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Value-at-risk and extreme value distributions
for financial returns

Konstantinos Tolikas
Cardiff Business School, Cardiff University, Aberconway Building, Colum Drive, Cardiff,
CF10 3EU, UK; email: TolikasKk@cardiff.ac.uk

The ability of the generalized extreme value (GEV) and generalized logistic
(GL) distributions to fit extreme financial returns in the stock, commodities
and bond markets is assessed. The empirical results indicate that the too
much celebrated GEV is not the most appropriate model for the data since
the fatter tailed GL is found to provide better descriptions of the extreme
returns. Extreme value theory (EVT) based value-at-risk (VaR) estimates
are then derived and compared with those generated by traditional meth-
ods. The results show that when the focus is on the really ruinous events,
which are located deep into the tails of the returns distribution, the EVT
methods used in this study can be particularly useful since they produce VaR
estimates that outperform those derived by the traditional methods at high
confidence levels. However, these estimates were found to be considerably
higher than those derived by traditional VaR models, consequently leading
to higher capital reserves for financial institutions.

1 INTRODUCTION

Value-at-risk (VaR) is the maximum potential loss of a portfolio over a particular
time horizon at a certain confidence level. During the last decade it has become an
industry standard and it is now routinely used by financial firms when estimating
a capital cushion against potential financial catastrophes; indeed, it is known as
the minimum capital requirement (MCR). Statistically, VaR is defined as one
of the lower quantiles of the distribution of returns that is only exceeded by a
certain probability (eg, 5% or 1%). Therefore, it is argued that accurate VaR
estimates imply accurate descriptions of the tails of the distribution of financial
returns. A convenient assumption usually made is that returns follow a normal
distribution. However, a large amount of empirical research suggests that the
actual distribution of returns has a fatter lower tail than that suggested by the
normal.! One implication of this feature is that the probability of large losses is
much greater than implied by the normal distribution. In such a case, VaR models

Konstantinos Tolikas would like to thank J. R. M. Hosking, IBM Research Division, T. J.
Watson Research Center, for kindly providing the codes for the estimation of the standard errors
of the parameter estimates.

ISee Aparicio and Estrada (2001) for a review of the literature on the empirical distribution of
financial returns.
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are prone to fail when they are needed most, ie, where a financial institution may
suffer enormous losses because of an extreme fall in share prices.

A branch of statistics, named extreme value theory (EVT), focuses exclusively
on these extremes and their associated probabilities by directly studying the tails
of probability distributions. Applications in finance include, among others, Longin
(1996) who investigated the limiting distribution of extremes in the US stock
market, Lux (2001) who applied EVT to German data, Jondeau and Rockinger
(2003) who analyzed the daily extreme returns of 27 stock markets and Gengay
and Selcuk (2004) who applied EVT to emerging markets. They all found that
extremes of financial returns could be adequately characterized by the Fréchet
distribution (a member of the generalized extreme value (GEV) family). The
role of EVT as an input in VaR estimation has been examined by Danielson
(2002) who used US data to compare daily VaR estimates at the 99% confidence
level derived from the variance—covariance (VC), historical simulation (HS),
generalized autoregressive conditional heteroskedasticity (GARCH), exponential
weighted moving average (EWMA) and EVT methods. He found that the EVT-
based VaR provides more accurate estimates than all the other models. Pownall
and Koedijk (1999) used data from Asian stock markets to compared VaR
estimates generated by the normal distribution and the RiskMetrics model of
JP Morgan with estimates generated using EVT. They found that the EVT-based
VaR significantly outperformed the other two models and attributed this to the
ability of EVT to fit fat-tailed time series. Similar results were obtained by Neftci
(2000) for the case of eight major exchange and interest rates. He also found that
EVT-based VaR estimates were 20% to 30% larger than those generated by the
normal distribution. Bali (2003) used daily observations of the annualized yield
of the three-month, six-month, one-year and 10-year US treasury securities from
1954 to 1998. He rejected the normality hypothesis and found that the GEV and
generalized Pareto (GP) distributions could lead to very precise VaR results. He
also found that EVT-based VaR estimates were on average 24% to 38% larger
than those generated by the normal distribution. Based on this finding, he argued
that the multiplication factor that the Bank for International Settlements (Basel
Committee on Banking Supervision (1996)) uses to adjust the VaR estimates of
banks, which employ their own internal models, is rather too high and should be
reduced.

The literature that explores EVT applications in finance has a number of
similarities. Firstly, in most studies the GEV and GP are the only distributions
used to fit the extremes. Secondly, the maximum likelihood parameter estimation
method is mainly used. A notable exception is Gettinby et al (2004) who
investigated the distribution of extreme share returns in the UK from 1975 to
2000 and found that the generalized logistic (GL) distribution describes both the
minima and maxima data better than the GEV. Another exception is Da Silva and
Mendes (2003) who used probability weighted moments (PWM) to estimate the
parameters of the limiting distribution of extremes in 10 Asian stock markets.
However, they focused solely on the GEV distribution that was found to provide
an adequate fit to the data. Recently, Tolikas and Brown (2006) considered the
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GL, GEV and GP distributions and investigated the distribution of the extreme
daily share returns in the Greek stock market. Their results added further support
to the ability of the GL to fit extreme data and illustrated that the GL provides
more accurate VaR estimates compared to the GEV and the normal distribution.
Therefore, there are reasons to believe that there is scope for improvement and
this is what this paper attempts to do by employing EVT methods whose use in
finance has not yet been fully investigated.

The first aim of this paper is to describe the distribution of the extreme minima
for daily returns of a wide set of markets and instruments; this set includes the
French stock market, the US commodities market and the German bond market.2
The second aim of this paper is to assess whether this EVT approach can be
useful for risk measurement purposes by deriving VaR estimates and comparing
to those generated by traditional approaches. The remainder of the paper is set
out as follows. Section 2 introduces the EVT methodology adopted in this paper;
Section 3 describes the data and Section 4 contains the results of the analysis of
the extremes; in Section 5, VaR estimates generated by the EVT and traditional
approaches are presented and compared; Section 6 discuses the implications of
the results for both regulators and financial institutions and Section 7 concludes
the paper.

2 APPLYING EXTREME VALUE THEORY TO ESTIMATE
VALUE-AT-RISK

EVT is the statistical study of the extremal behavior of random variables and its
role is to develop procedures which are scientifically appropriate for describing
and estimating their behavior.> Extremes of financial returns are defined as the
minimum of the daily (or weekly, monthly or larger time periods) logarithmic
returns over a given period (known as the selection interval). To illustrate this
point, let us denote the time series of an index daily log-returns with the variable
Y1, Yo, ..., Y,. If the length of the selection interval is m, we divide the series into
non-overlapping time intervals of length m. The time series of the extreme min-
ima will be X1 =min(Yy,...,Y,), Xo=min(Yyq1, ..., Y2u), ..., Xyym =
min(Y,_p, ..., ¥,). The problem is then to find a probability distribution that
adequately describes their behavior. VaR estimates can then be calculated as cer-
tain lower quantiles of this distribution. Applying EVT to financial data involves a
number of steps. Firstly, the length of the minima selection period must be chosen.
Secondly, distributions that are likely to model adequately the empirical extreme
minima returns should be identified. Thirdly, the parameters of these distributions
should be estimated and the goodness-of-fit of these distributions to the data

2The focus is kept on describing the lower tail of the returns distribution since this is where the
big losses of a long position are located. However, similar analysis can be applied to the upper
tail for the case of a short position.

3For a thorough introduction to EVT the reader is advised to see Coles (2001) and Embrechts
et al (1999).
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should be tested to choose the one that best fits the empirical data. In the following
paragraphs these steps are analytically presented.

The number of extremes available for analysis depends on the length of the
extremes selection interval. A longer interval will result in fewer extremes and
thus, a lower level of efficiency when estimating a distribution’s parameters. To
some extent this is an arbitrary decision and in this paper it was decided to use
extremes defined over weekly time spans (five trading days).* The behavior of the
extremes distribution over time aggregation is also studied by dividing the series
of weekly extremes into 10 and 30 subperiods.

Under the assumption that returns are independent and identically distributed
(iid), first Fisher and Tippet (1928) and later Gnedenko (1943) showed that the
limiting distribution of the extremes ought to be the GEV. In particular, the EVT
indicates that the limiting distribution of the maxima (and minima) collected over
non-overlapping time periods of equal length ought to be, after being normalized
and centered, one of the three distributions that make up the GEV family: the
Gumbell, Fréchet and Weibull. An alternative way to analyze the behavior of the
extremes is known as the peaks over threshold (POT) method, according to which
extremes are defined as excesses over a threshold. Balkema and de Haan (1974)
and Pickands (1975) showed that the limiting distribution of excesses over a high
enough threshold ought to be the GP. The main advantage of the GP over the GEV
is considered to be the more efficient use of data since by collecting the extremes
as excesses over a threshold more data is left in the tails. Consequently, the GP
is considered to be a good alternative to the GEV distribution when modeling
extreme financial data; see, for example, Cotter and Dowd (2006) and Bali (2003).
A crucial issue, however, is the right choice of the threshold: a low one will
result in many central observations entering the sample while a high one will
leave so few in the sample that it could lead to inaccurate estimates. In addition,
the asymptotic theory of extremes is based on the assumption that extremes are
serially independent or at most weakly dependent. However, financial returns tend
to cluster and this could lead to considerable serial dependence in the time series
of the extremes. Regrettably, there is a decision to be made and in order to avoid or
reduce as much as possible the problem of serial dependence in the time series of
extremes it was decided to collect the extremes as the minimum daily returns over
non-overlapping time intervals of prespecified length. It should also be noted that
EVT focuses exclusively on the tails of the returns distribution and says nothing
about the central part that can be fitted better by other distributions (eg, normal).
In addition, as noted by Gilli and K&éllezi (2006), financial returns are not always
fat tailed and in this case other distributions, including the normal, may be found
to adequately fit the whole distribution.

4Monthly (20 trading days) and quarterly (60 trading days) selection intervals were also
employed but the results were not very different from those reported here. However, from the
VaR estimation point of view, weekly extremes are preferable since they result in more frequent
updating of the distributions parameters. Hence, the results for the monthly and quarterly
minima are not included in this paper.
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The GEV is a three parameter distribution and its probability density function
(pdf) is given by:

y

fx) = o e (1m0 g=e™

P _ B
where y = | < logll —k(x = f)fe, s 0 "

(x = B)/e, k=0

the parameters «, B and « are called the scale, location and shape, respectively.
The first parameter is analogous to the standard deviation and high values imply
that the distribution of extremes is widely spread out while the second is analogous
to the mean and high values imply large extremes. The third governs the shape of
the distribution and it is probably the most important parameter since larger values
correspond to fatter-tailed distributions. The Weibull distribution is the special
case of the GEV when x > 0 and the range of x is —0co <x < B + «/k. The
Gumbel distribution is obtained for ¥ = 0 and the range of x is —0c0 < x < 00,
while when « < 0 the Fréchet distribution is obtained and the range of x is
B+ a/k <x <oo. The cumulative distribution function (cdf), F(x), and the
quantile function, X (F'), of a GEV distributed variable X are given in Appendix A
(together with their counterparts for the GL distribution).

However, although the GEV enjoys theoretical support there is strong evidence
that financial returns exhibit heteroscedasticity and serial correlation. Kearns
and Pagan (1997) used simulations to show that the shape parameter estimates
can be exaggerated when the iid assumption is violated. On the other hand,
Leadbetter et al (1983) showed that EVT is valid for data structures with
weak dependence. With respect to VaR estimation the series of the data will
be divided into subperiods and moving window techniques will be used to
estimate the parameters. This can be reasonably assumed to capture some of
the non-stationarity of the data thus, reducing the non-iid data problem. Another
alternative would be to fit the tail of the conditional distribution of returns by
using an autoregressive volatility model (eg, GARCH), standardize the returns by
the estimated conditional volatility and proceed in EVT analysis. This approach
has received attention by McNeil and Frey (2000) and Bystrom (2004). However,
additional parameters have to be estimated that make this approach subject to
increased estimation error and model risk. Typically, a conditional risk measure
will react after the event and it will assume that the high-risk period will continue
leading to high-risk measures. In that respect, from a financial institution’s point
of view an unconditional approach might be preferable because it will not lead to
frequent changes in traders’ portfolios when risk limits are reached. Alternatively,
the non-constant variance of returns feature would tend to diminish if lower-
frequency data were to be used. However, the size of the dataset will also decrease,
significantly raising concerns for the soundness of the estimation procedures.
Therefore, the iid assumption was relaxed but at the same time the GL distribution
was also included, accepting a trade off between being theoretically correct and
empirically convincing.
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The pdf of the GL distribution is given by:
F)=a=le 170/ o)

1 _ .
where y = k= log{l —k(x — B)/a}, k#0 o

(x = p)/e, k=0

The logistic distribution is the special case of the GL when x =0 and x is in the
range —o0 < x < 0o, while when x > 0, x belongs to —oco <x < 8 + «o/k and
when k < 0, x belongs to f + o/k < x < o0.

The detection of the best candidate distributions to fit the data is accomplished
using L-moment diagrams. L-moments are linear combinations of ordered data
which, like the conventional moments, provide a set of summary statistics for
probability distributions. Hosking (1990) defined the rth L-moment, A,, for any
random variable X, which has a finite mean, as:

r—1
k=0

where EX (.. is the expectation of the (r — «)th extreme order statistic. The
first two such statistics, A; and A,, are measures of location and scale and the
two L-moment ratios, t3 = A3/A and t4 = A4/A, are measures of skewness and
kurtosis, respectively. The most important feature of the L-moments is that they
are more robust to the presence of outliers than conventional moments; this is
because the calculations of conventional moments involve powers, which give
greater weight to outliers, that can lead to considerable bias and variance in the
parameter and quantiles estimators. In addition, Hosking (1990) showed that for
samples of more than 20 data points the asymptotic biases of the L-moments
are negligible for most distributions. Finally, sample L-moments can take any
value that the population moments can take: this is not true for conventional
moments because they have algebraic bounds. An L-moment diagram contains the
curves or points of the theoretical distributions whose ability to adequately fit the
empirical data is examined.> The identification of the best candidate distributions
is achieved by plotting the estimated t3 and 74 and choosing the distribution whose
L-skewness and L-kurtosis theoretical curve is closest to the plotted point.

The next step is to estimate the parameters of the selected distribution(s).
For moderate to large samples, the most widely used method is the maximum

50n such a diagram, a three-parameter distribution (eg, the GL) is represented by a curve
whereas a two-parameter distribution (eg, the normal) is represented by a single point. The
idea behind the L-moment ratio diagrams is similar to that of the Karl Pearson system of curves
(Karl Pearson used the coefficients of skewness and kurtosis to compare the shapes of various
distributions used in hydrology), in that it allows the visual assessment of many probability
distributions in a single diagram. The usefulness of L-moment ratio diagrams in identifying
candidate distributions for the empirical data is well documented and illustrated in the literature.
See, for example, Vogel and Fennessey (1993), Hosking (1990) and Sankarasubramanian and
Srinivasan (1999).
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likelihood method. However, its asymptotic properties are open to doubt in the
case of small samples where convergence of the likelihood function is not always
guaranteed to be at the global maximum (Hill (1963)). For small samples, which
are the norm in EVT, the PWM is considered to generate more unbiased parameter
and quantile estimates than the maximum likelihood, though is no more efficient.
Hosking et al (1985) showed that for the GEV distribution, parameters and
quantiles made using the PWM method are estimated with at least 70% efficiency.
For example, when the shape parameter of the GEV is —0.2, the asymptotic bias
of the 0.01 quantile estimated by the PWM and maximum likelihood methods is
found to be —0.2 and 1.6, respectively. In addition, for shape parameter values in
the range —0.5 to 0.5 and samples of up to 100 observations, PWM estimates have
lower root-mean square error than estimates generated by the maximum likelihood
method. Similar results are reported in the literature for the GEV (Landwehr et al
(1979); Smith (1987)) and for the GP (Hosking and Wallis (1987); Roé6tzen and
Tajvidi (1997)). Hosking (1990) defined the PWM of a random variable X with a
finite mean and a distribution function F as:

B =ELX{F(X))], r=0,1,... “

where E[X (-)] is the expectation of the quantile function of X. Although, PWM
may be sensitive to outliers, Hosking (1990) demonstrated that there exist linear
relationships between the PWM and the more robust L-moments, given by:

,
T\ (T Tk
A,H:kzzop;fkﬂk, r=0,1,..., where Pf; =(—1) <k)( L ) (5)

This method involves estimating parameters by equating sample moments to those
of the chosen distribution. For the GEV and GL the solutions for the shape (),
scale () and location () parameter estimates can be found in Appendix A.

After fitting a distribution, it is important to assess how good the fit is. For this
reason the Anderson—Darling goodness-of-fit test is used (Anderson and Darling
(1954)). This is a test especially designated to measure discrepancies in the tails
between the empirical and theoretical distribution function and it has been found
to be the most powerful among a wide set of available tests for small samples
(Choulakian and Stephens (2001); Stephens (1976)). A tractable expression is
given in d’ Agostino and Stephens (1986):

Ar=—n—(1/n) Y [Q2i — l)logz; + Q2n+1-2i)log(1 —z)]  (6)

i=1

where z; = F(x;),i =1, ..., n,is the empirical distribution function of a variable
X of size n.

Once the empirical distribution of extremes has been adequately modeled,
VaR estimates for the daily returns distribution can be derived from estimates of
lower quantiles of the extremes distribution using the expressions for the quantile
functions found in Appendix A. VaR models can only be useful if their forecasts
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are sufficiently accurate and this is why any VaR model should be validated.
Backtesting is the task of systematically comparing the VaR forecasts with the
actual returns using historical data. The number of times that the VaR forecasts are
violated by the actual returns can then be counted and this serves as an indication
of how well calibrated a VaR model is.® For example, a daily VaR model is
assumed, which at the c% confidence level produces a total of N violations over a
testing period of 7" days. If the model is accurate then the failure rate, N/ T, should
be an unbiased estimator of p% = 1 — ¢%, where p is the probability of having
a VaR violation. Formally, we want to know whether the number of violations
is too large or too low at a given confidence level under the null hypothesis that
p% =1 — c%. This is particularly important since it is not desirable to either
underestimate or overestimate risk. Kupiec (1995) proposed a test based on a
likelihood ratio that balances the type 1 (rejecting a correct model) and type 2
(not rejecting an incorrect model) errors. This test is defined by:

T—N N
LRy = —2In[(1 = p) N pV] + 21“{[1 B (%)] <¥) } v

this likelihood ratio test statistic is then asymptotically distributed as a chi-square
with one degree of freedom.

However, this is a test that examines the average performance of a VaR
model but says nothing about whether or not the violations occur in clusters
(unconditional coverage (uc) test). Christoffersen (1998) extended this test to
account for the serial independence of violations. This conditional coverage (cc)
test uses an indicator that takes the value zero if the VaR estimate is not violated
by the actual return and the value of one if it is. Then v; can be defined as the
number of returns in state i while they have been in state j previously and r;
can be defined as the probability of having an exception that is conditional on
state i the previous day. Standard Markov chain theory can be used to show that
the likelihood ratio test statistic that tests for independence in the series of total
violations is given by:

LRing = =2 In[(1 — n)(¢00+<ﬂ10)n(¢01+<p11)J

+ 2 In[ (1 — )07 (1 — 1) ?107 /! | (8)

OThis idea is central in the Basel Committee on Banking Supervision (1996) recommendations
since in the absence of a validation method, financial institutions might have an incentive to
underestimate market risk, thus assigning too little capital as an MCR. The basic idea is that if
a model is perfectly specified then the number of reported violations over a time period should
be in line with the confidence level. For example, at the 95% confidence level it is expected that
the actual returns will be larger than the VaR forecasts only 5% of the time (eg, if 100 past daily
returns are used, five VaR violations are expected).
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Combining this test with the test for unconditional coverage forms the test for
conditional coverage:
LRcc = LRyc + LRing )

which is asymptotically chi-square distributed with two degrees of freedom.

Both tests are popular backtesting methods and, therefore, they are both
employed to assess the accuracy of the VaR estimates generated by the models
evaluated in this paper.

3 DESCRIPTION OF THE DATA

In order to assess the ability of the GEV and GL distributions to adequately
fit extreme returns, data from three different markets were used. In particular,
daily closing prices of the CAC-DS index for the French stock market’ and the
Commodities Research Bureau (CRB) index for the commodities market were
collected from Datastream over the period 1977 to 2006. For the bond market,
however, daily prices for the German 10 year benchmark bond index were only
available for the period 1980 to 2006. This time span contains the rather volatile
periods of 1978 to 1982, 1986 to 1988, 1990 to 1992 and 1997 to 2000 and 2001
to 2003 where some of the lowest daily returns for all three indexes occurred. In
particular, some of the most important events contained in this 30 year period are
the oil crisis in 1979, the global bond market crisis in the early 1980s, the collapse
of the international stock markets in 1987, the Gulf crisis in 1991, the collapse
of the exchange rate mechanism in 1992, the turbulence due to the Asian and the
Russian financial crises in 1997 and 1998 respectively, and the terrorist attack on
the US in September 2001.

Table 1 contains descriptive statistics of the three indexes daily returns. It can be
noticed that the CAC-DS offered the highest mean daily return, 0.04%; however, it
was also the more risky with a daily standard deviation of 1.14%. The lowest daily
return was given by the CAC-DS index, —9.89%, and the highest by the German
bond, 8.10%. The values of skewness for the CAC-DS and CRB indexes indicate

"The index used in this paper is not the well known CAC40 index. Instead, the market-value
weighted index that Datastream calculates is used and for familiarity reasons, it is denoted
as CAC-DS. The use of the CAC-DS index offers a number of advantages compared with its
CAC40 counterpart. Firstly, small capitalization firms are included and thus, the CAC-DS index
can be regarded as a more vigorous representation of the French stock market. Secondly, any
capital changes such as dividend distributions, rights offerings and stock splits are taken into
account and therefore no additional adjustments have to be made. Finally, it is available for
a relatively long period. This is extremely important for EVT analysis because the validity
of asymptotic theory is heavily based on the size of the database available. For example, the
CAC40 index started in 1987, while the CAC-DS index started in 1973. Thus, had we used the
CACA40, half the data would be available for EVT analysis. The corresponding Datastream code
is TOTMKEFR and the index is composed of 250 of the most heavily traded shares that aim to
cover the 70% to 80% of the total market capitalization. The CRB index is considered to be
a benchmark for the commodities markets. It is made up of 22 basic commodities and is very
sensitive to economic changes, thus indicating changes in business activity. Finally, the German
10 year benchmark bond is considered to be the barometer of the European bond markets.
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that the negative returns were larger than their positive counterparts while the
reverse is true for the German bond. In addition, the kurtosis values for all indexes
imply that the empirical distributions of daily returns were fat tailed. This finding
was also confirmed by the Jarque—Bera normality test that rejected the normality
assumption at the 5% significance level.

The daily returns of the three indexes can be further examined by standardizing
them, computing the pairs of empirical percentiles (1%, 99%) and (5%, 95%)
and comparing these with those of a standard normal distribution, ie, (—2.326,
2.326) and (—1.644, 1.644), respectively. For the CAC-DS, CRB and German
bond indexes daily returns the pairs of the (1%, 99%) and (5%, 95%) empirical
percentiles were found to be larger ((—2.884, 2.607), (—2.588, 2.533) and
(—2.586,2.893), respectively), and smaller ((—1.563, 1.487), (—1.679, 1.594) and
(—1.548, 1.612), respectively), respectively, confirming the presence of fat tails in
the empirical distribution of the daily returns. Furthermore, under the normality
assumption only 21 of 7,618 observations for the CAC-DS and CRB indexes and
18 of 6,847 observations for the German bond index would be expected to be
outside the range plus or minus three standard deviations away from the mean;
about 10 in each tail. However, for the CAC-DS, 103 observations were outside
this range (64 in the left and 39 in the right tail), for the CRB, 75 observations
were outside this range (40 in the left and 35 in the right tail) and for the German
bond 102 were outside this range (40 in the left and 62 in the right). Hence, the
hypothesis that the daily returns of the CAC-DS, CRB and German bond indexes
follow a normal distribution can be rejected. In this case it is the extremes that
mainly contribute to the non-normality of the daily returns distribution.

4 ANALYSIS OF THE EXTREME RETURNS

Weekly minima extremes were collected over the period 1977 to 2006 for the
CAC-DS and CRB indexes and 1980 to 2006 for the German 10 year benchmark
bond. Section 4.1 describes the identification of the appropriate distribution(s) and
Section 4.2 details the estimation of parameters and the goodness-of-fit test.

4.1 Identifying the distribution of the extreme minimum daily
returns

The L-skewness (73) and L-kurtosis (74) were calculated for the weekly minima
of the three indexes and were plotted on an L-moment ratio diagram. Figures 1, 2
and 3 contain the 73 and 74 for the series of the weekly minima for the CAC-DS
and CRB indexes divided into 30 subperiods and the German bond index divided
into 27 subperiods, respectively. From an initial inspection of these figures, it
seems that all the distributions can be excluded except for the GL and the GEV.
This is because for all three indexes the points of the 73 and 74 are mainly dispersed
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FIGURE 1 L-moment ratios diagram for the CAC-DS weekly minima.
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Note: This diagram illustrates the L-moment ratios points for the CAC-DS index daily returns weekly
minima, divided into 30 subperiods, over the period 1977 to 2006. The plots of the L-skewness and
L-kurtosis are mainly concentrated around the theoretical curves of the GL and the GEV distributions
indicating that these two distributions are likely to adequately fit the empirical data.

around the theoretical curves of the GL and the GEV distributions.® However,
in order to choose between the GL and the GEV distribution, further analysis
is required and a more formal test of goodness-of-fit of these two distributions
should be applied.

4.2 Parameter estimates and goodness-of-fit test

The GL and GEV distributions were fitted to the weekly minima for the whole
interval and for the different subdivisions of the extremes for all three indexes with
the parameters being estimated by the PWM method. The parameter estimates
together with their standard errors and the p-values of the Anderson-Darling
(AD) goodness-of-fit test for the CAC-DS, CRB and German bond indexes are
contained in Tables 2, 3 and 4 respectively. When the weekly minima of all
indexes for the whole interval were fitted by either the GL or GEV distributions,
the AD goodness-of-fit test indicated that both distributions provide a marginally
adequate fit to the CAC-DS empirical data, with AD p-values higher than 0.05
but lower than 0.100, and an inadequate fit to the CRB and German bond indexes

8The corresponding L-moment plots were also generated for the 10 subdivisions of the weekly
minima and similar patterns appeared. In the interest of brevity these diagrams are not included
in the paper; however, they are available from the author upon request.
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FIGURE 2 L-moment ratios diagram for the CRB index weekly minima.
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Note: This diagram illustrates the L-moment ratios points for the CRB index daily returns weekly
minima, divided into 30 subperiods, over the period 1977 to 2006. The plots of the L-skewness and
L-kurtosis are mainly concentrated around the theoretical curves of the GL and the GEV distributions
indicating that these two distributions are likely to adequately fit the empirical data.

FIGURE 3 L-moment ratios diagram for the German 10 year benchmark bond
weekly minima.
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Note: This diagram illustrates the L-moment ratios points for the German 10 year benchmark bond
daily returns weekly minima, divided into 27 subperiods, over the period 1980 to 2006. The plots of
the L-skewness and L-kurtosis are mainly concentrated around the theoretical curves of the GL and
the GEV distributions indicating that these distributions are likely to adequately fit the empirical data.
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with AD p-values lower than 0.05. One possible explanation is that the nature of
the distribution of the extremes was changing over time and, therefore, when long
time-periods were used the data came from a mixture of distributions; thus, it was
difficult for a single distribution to provide a superior fit.

However, when the weekly extremes were divided into 10 subperiods, the fit
that the two candidate distributions provided considerably improved. For example,
in the case of the CAC-DS index, both candidate distributions provided an
adequate fit in nine of the 10 subperiods while in comparison to each other, both
fitted better than the other in the same number of subperiods, ie, in five (Table 2).
It can be noticed, however, that both the GEV and GL distributions failed to
adequately fit the extremes in subperiod four which corresponds to a period
which contains the stock market crash in October 1987. It can also be noticed
that in this subperiod the shape parameter takes its maximum value, in absolute
terms, for both distributions indicating a fat-tailed distribution. Similarly, the
fitting that the GEV and GL provided to the weekly extremes of the CRB
index considerably improved when the data was divided into 10 subperiods
(Table 3). Both distributions fitted adequately in nine of the 10 subperiods while
in comparison each fitted better than the other one in five subperiods. It can be
noticed that both the GEV and GL failed to fit the extreme data in subperiod nine,
which is associated with the terrorist attack on the US in 2001, and the negative
market sentiment that followed. Finally, when the weekly extremes of the German
bond index were divided into 10 subperiods, the GL managed to fit better than
the GEV in six of these (Table 4). In addition, the GL fitted adequately in eight
subperiods while the GEV fitted adequately in seven.

When the weekly extremes were divided into 30 subperiods, both the GEV
and GL distributions appeared, in general, to be capable of describing well
the behavior of extremes of the CAC-DS, CRB and German bond indexes. In
particular, in the case of the CAC-DS, the GL distribution fitted adequately in 28
of the 30 subperiods, with AD p-values within the range 0.012 to 0.884, while
the GEV fitted in 26, with AD p-values ranging from 0.002 to 0.765 (Table 2). In
comparison to the GEV, the GL fitted better in 17 of the 30 subperiods. In addition,
the effects of domestic and international events become apparent in subperiod five
that is associated with the stock market turbulence due to the nationalization of
many large French companies, and periods 10 and 11 that are associated with
major political changes and the stock market crash respectively. Unsurprisingly
the p-values of the AD goodness-of-fit test were low: 0.041, 0.002 and 0.007
for the GEV and 0.093, 0.012 and 0.026 for the GL for subperiods 5, 10 and 11
respectively. One can notice, however, that both the GEV and GL distributions
can adequately fit the extreme daily returns in a number of other volatile time
periods; for example, the 1991 Gulf war (period 15), the European exchange rate
mechanism crisis in 1992 (period 16), the Asian crisis in 1997 (period 21), the
global turmoil due to the demise of the Long Term Capital Management hedge
fund (22) and the terrorist attack on the US in 2001 (period 25).

The observations in the case of the CRB and the German bond indexes are
similar. In short, in the case of the CRB index, the GL provided a better fit in
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VaR and extreme value distributions for financial returns

20 subperiods while the GEV provided a better fit in only 10 of the 30 subperiods
(Table 3). However, both provided an adequate fit in 28 of the 30 subperiods.
The p-values of the AD test were rather low in subperiods 26 and 27 and this
can probably be attributed to the volatile markets after the terrorist attack on the
US in September 2001. In the case of the German bond index weekly extremes
divided into 27 subperiods, the GL adequately described the empirical data in 20
subperiods while the GEV only in seven of the 27 subperiods (Table 4). Although
both candidate distributions provided an adequate fit in 20 subperiods with AD p-
values higher than 0.05, they did not manage to fit well the extremes in subperiods
1,2,4,5,12, 13 and 19. Subperiods 1 and 2 contain the bond market crash in the
early 1980s due to the inflationary fears and the Soviet invasion of Afghanistan
which followed a speculative boom in bonds in the late 1970s. In 1982 the bond
market started to recover but in the period 1983-1984 (subperiods 4 and 5) it
declined again, mainly due to inflationary expectations. Subperiods 12 and 13
correspond to the period 1991-1993 during which the global markets were rather
volatile because of the Gulf war and the collapse of the exchange rate mechanism.

In summary, both the GEV and GL distributions appeared to be able to
adequately model the extreme minima of the CAC-DS, CRB and German bond
indexes daily returns over the periods studied. However, overall the GL distribu-
tion provided a better fit than the GEV when several subperiods were used. This is
illustrated in Figure 4, which contains the lower tail cdfs of the empirical, normal,
GEV and GL distributions, where the superior fitting that the GL provides to the
really ruinous events located deep into the lower tail of the distribution becomes
apparent.

This is an important result because current applications of EVT in finance
focus on either the GEV or GP distributions and since these are less fat tailed
than the GL there is considerable chance that the probabilities of extreme events
are underestimated. Additionally, it seems that the nature of extremes changes
over time since the behavior of the shape parameter for both distributions varied
substantially across different subperiods. In particular, volatile subperiods that
contained large negative daily returns tended to result in higher shape values
than periods of low volatility that contained fewer and smaller negative daily
returns. This is expected to have a significant effect upon VaR estimates and
one would expect VaR estimates to be higher when the shape parameter values
were higher. Such a result would naturally lead to larger MCR for banks if
they were to be protected against large negative price movements. It seems that
parameter estimates that correspond to short subperiods should be used in VaR
estimation since this would allow VaR to respond quickly to the changes of the
macro- and microeconomic conditions prevailing in the market place. It can also
be noticed that the sign of the shape values for the GEV distribution changes
over time indicating that there is no unique distribution within the GEV family of
distributions that describes the empirical data well. This is in disagreement with
Gettinby et al (2004) and Longin (1996), who detected no sign of changes when
they fitted the GEV distribution to the extreme returns of the UK and US stock
markets, respectively. Finally, one could also observe that the parameter estimates
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FIGURE 4 CAC-DS daily returns lower tail fitted by the normal, GEV and GL
distributions.
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Note: This diagram illustrates the empirical distribution function (in log scale) of the CAC-DS index
daily returns and the fit that the cdfs of the normal, GEV and GL distributions provide over the period
02/28/01 to 02/28/02.

standard errors are low for the location and scale but rather large for the shape
parameter; in general, the larger the dataset fitted the smaller the standard errors
that can be attributed to the larger number of observations.

5 ESTIMATING VALUE-AT-RISK USING EXTREME VALUE THEORY

VaR estimates for the CAC-DS, CRB and German bond indexes daily returns were
derived from lower quantiles of the distribution of extremes using the parameter
estimates associated with the GEV and GL distributions. For the CAC-DS and
CRB indexes the 30 subdivisions and for the German bond the 27 subdivisions of
the weekly extremes time series were chosen to allow the parameters to change
relatively frequently; about every year (static approach). However, the indication
that the nature of extremes distribution is time variant suggests that more frequent
updating of parameters might be more realistic. Consequently the parameters for
the weekly minima were also estimated using moving windows of lengths 50,
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100, 200 and 300 (moving window approach). ! The set of confidence levels
used comprise 97.50%, 99.00%, 99.50%, 99.75% and 99.90%. For comparison,
VaR estimates generated by traditional methods such as VC, HS, EWMA and
Monte Carlo simulation based on the normal distribution were also derived. For
these methods 250, 500, 1,000 and 1,500 past daily returns were used for model
calibration.!! In order to examine the performance of each approach the results
were out-of-sample backtested over the period January 2, 1987 to December 31,
1991; this period contains some of the largest negative daily returns in all three
markets. In addition, this period is of large enough size (1,267, 1,275 and 1,260
daily returns for the CAC-DS, CRB and German bond indexes, respectively), to
be considered adequate for statistical evaluation. Tables 5, 6 and 7 contain the VaR
backtesting results for the CAC-DS, CRB and German bond indexes, respectively,
which are presented in terms of the number of VaR forecasts violations by
the actual returns followed by the corresponding Kupiec and Christoffersen test
statistic p-values.

For the CAC-DS index the time period January 2, 1987 to January 2, 1992 is a
rather volatile one (standard deviation is 1.18%) with negative skewness (—1.109)
and high kurtosis (12.893). Unsurprisingly, the VC method underestimated risk by
a considerable amount since it gave more violations than would be expected from
an accurately calibrated model; however, the underestimation was not very severe
at the 97.50% confidence level but it became worse as we moved further into the
lower tail. The inability of this model to adequately describe the tails of the returns
distribution is rather serious; for example, at the 99.90% confidence level only

9The underlying principle behind the choice of the number of daily returns used for the
traditional methods, the number of subperiods into which the minima were divided in the static
approach and the length of the moving window used, was to compare the VaR results based on
the same informational time periods. For example, 250 daily returns correspond to about one
trading year. When the series of weekly minima is divided into 30 subperiods the parameters
derived also correspond to about one year. The same is true when a moving window of length
50 weekly minima is used.

1OGen(;ay and Selcuk (2004) argued that the usefulness of EVT methods in VaR estimation can
be enhanced by allowing for the possibility that the parameters may change over time. There
have been attempts to take into account the time varying distributional characteristics of the
extremes by using autoregressive processes (McNeil and Frey (2000); Pownall and Koedijk
(1999)) or quantile regression techniques (Engle and Manganelli (2004)). More recently, Bali
and Weinbaum (2005) introduced a conditional EVT volatility estimate, while Bali and Neftci
(2003) modeled the parameters of the extremes’ distribution as a function of past information
in order to capture the time varying nature of extremes. However, these approaches introduce
yet more parameters in to the modeling procedure and this is likely to result in larger estimation
errors and possibly even more inaccurate VaR estimates.

U1y order for the EWMA method to effectively take account of 250, 500, 1,000 and 1,500 past
daily returns in the estimation of volatility, the parameter A was set to 0.996, 0.998, 0.999 and
0.9993333332, respectively. For the Monte Carlo simulation method the normal distribution
was assumed and for each daily VaR estimate 10,000 random scenarios were generated. Use
of fewer than 250 and 500 past daily returns for the historical simulation method makes it
impossible to generate estimates at some of the highest confidence levels because the dataset
becomes too small. For example, the calculation of 99.90% VaR requires at least 1,000 daily
returns.
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one violation was expected but the VC method provided 10 to 14 violations.!?

The HS method, on the other hand, provided much better results, especially at
high confidence levels where the p-values of both the Kupiec and Christoffersen
test statistics were acceptable. As the number of past daily returns used increased,
the HS provided very good results at the higher confidence levels of 99.75% and
99.90%, although its accuracy decreased at lower confidence levels. Finally, the
EWMA and MCS methods were the least accurate models at all confidence levels,
with the exception of the EWMA method at the 97.50% confidence level. This was
probably because the EWMA tends to react quickly to volatility changes but only
after the event, while for the MCS it is probable that the normal distribution was
not a good model for the daily returns over this time period.

The VaR results generated using EVT methods were examined next, starting
with the static approach. It is noticeable that both the GEV and GL distributions
underestimated risk with more violations being recorded than would be expected
at all confidence levels with the exception of the 99.90%. A possible explanation is
that volatility was changing quickly during this time period while the parameters
of the distributions were changing only once every year and so the parameters did
not adequately reflect current market conditions. The moving window approach
was slightly better than the static approach with the GL performing a little better
than the GEV distribution. Overall, the only substantial advantage that accrued
from the use of the GEV and GL distributions was the accurate prediction of the
tail event at the 99.90% confidence level.

The distribution of the CRB index daily returns over the time period under
examination was not very volatile (standard deviation was 0.60%) with rather low
skewness (—0.353) and kurtosis (2.234). As can be seen in Table 6, the VC model
was seriously inaccurate at higher confidence levels regardless of the number
of past returns used. For example, at the 99.75% confidence level the expected
number of VaR violations was three but 11 to 14 were observed. The HS method
tended to provide accurate VaR estimates at the 97.50% and 99.00% confidence
levels when 250 and 500 past daily returns were used but this method did not
capture all VaR excesses at the 99.90% confidence level regardless of the number
of past returns used. The three VaR violations at the 99.90% confidence level
when 1,000 past returns were used correspond to the negative returns of —2.02%
(May 18, 1987), —2.85% (June 22, 1987) and —3.25% (July 26, 1988) which can
be very important if we consider that the CRB index is used as an underlying
asset for futures and options contracts. The EWMA, on the other hand, was not
particularly accurate at any confidence level. As can be expected, the performance
of the MCS method was also poor, especially at high confidence levels which
could be attributed to the inability of the normal distribution to provide good

2The 11 largest unexpected VaR violations from the VC250 were —3.59% (May 15, 1987),
—3.54% (October 15, 1987), —9.89% (October 19, 1987), —7.89% (October 26, 1987), —8.43%
(October 28, 1987), —7.86% (November 10, 1987), —6.24% (October 16, 1989), —4.73%
(August 6, 1990), —3.23% (August 20, 1990), —3.62% (August 21, 1990) and —6.77% (August
19, 1991).
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descriptions of the daily returns distribution. The performance of the GEV and
GL distributions based on either the static or moving window approaches was
accurate only at the 99.90% confidence level since at all other confidence levels
the number of VaR violations were greater than expected.

An examination of Table 7, which contains the VaR results for the German
bond, reveals similar patterns with respect to the ability of the VaR models used
in this study to provide accurate VaR forecasts. In particular, the VC method is
inaccurate at all confidence levels except the 99.00%, where 13 VaR violations
were expected and the VC provided 12 to 14. However, the low p-values of the
Christoffersen test statistic imply that these violations occurred in clusters. The
HS performs rather well deep into the tails of the returns distribution where only
one violation occurred; however, at least 1,000 past returns are needed for such an
accurate prediction. The EWMA method also performed rather well at the 99.90%
but it was very inaccurate at the other confidence levels. The MCS was again
very inaccurate at all confidence levels mainly due to the inaccurate assumption
that daily returns follow a normal distribution. Probably, the most accurate VaR
predictions of the extreme events came from the EVT method. In particular, the
events that correspond to the 99.75% and 99.90% confidence levels were predicted
quite well by both the GL and GEV distributions, with the GL being slightly better
at the 99.75% confidence level.

In summary, EVT-based VaR estimates were found to be more accurate at high
confidence levels compared with methods that assume that returns are normally
distributed. The only other method which performed well was the HS; however,
for estimates deep into the tail of the returns distribution, data availability might
be an issue. At low confidence levels, EVT-based VaR did not offer any benefits
over less sophisticated methods but this is to be anticipated since EVT focuses on
the tails of the returns distribution and not its central part.

6 IMPLICATIONS FOR REGULATORS AND FINANCIAL INSTITUTIONS

The fundamental objectives of financial regulators and financial institutions are
quite different. Regulators are mainly interested in reinforcing the stability of
the financial system and, therefore, would tend to favor the most conservative
VaR model: the one which results in the highest MCR. On the other hand,
the profitability of financial firms is directly linked to the use of VaR models
since the MCR is non-investable capital. Therefore, as Danielson et al (2001)
argued, investment banks have incentives to favor VaR models that result in
lower MCR, thus exposing financial firms to the really ruinous events located
deep into the tail of the returns distribution. According to the Basel Committee
on Banking Supervision (1996), a financial institution can choose between the
standard approach proposed by the Bank for International Settlements (BIS) and
their internal VaR model when calculating MCR. However, for those who choose
to use in-house models, regulators require that VaR estimates should be multiplied
by a factor of at least three. Based on the backtesting evaluation of a bank’s
VaR model, BIS may increase the multiplier further by an increment between
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zero and one. This rule has been criticized by many researchers (Longin (2000);
Danielson et al (1998)) as being too crude giving rise to high MCR values; thus it
eliminates any incentives that banks might have to improve their internal models.
According to the standard approach, the MCR of an equity position must be at
least 12% of the position and aims to cover the maximum loss over a period of
10 days.!3 Thus, approximately, dividing by the square root of 10 we could derive
the daily capital charge: that is 3.79%.

Table 8 contains the daily VaR estimates for the CAC-DS, CRB and German
bond indexes daily returns on the October 19, 1987, July 26, 1988 and October
20, 1987, respectively, which are the dates where the minimum daily returns
occurred (—9.89%, —3.25% and —5.23% for the CAC-DS, CRB and German
bond indexes, respectively). Clearly, in the case of the CAC-DS index, the capital
charge of 3.79% is much less than the actual loss of —9.89% implying that the
standard approach of BIS offers inadequate coverage against extreme events. On
the other hand, the use of EVT can provide far better predictions against these
rare market movements. For example, the VaR estimate at the 99.90% confidence
level provided by the GL-MW-W100 is —9.33%, which is very close to the actual
daily return of —9.89%. The best prediction derived using traditional methods was
—5.97% by the HS1000 and HS1500; however, a far from adequate estimation.
However, if a bank was to multiply the VaR estimates derived by EVT by a factor
between three and four, the capital charges would be enormous (eg, between 29%
and 37%). Therefore, although EVT can provide accurate tail predictions, the use
of the multiplication factor will make MCRs very high, thus deterring banks from
considering its use.

When the VaR estimates for the CRB index on July 26, 1988 are examined a
quite different picture emerges. In particular, it appears that the EVT methods
either underestimates or overestimates risk. For example, the VaR estimates
given by the GL-MW-W50 method are —2.75% at the 99.75% confidence level
and —6.09% at the 99.90% confidence level. This is probably because the
distribution of the CRB index daily returns was not fat tailed during that period;
in fact the kurtosis was 2.234. Consequently, other methods appear to provide
better estimates of the extreme event (eg, the EWMA at the 99.75% confidence
level). In the case of the German bond index, the daily return that occurred
on October 20, 1987 was —5.23% while the empirical distribution of returns
was almost symmetrical but with a kurtosis value of 6.418. It can be noticed
that none of the traditional VaR methods provided an accurate forecast of the
actual return. The EVT based VaR estimates tended to underestimate risk by
a smaller amount at the 99.75% confidence level compared to the traditional

13A 4% of capital is charged for the specific risk and 8% of capital for the general market risk.
The BIS defined specific risk to be the gross equity position in the market as a whole (the sum
of all long and all short equity positions) and general market risk to be the net equity position
(the difference between the sum of the long and the sum of the short equity positions). The
capital charge for specific risk is 8% but if the portfolio is well diversified and liquid reduces
to 4%. The indexes used in this paper can be considered to be both well diversified and liquid
portfolios, therefore a capital charge of 4% for specific risk is assumed.
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VaR and extreme value distributions for financial returns

methods while they tended to overestimate risk at the high confidence level of
99.90%. For example, at the 99.75% confidence level the closer VaR estimate to
the actual return was provided by the GL-static-W30 method (—4.76%) while
at the 99.90% confidence level the best estimate was provided by the GEV-
MW-W50 method (—7.00%). Despite the overestimation of risk, these EVT
based VaRs would provide an adequate coverage against catastrophic losses.
However, applying the BIS multiplication factor would render these VaR estimates
extremely conservative leading to huge MCR.

In addition, Jorion (2002) argued that financial institutions would tend to favor
VaR models that generate estimates of low variability because they would not
be forced to sell assets or change their trading strategies frequently in order to
satisfy regulatory requirements. Table 9 contains the standard deviation of the
VaR estimates during the time period January 2, 1987 to December 31, 1991.
The variability of the EVT based VaR is, in general, similar to the variability of
VaR provided by the other methods. However, at the 99.90% confidence level, the
EVT-based VaR estimates are much more volatile. It can also be noticed that the
standard deviation of the CAC-DS index VaR at the 99.90% confidence level is
much higher than those of the CRB and German bond indexes. This feature can
probably be attributed to the fatter-tailed distribution of the CAC-DS index daily
returns. Taking into account, therefore, the objectives of a financial institution and
the volatile and relatively large VaR values that the EVT method provides at the
99.90% confidence level, it could be argued that a financial institution would be
reluctant to adopt EVT analysis in VaR modeling unless the multiplication factor
was to be reduced or even abolished.

7 CONCLUSION

In this paper EVT methods were used to derive VaR estimates related to the lower
tail of the daily returns of the CAC-DS, CRB and German bond indexes. The
analysis of extremes revealed that the too much celebrated GEV distribution is
not the best model for the extreme minima of the daily returns since a fatter-
tailed distribution, the GL, offers better descriptions. Considering that current
applications of EVT in finance focus on either the GEV or GP distributions
the implication is that the probabilities of the ruinous extreme events may be
underestimated. The results also indicated that the behavior of extremes is time
variant and it is affected by economic and political events.

With respect to VaR, the empirical results indicated that EVT methods can be
valuable when the interest is in protecting a portfolio from the really catastrophic
events located deep in the lower tail of the returns distribution. At low confidence
levels, however, EVT based VaR did not offer any benefits over less sophisticated
methods but this was to be expected since EVT focuses on modeling the tails of the
returns distribution and not its central part. EVT based VaR estimates were also
found to be larger than those derived by traditional methods, leading to higher
MCR. In that respect, one could argue that the BIS multiplication factor is too
high, thus discouraging financial institutions from adopting EVT methods when
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deriving VaR. The results also showed that techniques which capture some of the
time variant nature of the extremes distribution have the potential to improve the
accuracy of VaR estimates since current market conditions are explicitly taken
into account.

APPENDIX A

The GEV and GL are three parameter distributions which have cdfs, quantile
functions and parameter estimates as shown in Table A.1. The parameters k, «
and B are called the shape, scale and location, respectively.

TABLE A.1
Generalized extreme value Generalized logistic
Cumulative distribution function (cdf)
Fx)=e¢" Fx)=1/(14¢eY)
Quantile function
— (= K _ _ K
X(F) = B+oafl — (—log F)}/k, k#0 X(F) = Btall—{(1—-F)/}1/k, «#0
B —alog(—log F), k=0 B —alog{(l1 —F)/F}, k=0
Parameter estimates
K = 7.8590c + 2.9554¢2 K =—13
wherec:i(zﬁ1 —bo) _In2
(3B2—po) In3
Ak Ao
@ = [ R E—
(1 =21 +«) T'(1— )1 +x)
ﬁ:xl—%{l—l"(l—l—/()} ﬂ:Al—%{l—F(l—K)F(1+K)}
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