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This article analyzes optimal, dynamic portfolio and wealth/consumption policies of util-
ity maximizing investors who must also manage market-risk exposure using Value-at-
Risk (VaR). We find that VaR risk managers often optimally choose a larger exposure
to risky assets than non-risk managers and consequently incur larger losses when losses
occur. We suggest an alternative risk-management model, based on the expectation of a
loss, to remedy the shortcomings of VaR. A general-equilibrium analysis reveals that the
presence of VaR risk managers amplifies the stock-market volatility at times of down
markets and attenuates the volatility at times of up markets.

In recent years, we have witnessed an unprecedented surge in the usage of
risk management practices, with the Value-at-Risk (VaR)–based risk manage-
ment emerging as the industry standard by choice or by regulation [Jorion
(1997), Dowd (1998), Saunders (1999)]. VaR describes the loss that can
occur over a given period, at a given confidence level, due to exposure to
market risk. The wide usage of the VaR-based risk management (VaR-RM)
by financial as well as nonfinancial firms [Bodnar et al. (1998)] stems from
the fact that VaR is an easily interpretable summary measure of risk1 and
also has an appealing rationale, as it allows its users to focus attention on
“normal market conditions” in their routine operations. However, evidence
abounds that in practice VaR estimates not only serve as summary statis-
tics for decision makers but are also used as a tool to manage and control
risk—where economic agents struggle to maintain the VaR of their market
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exposure at a prespecified level.2 Surprisingly, the academic literature has
largely overlooked this fact; at present, we lack rigorous understanding of
its economic implications, and, in particular, little is known about optimal
behavior consistent with the VaR-RM.
Our goal is to undertake a comprehensive analysis of the VaR-RM while

retaining the standard financial economics paradigms of rational expecta-
tions, utility maximization, and market clearing. In particular, we study the
implications of the VaR-RM for optimal portfolio policies, (horizon) wealth
choice, and equilibrium prices. To the best of our knowledge, ours is the
first attempt to directly embed risk management objectives into a utility-
maximizing framework. Recognizing that risk management is typically not
an economic agent’s primary objective, we focus on portfolio choice within
the familiar (continuous time) complete markets setting, where the novel fea-
ture of our analysis is the assumption that agents may limit their risks while
maximizing expected utility. In particular, we assume that a risk-managing
agent is constrained to maintain the VaR of horizon wealth at a prespecified
level; in other words, he is constrained to maintain, below some prespecified
level α, the probability of his wealth falling below some “floor.” Our setting
has the convenient property that it nests (α = 1) the benchmark agent [who
does not limit losses; Karatzas et al. (1987), Cox and Huang (1989)] and
(α = 0) the portfolio insurer [who maintains his horizon wealth above the
floor in all states; Grossman and Vila (1989), Basak (1995), Grossman and
Zhou (1996)].
Our main results are as follows: First, under general security price uncer-

tainty and general state-independent preferences, we show that an agent, with
his VaR capped, optimally chooses to insure against intermediate-loss states,
while incurring losses in the worst states of the world. The somewhat sur-
prising feature of the solution is that the uninsured states are chosen inde-
pendently of preferences and endowments; they are simply the worst states
up to a probability of exactly α. The intuition is that the VaR risk manager is
willing to incur losses in compliance with the VaR constraint, and it is opti-
mal for him to incur losses in those states against which it is most expensive
to insure. We exhibit a problematic feature of the derived optimal behavior,
in that although the probability of a loss is fixed, when a large loss occurs,
it is larger than when not engaging in the VaR-RM.
Second, under constant relative risk aversion (CRRA) preferences and

lognormal state prices, we show the VaR risk manager’s dynamic portfolio
choice to deviate considerably from that of a portfolio insurer and a bench-
mark agent. The deviation is most pronounced in “transitional” states, where

2 See, for example, the lead article of the Economist (October 17, 1998), Smith et al. (1995), and Jorion
(1999). The risk-monitoring facet of VaR is encouraged by regulators, and to that end, the Basle Committee
on Banking Supervision (and the Federal Reserve, in particular) decided, effective January 1998, to allow
large banks the option to use a VaR measure to set the capital reserves necessary to cover their market-risk
exposure. Regulators expect social benefits, assuming the VaR-RM to reduce the likelihood of large-scale
financial failures.
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there is the highest uncertainty regarding whether losses will occur. Then, the
risk manager takes on large equity positions to finance a high wealth level,
should economic conditions turn favorable at the horizon, while allowing for
large losses in unfavorable conditions.
Third, recognizing the shortcomings of the VaR-RM to stem from its

focus on the probability of a loss, regardless of the magnitude, we propose
and evaluate an alternative form of risk management that maintains lim-
ited expected losses (LEL) when losses occur. In contrast to the VaR-RM,
under the LEL-based risk management (LEL-RM), when losses occur, they
are lower than those when not engaging in the LEL-RM. For reasonable
parameter values, expected losses under the VaR-RM may be several times
larger than those under the LEL-RM. Our model abstracts away imperfections
and externalities that lead regulators to encourage risk-management practices.
However, our analysis predicts that if regulators, and hence risk managers, are
concerned with disclosing and monitoring expected losses (instead of VaR),
then agents’ optimal behavior should be consistent with reducing losses in
any of the most adverse states of the world.
Finally, to investigate the impact of extensive usage of the VaR-RM, we

move from the partial equilibrium analysis to a general equilibrium setting.
We allow agents to consume continuously, while keeping the VaR of their
horizon wealth at a prespecified level. For tractability and realism, we do
not require the VaR horizon to coincide with the investment horizon. We
work in a familiar Lucas (1978)–type pure exchange economy populated by
a representative VaR risk manager and a representative non-risk manager,
both long-lived beyond the VaR horizon. Our focus is on the implications
for stock market price dynamics. We find that when the economy contains
VaR risk managers, the stock market volatility (and risk premium) increases
relative to the benchmark case in down markets and decreases in up markets.
The highest departure from the benchmark occurs as a response to VaR risk
managers’ aggressive bidding for stocks in the “transitional” states.
Our results may shed some light on the controversy surrounding the large

losses incurred by some banks and hedge funds during the recent (August
1998) stock market downturn. If indeed, as it appears, there was a preva-
lent use of VaR-based models of risk management by these institutions
(Economist, October 17, 1998), then assuming deteriorating fundamentals,
our model offers a rational explanation for their large losses. It is also inter-
esting to note that the recent downturn was associated with high stock market
volatility, consistent with our general equilibrium results. According to our
model, when the fundamentals are deteriorating, it is then, in the transition
from the good states of the world to the bad states, that the presence of VaR
risk managers in the economy should cause the stock volatility to increase
relative to the benchmark.
The extant VaR-related academic literature focuses mainly on measuring

VaR [see, for example, Linsmeier and Pearson (1996), Duffie and Pan (1997),
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Engle and Manganelli (1999)], or on theoretically evaluating properties of
VaR and other risk measures [Artzner et al. (1999), Cvitanić and Karatzas
(1999), Wang (1999)]. Closer to our work is the line of research that analyzes
what may be broadly referred to as mean-VaR optimization. This analysis
was initiated by the early studies on shortfall constraints [see the safety-first
approach of, for example, Roy (1952), Telser (1956), Kataoka (1963)], and
is extended in the recent studies that explicitly address the VaR-RM [see,
for example, Klüppelberg and Korn (1998), Alexander and Baptista (1999),
Embrechts et al. (1999), Kast et al. (1999)]. However, these mean-VaR stud-
ies do not actually embed the VaR-RM into a mean-variance preference-based
optimization, but instead compare the two approaches and, in particular, link
between mean-variance and mean-VaR efficient frontiers.3 We study a more
general preference structure and, most important, do not treat expected util-
ity maximization and risk management as mutually exclusive activities, but
merge the two into one optimization problem.
A different approach is presented by Luciano (1998) who, as we do,

focuses on optimal portfolio policies of a utility-maximizing agent and also
maps the VaR regulatory requirements into a constraint similar to ours. Rather
than explicitly applying the constraint to the agent’s optimization problem,
she analyzes deviations from the constraint, having solved the unconstrained
optimization (with and without bid-ask spreads). Such an analysis can be
viewed as complementary to ours, as it allows one to examine whether
an optimizing agent would automatically comply with the VaR regulation
(or with what probability he would do so). In contrast, we apply the VaR
constraint directly to the utility maximization problem, which allows us to
analyze the impact of the VaR-RM on endogenously determined economic
quantities. Moreover, ours is the only work to address VaR-related issues in
a dynamic general equilibrium setting.
The remainder of the article is organized as follows. Section 1 describes the

economy. Section 2 solves the individual’s optimization problem under VaR-
RM, and Section 3 analyzes the optimization under LEL-RM. Section 4 pro-
vides the equilibrium analysis. Section 5 concludes the article. The Appendix
contains the proofs.

1. The Economic Setting

1.1 The economy
We consider a finite-horizon, [0, T ], economy with a single consumption
good (the numeraire). Uncertainty is represented by a filtered probability

3 Ahn et al. (1999) also explicitly acknowledge economic agents’ wish to limit the VaR of their market exposure,
and they address the question of how to design a put option to minimize the VaR of a position in a stock and
options, given a cost constraint on hedging. In the context of developing a model of international portfolio
choice, Das and Uppal (1999) constrain the distribution of an agent’s portfolio return, imposing an upper
bound on the portfolio’s excess kurtosis. They interpret this constraint as an implicit limit the agent imposes
on the portfolio’s VaR.
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space (�,F, {Ft}, P ), on which is defined an N -dimensional Brownian
motion w(t) = (w1(t), . . . , wN(t))

�, t ∈ [0, T ]. All stochastic processes
are assumed adapted to {Ft ; t ∈ [0, T ]}, the augmented filtration generated
by w. All stated (in)equalities involving random variables hold P -almost
surely. In what follows, given our focus is on characterization, we assume all
stated processes to be well defined, without explicitly stating the regularity
conditions ensuring this.4

Investment opportunities are represented by N + 1 securities; an instanta-
neously riskless bond in zero net supply, and N risky stocks, each in constant
net supply of 1 and paying dividends at rate δj , j = 1, . . . , N . The bond
price, B, and stock prices, Sj , are assumed to follow

dB(t) = B(t)r(t) dt, (1)

dSj (t)+ δj (t) dt = Sj (t)[µj(t) dt + σj (t) dw(t)], j = 1, . . . , N, (2)

where the interest rate r , the drift coefficients µ ≡ (µ1, . . . , µN)
�, and

the volatility matrix σ ≡ {σjk, j = 1, . . . , N; k = 1, . . . , N} are possibly
path-dependent.
Dynamic market completeness (under no arbitrage) implies the existence

of a unique state price density process, ξ , given by

dξ(t) = −ξ(t)[r(t) dt + κ(t)�dw(t)], (3)

where κ(t) ≡ σ(t)−1(µ(t)− r(t)1̄) is the market price of risk (or the Sharpe
ratio) process, and 1̄ ≡ (1, . . . , 1)�. The quantity ξ(T , ω) is interpreted as
the Arrow-Debreu price per unit probability P of one unit of consumption
good in state ω ∈ � at time T .
Each agent i in the economy is endowed at time 0 with eij shares of the

risky security j , providing him with an initial wealth of Wi(0) = e�
i S(0).

(As our focus until Section 4 is on the optimal behavior of a single risk-
managing agent, we drop, for now, the subscript i.) Each agent chooses a
nonnegative, terminal-horizon wealth W(T ) and a portfolio process θ , where
θ(t) ≡ (θ1(t), . . . , θN(t))

� denotes the vector of fractions of wealth invested
in each stock. The agent’s prehorizon wealth process W then follows

dW(t) = W(t)
[
r(t)+ θ(t)�(µ(t)− r(t)1̄)

]
dt

+W(t)θ(t)�σ(t) dw(t). (4)

Each agent is assumed to derive state-independent utility u(W(T )) over ter-
minal wealth. The function u(·) is assumed twice continuously differentiable,

4 Anticipating the quantities to be introduced in this section and in Section 4, see, for example, Karatzas and
Shreve (1998) for the required integrability conditions on consumption policies, prices, and portfolio holdings,
as well as the associated Novikov’s condition. In the equilibrium constructed in Section 4, these conditions
[which, in particular, guarantee nonsingularity of σ in Equation (2)] can be shown to be satisfied.
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strictly increasing, strictly concave, and to satisfy limx→0 u
′(x) = ∞ and

limx→∞ u
′(x) = 0.

1.2 Modeling the VaR-RM
The financial industry has standardized on the following definition
of V aR(α) [see, for example, Duffie and Pan (1997), Jorion (1997)]: It is
the loss, which is exceeded with some given probability, α, over a given hori-
zon. Assuming the VaR horizon to coincide with the investment horizon, this
definition translates into our setting as

P(W(0)−W(T ) ≤ V aR(α)) ≡ 1 − α, α ∈ [0, 1]. (5)

Note that VaR can be interpreted as the worst loss over a given time interval,
under “normal market conditions.”
Our objective is to embed the VaR-RM strategy into a utility maximizing

framework. This could be interpreted either as an agent himself managing
risk or as an intermediary managing risk on the agent’s behalf, using the VaR
approach. The most convenient and natural way to embed the VaR-RM is to
assume that an additional constraint is imposed on the agent’s optimization
problem, requiring the V aR(α) to be maintained below some prespecified
level, that is,

V aR(α) ≤ W(0)−W, (6)

where the “floor” W is specified exogenously. Equations (5)–(6) can be com-
bined to yield the “VaR constraint”:

P(W(T ) ≥ W) ≥ 1 − α. (7)

Constraint (7) requires of an agent that only with probability α, or less, will
he lose more than W(0) −W . Clearly, if P(WB(T ) ≥ W) > 1 − α for the
wealth in the benchmark (B) case of no constraints, then the VaR constraint
never binds, V aR(α) < W(0)−W ; otherwise, V aR(α) = W(0)−W .
Note that the formulation in (7) nests the B-case; specifically, when α = 1

the VaR constraint is never binding. More interestingly, when α = 0, our
formulation reduces to the case of portfolio insurance (PI), which constrains
the horizon wealth to be above the floor W in all states [see, for example,
Grossman and Vila (1989), Basak (1995), Grossman and Zhou (1996)]. One
can thus view the VaR constraint as a “softer” portfolio-insurance constraint,
permitting the portfolio value to deteriorate below the floor of W with a
prespecified probability.

2. Optimization under VaR-RM

In this section, we solve the optimization problem of a VaR risk manager
and then analyze the properties of the solution.
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2.1 Agent’s optimization
We solve the dynamic optimization problem of the VaR agent using the
martingale representation approach [Karatzas et al. (1987), Cox and Huang
(1989)], which allows the problem to be restated as the following static
variational problem:

max
W(T )

E[u(W(T ))]

subject to E[ξ(T )W(T )] ≤ ξ(0)W(0), (8)

P(W(T ) ≥ W) ≥ 1 − α.

We note that the VaR constraint complicates the maximization by introduc-
ing nonconcavity into the problem. Proposition 1 characterizes the optimal
solution, assuming it exists.5

Proposition 1. The time-T optimal wealth of the VaR agent is

WVaR(T ) =



I (yξ(T )) if ξ(T ) < ξ ,

W if ξ ≤ ξ(T ) < ξ̄ ,

I (yξ(T )) if ξ̄ ≤ ξ(T ),

(9)

where I (·) is the inverse function of u′(·), ξ ≡ u′(W)/y, ξ̄ is such that
P(ξ(T ) > ξ̄) ≡ α, and y ≥ 0 solves E[ξ(T )WVaR(T ; y)] = ξ(0)W(0).
The VaR constraint in (7) is binding if, and only if, ξ < ξ̄ . Moreover, the
Lagrange multiplier y is decreasing in α, so that y ∈ [yB, yPI ].

Figure 1 depicts the optimal terminal wealth of a VaR agent [α ∈ (0, 1)],
a benchmark agent (α = 1) and a portfolio insurer (α = 0). Here, W is
defined by

W ≡
{
I (yξ̄ ) if ξ < ξ̄,

W otherwise.

In “good states” [low ξ(T )], the portfolio insurer behaves like a B-agent,
but then he must insure against all unfavorable [high ξ(T )] states. In con-
trast, Figure 1 reveals the VaR agent to endogenously classify unfavorable
states into two subsets: the “bad states” [ξ(T ) ≥ ξ̄ ], which he leaves fully
uninsured, and the “intermediate states” [ξ ≤ ξ(T ) < ξ̄ ], which he fully
insures against.6 Because he is only concerned with the probability (and not
the magnitude) of a loss, the VaR agent chooses to leave the worst states

5 We prove that if a terminal wealth satisfies (9) then it is the optimal policy for the VaR agent. As we note in
the proof, to keep our focus, we do not provide general conditions for existence. However, we will provide
explicit numerical solutions for a variety of parameter values. From (9), a feasibility bound on W for a
solution is W ≤ W(0)ξ(0)/E[ξ(T )1{ξ(T )<ξ̄}]. Our method of proof is applicable to other problems, such as
those with nonstandard preferences.

6 In the equilibrium analyzed in Section 4, we will verify that “good states,” low price of consumption ξ(T ),
are associated with a high equity-market value, and vice versa for “bad states,” high ξ(T ).
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Figure 1
Optimal horizon wealth of the VaR risk manager
The figure plots the optimal horizon wealth of the VaR risk manager (Proposition 1) as a function of the
horizon state price density ξ(T ). The dashed plot is for the unconstrained benchmark agent B, the dotted plot
is for the portfolio insurer PI. The VaR risk manager’s optimal horizon wealth falls into three distinct regions,
where he exhibits distinct economic behavior. In the good states [low ξ(T )], the VaR agent behaves like a
B agent. In the intermediate states [ξ ≤ ξ(T ) < ξ̄ ] he insures himself against losses, behaving like a PI agent,
and in the bad states [high ξ(T )] he is completely uninsured, incurring all losses.

uninsured because they are the most expensive ones to insure against. The
measure of these bad states is chosen to comply exactly with the VaR con-
straint. Consequently, ξ̄ depends solely on α and the distribution of ξ(T ) and
is independent of the agent’s preferences and endowment. The agent can be
thought of as “ignoring” losses in this upper tail of the ξ(T ) distribution,
where consumption is the most costly.
Inspection of Figure 1 allows us to summarize the dependence of the

solution on the parameters W and α. As the floor is increased, more states
need to be insured against, and the intermediate region grows at the expense
of the good-states region. Accordingly, the wealth in both good and bad
regions must decrease to meet the higher floor in the intermediate region.
As α increases, that is, the agent is allowed to make a loss with higher
probability, the intermediate, insured region can shrink, and the good and
bad regions both grow. The agent’s horizon wealth can increase in both the
good and bad states because he is not required to insure against as large a
state space. Consequently, in the bad-states region WVaR(T ) < WB(T ) <

WPI (T ). This may be a source of concern for regulators and real-world risk
managers. The VaR-RM is viewed by many as a tool to shield economic
agents from large losses, which, when they occur, could cause credit and
solvency problems. But our solution reveals that when a large loss occurs, it is
an even larger loss under the VaR-RM and hence more likely to lead to credit
problems, defeating the very purpose of using the VaR-RM. Proposition 2
later amplifies on this point.
Figure 2 depicts the shape of the probability density function of terminal

wealth in the B, PI, and VaR solutions. There is a probability mass build-up
in the VaR agent’s horizon wealth, at the floor W , as for the portfolio insurer.
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Figure 2
Probability density of the VaR risk manager’s optimal horizon wealth
The figure plots the shape of the probability density function of the VaR risk manager’s optimal horizon
wealth. The dashed plot is for the unconstrained benchmark agent B, the dotted plot is for the portfolio
insurer PI.

The VaR agent then has a discontinuity, with no states having wealth between
W and W , whereas states with wealth below W have probability α. Note that
relative to the benchmark, the distribution in these bad states is shifted to the
left, meaning more loss with higher probability.
It has been commonly observed [e.g., Basak(1995), Grossman and Zhou

(1996)] that the optimal PI horizon wealth can be expressed as the B wealth
plus a put option thereon, that is, WPI (T ; yPI ) = WB(T ; yPI ) + max[W −
WB(T ; yPI ), 0]. Analogously, the VaR optimal wealth plan in (9) can be
expressed as

WVaR(T ; y(W(0))) = WPI (T ; yB(W∗))− (W −WB(T ; yB(W∗)))1{ξ̄≤ξ(T )}

= WB(T ; yB(W∗))+ (W −WB(T ; yB(W∗)))1{ξ≤ξ(T )<ξ̄},

where W∗ is set so that yB(W∗) = y(W(0)). In other words, adjusting for the
initial endowment, WVaR is equivalent to a PI solution plus a short position in
“binary” options, or to a B solution plus an appropriate position in “corridor”
options.7 More precisely, because

W∗ = W(0)− E

[
ξ(T )

ξ(0)
max(W −WB(T ; yB(W∗)), 0)

]

+E
[
ξ(T )

ξ(0)
(W −WB(T ; yB(W∗)))1{ξ̄≤ξ(T )}

]
,

7 For details on binary and corridor options see, for example, Briys et al. (1998). Browne (1999) provides an
example where buying a binary option is the optimal policy to maximize the probability of reaching a given
value of wealth by a fixed terminal time.
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WB(T ; yB(W∗))) is the optimal policy of an unconstrained agent, whose
initial endowment is simply W(0) decreased by the price of a put (needed to
implement the PI component) and increased by the proceeds of short selling
the binary options.

2.2 Properties of the VaR-RM strategy
To perform a detailed analysis of the optimal behavior under the VaR-RM
strategy, we specialize the setting to CRRA preferences, u(W) = W 1−γ

1−γ ,
γ > 0, and to lognormal state prices with constant interest rate and mar-
ket price of risk. Figures 1 and 2 appear to indicate higher losses in the
bad-states region under the VaR-RM than without risk management. How-
ever, because the bad-states region itself shifts, the figures do not directly
imply lower expected losses. Proposition 2 shows explicitly that under the
VaR-RM the expected extreme losses are indeed higher than those incurred
by an agent who does not concern himself with (7).

Proposition 2. Assume u(W) = W 1−γ
1−γ , γ > 0, and r and κ are constant.

For a given terminal-wealth plan W(T ), define the following two measures
of loss: L1(W) = E[(W − W(T ))1{W(T )≤W }] and L2(W) = E[ ξ(T )

ξ(0) (W −
W(T ))1{W(T )≤W }]. Then,(i) L1(W

VaR) ≥ L1(W
B), and (ii) L2(W

VaR) ≥
L2(W

B).

In Proposition 2, we focus on the bad states, that is on the states where
large losses occur. L1(W) measures the expected future value of a loss, when
there is a large loss, while L2(W) measures its present value. Proposition 2
highlights further the undesirable features of VaR-RM, when viewed from a
regulator’s perspective. A regulatory requirement to manage risk using the
VaR approach is designed to prevent large, frequent losses that may drive
economic agents out of business. It is true that under the VaR-RM losses are
not frequent, however, the largest losses are more severe than without the
VaR-RM.

Proposition 3 presents explicit expressions for (and properties of) the VaR
agent’s optimal wealth and portfolio strategies before the horizon.

Proposition 3. Assume u(W) = W 1−γ
1−γ , γ > 0, and r and κ are constant.

Then:

(i) The time-t optimal wealth is given by

WVaR(t)= e)(t)

(yξ(t))
1
γ

−
[

e)(t)

(yξ(t))
1
γ

N (−d1(ξ))−We−r(T−t)N (−d2(ξ))
]

+
[

e)(t)

(yξ(t))
1
γ

N (−d1(ξ̄ ))−We−r(T−t)N (−d2(ξ̄ ))
]
, (10)
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where N (·) is the standard-normal cumulative distribution function,
y is as in Proposition 1, and

ξ = 1

yWγ
,

)(t) ≡ 1 − γ

γ

(
r + ||κ||2

2

)
(T − t)+

(
1 − γ

γ

)2 ||κ||2
2

(T − t),

d2(x) ≡
ln x

ξ(t)
+ (r − ||κ||2

2 )(T − t)

||κ||√T − t
,

d1(x) ≡ d2(x)+ 1

γ
||κ||√T − t .

(ii) The fraction of wealth invested in stocks is

θV aR(t) = qV aR(t)θB(t),

where the benchmark value, θB , and the exposure to risky assets
relative to the benchmark, qV aR , are

θB(t) = 1

γ

[
σ(t)�

]−1
κ,

qV aR(t) = 1 − We−r(T−t)(N (−d2(ξ))− N (−d2(ξ̄ )))
WVaR(t)

+
γ (W −W)e−r(T−t)φ(d2(ξ̄ ))

WVaR(t)||κ||√T − t
, (11)

respectively, and φ(·) is the standard-normal probability distribution
function.

(iii) The exposure to risky assets relative to the benchmark is bounded
below: qV aR(t) ≥ 0, and

lim
ξ(t)→0

qV aR(t) = lim
ξ(t)→∞

qV aR(t) = 1.

(iv) When the VaR constraint is binding (ξ < ξ̄), then qV aR(t) > 1 if,
and only if, ξ(t) > ξ ∗(t), where ξ ∗(t) is deterministic and bounded:√

ξ̄ ξe(r−||κ||2/2)(T−t) ≤ ξ ∗(t) ≤ ξ̄ e(r−||κ||2/2)(T−t)e(||κ||
2/γ )(T−t).

The option-based interpretation in Section 2.1 clarifies the expression of
the time-t optimal wealth in Equation (10). The first term takes the form
of the optimal wealth of a non-risk manager, while the remaining terms
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represent the “insurance package” for keeping the time-T wealth at W in the
intermediate states. The second and third terms represent the cost of a Black
and Scholes (1973)–type put option on the B-wealth with strike price W ; the
fourth and fifth terms are the proceeds from shorting a portfolio of binary
options. Consequently, when the fraction invested in risky assets is expressed
as a multiple of the B-policy, the second and third terms in Equation (11)
correspond, respectively, to the positions in the long put and the short binary
options.
Figure 3 compares graphically the optimal time-t wealth and the relative

stock exposure in the B, PI, and VaR cases. Figure 3a reveals that the prehori-
zon wealth of the VaR agent behaves similarly to that of a portfolio insurer in
the good states, whereas in the upper tail of the ξ(t) distribution he behaves
similarly to the B case. In the intermediate region, the VaR agent’s wealth
exhibits concavity in ξ(t), and it is easy to visualize how this concavity will
increase as time approaches the horizon, and tend to the discontinuous shape
in Figure 1. In these intermediate states, the VaR agent is beginning to insure
himself.
Figure 3b illustrates the typical shape of the VaR agent’s optimal asset

allocation, exhibiting some surprising features. We may characterize five
segments in the ξ(t) space. In the two extremes, the benchmark behavior
prevails. In between, however, there are three distinct patterns: First, in the
relatively cheap states, the VaR agent acts similarly to a portfolio insurer

Figure 3
Optimal prehorizon wealth and risk exposure of the VaR risk manager
The figure plots the VaR risk manager’s (a) optimal prehorizon wealth, W(t), and (b) exposure to risky assets
relative to the benchmark, q(t) (Proposition 3), as a function of the concurrent state price density ξ(t). The
dashed plots are for the benchmark agent B, the dotted plots are for the portfolio insurer PI. The VaR risk
manager’s exposure to risky assets relative to the benchmark is given by qV aR(t) = θV aRj (t)/θBj (t), where θj
denotes the fraction of wealth invested in stock j , for all j . The plots assume CRRA preferences and log-
normal state price density. The fixed parameter values are: γ = 1, α = 0.01, W(0) = 1,W = 0.9, r = 0.05,
||κ|| = 0.4, T = 1, t = 0.5, ξ(0) = 1. Then, ξ = 0.99, ξ̄ = 2.23.

382



Value-at-Risk-Based Risk Management

investing a higher fraction of his wealth in the bond. Second, as ξ(t) rises,
instead of moving further out of the equity market the VaR agent begins to
increase his equity exposure, tending back toward his B policy, then surpass-
ing it considerably so that in the relatively expensive consumption states he
invests a higher fraction of his wealth in stocks compared to the B case.8

The third segment occurs when ξ(t) is high enough to deter the agent from
further risk taking, and he converges to his benchmark policy. Formally, this
nonmonotonic behavior across the state space is linked to the replication of
a portfolio of binary options. Intuitively, the asset allocation is driven by the
agent’s desire to insure the intermediate-states region. When ξ(t) is already
very high, then it is very likely that the agent will end up in the bad-states
region and it is too costly for him to bet on a favorable realization of a large
equity investment. Hence, the VaR agent behaves similarly to the B case. On
the other hand, when ξ(t) is in the proximity of ξ̄ , not all hope is lost, and
the agent attempts, via a relatively large exposure to equity, to reach the W
level of wealth, under favorable time-T economic conditions.
Figure 4 displays a sensitivity analysis of qV aR(t) to α, W , and time. In

general terms, (a) decreasing α, (b) increasing W , or (c) decreasing the time-
to-horizon, all cause the agent to deviate more from the B behavior as the
VaR constraint exerts more influence. As α decreases, the deviation from the
benchmark also spreads to a larger region of ξ(t), and as the time-to-horizon
decreases, the deviation shrinks to a smaller region of ξ(t).
Figure 5 displays the sensitivity to γ and κ of the risky asset holdings

of the VaR agent, for a market with one risky stock. The deviation from
the benchmark holdings becomes more pronounced for both lower γ (less
risk averse agent) and higher κ (higher market price of risk). This behavior
is fairly intuitive; as an agent becomes less risk averse, or as the stock’s
Sharpe ratio increases, he responds more aggressively to changes in the state
variable ξ that affect his likelihood to end up withWVaR(T ) ≥ W , as opposed
to WVaR(T ) ≤ W . Note that, contrary to the B case (but similarly to the
PI case), the more risk-averse agent takes on more risk than the less risk
averse in the “better” intermediate states; the more risk-averse agent invests
more in the stock, preparing to end up with WVaR(T ) > W , as opposed
to WVaR(T ) = W . Somewhat more surprising is that, contrary to the B
case (and the PI case), in the “worse” intermediate states a higher Sharpe
ratio does not necessarily cause the VaR agent to allocate more wealth to
the stock. To understand why, note that a change in κ affects the dynamics
of ξ(t); in particular, the boundary into the bad-states region, ξ̄ , is increasing
in κ . Hence, at some given ξ(t), such as 2 (in this example), the lower the κ ,

8 For the parameters used in Figure 3, using the bounds in item (iv) of Proposition 3, qV aR(t), as a function
of ξ(t), must rise above 1 while ξ(t) takes values in the (1.46, 2.38) interval. The bounds in (iv) identify,
analytically, a transition from an underexposure to overexposure, relative to the B case, for all parameters’
values, and Figure 3b confirms this for the chosen parameters. In addition, Figure 3b illustrates that the VaR
agent deviates considerably from the B and the PI cases when ξ(t) takes values within these bounds.
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Figure 4
Behavior of the VaR risk manager’s risk exposure with respect to VaR parameters
The figure plots the VaR risk manager’s exposure to risky assets relative to the benchmark, q(t), as a function
of the concurrent state price density ξ(t) for varying levels of (a) the VaR probability α ∈ {0.001, 0.01, 0.1},
(b) the floor W ∈ {0.8, 0.9, 1}, and (c) time t ∈ {0.1, 0.5, 0.9}. The VaR risk manager’s exposure to risky
assets relative to the benchmark is given by qV aR(t) = θV aRj (t)/θBj (t), where θj denotes the fraction of wealth
invested in stock j , for all j . The plots assume CRRA preferences and log-normal state price density. The
solid line in all three charts represents the following case of fixed parameter values: γ = 1, α = 0.01,
W(0) = 1, W = 0.9, r = 0.05, ||κ|| = 0.4, t = 0.5, T = 1, ξ(0) = 1. Then ξ = 0.99, ξ̄ = 2.23.

the closer the agent is to the transition into the bad-states region so the more
heavily he invests in the stock, targeting to finance WVaR(T ) = W should
the bad states not occur.

3. Optimization under LEL-RM

In this section, we introduce the LEL-RM (limited-expected-losses-based risk
management) strategy as an alternative to the VaR-RM strategy. We then
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Figure 5
Behavior of the VaR risk manager’s risky asset holdings with respect to risk aversion and market price
of risk
The figure plots the VaR risk manager’s optimal fraction of wealth invested in a stock, θV aR(t), as a function
of the concurrent state price density ξ(t) for varying levels of (a) the VaR risk manager’s risk aversion γ ∈
{0.5, 1, 2} and (b) the market price of risk κ ∈ {0.1, 0.4, 0.7}. The plots are for the case of a single risky stock,
CRRA preferences, and log-normal state price density. The solid line in both charts represents the following
case of fixed parameter values: γ = 1, α = 0.01, W(0) = 1, W = 0.9, r = 0.05, ||κ|| = 0.4, t = 0.5, T = 1,
ξ(0) = 1. The benchmark agent’s corresponding optimal fraction of wealth in the stock, θB(t), in each chart
is (a) θB(t) ∈ {3.2, 1.6, 0.8}, (b) θB(t) ∈ {0.4, 1.6, 2.8}.

solve the optimization problem of a LEL risk manager and analyze the prop-
erties of the solution.

3.1 LEL-RM
The shortcomings of VaR-RM, highlighted in the previous section, stem from
the fact that the VaR agent is concerned with controlling the probability of
a loss rather than its magnitude. It turns out that the expected losses, in the
states where there are large losses, are higher than those the agent would
have incurred if he had not engaged in VaR-RM in the first place. Ideally, to
control the magnitude of losses, one ought to control all moments of the loss
distribution. As a first step, in this section, we focus on controlling the first
moment and examine how one can remedy the shortcomings of VaR-RM.
We leave the analysis of higher moments for future work.
We define an LEL-RM strategy as one under which the present value of

the agent’s losses are constrained:

E[ξ(T )(W −W(T ))1{W(T )≤W }] ≤ ε, (12)

where ε ≥ 0 is a constant. Observe that, because E[ξ(T )(W − W(T ))

1{W(T )≤W }] = E[ξ(T )(W − W(T ))|W(T ) ≤ W ]P(W(T ) ≤ W), this con-
straint penalizes both a high probability of a loss and a high expected loss
given there is a loss. The constrained quantity in (12) can be interpreted
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as a risk measure of time-T losses. We may note that this measure satis-
fies the subadditivity, positive homogeneity, and monotonicity axioms (but
not the translation-invariance axiom) defined by Artzner et al. (1999) and
hence avoids their criticism of the VaR measure of risk. In contrast to our
endogenous losses–based criticism, their objection is that VaR fails to display
subadditivity when combining the risk of two or more portfolios (the VaR of
the whole may be greater than the sum of the VaRs of the individual parts).9

Analogously to the treatment of (7), we impose (12) as a constraint on the
agent’s optimization problem, thereby incorporating LEL-RM directly into
the optimization. The formulation again nests the B case (ε = ∞) and the PI
case (ε = 0). As we show next, when 0 < ε < ∞, the LEL strategy has the
appealing property that it indeed yields results consistent with the stated goal
of “managing risk” in the following sense: The LEL risk manager optimally
chooses a wealth level, which in the low-wealth states is above the benchmark
wealth.

3.2 Agent’s optimization
Using the martingale representation approach, the dynamic optimization
problem of the LEL risk manager (henceforth, the LEL agent) is restated
as the following variational problem:

max
W(T )

E
[
u(W(T ))

]
s.t. E

[
ξ(T )W(T )

] ≤ ξ(0)W(0),

E
[
ξ(T )(W −W(T ))1{W(T )≤W }

] ≤ ε. (13)

Proposition 4 characterizes the optimal solution, assuming it exists.10

Proposition 4. The time-T optimal wealth of the LEL agent is

WLEL(T ) =




I (z1ξ(T )) if ξ(T ) < ξ
ε
,

W if ξ
ε
≤ ξ(T ) < ξ̄ε,

I ((z1 − z2)ξ(T )) if ξ̄ε ≤ ξ(T ),

(14)

9 Artzner et al. (1999) call a risk measure “coherent” if it satisfies the aforementioned four axioms, and hence
our measure is not classified as coherent. However, because we model an agent as limiting the risk of his total
position, we abstract from the idea of adding extra funds or adjusting margin levels (cases where translation
invariance is applicable), and consequently in our setting monotonicity is in fact the only critical property of
a risk measure, so that risks can be ranked. Artzner et al. (1999) discuss a leading example of a coherent
measure, the tail conditional expectation (TCE), which measures expected losses (not deflated by state prices)
conditional on the losses falling below a quantile of probability α. Unlike our LEL measure, the TCE does
not then fully disentangle the notions of quantiles and expectations; we therefore chose LEL to more clearly
illustrate the differences between the quantiles-based and the expectations-based approaches.

10 From (14), the feasibility bound on W for a solution is W ≤ (W(0)ξ(0)+ ε)/E[ξ(T )].Note that if an agent
wishes instead to limit expected future losses, E[(W −W(T ))1{W(T )≤W }] ≤ ε ′, his optimal wealth will have a

structure similar to (14). The only changes are that ξ̄ε′ ≡ (u′(W)+ z2)/z1 and that in the ξ̄ε′ ≤ ξ(T ) region
his wealth is set to I (z1ξ(T ) − z2). The nature of the implications discussed in this section are robust to
this modeling change. Moreover, using expected future losses in Table 1 results in only minor quantitative
adjustments to the reported values.
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where ξ
ε

≡ u′(W)
z1

, ξ̄ε ≡ u′(W)
(z1−z2) , and (z1 ≥ 0, z2 ≥ 0) solve the following

system:

E[ξ(T )WLEL(T ; z1, z2)] = ξ(0)W(0),

E[ξ(T )(W −WLEL(T ; z1, z2))1{WLEL(T ;z1,z2)≤W }] = ε or z2 = 0.

The LEL constraint in (12) is binding if, and only if, ξ
ε
< ξ̄ε . Moreover,

the Lagrange multiplier z1 is decreasing in ε, so that z1 ∈ [zB1 , z
PI
1 ]. Also,

z1 − z2 ≤ zB1 .

Figure 6 depicts the optimal terminal wealth of an LEL agent [ε ∈ (0,∞)],
a benchmark agent (ε = ∞), and a portfolio insurer (ε = 0). Figure 6 reveals
that in contrast to the findings in the VaR case, now in the bad-states region,
WB(T ) < WLEL(T ) < WPI (T ). This highlights the most surprising, but
also encouraging feature of the optimal behavior of the LEL agent; although
in some states he is willing to settle for a wealth lower than W, he does
so while endogenously choosing a higher WLEL(T ) than WB(T ). The LEL
agent endogenously decides to classify unfavorable states into two subsets:
the bad states, against which he partially insures, and the intermediate states,
against which he fully insures. Again, he chooses the worst states in which to
maintain a loss, because these are the most expensive states to insure against,
but maintains some level of insurance. Insuring a terminal wealth at the W
level is too costly, so he settles for less, but enough to comply with the LEL
constraint. Note that the LEL agent not only chooses ξ

ε
endogenously but

Figure 6
Optimal horizon wealth of the LEL risk manager
The figure plots the optimal horizon wealth of the LEL risk manager (Proposition 4) as a function of the
horizon state price density ξ(T ). The dashed plot is for the unconstrained benchmark agent B, the dotted plot
is for the portfolio insurer PI. The LEL risk manager’s optimal horizon wealth falls into three distinct regions,
where he exhibits distinct economic behavior. In the good states [low ξ(T )], the LEL agent behaves like a
B agent. In the intermediate states [ξ

ε
≤ ξ(T ) < ξ̄ε ] he insures himself against losses, behaving like a PI

agent, and in the bad states [high ξ(T )] he partially insures himself, incurring partial losses in contrast to the
VaR risk manager.
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Figure 7
Probability density of the LEL risk manager’s optimal horizon wealth
The figure plots the shape of the probability density function of the LEL risk manager’s optimal horizon
wealth. The dashed plot is for the unconstrained benchmark agent B, the dotted plot is for the portfolio
insurer PI.

also endogenously determines the value of ξ̄ε ; unlike ξ̄ , ξ̄ε does depend on
the agent’s preferences and endowment. A further distinction with VaR-RM
is that the terminal wealth policy under LEL-RM is continuous across the
states of the world.
Figure 7 depicts the shape of the probability density function of terminal

wealth in the B, PI, and LEL solutions. Similarly to Figure 2, there is a
probability mass build-up in the LEL agent’s horizon wealth, at the floor
W . However, LEL has no discontinuities across states. Also, relative to the
benchmark, the distribution in the bad states is shifted to the right, meaning
less loss with higher probability.
The optimal wealth plan in (14) can be expressed as

WLEL(T ; z1(W(0)), z2(W(0)))
= min

[
WPI

(
T ; yB(Wε)

)
,WB

(
T ; yB(Wε)− z2(W(0))

)]
= max

[
WB

(
T ; yB(Wε)

)
,min

[
W,WB

(
T ; yB(Wε)− z2(W(0))

)]]
,

where we set Wε so that yB(Wε) = z1(W(0)). Hence, adjusting for the
initial endowment, WLEL is equivalent to an option on a minimum of two
“securities” (one being riskless), where the nonstandard feature of the option
is that the strike price is stochastic.11 The wealth adjustment, which equates
the strike price to the wealth of a fictitious unconstrained agent, is obtained

11 See Stulz (1982) for the analysis and applications of an option on a minimum of two assets (both risky),
where the strike price is fixed.
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by valuing this nonstandard option at the initial date:

Wε = W(0) − E

[
ξ(T )

ξ(0)
max

[
min

[
W,WB

(
T ; yB(Wε)− z2(W(0))

)]

−WB(T ; yB(Wε)), 0
]]
.

3.3 Properties of the LEL-RM strategy
We now specialize the setting to CRRA preferences, u(W) = W 1−γ

1−γ , γ > 0,
and to lognormal state prices with constant interest rate and market price of
risk, analogous to the VaR analysis in Section 2. Using the notation defined
in Proposition 3, Proposition 5 summarizes the wealth dynamics and the
portfolio choice of the LEL agent.

Proposition 5. Assume u(W) = W 1−γ
1−γ , γ > 0, and r and κ are constant.

Then:

(i) The time-t optimal wealth is given by

WLEL(t) = e)(t)

(z1ξ(t))
1
γ

−
[

e)(t)

(z1ξ(t))
1
γ

N (−d1(ξ ε))−We−r(T−t)N (−d2(ξ ε))
]

+
[

e)(t)

(z1 − z2)
1
γ ξ(t)

1
γ

N (−d1(ξ̄ε))−We−r(T−t)N (−d2(ξ̄ε))
]
, (15)

where )(t), d1(x), d2(x) are as given in Proposition 3, (z1, z2) are
as given in Proposition 4,

ξ
ε
= 1

z1W
γ
and ξ̄ε = 1

(z1 − z2)W
γ
.

(ii) The fraction of wealth invested in stocks is

θLEL(t) = qLEL(t)θB(t),

where the exposure to risky assets relative to the benchmark, qLEL(t)
is

qLEL(t) = 1 − We−r(T−t)(N (−d2(ξ ε))− N (−d2(ξ̄ε)))
WLEL(t)

.

(iii) The exposure to risky assets relative to the benchmark is bounded
below and above: 0 ≤ qLEL(t) ≤ 1, and

lim
ξ(t)→0

qLEL(t) = lim
ξ(t)→∞

qLEL(t) = 1.
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Figure 8
Optimal prehorizon wealth and risk exposure of the LEL risk manager
The figure plots the LEL risk manager’s (a) optimal prehorizon wealth, W(t), and (b) exposure to risky assets
relative to the benchmark, q(t) (Proposition 5), as a function of the concurrent state price density ξ(t). The
dashed plots are for the benchmark agent B, the dotted plots are for the portfolio insurer PI. The LEL risk
manager’s exposure to risky assets relative to the benchmark is given by qLEL(t) = θLELj (t)/θBj (t), where θj
denotes the fraction of wealth invested in stock j , for all j . The plots assume CRRA preferences and log-
normal state price density. The fixed parameter values are: γ = 1, ε = 0.01, W(0) = 1, W = 0.9, r = 0.05,
||κ|| = 0.4, T = 1, t = 0.5, ξ(0) = 1. Then ξ

ε
= 0.98, ξ̄ε = 1.83.

Figure 8 compares graphically the optimal wealth and the stock exposure
in the B, PI, and LEL cases. Figure 8a illustrates that, as in the VaR case, for
low and intermediate values of ξ(t) the agent’s prehorizon wealth behaves
more similarly to a portfolio insurer’s wealth than to the benchmark one. In
the intermediate range, the LEL agent attempts to insure as many states as
he can afford, but in the higher tail of the ξ(t) distribution, he reverts to
a behavior similar to the B behavior. However, unlike in the VaR case, in
this upper tail of the distribution the LEL agent maintains a higher wealth
than in the B case. Again, one can easily visualize how the wealth in the
intermediate states approaches the shape in Figure 6 as the time approaches
the horizon.
In Figure 8b, we clearly see the properties of qLEL(t) stated in item (iii)

of Proposition 5. The LEL agent maneuvers between his behavior in the
B and the PI cases, never investing a higher fraction of his wealth in stocks
compared to the B case. The agent’s asset allocation has four distinct patterns
over the ξ(t) space. In the two extremes, the benchmark behavior prevails.
But in between there are now only two distinct patterns: First, the LEL agent
acts as a portfolio insurer; then, as ξ(t) rises, instead of moving further
into the riskless asset the agent increases his equity exposure, tending back
toward his B-policy but never surpassing it in terms of the exposure to equity.
Intuitively, the asset allocation of the LEL agent differs from that of the
VaR agent because WLEL is continuous across states. In the VaR case, if ξ(t)
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is close to ξ̄ as he approaches the horizon, the VaR agent must allow for
the need to finance highly distinct wealths: W or W . For the LEL agent,
however, a slight change in ξ(t) as t approaches T does not necessitate the
financing of a very different level of wealth. Therefore, LEL-RM never leads
risk managers to take extreme leveraged positions compared to the positions
they would have taken as non-risk managers.12

3.4 Losses under the LEL-RM and the VaR-RM strategies
Proposition 1 revealed that in the bad states the losses under the VaR-RM
exceed (or equal to) those under the B policy, whereas Proposition 4 illus-
trated that the losses under the LEL-RM are lower than (or equal to) those
in the B case, as depicted in Figures 1 and 6, respectively. To quantify the
economic significance of the loss reduction under LEL-RM versus VaR-RM,
we examine the following loss ratio:

E
[
ξ(T )(W −WVaR(T ))1{ξ(T )≥ξ̄}

]
/E

[
ξ(T )(W −WLEL(T ))1{ξ(T )≥ξ̄}

]
. (16)

This loss ratio employs the loss measure in (12), which uses the reference
point W , but redefines the measure to hold over those states considered as
bad in the context of the VaR-RM. These bad states represent the abnormally
adverse conditions against which the VaR risk manager chooses not to seek
insurance, in contrast to the LEL risk manager who partially insures these
states. For all parameter values examined below, this loss ratio is a conser-
vative one in the sense of being a lower bound on the analogous ratio that
uses the loss measure of Proposition 2.
Table 1 presents the loss ratio for varying levels of relative risk aversion γ ,

the VaR probability α, the LEL cap relative to the initial endowment ε/W(0),
and the horizon T , under the maintained assumptions of CRRA preferences
and log-normal state price density. The parameter values are chosen so as
to capture reasonably realistic combinations, and thereby provide empirically
relevant assessments of the loss difference between the two alternative risk-
management practices.13 Inspection of the results in Table 1 establishes that

12 As an aside, we may calculate the probability, α(W), of making a loss larger than W(0)−W for the benchmark
and the LEL agents. We have

αLEL(W) = P

(
ξ(T ) >

1

(z1 − z2)W
γ

)
≤ P

(
ξ(T ) >

1

zB1W
γ

)
= αB(W).

Hence, the probability of a loss is also lowered by the LEL-RM strategy; to some extent, the LEL agent also
manages his VaR.

13 The values of ε/W(0) used in Table 1 (0.5%, 1.0%, 2.0%) are chosen not only because they seem acceptable
but also because they are meaningful if interpreted as being calibrated to the losses under VaR-RM. For
example, with the fixed parameters in Table 1, relative risk aversion of 1.0, a three-month horizon, and VaR
probability of 1.0%, 2.5%, and 5.0%, the present value of the loss under VaR-RM [i.e., the numerator in (16)]
is 0.5%, 1.1%, and 1.7% of the initial endowment, respectively. Table 1 is therefore informative because it
considers scenarios where the LEL parameters are set so that, when all states are considered, the LEL risk
manager faces total expected losses of an order of magnitude similar to that when using VaR. For these
parameter values, the table presents the loss ratio over the most adverse states, for which one may argue the
regulators are attempting to prevent a financial meltdown.
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Table 1
The ratio of losses under VaR-RM and LEL-RM

Loss Ratio (%)

α% = 1.0% α% = 2.5% α% = 5.0%

ε/W(0)% ε/W(0)% ε/W(0)%

Horizon 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

Panel A: Relative risk aversion γ = 0.5

T = 0.25 269 201 161 428 256 183 734 367 216
T = 0.50 316 219 171 620 318 207 1065 533 272
T = 1.00 419 243 177 883 442 238 1605 803 401

Panel B: Relative risk aversion γ = 1.0

T = 0.25 196 152 123 244 157 127 340 192 131
T = 0.50 244 181 144 351 217 156 559 281 172
T = 1.00 311 213 162 559 289 188 993 496 255

Panel C: Relative risk aversion γ = 2.0

T = 0.25 106 103 103 107 102 102 108 101 101
T = 0.50 146 113 104 164 115 104 198 118 102
T = 1.00 191 141 110 248 155 111 448 227 140

The table reports the loss ratio defined in (16), calculated for varying levels of relative risk aversion γ , the VaR probability α%,
the LEL cap relative to the initial endowment ε/W(0)%, and the horizon T . The loss ratio, α, and ε/W(0) are stated in
percentage points, and T in annual units. The analysis is for CRRA preferences and log-normal state price density. Panels
A, B, and C present the results for γ taking the values 0.5, 1, and 2, respectively. In each panel α% ∈ {1.0%, 2.5%, 5.0%},
ε/W(0)% ∈ {0.5%, 1.0%, 2.0%}, and T ∈ {0.25, 0.50, 1.00}. The fixed parameter values are: W/W(0) = 0.9, r = 0.05,
||κ|| = 0.4, ξ(0) = 1. For all parameter values the VaR constraint is binding. The LEL constraint is binding for all values,
except when γ = 2, ε/W(0)% = 1.0%, and T = 0.25 and when γ = 2, ε/W(0)% = 2.0%, and T = 0.25 or T = 0.50. The
loss ratios between the VaR-RM and the B policy corresponding to the entries in the table range from 101% to 110%.

in the adverse states of the world the losses under VaR-RM are not only larger
than under LEL-RM but are considerably so for most parameter values. In
many realistic scenarios the loss ratio is found to be in the 200% to 1000%
range. For example, for a logarithmic agent, with a 3-month horizon and a
VaR probability of 5.0%, the present value of losses is almost double that
under LEL-RM with ε/W(0) of 1.0%, and the ratio increases for lower risk
aversion, tighter LEL cap, and longer horizon.

4. Equilibrium Implications of VaR-RM

Given that VaR-RM is becoming an industry standard, it is of interest to
evaluate the impact of the presence of VaR risk managers on market prices.
In this section, to examine price effects of VaR-RM, we develop a pure-
exchange general equilibrium model of an economy containing VaR risk
managers. Much attention has been directed toward understanding the impact
of portfolio insurance on equilibrium prices [Brennan and Schwartz (1989),
Donaldson and Uhlig (1993), Basak (1995, 1999), Grossman and
Zhou (1996)], and given the relationship between VaR risk managers and
portfolio insurers, a comparison of equilibrium effects is warranted.
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4.1 The equilibrium setting
A problem with extending the economic setting in Section 1 to a stan-
dard pure-exchange general equilibrium model is that the VaR constraint
is imposed directly on the agent’s terminal wealth, and hence on his termi-
nal consumption. In equilibrium, this imposes restrictions on the exogenous
source that supplies the goods for the terminal consumption. Specifically,
Proposition 1 (and Figure 1) revealed the VaR agent’s wealth to be dis-
continuous, never taking values between W and W . Therefore, good-market
clearing would require a discontinuity in the exogenous terminal consump-
tion source, which seems too contrived a primitive. To circumvent this prob-
lem, we instead assume that the VaR horizon, T , is shorter than the agent’s
lifetime, T ′, so that the VaR horizon wealth, W(T ) (rather than equating
to a lump-sum consumption), represents the value of future consumption.
As a result, the VaR constraint is imposed on a quantity, which need not
be directly provided by an exogenous consumption supply. A side benefit of
this assumption is that it probably renders our model a more realistic descrip-
tion of VaR-RM, because in reality the VaR horizon would rarely coincide
with the consumption horizon. To distinguish the setting here from that of
Section 1, we refer to the VaR risk manager as the long-lived VaR agent.
We will see that the basic optimal (partial equilibrium) behavior presented in
Sections 2–3 survives under this modified setting.
We assume that the economy is populated by two types of agents, the

normal agent (n) and the long-lived VaR agent (v), who derive utility from
intertemporal (continuous) consumption over their lifetime [0, T ′].14 As
opposed to the normal agent, the long-lived VaR agent is subject to the
additional VaR constraint (7) over time-T wealth, where T < T ′. For sim-
plicity, we specialize to both agents having logarithmic utility of consump-
tion, and assume the (exogenously) given aggregate consumption process
δ(t) ≡ ∑N

j=1 δj (t) to follow a geometric Brownian motion process:

dδ(t) = δ(t)

[
µδ dt +

N∑
j=1

σδj dwj (t)

]
, ∈ [0, T ′],

with µδ , σδj constants, and δ(0) > 0.
We can anticipate [in light of Basak (1995)] that the constraint applied at

the VaR horizon T may result in jumps in the equilibrium security and state
prices. Hence, we need to modify accordingly our posited price dynamics
in (1)–(2). We posit that the price dynamics in [0, T ) and (T , T ′] are still
given by (1)–(2), but at time T we allow for an additional jump component,

14 We find this formulation more appealing than letting the agents consume only at T ′. A setting with intertem-
poral consumption is widely accepted as the more realistic one for dynamic general equilibrium modeling and
has the advantage of having a main “work-horse” asset-pricing model, Lucas (1978), as a benchmark. More-
over, under standard preferences and endowment structure, this formulation offers added tractability because
it results in a constant r and κ , as in the benchmark.
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ηdA(t), in the changes of security prices. Here, A(t) is a (right-continuous)
step function defined by A(t) ≡ 1{t≥T }, so that dA(t) is a measure assigning
unit mass to time T , and the jump coefficient, η, is an FT -measurable random
variable related to the price jumps by

η = ln(B(T )/B(T−)) = ln(Sj (T )/Sj (T−))
= ln(ξ(T−)/ξ(T )), j = 1, . . . , N, (17)

where Sj (T−) is the left limit of Sj (·) at T . Notice that, because FT− = FT ,
to prevent arbitrage on these jumps, the jump coefficient η in all security
prices must be the same so that the deflated prices and wealth, ξ(t)B(t),
ξ(t)Sj (t), and ξ(t)Wi(t), remain continuous at all times.

4.2 Optimization of a long-lived VaR agent
The long-lived VaR risk manager solves the following problem:

max
(cv,W(T−))

E

[∫ T ′

0
ln(cv(t)) dt

]

subject to E

[∫ T

0
ξ(t)cv(t) dt + ξ(T−)Wv(T−)

]
≤ ξ(0)Wv(0), (18)

E

[∫ T ′

T

ξ(t)cv(t) dt |FT

]
≤ ξ(T−)Wv(T−), (19)

P(Wv(T−) ≥ W) ≥ 1 − α. (20)

The static budget constraint is broken into two components, (18) and (19),
to facilitate understanding of the impact of the VaR constraint (18) on the
optimization problem. The VaR constraint is imposed on the left limit of
time-T wealth to maintain the standard convention of right continuity of
wealth processes. The optimal solutions, if they exist, for the long-lived VaR
agent and the normal agent are summarized in Proposition 6.

Proposition 6. The optimal consumption policies and time-T optimal wealth
of the two agents are

cn(t) = 1

ynξ(t)
, t ∈ [0, T ′], (21)

cv(t) =




1
yv1ξ(t)

,∈ [0, T ),

1
yv2ξ(t)

, t ∈ [T , T ′],
(22)

Wn(T−) = T ′ − T

ynξ(T−) , (23)
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Wv(T−) =




T ′−T
yv1ξ(T−) if ξ(T−) < T ′−T

yv1W
,

W if T ′−T
yv1W

≤ ξ(T−) < ξ̄ ,

T ′−T
yv1ξ(T−) if ξ̄ ≤ ξ(T−) ,

(24)

where the constants yn, yv1, and the FT -measurable random variable yv2
satisfy

T ′

yn
= ξ(0)Wn(0), (25)

T ′

yv1
+ E

[
(ξ(T−)W − T ′ − T

yv1
)1{ T ′−T

yv1W
≤ξ(T−)<ξ̄}

]
= ξ(0)Wv(0), (26)

T ′ − T

yv1
+

(
ξ(T−)W − T ′ − T

yv1

)
1{ T ′−T

yv1W
≤ξ(T−)<ξ̄} = T ′ − T

yv2
, (27)

and ξ̄ is defined by P(ξ(T−) > ξ̄) ≡ α.

The solution for the VaR-horizon wealth of the long-lived VaR agent, (24),
is analogous to (9), and the intuition for the solution, discussed in Section 2.1,
prevails. The only new aspect in which the long-lived VaR agent differs from
the normal agent is that he is given differing “weighting” before (yv1) and
after (yv2) the VaR horizon. When the VaR constraint is binding, yv1 > yv2 in
states where the agent is insuring himself. This resembles the result in Basak
(1995) for the portfolio insurer, the idea being that posthorizon consumption
not only provides the VaR risk manager with utility but also contributes
toward meeting his VaR constraint.

4.3 Equilibrium state prices
We now define and then characterize the equilibrium in our setting.

Definition 1. An equilibrium is a collection of (r , µ, σ , η) and optimal
(cn, cv , θn, θv), such that the good, stock, and bond markets clear, that is,
∀t ∈ [0, T ′],

cn(t)+ cv(t) = δ(t), (28)

θnj (t)+ θvj (t) = Sj (t), j = 1, . . . , N, (29)

Wn(t)+Wv(t) =
N∑
j=1

Sj (t). (30)

Proposition 7 solves for the equilibrium state price density and its dynamics.

Proposition 7. The equilibrium state price density is given by

ξ(t) =
{
(y−1
n + y−1

v1 )δ(t)
−1, t ∈ [0, T )

(y−1
n + y−1

v2 )δ(t)
−1, t ∈ [T , T ′],

(31)
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where yn, yv1, yv2 satisfy (25)–(27), with (31) substituted in. Moreover, the
equilibrium interest rate and market price of risk are constants, at all
t ∈ [0, T ′], given by r = µδ − ||σδ||2, and κj = σδj , j = 1, . . . , N , and
the jump-size parameter is η = ln((y−1

n + y−1
v1 )/(y

−1
n + y−1

v2 )) ≤ 0.

Proposition 7 reveals the anticipated (upward) jump in ξ at time T ; the
price of consumption, ξ , jumps up to counteract the upward jump in aggregate
consumption demand at the time-T insured states, where the jump in demand
is due to the VaR risk manager no longer postponing consumption to meet the
VaR constraint.

4.4 Equilibrium market price, volatility, and risk premium
The price of the equity market portfolio, Wem, is defined as the aggregate
optimally invested wealth in the risky securities. In equilibrium, Wem is also
equal to both the aggregate optimally invested wealth and the sum of the
risky asset prices:

Wem(t) ≡
N∑
j=1

(θnj (t)Wn(t)+ θvj (t)Wv(t)) = Wn(t)+Wv(t) =
N∑
j=1

Sj (t).

The equilibrium market dynamics can be represented by

dWem(t)+ δ(t) dt = Wem(t)

[
µem(t) dt +

N∑
j=1

σem,j (t) dwj (t)+ η dA(t)

]
,

where µem is the equity market drift and ||σem(t)|| =
√∑N

j=1 σ
2
em,j (t) is the

equity market volatility. Proposition 8 presents these quantities in equilib-
rium and contrasts them with the benchmark (B) economy with all normal
agents.15

Proposition 8. The equilibrium market price, volatility, and risk premium
in a logarithmic-utility normal-agent benchmark economy are given, ∀t ∈
[0, T ′], by

WB
em(t) = (T ′ − t)δ(t), ||σBem(t)|| = ||σδ||, µBem(t)− r = ||σδ||2.

Before the VaR horizon, the corresponding quantities in the economy with one
logarithmic-utility long-lived VaR agent and onelogarithmic-utility normal

15 Although not the focus of our discussion, we note that, under appropriate restrictions on exogenous parameters,
existence of equilibrium [demonstrated via existence of the y’s in (25)–(27)] can be straightforwardly verified.
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agent are

WVaR
em (t) = (

T ′ − t
)
δ(t)

−
[
T ′ − T

yv1
δ(t)N (−d̂1(δ̄)) −We−(µδ−||σδ ||2)(T−t)N (−d̂2(δ̄))

]

+
[
T ′ − T

yv1
δ(t)N (−d̂1(δ))

−We−(µδ−||σδ ||2)(T−t)N (−d̂2(δ))
]
, (32)

||σVaRem (t)|| = q̂(t)||σδ||,
µV aRem (t)− r = q̂(t)||σδ||2,

where

δ̄ ≡ Wyv1

T ′ − T
,

δ ≡ 1/ξ̄ ,

d̂1(x) ≡ ln δ(t)

x
+ (µδ − 1

2 ||σδ||2)(T − t)

||σδ||
√
T − t

,

d̂2(x) ≡ d̂1(x)− ||σδ||
√
T − t,

q̂(t) ≡ 1 − We−(µδ−||σδ ||2)(T−t)(N (−d̂2(δ̄))− N (−d̂2(δ)))
WVaR
em (t)

+
(W − 1

yv1
(T ′ − T )δ)e−(µδ−||σδ ||2)(T−t)φ(d̂2(δ))

WVaR
em (t)||σδ||

√
T − t

.

After the VaR horizon, market prices, volatility, and risk premia in both
economies are identical. Consequently, before the VaR horizon,

(i) WVaR
em (t) > WB

em(t),

(ii) ||σVaRem (t)|| > ||σBem(t)|| and µVaRem (t) > µBem(t) if, and only if,
δ(t) < δ∗(t), where δ∗(t) is deterministic and bounded:

δe−(µδ−||σδ ||2/2)(T−t) ≤ δ∗(t) ≤
√
δδ̄e−(µδ−||σδ ||2/2)(T−t)e||σδ ||2(T−t).

Item (i) reveals the prehorizon market price in the VaR economy to be
higher than in the benchmark economy. This result is as in the PI economy
and comes about because the long-lived VaR agent values posthorizon divi-
dends more than the prehorizon consumption, because these dividends help
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him meet his constraint. The prehorizon value of the equity market is then
pushed up because equities are claims against the posthorizon dividends.
When the VaR agent behaves like a portfolio insurer (α = 0), it is imme-

diate to verify that q̂(t) ∈ [0, 1], and equity market volatility is never higher
than in the B case, as indeed was shown by Basak (1995). Otherwise, as long
as the VaR constraint is binding (δ̄ > δ), item (ii) reveals that there are always
states of the world in which the VaR economy stock volatility is higher than
in the benchmark. This is a consequence of the risky asset demands of the
VaR agent, discussed in Section 2.2. Because the interest rate and the mar-
ket price of risk are pinned down as constants in equilibrium, favorability
of the risky equity market relative to the bond is controlled by its volatility.
Whenever the presence of the VaR agent elevates the demand for risky assets,
the market volatility will increase to compensate (so to clear markets) and
conversely when the VaR agent depresses the demand for risky assets. When
the market volatility is increased (decreased), for the market price of risk to
remain unchanged, the market risk premium must also increase (decrease)
accordingly. Furthermore, item (ii) implies that the increased volatility arises
in states of low output, or down stock markets, or more specifically, in the
transition from the intermediate states of the world to the bad states. Indeed,
the market volatility behavior [as a function of 1/δ(t)] inherits the S-shaped
form of the demand for risky assets [as a function of ξ(t)] seen in Figure 3b.
Note that the equilibrium analysis provides a justification for our identifi-

cation of low (high) ξ(t) with good (bad) states of the world. Equation (31)
reveals ξ(t), the price of consumption, to be decreasing in the consumption
supply δ(t), and (32) reveals the equity market value to be increasing in δ(t).
Hence, what we call “good (bad)” states are those associated with high (low)
aggregate output and with high (low) equity prices.

5. Conclusion

We analyze the effects of risk management on optimal wealth and consump-
tion choices and on optimal portfolio policies. We first focus on modeling
risk managers as expected utility maximizers, who derive utility from wealth
at some horizon and who must comply with a VaR constraint imposed at that
horizon, requiring that the wealth may decrease below a given floor only with
a prespecified probability. Having embedded VaR into an optimizing frame-
work, we reveal several surprising effects, some of which may be viewed as
undesirable by regulators. In particular, VaR risk managers incur larger losses
than non-risk managers in the most adverse states of the world. To address
that, we next propose an alternative model of risk management, LEL-RM,
where expected losses (rather than the probability of losses) are limited. We
demonstrate how this alternative model remedies the shortcomings of VaR-
RM. In particular, we show that for many empirically relevant scenarios the
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expected losses under VaR-RM may range from being two to as high as 10
times larger than under LEL-RM.
Both the partial equilibrium and the general equilibrium analyses of the

economy with VaR risk managers yield profoundly different implications
compared to the extensively studied case of portfolio insurance: VaR risk
managers differ from portfolio insurers both in their endogenously chosen
quantities and in their impact on equilibrium prices. In particular, in the
worse states of the world, the VaR agents may take on more risk than non-
risk managers and consequently increase the stock market volatility, which
is exactly the opposite behavior and impact on volatility as compared with
portfolio insurers.
In related work, we have also analyzed the case of the VaR constraint

applied repeatedly over time. There, the optimal policy retains the structure of
the single-constraint case, and many results extend qualitatively (details avail-
able upon request). Although in this article we demonstrate how to embed
two particular forms of risk management into an optimizing framework, our
analysis may also pave the way toward evaluation of further alternative risk-
management practices of interest to regulators. In particular, there is room to
consider risk-management models that require agents to focus on the higher
moments of the distribution of a loss. For example, from an econometric per-
spective, volatilities can be estimated more efficiently than means; it is there-
fore of interest to compare the LEL-RM framework with one that binds the
second moment of a loss, which may be an easier framework to implement in
practice. In studying risk-management practices, within the paradigms under-
lying our analysis, it is also of interest to address issues pertinent to the pres-
ence of credit risk, where the debtor has an option to default. Toward that
end, a setting such as that examined by Basak and Shapiro (2000) could be
adopted.

Appendix

Proof of Proposition 1. Let Ŵ (T ) = WVaR(T ). If P(Ŵ(T ) < W) < α, then by their defi-
nition, ξ̄ < ξ , and WVaR(T ) = I (yξ(T )) = WB(T ), which is optimal following the standard
arguments as in the benchmark case. Otherwise, P(Ŵ(T ) < W) = α, and ξ̄ ≥ ξ . The remainder
of the proof is for the latter case. We adapt the common convex-duality approach [see, for exam-
ple, Karatzas and Shreve (1998)] to incorporate the VaR constraint. The expression in Lemma 1
is the convex conjugate of u with an additional term capturing the VaR constraint.

Lemma 1. Expression (9) solves the following pointwise problem ∀ξ(T ):

u(Ŵ (T ))− yξ(T )Ŵ (T )+ y21{Ŵ (T )≥W } = max
W

{u(W)− yξ(T )W + y21{W≥W }},

where y2 ≡ u(I (yξ̄ ))− yξ̄I (yξ̄ )− u(W)+ yξ̄W ≥ 0.

Proof. The function on which max{·} operates is not concave in W , but can only exhibit
local maxima at W = I (yξ(T )) and/or W = W . To find the global maximum, we need to
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compare the value of these two local maxima. When ξ(T ) < ξ , we have I (yξ(T )) > W

and
u(I (yξ(T )))− yξ(T )I (yξ(T ))+ y2 > u(W)− yξ(T )W + y2,

so I (yξ(T )) is the global maximum. When ξ ≤ ξ(T ) < ξ̄ , we have I (yξ(T )) ≤ W and

u(W)− yξ(T )W + y2 = u(I (yξ̄ ))− yξ̄I (yξ̄ )+ yW(ξ̄ − ξ(T ))

> u(I (yξ(T )))− yξ(T )I (yξ(T )), (A1)

where the inequality follows from ξ(T ) < ξ̄ and ∂

∂ξ
{u(I (yξ))−yξI (yξ)+yWξ} = −yI (yξ)+

yW ≥ 0 whenever ξ ≥ ξ . So W is the global maximum. When ξ(T ) ≥ ξ̄ , the inequality in (A1)
is reversed and so I (yξ(T )) is the global maximum. Finally, to show y2 ≥ 0, note that

y2 = [u(I (yξ̄ ))− yξ̄I (yξ̄ )+ yWξ̄ ] − [u(I (yξ))− yξI (yξ)+ yWξ ] ≥ 0,

again from ∂

∂ξ
{u(I (yξ))− yξI (yξ)+ yWξ} ≥ 0 and ξ̄ ≥ ξ . �

Now, let W(T ) be any candidate optimal solution, which satisfies the VaR constraint (7) and
the static budget constraint (8). We have

E[u(Ŵ (T ))] − E[u(W(T ))]

= E[u(Ŵ (T ))] − E[u(W(T ))] − yξ(0)W(0)+ yξ(0)W(0)+ y2(1 − α)− y2(1 − α)

≥ E[u(Ŵ (T ))] − E[u(W(T ))] − E[yξ(T )Ŵ (T )] + E[yξ(T )W(T )]

+E[y21{Ŵ (T )≥W }] − E[y21{W(T )≥W }] ≥ 0,

where the former inequality follows from the static budget constraint and the VaR constraint
holding with equality for Ŵ (T ), while holding with inequality for W(T ). The latter inequality
follows from Lemma 1. Hence Ŵ (T ) is optimal.16 Finally, because the VaR constraint must hold
with equality, we deduce the definition of ξ̄ . From (9) it is clear that ∂WVaR(T ; y)/∂α|y < 0,
and in particular WPI (T ; y) ≥ WVaR(T ; y). Furthermore, except when equal to W , all wealth
policies are decreasing in y. Hence, to allow the static budget constraint hold with equality, we
must have y decreasing in α and y ∈ [yB, yPI ]. �

Proof of Proposition 2.

(i) It is straightforward to verify that L1(W
B) = G1(aB, y

B), L1(W
VaR) = G1(aV , y),

where

G1(a, x) = WN (a)− x
− 1
γ e

(
m
γ + s2

2γ 2

)
N (a − s

γ
),

m = E[− ln ξ(T )], s2 = V ar[− ln ξ(T )],

aB =
(lnWγyB −m)

s
, aV =

(lnWγy −m)

s
,

and y solves E[ξ(T )I (yξ(T ))] = ξ(0)W(0). Next, it is also straightforward to show
that, for x > 0, ∂

∂a
G1(a, x) ≥ 0 if, and only if, a ≤ aV . Hence, because aB ≤ aV ,

16 The optimization problem is not standard because it is nonconcave; to gain insight into its structure, we found
it satisfactory to provide a general proof of sufficiency for optimality. To prove existence, one has to follow
the standard path of stating and verifying conditions for integrability of wealth, prices, and portfolio holdings
(as mentioned in note 4). In addition, one has to present the appropriate growth conditions on u and moment
conditions on ξ , followed by an elaborate analysis to verify that the expectations in the objective function and
in the budget constraint are well defined [e.g., as in Cox and Huang (1991)]. To prevent diverting the focus
with a series of technical conditions and to not unnecessarily lengthen the article, we chose to solve explicit
examples of interest, instead of proving existence in general.
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G1(aB, y) ≤ G1(aV , y). Also, as
∂

∂x
G1(a, x) ≥ 0 and y ≥ yB , G1(a, y

B) ≤ G1(a, y).
Then,

L1(W
VaR)− L1(W

B) = G1(aV , y)−G1(aB, y
B)

≥ G1(aV , y)−G1(aB, y) ≥ 0.

(ii) It is straightforward to verify that L2(W
B) = G2(aB, y

B), L2(W
VaR) = G2(aV , y),

where

G2(a, x) =
(
We−m+ s2

2 N (a + s)− x
− 1
γ e)N

(
a − 1 − γ

γ
s

))
/ξ(0),

) = 1 − γ

γ
m+

(
1 − γ

γ

)2
s2

2
,

aB , aV , as in part (i). Also, for x > 0, ∂

∂a
G2(a, x) ≥ 0 if, and only if, a ≤ aV , and

since ∂

∂x
G2(a, x) ≥ 0, G2(a, y

B) ≤ G2(a, y). Therefore,

L2(W
VaR)− L2(W

B) = G2(aV , y)−G2(aB, y
B)

≥ G2(aV , y)−G2(aB, y) ≥ 0. �

Proof of Proposition 3.

(i) From (3) and (4), Itô’s lemma implies that ξ(t)WVaR(t) is a martingale:

WVaR(t) = E

[
ξ(T )

ξ(t)
WVaR(T )|Ft

]
. (A2)

When r and κ are constant, conditional on Ft , ln ξ(T ) is normally distributed with
mean ln ξ(t)− (r+ ||κ||2

2
)(T − t) and variance ||κ||2(T − t). Substituting (9) into (A2),

using I (x) = x
− 1
γ and evaluating the conditional expectations over each of the three

regions of ξ(T ) yields (10).
(ii) Applying Itô’s lemma to (10), using κ = σ(t)−1(µ(t)− r 1̄), we get

σWVaR (t) = 1

γ

e)(t)

(yξ(t))
1
γ

[
1 − N (−d1(ξ))+ N (−d1(ξ̄ ))

+
γ (W −W)e−r(T−t)−)(t)φ(d2(ξ̄ ))

(yξ(t))
− 1
γ ||κ||√T − t

]
κ.

From (4), σWVaR (t) must equal σ(t)�θV aR(t)WVaR(t). Using the well-known value of
θB , we obtain

qVaR(t) = e)(t)

WVaR(t)(yξ(t))
1
γ

[
1 − N (−d1(ξ))+ N (−d1(ξ̄ ))

+
γ (W −W)e−r(T−t)−)(t)φ(d2(ξ̄ ))

(yξ(t))
− 1
γ ||κ||√T − t

]
(A3)

Rearranging (A3) yields (11).

(iii) Inspection of (A3) clearly reveals that it is nonnegative. The limits are immediate to
verify.
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(iv) For a given t , to save notation, we suppress the dependence of ξ , qVaR , and WVaR on t .
The proof first establishes the existence of ξ ∗, for a given t , by explicitly computing
a region (in the ξ -space) within which qVaR rises, as a function of ξ , from below to
above 1. Then, uniqueness of ξ ∗ is established. As stated in the proposition, the above
region is defined in terms of two sufficient conditions: the first is that qVaR < 1 if

ξ <

√
ξ̄ ξe(r−||κ||2/2)(T−t), the second is that qVaR > 1 if ξ > ξ̄e(r−||κ||2/2)(T−t)e(||κ||

2/γ )(T−t).
For brevity, we only present the proof of the former, as the proof of the latter follows
similar steps. For X ∈ [W,W ], let

F(X, ξ) ≡
γ (X −W)φ(d2(ξ̄ ))

||κ||√T − t
−X(N (−d2(X−γ /y))− N (−d2(ξ̄ ))) .

Note that d2(X
−γ /y) and d2(ξ̄ ) are functions of ξ , and that qVaR = 1 + e−r(T−t)

F (W, ξ)/WVaR . Hence, for a given t and ξ, qV aR < 1 if, and only if, F(W, ξ) < 0. For
analytical tractability, we only derive a sufficient condition for F(W, ξ) < 0. Noting
that F(W, ξ) = 0, a sufficient condition for F(W, ξ) < 0 is that ∂

∂X
F (X, ξ) < 0,∀X ∈

[W,W ]. It is straightforward to verify that a sufficient condition for ∂

∂X
F (X, ξ) <

0,∀X ∈ [W,W ], is that ξ <
√
ξ̄ /yXγ e(r−||κ||2/2)(T−t). But, because ξ = 1/yWγ ≤

1/yXγ ,∀X ∈ [W,W ], the latter inequality holds when ξ <
√
ξ̄ ξe(r−||κ||2/2)(T−t). To

summarize: ξ <
√
ξ̄ ξe(r−||κ||2/2)(T−t) ⇒ ξ <

√
ξ̄ /yXγ e(r−||κ||2/2)(T−t),∀X ∈ [W,W ] ⇒

∂/∂XF(X, ξ) < 0,∀X ∈ [W,W ] ⇒ F(W, ξ) < 0 ⇒ qVaR < 1. This, combined
with the condition for qVaR > 1, using the limits in (iii), and the fact that F(W, ξ) is
differentiable with respect to ξ imply that there exists a ξ ∗ for which F(W, ξ ∗) = 0,
and there exist ξL, ξH satisfying ξL < ξ ∗ < ξH for which F(W, ξL) < 0 < F(W, ξH )

and ∂

∂ξ
F (W, ξL) = ∂

∂ξ
F (W, ξH ) = 0. To complete the proof, we need to show that ξ ∗

is unique. To prove this, it is enough, in our setting, to verify that ∂

∂ξ
F (W, ξ) = 0

has at most two distinct roots. To verify the latter, note that ∂

∂ξ
F (W, ξ) = 0 if,

and only if, f (W, d2(ξ̄ )) = 0, where f (W, h) = a1h − a2e
a3h + W , and a1 =

γ (W −W)/||κ||√T − t, a2 = We− a23
2 , a3 = γ ln(W/W)/||κ||√T − t , are all posi-

tive and independent of ξ . But ∂2

∂h2
f (W, h) = −a2a23ea3h < 0, for all h, and hence

f (W, h) = 0 has no more than two distinct roots: h1, h2. Assume, without loss of
generality, h1 > h2. Because there is a one-to-one mapping between d2(ξ̄ ) and ξ, ξL =
ξ̄ e(r−||κ||2/2)(T−t)−h1 ||κ||√T−t and ξH = ξ̄ e(r−||κ||2/2)(T−t)−h2 ||κ||√T−t are the unique, global
minimizer and maximizer, respectively, of F . �

Proof of Proposition 4. This is the direct analog of Proposition 1. Let Ŵ (T ) = WLEL(T ). If
E[ξ(T )(W − Ŵ (T ))1{Ŵ (T )≤W }] < ε, then z2 = 0 and ξ̄ε = ξ

ε
, and WLEL(T ) = I (z1ξ(T )) =

WB(T ), which is optimal following the standard arguments. Otherwise, E[ξ(T )(W − Ŵ (T ))

1{Ŵ (T )≤W }] = ε, and ξ̄ε ≥ ξ
ε
. The remainder of the proof is for the latter case.

Lemma 2. Expression (14) solves the following pointwise problem ∀ξ(T ):

u(Ŵ (T ))− z1ξ(T )Ŵ (T )− z2ξ(T )(W − Ŵ (T ))1{Ŵ (T )<W }

= max
W

{u(W)− z1ξ(T )W − z2ξ(T )(W −W)1{W<W }}.

Proof. The function on which max{·} operates is not concave in W but can only exhibit local
maxima atW = I (z1ξ(T )) if I (z1ξ(T )) ≥ W , orW = I ((z1−z2)ξ(T )) if I ((z1−z2)ξ(T )) < W ,
or W = W . When ξ(T ) < ξ

ε
, I (z1ξ(T )) > W , I ((z1 − z2)ξ(T )) > W , and

u(I (z1ξ(T )))− z1ξ(T )I (z1ξ(T )) > u(W)− z1ξ(T )W,
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so I (z1ξ(T )) is the global maximum. When ξ(T ) ≥ ξ̄ε , I ((z1 − z2)ξ(T )) < W , I (z1ξ(T )) < W

and

u(I ((z1 − z2)ξ(T )))− (z1 − z2)ξ(T )I ((z1 − z2)ξ(T )) ≥ u(W)− (z1 − z2)ξ(T )W,

so I ((z1 − z2)ξ(T )) is the global maximum. When ξ
ε
≤ ξ(T ) < ξ̄ε , I (z1ξ(T )) ≤ W ,

I ((z1 − z2)ξ(T )) > W , so W = W is the only local maximum and hence the solution. �

Now, let W(T ) be any candidate optimal solution, which satisfies the static budget constraint
and the LEL constraint in (12). We have

E[u(Ŵ (T ))] − E[u(W(T ))]

= E[u(Ŵ (T ))] − E[u(W(T ))] − z1ξ(0)W(0)+ z1ξ(0)W(0)− z2ε + z2ε

≥ E[u(Ŵ (T ))] − E[u(W(T ))] − E[z1ξ(T )Ŵ (T )] + E[z1ξ(T )W(T )]

−E[z2ξ(T )(W − Ŵ (T ))1{Ŵ (T )≤W }] + E[z2ξ(T )(W −W(T ))1{W(T )≤W }] ≥ 0,

where the former inequality follows from the static budget constraint and the LEL constraint
holding with equality for Ŵ (T ), while holding with inequality for W(T ). The latter inequality
follows from Lemma 1. Hence, Ŵ (T ) is optimal. Suppose z1 > zPI1 . Then WPI (T ) > WLEL(T )

in all states, contradicting the budget constraint holding with equality for both. Hence by contra-
diction, z1 ≤ zPI1 . Suppose z1 − z2 ≤ z1 < zB1 . Then W

LEL(T ) > WB(T ) in all states. Similarly,
if zB1 < z1 − z2 < z1, then W

LEL(T ) < WB(T ) in all states. Either case contradicts the budget
constraint holding with equality for both, so we must have z1 − z2 ≤ zB1 ≤ z1. �

Proof of Proposition 5. The proof is as of Proposition 3, except with ξ and ξ̄ replaced appro-
priately by ξ

ε
and ξ̄ε . �

Proof of Proposition 6. Equations (21), (23), and (25) are well known to solve the uncon-
strained optimization. To show that (22), (24), (26), and (27) are the optimal solution to the
optimization problem of the long-lived VaR agent is a straightforward extension of the proof of
Proposition 1 and is therefore omitted. �

Proof of Proposition 7. Equation (31) follows from the clearing of the consumption good mar-
ket. Then, r and κ are determined by applying Itô’s lemma to (31) and equating terms with (3),
and η follows by substituting (31) into (17). �

Proof of Proposition 8. In Equations (25)–(27), the y’s are only determined up to a multi-
plicative constant, and we therefore, without loss of generality, set y−1

n +y−1
v1 = 1.17 The expres-

sion for WVaR
em (t) follows by substituting (T ′ − T )δ(t)/yv1, ||σδ ||, µδ − ||σδ ||2, for 1/yξ(t),

||κ||, r , respectively, in the time-t wealth equation (10) of Proposition 3, and adding the
(T ′ − t)δ(t) term to account for intermediate consumption. Applying Itô’s lemma to WVaR

em (t)

yields the expressions for ||σVaRem (t)||, µVaRem (t). To show property (i), use (23)-(24) and (31)
to note that when Ŵv(T−) �= W then Ŵn(T−) + Ŵv(T−) = (T ′ − T )δ(T−), and when
Ŵv(T−) = W , then Ŵn(T−) + Ŵv(T−) > (T ′ − T )δ(T−). Hence, WVaR

em (T−) > WB
em(T−),

which implies (i). Property (ii) follows by substituting the appropriate equilibrium quantities in
part (iv) of Proposition 3. �
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