > 0,

and under the compactness conditions of Prop. 2.1(d), starting from any J that satisfies Eq. (2.5). The

same paper and a related paper [BeY15] discuss extensively PI algorithms for stochastic nonnegative cost

problems.

The results just noted for infinite horizon DP problems with nonnegative cost per stage have been

shown in a stochastic setting, which does not take into account the favorable structure of deterministic

problems or the presence of the stopping set Xs. For deterministic problems, there has been substantial

research in the adaptive dynamic programming literature, regarding the validity of Bellman’s equation and

the uniqueness of its solution, as well as the attendant questions of convergence of value and policy iteration.

In particular, infinite horizon deterministic optimal control for both discrete-time and continuous-

time systems has been considered since the early days of DP in the works of Bellman. For continuous-

time problems the questions discussed in the present paper involve substantial technical difficulties, since

the analog of the (discrete-time) Bellman equation (1.4) is the steady-state form of the (continuous-time)

Hamilton-Jacobi-Bellman equation, a nonlinear partial differential equation the solution and analysis of

which is in general very complicated. A formidable difficulty is the potential lack of differentiability of

the optimal cost function, even for simple problems such as time-optimal control of second order linear

systems to the origin. The analog of value iteration for continuous-time systems essentially involves the time

integration of this equation, and its analysis must deal with difficult issues of stability and convergence to a

steady-state solution. Nonetheless there have been proposals of continuous-time PI algorithms, in the early

papers [Rek64], [Kle68], [SaL79], [Wer92], and the thesis [Bea95], as well as more recently in several works;

see e.g., the book [VVL13], the survey [JiJ13], and the references quoted there. These works also address the

possibility of value function approximation, similar to other approximation-oriented methodologies such as

neurodynamic programming [BeT96] and reinforcement learning [SuB98], which consider primarily discrete-

time systems. For example, among the restrictions of the PI method, is that it must be started with a

stabilizing controller; see for example the paper [Kle68], which considered linear-quadratic continuous-time

problems, and showed convergence to the optimal policy of the PI algorithm, assuming that an initial

stabilizing linear controller is used. By contrast, no such restriction is needed in the PI methodology of the

present paper; questions of stability are addressed only indirectly through the finiteness of J* and Assumption

1.1.
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For discrete-time systems there has been much research, both for VI and PI algorithms. For a selective

list of recent references, which themselves contain extensive lists of other references, see the book [VVL13],

the papers [JiJ14], [Hey14a], [Hey14b], [LiW13], [WWL14], the survey papers in the edited volumes [SBP04]

and [LeL13], and the special issue [LLL08]. Some of these works relate to continuous-time problems as well,

and in their treatment of algorithmic convergence, typically assume that X and U are Euclidean spaces, as

well as continuity and other conditions on g, special structure of the system, etc. It is beyond our scope to

provide a detailed survey of the state-of-the-art of the VI and PI methodology in the context of adaptive

DP. However, it should be clear that the works in this field involve more restrictive assumptions than our

corresponding results of Props. 1.1-1.3. Of course, these works also address questions that we do not, such

as issues of stability of the obtained controllers, the use of approximations, etc. Thus the results of the

present work may be viewed as new in that they rely on very general assumptions, yet do not address some

important practical issues. The line of analysis of the present paper, which is based on general results of

Markovian decision problem theory and abstract forms of dynamic programming, is also different from the

lines of analysis of works in adaptive DP, which make heavy use of the deterministic character of the problem

and control theoretic methods such as Lyapunov stability.

3. PROOFS OF THE MAIN RESULTS

Let us denote for all x ∈ X,

ΠT,x =
{
π ∈ Π | π terminates from x

}
,

and note the following key implication of Assumption 1.1:

J*(x) = inf
π∈ΠT,x

Jπ(x), ∀ x ∈ Xf . (3.1)

Proof of Prop. 1.1: Let Ĵ ∈ J be a solution of the Bellman equation (2.1), so that

Ĵ(x) ≤ g(x, u) + Ĵ
(
f(x, u)

)
, ∀ x ∈ X, u ∈ U(x), (3.2)

while by Prop. 2.1(a), J* ≤ Ĵ . For any x0 ∈ Xf and policy π = {µ0, µ1, . . .} ∈ ΠT,x0 , we have by using

repeatedly Eq. (3.2),

J*(x0) ≤ Ĵ(x0) ≤ Ĵ(xk) +

k−1∑
t=0

g
(
xt, µt(xt)

)
, k = 1, 2, . . . ,

where {xk} is the state sequence generated starting from x0 and using π. Also, since π ∈ ΠT,x0 and hence

xk ∈ Xs and Ĵ(xk) = 0 for all sufficiently large k, we have

lim sup
k→∞

{
Ĵ(xk) +

k−1∑
t=0

g
(
xt, µt(xt)

)}
= lim
k→∞

{
k−1∑
t=0

g
(
xt, µt(xt)

)}
= Jπ(x0).

By combining the last two relations, we obtain

J*(x0) ≤ Ĵ(x0) ≤ Jπ(x0), ∀ x0 ∈ Xf , π ∈ ΠT,x0 .

7



Taking the infimum over π ∈ ΠT,x0 and using Eq. (3.1), it follows that J*(x0) = Ĵ(x0) for all x0 ∈ Xf . Since

for x0 /∈ Xf , we have J*(x0) = Ĵ(x0) =∞ [since J* ≤ Ĵ by Prop. 2.1(a)], we obtain J* = Ĵ . Q.E.D.

Proof of Prop. 1.2: (a) Starting with J0 ≥ J*, let us apply the VI operation to both sides of this inequality.

Since J* is a solution of Bellman’s equation and VI has a monotonicity property that maintains the direction

of functional inequalities, we see that J1 ≥ J*. Continuing similarly, we obtain Jk ≥ J* for all k. Moreover,

we have Jk ∈ J for all k. Hence for every x0 ∈ Xf and policy π = {µ0, µ1, . . .} ∈ ΠT,x0 , we have

J*(x0) ≤ Jk(x0) ≤ J0(xk) +

k−1∑
t=0

g
(
xt, µt(xt)

)
, k = 1, 2, . . . ,

where {xk} is the state sequence generated starting from x0 and using π. Also, since π ∈ ΠT,x0 and hence

xk ∈ Xs and J0(xk) = 0 for all sufficiently large k, we have

lim sup
k→∞

{
J0(xk) +

k−1∑
t=0

g
(
xt, µt(xt)

)}
= lim
k→∞

{
k−1∑
t=0

g
(
xt, µt(xt)

)}
= Jπ(x0).

By combining the last two relations, we obtain

J*(x0) ≤ lim inf
k→∞

Jk(x0) ≤ lim sup
k→∞

Jk(x0) ≤ Jπ(x0), ∀ x0 ∈ Xf , π ∈ ΠT,x0 .

Taking the infimum over π ∈ ΠT,x0 and using Eq. (3.1), it follows that limk→∞ Jk(x0) = J*(x0) for all

x0 ∈ Xf . Since for x0 /∈ Xf , we have J*(x0) = Jk(x0) =∞, we obtain Jk → J*.

(b) The VI iterates starting from any function J ∈ J lie between the VI iterates starting from the zero

function and the VI iterates starting from J0 = max{J, J*}. Both of these latter iterates converge to J* by

part (a) and Prop. 2.1(d). Q.E.D.

Proof of Prop. 1.3: If µ is a stationary policy and µ̄ satisfies the policy improvement equation

µ̄(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jµ

(
f(x, u)

)}
, x ∈ X,

[cf. Eq. (1.7)], we have for all x ∈ X,

Jµ(x) = g
(
x, µ(x)

)
+ Jµ

(
f
(
x, µ(x)

))
≥ min
u∈U(x)

{
g(x, u) + Jµ

(
f(x, u)

)}
= g
(
x, µ̄(x)

)
+ Jµ

(
f
(
x, µ̄(x)

))
, (3.3)

where the first equality follows from the definition of Jµ and the second equality follows from the definition

of µ̄. Repeatedly applying this relation, we see that the sequence
{
J̃k(x0)

}
defined by

J̃k(x0) = Jµ(xk) +

k−1∑
t=0

g
(
xt, µ̄(xt)

)
, k = 1, 2, . . . ,

is monotonically nonincreasing, where {xk} is the sequence generated starting from x0 and using µ. Moreover,

from Eq. (3.3) we have

Jµ(x0) ≥ min
u∈U(x0)

{
g(x, u) + Jµ

(
f(x, u)

)}
= J̃1(x0) ≥ J̃k(x0),
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for all k. This implies that

Jµ(x0) ≥ min
u∈U(x0)

{
g(x, u) + Jµ

(
f(x, u)

)}
≥ lim
k→∞

J̃k(x0) ≥ lim
k→∞

k−1∑
t=0

g
(
xt, µ̄(xt)

)
= Jµ̄(x0),

where the last inequality follows since Jµ ≥ 0. In conclusion, we have

Jµ(x) ≥ inf
u∈U(x)

{
g(x, u) + Jµ

(
f(x, u)

)}
≥ Jµ̄(x), x ∈ X. (3.4)

Using µk and µ̄k in place of µ and µ̄, we see that the sequence {Jµk} generated by PI converges monotonically

to some function J∞ ∈ E+(X), i.e., Jµk ↓ J∞. Moreover, from Eq. (3.4) we have

J∞(x) ≥ inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
, x ∈ X,

as well as

g(x, u) + Jµk
(
f(x, u)

)
≥ J∞(x), x ∈ X, u ∈ U(x).

We now take the limit in the second relation as k →∞, then the infimum over u ∈ U(x), and then combine

with the first relation, to obtain

J∞(x) = inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
, x ∈ X.

Thus J∞ is a solution of Bellman’s equation, satisfying J∞ ≥ J* (since Jµk ≥ J* for all k) and J∞ ∈ J
(since Jµk ∈ J ), so by Prop. 2.1(a), it must satisfy J∞ = J*. Q.E.D.

4. DISCUSSION, SPECIAL CASES, AND EXTENSIONS

In this section we elaborate on our main results and we derive easily verifiable conditions under which our

assumptions hold. Consider first Assumption 1.1. As noted in Section 1, it holds when X and U are finite, a

terminating policy exists from every x, and all cycles of the state transition graph have positive length. For

the case where X is infinite, let us assume that X is a normed space with norm denoted ‖ · ‖, and say that

π asymptotically terminates from x if the sequence {xk} generated starting from x and using π converges to

Xs in the sense that

lim
k→∞

dist(xk, Xs) = 0.

The following proposition provides readily verifiable conditions that guarantee Assumption 1.1.

Proposition 4.1: Let the following two conditions hold.

(1) For every x ∈ Xf , any policy π with Jπ(x) <∞ asymptotically terminates from x.

(2) For every ε > 0, there exists a δε > 0 such that for each x ∈ Xf with

dist(x,Xs) ≤ δε,

there is a policy π that terminates from x and satisfies Jπ(x) ≤ ε.

Then Assumption 1.1 holds.
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Proof: Fix x ∈ Xf and ε > 0. Condition (1) guarantees that for any fixed x ∈ Xf and ε > 0, there exists

a policy π that asymptotically terminates from x, and satisfies

Jπ(x) ≤ J*(x) + ε/2.

Starting from x, this policy will generate a sequence {xk} such that for some index k̄ we have

lim
k→∞

dist(xk̄, Xs) ≤ δε/2,

so by condition (2), there exists a policy π̄ that terminates from xk̄ and is such that Jπ̄(xk̄) ≤ ε/2. Consider

the policy π′ that follows π up to index k̄ and follows π̄ afterwards. This policy terminates from x and

satisfies

Jπ′(x) = Jπ,k̄(x) + Jπ̄(xk̄) ≤ Jπ(x) + Jπ̄(xk̄) ≤ J*(x) + ε,

where Jπ,k̄(x) is the cost incurred by π starting from x up to reaching xk̄. Q.E.D.

Cost functions for which condition (1) of the preceding proposition holds are those involving a cost per

stage that is strictly positive outside of Xs. More precisely, condition (1) holds if for each δ > 0 there exists

ε > 0 such that

inf
u∈U(x)

g(x, u) ≥ ε, ∀ x ∈ X such that dist(x,Xs) ≥ δ.

Then for any x and policy π that does not asymptotically terminate from x, we will have Jπ(x) =∞. From

an applications point of view, the condition is natural and consistent with the aim of steering the state

towards the terminal set Xs with finite cost.

Condition (2) is a “controllability” condition implying that the state can be steered into Xs with

arbitrarily small cost from a starting state that is sufficiently close to Xs. As an example, condition (2) is

satisfied when Xs = {0} and the following hold:

(a) X = <n, U = <m, and there is an open sphere R centered at the origin such that U(x) contains R for

all x ∈ X.

(b) f represents a controllable linear system of the form

xk+1 = Axk +Buk,

where A and B are given matrices.

(c) g satisfies

0 ≤ g(x, u) ≤ β
(
‖x‖p + ‖u‖p

)
, ∀ (x, u) ∈ V,

where V is some open sphere centered at the origin, β, p are some positive scalars, and ‖ · ‖ is the

standard Euclidean norm.

There are straightforward extensions of the preceding conditions to a nonlinear system. Note that even

for a controllable system, it is possible that there exist states from which the terminal set cannot be reached,

because U(x) may imply constraints on the magnitude of the control vector. Still the preceding analysis

allows for this case.
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An Optimistic Form of PI

Let us consider a variant of PI where policies are evaluated inexactly, with a finite number of VIs. In

particular, this algorithm starts with some J0 ∈ E(X), and generates a sequence of cost function and policy

pairs {Jk, µk} as follows: Given Jk, we generate µk according to

µk(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jk

(
f(x, u)

)}
, x ∈ X, k = 0, 1, . . . , (4.1)

and then we obtain Jk+1 with mk ≥ 1 value iterations using µk:

Jk+1(x0) = Jk(xmk) +

mk−1∑
t=0

g
(
xt, µk(xt)

)
, x0 ∈ X, (4.2)

where {xt} is the sequence generated starting from x0 and using µk, and mk are arbitrary positive integers.

Here J0 is a function in J that is required to satisfy

J0(x) ≥ inf
u∈U(x)

{
g(x, u) + J0

(
f(x, u)

)}
, ∀ x ∈ X, u ∈ U(x). (4.3)

For example J0 may be equal to the cost function of some stationary policy, or be the function that takes

the value 0 for x ∈ Xs and ∞ at x /∈ Xs. Note that when mk ≡ 1 the method is equivalent to VI, while the

case mk =∞ corresponds to the standard PI considered earlier. In practice, the most effective value of mk

may be found experimentally, with moderate values mk > 1 usually working best. We refer to [Put94] and

[Ber12] for discussions of this type of inexact PI algorithm (in [Put91] it is called “modified” PI, while in

[Ber12] it is called “optimistic” PI).

Proposition 4.2: (Convergence of Optimistic PI) For the PI algorithm (4.1)-(4.2), where J0

belongs to J and satisfies the condition (4.3), we have Jk ↓ J*.

Proof: We have for all x ∈ X,

J0(x) ≥ inf
u∈U(x)

{
g(x, u) + J0

(
f(x, u)

)}
= g
(
x, µ0(x)

)
+ J0

(
f(x, µ0(x)

)
≥ J1(x)

≥ g
(
x, µ0(x)

)
+ J1

(
g(x, µ0(x)

)
≥ inf
u∈U(x)

{
g(x, u) + J1

(
f(x, u)

)}
= g
(
x, µ1(x)

)
+ J1

(
g(x, µ1(x)

)
≥ J2(x),

where the first inequality is the condition (4.3), the second and third inequalities follow because of the

monotonicity of the m0 value iterations (4.2) for µ0, and the fourth inequality follows from the policy

improvement equation (4.1). Continuing similarly, we have

Jk(x) ≥ inf
u∈U(x)

{
g(x, u) + Jk

(
f(x, u)

)}
≥ Jk+1(x), ∀ x ∈ X, k = 0, 1, . . . .
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Moreover, since J0 ∈ J , we have Jk ∈ J for all k. Thus Jk ↓ J∞ for some J∞ ∈ J , and similar to the proof

of Prop. 1.3, we can show that J∞ is a solution of Bellman’s equation. Moreover, an induction proof shows

that Jk ≥ J*, so that J∞ ≥ J* while J∞ ∈ J . The result now follows similar to the case of the standard

PI algorithm (cf. Prop. 1.3). Q.E.D.

Minimax Control to a Terminal Set of States

There is a straightforward extension of our analysis to minimax problems with a terminal set of states. Here

the system is

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

where wk is the control of an antagonistic opponent that aims to maximize the cost function. We assume

that wk is chosen from a given set W to maximize the sum of costs per stage, which are assumed nonnegative:

g(x, u, w) ≥ 0, x ∈ X, U ∈ U(x), w ∈W.

We wish to choose a policy π = {µ0, µ1, . . .} to maximize the cost function

Jπ(x0) = sup
wk∈W
k=0,1,...

lim
k→∞

k∑
t=0

g
(
xk, µk(xk), wk

)
,

where
{
xk, µk(xk)

}
is a state-control sequence corresponding to π and the sequence {w0, w1, . . .}. We assume

that there is a termination set Xs, which is cost-free and absorbing,

g(x, u, w) = 0, f(x, u, w) ∈ Xs, ∀ x ∈ Xs, u ∈ U(x), w ∈W,

and that all states outside Xs have strictly positive optimal cost, so that

Xs =
{
x ∈ X | J*(x) = 0

}
.

The finite-state version of this problem has been discussed in [Ber14], under the name robust shortest path

planning , for the case where g can take both positive and negative values. Another special case is the

problem of reachability of a target set , which is obtained for

g(x, u, w) =

{
0 if x ∈ Xs,

1 if x /∈ Xs.

The objective in this problem is to reach the set Xs in the minimum guaranteed number of steps. The set

Xf here is the set of states for which Xs is guaranteed to be reached in a finite number of steps. A related

problem is the problem of reachability of a target tube, where for a given set X̂,

g(x, u, w) =

{
0 if x ∈ X̂,

∞ if x /∈ X̂,

and the objective is to find the initial states for which we can guarantee to keep all future states within

X̂ (note that the analysis of the present paper can be adapted to the case where g can take the value ∞,

although for simplicity we have not done so). These two reachability problems were the subject of the

author’s Ph.D. thesis research [Ber71], and the subsequent papers [BeR71], [Ber72]. In fact the reachability
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algorithms given in these works are simply the VI algorithm of the present paper, starting with appropriate

initial functions J0.

To extend our results to the general form of the minimax problem described above, we need to adapt

the definition of termination. In particular, given a state x, in the minimax context we say that a policy π

terminates from x if there exists an index k̄ [which depends on (π, x)] such that the sequence {xk}, which is

generated starting from x and using π, satisfies xk̄ ∈ Xs for all sequences {w0, . . . , wk̄−1} with wt ∈ W for

all t = 0, . . . k̄ − 1. Then Assumption 1.1 is modified to reflect this new definition of termination, and our

results can be readily extended, with the Props. 1.1, 1.2, 1.3, and 4.2, and their proofs holding essentially as

stated.

5. CONCLUDING REMARKS

The analysis of this paper considers deterministic optimal control problems under very general assumptions,

including the possibilities of arbitrary state and control spaces, and infinite optimal cost from some initial

states. The analysis of VI and PI even when there are infinite optimal cost states is unusual, and bypasses

the need for assumptions involving the existence of globally stabilizing controllers that guarantee that the

optimal cost function J* is real-valued. This generality makes our results a convenient starting point for

analysis of problems involving additional assumptions, and perhaps cost function approximations.
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