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Abstract
Value at risk (VaR) is an important and widely used measure of the ex-

tent to which a given portfolio is subject to risk present in �nancial markets.
Considerable amount of research was dedicated during recent years to devel-
opment of acceptable methods for evaluation of this risk measure.

In this paper, we present a method of calculating the portfolio which gives
the optimal VaR among those, which yield at least some speci�ed expected
return. This method allows to calculate the mean-VaR ef�cient frontier. The
method is based on approximation of historic VaR by smoothed VaR (SVaR)
which �lters out local irregular behavior of historic VaR function.

Moreover, we compare the VaR as a risk measure to other well known
measures of risk such as the conditional value at risk (CVaR) and the standard
deviation.

It turns out, that the corresponding ef�cient frontiers are quite different. An
investor, who wants to control his VaR should not look at portfolios lying on
other than the VaR ef�cient frontier, although the calculation of this frontier
is algorithmically more complex compared to other frontiers.

1 Introduction

Value at Risk (VaR) is an important measure of exposure of a given portfolio of securities to
different kinds of risk inherent in �nancial environment. By now, it became a tool for risk
management in �nancial industry [1] and part of industrial regulatory mechanisms [2]. Consid-
erable amount of research was dedicated recently to development of methods of risk manage-
ment based on Value at Risk [3, 19, 20, 21, 31]. This literature is dedicated mainly to ef�cient
techniques for computing VaR of a given portfolio.

VaR is a simple and intuitive measure of risk. Some other frequently used, but not equally
intuitive measures of risk are the variance, the semi-standard deviation and the conditional value
at risk (CVaR, see below). Risk measures can be compared in two ways: Firstly, risk measures
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differ in their theoretical properties and the decision maker may choose the measure which �ts
to his/her preferences. Secondly, ef�cient frontiers pertaining to different risk measures may be
calculated and compared. In this way, the quality of portfolio selected for optimal risk measure
1 can be judged in terms of risk measure 2.

In this paper we compare VaR, CVaR and standard deviation as risk measures both in terms of
theoretical properties and ef�cient frontiers for a concrete data set. Among all possible theoreti-
cal properties we concentrate on those which are particularly relevant for optimization problems
studied here. Evaluation of different risk measures from the point of view of utility theory is
outside the scope of this paper, interesting discussion of this issue is contained in [18]. Ef�cient
frontiers for standard deviation and CVaR are easy to calculate, the VaR case is however much
more computationally involved. The problem nonconvex, may exhibit many local minima and
is of combinatorial character, i.e. exponential growth in computational complexity. We present
a smoothing algorithm, which allows to calculate optimal portfolios in the VaR sense with high
accuracy and in reasonable time.

Consider a �nite set of assets � � �� �� � � � � � which can be any kind of �nancial assets,
stocks, bonds and options being the most common examples. Within the observation period
(e.g. 10 days), the assets generate returns

� � ���� �2� � � � � �?��

which are unknown at the time of portfolio allocation and treated as random variables.
The investor has a budget of 1 unit (without loss of generality). He/she may decide on the

positions
� � ���� �2� � � � � �?�

in these assets, such that �� � � (no short sales permitted) and
�

?

�'� �� � � (budget constraint).
Using the vector 1l � ��� � � � � �� of ones, we may write the budget constraint as �A1l � �.

The value of the portfolio at the end of the observation period is

� � �A � �
?�
�'�

�����

The expected return of this portfolio is

��� � � ���A �� � �A�����

Suppose � some risk measure, like those based on VaR, CVaR or the standard deviation
(Std). For a given minimal expected return �, the �-ef�cient portfolio is the solution of the
problem

����������

Minimize (in �� ���A ��
subject to
�A���� � �
�A1l � �
� � �

(1)

The curve which represents the dependence of the optimal value of this problem on the
parameter � is called the �-ef�cient frontier. Essentially, this is a generalization of the classical
concept of mean-variance ef�cient frontier due to Markowitz [23] for the case of an arbitrary
risk measure �.
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The value � of the portfolio at the end of the observation period is a random variable with
distribution function 	 (say)� i.e. 	 �
� � ��� � 
� � ���A � � 
�. Of course, 	 depends
on �.

It is sometimes easier to argue in terms of measures of safety, i.e. characteristic values of a
portfolio, which the decision maker wants to make as large as possible. These measures have
evident one-to-one relation with risk measures which is clear from examples which follow.

In particular, we will consider the following measures of safety �:

� The quantile of return of level �.

�k�� � � ��	�
 
 	 �
�� 
 ���
� The conditional expectation of return not exceeding quantile of level �.

�k�� � � ��� �� � �k�� ���

� The standard-deviation corrected mean.

SDCM4�� � � ��� �	 � Std�� ��

Here � is a risk aversion factor.

On the basis of safety measures, risk measures, i.e. values which should be as small as
possible, can be de�ned. In this paper, we consider the following risk measures

� Value at Risk (VaR) of return:

VaRk�� � � �	 �k�� ��

� Conditional Value at Risk (CVaR) of return:

CVaRk�� � � �	 �k�� ��

� Standard deviation

In this paper we focus on application of Value-at-Risk (VaR) in the context of optimal port-
folio selection. This is a relatively novel application of VaR as opposed to utilization of VaR
for risk management purposes. One of the reasons is that VaR optimization is inherently more
dif�cult than, for example, variance optimization and ef�cient solution algorithms for this prob-
lem are lacking. The objective of this paper is �lling of this gap with the aim of putting VaR
on equal footing with variance as portfolio selection criterion. We argue that for investor whose
risk preferences are expressed in terms of Value-at-Risk it is important to consider this mea-
sure directly because other risk measures like variance, or even seemingly related CVaR, may
represent a poor substitute.

The rest of the paper is organized as follows. Section 2 is dedicated to comparison of risk
measures considered in this paper based on theoretical properties of widely recognized impor-
tance. We argue that no measure posseses uniform advantage over other measures from the
point of view of these properties. Formulation of optimization problems used for computation
of mean-risk ef�cient frontiers for different risk measures is presented in section 3. We concen-
trate here on empirical variants of risk measures derived directly from historic data. Besides,
we collect some empirical evidence about behavior of VaR as function of portfolio composition
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and perform preliminary comparison between VaR and CVaR based on stock market data. The
main point of this section is that behavior of historic VaR is the result of superposition of global
and local components. Global component is fairly well behaved, while the local component
is nonsmooth and possesses a multitude of local minima. This observaton is in the center of
numerical approach for VaR optimization developed in section 4. Here we introduce smoothed
VaR (SVaR) which is an approximation of VaR which extracts global component of VaR be-
havior and �lters out irregular local component. Mathematical details of SVaR construction are
fairly involved and for this reason we relegate them to Appendix. The reason for introduction of
SVaR is that SVaR optimization is much easier and can be performed by ef�cient nonlinear pro-
gramming software. The optimal VaR values are recovered from solution of SVaR optimization
problem by a few inexpensive postprocessing steps. After developing VaR optimization tools,
we are in position to compute and compare mean-risk ef�cient frontiers for different risk mea-
sures in section 5. Result of this comparison is that mean-VaR ef�cient frontier can not be
approximated by ef�cient frontiers obtained for other risk measures, like variance or CVaR.

Very recently the possibilities to utilize VaR and related measures like CVaR as criterions
for optimal portfolio selection started to attract some attention. The relevant literature includes
Andersson and Uryasev[4], Basak and Schapiro[6], Gaivoronski and P�ug[16], Grootveld and
Hallerbach[18], Medova 98 [25], Uryasev and Rockafellar [32].

VaR optimization can be considered as a stochastic programming problem of special type.
In particular, it is related to stochastic programming problems with probability constraints
[30]. General references for stochastic programming models and solution techniques are [7],
[14],[22],[33]. Different applications of stochastic programming to optimal asset allocation in-
cluding analysis of different risk measures were considered in [9],[10], [12],[13],[15],[17],[26],
[27],[34].

2 Properties of safety measures

A safety measure assigns a numerical value to a random distribution of wealth. Safety measures
can be compared on the basis of their properties. In this section, some of these properties are
discussed.

First, we collect some de�nitions of properties of safety measures. Let ��� � be a safety
measure, where � is a random wealth.

(i)� is translation-equivariant, if for all � and all � 
 �

��� � �� � ��� � � ��

(ii)� is positively homogeneous, if for all � and all � 
 �

���� � � ���� ��
if � 
 �.

(iii)� is concave if for all random variables �� and �2 (they may be dependent) and � � � �
�,

����� � ��	 ���2� � ������ � ��	 �����2��

(iv)� is comonotone additive, if

���� ��2� � ����� � ���2�



5

for comonotone random variables �� and �2. Two random variables �� and �2 are
comonotone, if there is a uniform [0,1] random variable � and two monotone functions ��
and �2 such that �� � ���� �, �2 � �2�� �.

(v)� is monotonic w.r.t. the order relation 
, if �� 
 �2 implies that ����� � ���2�. In
particular, we consider the following order relations.

– Stochastic dominance of order �: We say that the relation

�� 
7(E�� �2

holds, iff for all monotonic utility functions �

�������
 � �����2�


– Stochastic dominance of order �: We say that the relation

�� 
7(E2� �2

holds iff for all concave, monotonic utility functions �

�������
 � �����2�


– Monotonic dominance of order �: We say that the relation

�� 
�(E�� �2

holds iff for all concave utility functions �

�������
 � �����2�


Artzner, Delbaen, Eber and Heath [5] call a risk measure coherent, if it is translation-
invariant, convex, positively homogeneous and monotonic w.r.t. 
7(E��.

The following table shows the properties of the three cited measures of safety.
�k �k SDCM4

translation equivariant + + +
positively homogeneos + + +
convex - + +
comonotone additive + - -
monotonic w.r.t. SD(1) + + -
monotonic w.r.t. SD(2) - + -
monotonic w.r.t. MD(2) - + +
coherent - + -
Table 1. Properties of VaR, CVaR and SDCM.

The proofs of these properties can be found in [28] resp. [29].

2.1 Relations between the safety measures

If W is distributed according to a Gaussian distribution �����2�, then the following relations
hold:
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�
�k�� � � �� ��3����� (2)

where � is the standard normal distribution function.

�
�k�� � � �	 �

�

�
�
��
��	 ����	��3����
2���
� (3)

�
SDCM4�� � � �	 ��� (4)

Here � is a risk aversion factor.

For � � ���, �3���� � � and one sees that all three measures are of the form � 	 ��,
for � 
 �. For distributions other than the normal, the three values measure quite different
properties of the distribution.

However, the relation �k�� � � �k�� � holds always. Moreover, there is an important
property of the �k�� �: It can be represented as the minimal value of some optimization prob-
lem [32]:

�k�� � � �����	 �

�
��� 	 �
3 
 � � �� (5)

or, equivalently,

	 �k�� � � ��	�	��
�

�
��� 	 �
3 
 � � �� (6)

Here �

3 � 	����
� ��.
Properties of risk measures, in particular VaR and CVaR, are obtained from properties of

safety measures in an obvious fashion.

3 Optimal portfolios based on historical or simulated data

In this section we start to study the properties of portfolios which exhibit optimal VaR and
CVaR properties, develop numerical approaches for �nding such portfolios and compare them
between themselves and with mean-variance optimal portfolios. There are two possible ways
to approach this problem from the data point of view. One possibility is to approximate original
historic data by parametrized probabilistic distribution, e.g. normal or lognormal distribution,
and use this distribution in order to describe portfolio properties. Another possibility is to use
historic data directly by setting up a sample distribution of portfolio returns on the basis of such
data. In this paper we choose the second possibility. The strongest argument in favour of this
choice is that both VaR and CVaR are sensitive to the tail properties of distributions and many
parametrized families are notoriously bad in describing such properties of real data. Indeed, for
the case of normal distribution VaR, CVaR and variance will generate the same ef�cient frontier,
which is clear from (2)-(4).

Suppose the optimal portfolio must be found for a sample of historical or simulated return
vectors ��� �2� � � � � �� . To put it differently, one may say that we now assume that the distri-
bution of the wealth � takes the values �A ��� � � �� � � � � � , each with probability ��� . Let
� � �

�

�
�

�'� �
� be the average return vector.

Using the three different risk measures VaR�� �, CVaR�� � and Std�� �, leads to quite
differently structured optimization problems.

The Std optimization is a convex quadratic program:
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�����������

Minimize (in �� �A
�
�
�

�
�

�'���
� 	 ����� 	 ��

�
�

subject to
�A � � �
�A1l � �
� � �

(7)

Using (6) one may write the CVaR optimization problem as a large scale linear program:
��������������

Minimize (in �� � and �� 	�� �
k�

�
�

�'� �
�

subject to
�	 �A �� 	 �� � � � � �� � � � � �
�A � � �
�A1l � �
�� � � � � �� � � � � �
� � �

(8)

For the de�nition of the VaR optimization problem introduce the function�d&G� o�

�� � � � � 
� �

to denote the  -th largest among 
�� � � � � 
� . Thus �d�G� o denotes the minimum and �d� G� o the
maximum. The empirical �-quantile of the sample �A ��� � � � �A �� is

�d�k�0G� o��
A ��� � � � � �A ����

The VaR optimization is a nonconvex program, which may have many local minima.
����������

Minimize (in �� �d�k�0G� o�	�A ��� � � � �	�A ���
subject to
�A � � �
�A1l � �
� � �

(9)

Ef�cient commercial software based on several decades of algorithmic and theoretical re-
search exists for solution of problems (7) and (8). Current situation with the problem (9) is the
opposite one. This is due to the fact that the objective function in (9), generally speaking, is
nonconvex and nondifferentiable. Little is known about properties of such problems and ef-
�cient general algorithms for their solution are nonexistent. What is possible, however, is to
exploit the structure of (9) in order to develop ef�cient solution techniques speci�cally tailored
for VaR optimization problem. This is one of the principal aims of the present paper.

In order to understand better the properties of (8) and its relation to CVaR optimization
problem (8) we investigated the properties of historic VaR and CVaR as function of portfolio
composition using stock market data. Here and in subsequent experiments we utilized the
same data set which was used in [11] for evaluation of so-called universal portfolios and which
contains more than 20 years of NYSE stock data for representative set of companies from
different industry sectors. Typical patterns of VaR dependence on portfolio composition are
presented on Figures 1,2.

Two portfolios were selected, say, �� and �2� and a family of portfolios ���� was considered
which is de�ned by linear combination of these two portfolios:

���� � ��� � ��	 ���2 (10)
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Figure 1: VaR of Ford/IBM portfolio

Both �gures show sample VaR of portfolio ���� as function of �. Values of � are shown on
horisontal axis. Vertical axis represent values of VaR measured in percentage points of initial
portfolio value. Sample VaR is computed after 1 trading day with 0.95 probability. Thick lines
show sample VaR computed using data for 500 trading days, while thin lines are computed using
2000 trading days. On Figure 1 portfolio �� contains only Ford stock and portfolio �2 contains
only IBM stock. Three stocks were used on Figure 2: Schlumberger, Morris and Commercial
Metals. Portfolios �� and �2 were composed from these stocks in the following proportion:

�� � ��������� �� �������� � �2 � ��� �������� �������� �

The following obsevations about VaR behavior can be made on the basis of these experi-
ments.

1. Sample VaR is very irregular function with multiple local minima and maxima evenly
distributed in the function domain. VaR values in overwhelming majority of these minima are
very far away from the optimal VaR value. The number of local minima grows with the number
of observations and sooner or later a portfolio where VaR attains its locally minimal value can
be found in the vicinity of every portfolio. Moreover, VaR function is nondifferentiable in every
local minima. This means that straightforward application of standard techniques of nonlinear
optimization to solution of problem (9) is practically hopeless. Usually such methods require
differentiability of the objective function, which is not the case here. Even if a method can
overcome this obstacle, it still will �nd only a local minima of VaR function. This will not
bring us any closer to the solution of (9) because an arbitrary local minimum does not provide
any information whatsoever about solution of VaR optimization problem.

2. Closer analysis shows, however, that VaR function possesses pronounced structure which
can be exploited for solution of problem (9). In fact, even after a brief look at Figures 1,2 one
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Figure 2: VaR of Schlumberger/Morris/Commercial Metals portfolio

can notice that VaR function is formed by interference of two patterns. The �rst pattern de�nes
the global behavior of VaR function and it is a fairly regular pattern with pronounced global
minimum and smooth behavior which in some cases is close to convex function, like on Figure
1. Even in the cases when its behavior does not seem to be convex, like on Figure 2, it still has
only a few local minima with values which are close to the optimal values. The second pattern
de�nes the local behavior. It is a highly irregular pattern which is responsible for almost all
local minima and for nondifferentiability. When the number of observations increases, the local
pattern becomes more and more irregular, but its magnitude becomes gradually smaller. As a
result, the overall behavior of VaR function gradually comes closer to much more regular global
pattern.

This observation provides a clue for our approach to solution of problem (9). It is centered
around preprocessing of the VaR function. The objective of such preprocessing is to �lter out or
smooth out the irregular local pattern and extract the global pattern of VaR function. After that
nonlinear optimization techniques can be ef�ciently utilized for solution of problem (9). This
approach is explained in the next section.

Before proceeding further let us address another important question: what does empirical
evidence say about relation between VaR and CVaR. Answer to this question has profound
implication for the ways of approaching the solution of problem (9). If empirical evidence
shows that solution of CVaR optimization problem (8) is a good approximation to solution of
problem (9) then it is reasonable for all practical purposes to substitute the problem (9) by
problem (9). This is because the problem (8) is just a linear programming problem which is
much easier to solve than the problem (9). Unfortunately, empirical evidence shows that VaR
and CVaR are substantially different risk measures and this substitution may bring about very
misleading results.
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In order to answer this question we proceeded similarly to (10). Two stocks were selected
and two portfolios were considered: portfolio �� consisted only of stock 1 and portfolio �2

consisted only of stock 2. VaR and CVaR were minimized on the set !���� �2� of all linear
combinations of these portfolios (10) parametrized with parameter � with � � � � �� Let us
introduce some notations:

VaR��� - VaR of portfolio ��

�V@+ - portfolio from the set !���� �2� with the minimal value of VaR�
VaR4�?=VaR��V@+� - minimal value of VaR on the set !���� �2��
VaR4@ - maximal value of VaR on the set !���� �2��
��V@+ - portfolio from the set !���� �2� with the minimal value of CVaR�
"��� - return of portfolio ��

"4�? - minimal value of portfolio return on the set !���� �2��
"4@ - maximal value of portfolio return on the set !���� �2��
Note that in this setting it is very easy to �nd both VaR-optimal and CVaR-optimal portfolios

because in both cases we have one dimensional optimization problem to solve. Suppose now
that VaR-optimal portfolio �V@+ is substituted by CVaR-optimal portfolio ��V@+� By doing so
we make two kinds of substitution errors. The �rst error #T @- is related to the fact that such
substitution leads to a larger value of VaR and is measured as follows:

#T @- �
������V@+�	 ���4�?

���4@ 	 ���4�?

��� 

If the cases when CVaR optimal portfolio is a good approximation of VaR optimal portfolio
this error will be limited to a few percentage points. On the other hand for randomly selected
portfolio such error will have an average value of around 50. The second error #- measures
the difference between returns of VaR-optimal and CVaR-optimal portfolios and is constructed
similarly:

#- �
"���V@+�	"��V@+�

"4@ 	"4�?

��� 

Our experiments show that in some cases CVaR-optimal portfolio approximates VaR-optimal
portfolio reasonably well. On the other hand in many other cases CVaR-optimal portfolio is
a poor substitution for VaR-optimal portfolio because the substitution error is not much better
compared to the error of randomly selected portfolio. Some such cases are summarized in the
following table.

Stocks VaR error #T @- Return error #-

Kodak-Merck 31.5 23.1
General Electric-IBM 27.2 13.9
Sears-Coca Cola 30.5 20.8
Ingersoll-Dow Chemical 17.2 22.3
Dupont-Exxon 20.9 -15.6
AHP-Kimberly-Clark 15.4 22.1
P&G-GTE 25.7 -25.3
Ford-HP 21.2 30.4
GM-P&G 32.7 29
Table 2. Errors committed by substitution of VaR by CVaR.
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Figure 3: VaR/CVaR comparison for Ford/HP portfolio

In all cases presented in this table sample VaR and CVaR were computed for 10 days period
with probability 0.95 using 500 observations. Figure 3 presents in more detail the case of Ford-
Hewlett Packard portfolio from this table. This �gure is constructed similarly to Figures 1,2
with the difference that on Figure 3 CVaR is presented by the thick line and VaR is presented
by the thin line. Values of � from (10) are shown on the horisontal axis. Note that CVaR is
convex function, while VaR is not, while at the same time they obtain respective minima in
considerably different regions.

More evidence supporting our claim that VaR and CVaR are two substantially different risk
measures is presented in Section 5 where respective ef�cient frontiers are compared. The evi-
dence presented so far serves as a motivation for the development of numerical approach tailored
for computation of VaR-optimal portfolios which is presented in the next section.

4 Computation of VaR ef�cient portfolios

As we have seen in the last section, VaR function can be described as a sum of two components.
The �rst component de�nes the global behavior and it is a fairly well behaved component which
sometimes approaches convexity. It has pronounced global minimum and few if any local
minima. Another component de�nes the local behavior and it is very noisy, nonsmooth and it
has many local minima. It is the local component which makes VaR optimization a dif�cult task.
This observation underlies our approach to numerical solution of VaR optimization problem (9)
which consists of three steps.

1. Smooth out or �lter out the local noisy component of the VaR function and extract well
behaved global component. This is the key feature of our approach. The result is smoothed VaR
function (SVAR).
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Figure 4: VaR (thin line) and smoothed VaR (thick line) for small value of smoothing parameter $

2. After this the problem (9) becomes treatable by standard off-shelf software developed for
solution of linear and nonlinear programming problems. We want to utilize this software as
much as possible. This results in approximate solution of VaR optimization problem which in
itself will be often suf�cient for practical purposes.

3. Postprocessing of approximate solution. This is an optional step where commercial opti-
mization software is used again.

In what follows these three steps are described in more detail.

4.1 Extracting the global behavior of VaR function: SVaR

This is the central part of our approach which aims at achieving two objectives. The �rst ob-
jective is to �lter out the numerous local minima produced by noisy local component of VaR
function. The second objective is to substitute original nonsmooth VaR function by approxi-
mate smooth function which can be treated by standard nonlinear programming techniques. It
appears that both these objectives are achieved by special approximation technique developed
in this paper.

In principle, general approximation techniques, like spline approximation, can be also used
for approximation of VaR function. However, they require computational overhead which grows
fast with dimension of portfolio. This makes such approaches dif�cult to utilize for problems of
realistic dimension because the value of approximating function is going to be computed many
times during optimization process. For this reason we had to develop approximation approach
speci�cally tailored for exploitation of the special structure of the VaR function. General de-
scription of this approach is given in this section and its mathematical background is given in
Appendix.
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Let us simplify our notations and denote VaR function which is the objective of (9) by � ����
Besides portfolio � it depends on return observations ��� ���� �� and on probability value �, but
we omit this dependence where it will not cause confusion.

We approximate original VaR function by the following family of smoothed VaR functions
� �$� �� (SVaR) parametrized by smoothing parameter $, $ 
 �:

� �$� �� �

��
�'�

�"
�
����A ��� (11)

Coef�cients �"
�
��� in (11) satisfy the following conditions:

1. �"
�
��� are twice continuously differentiable for all $ 
 ��

2. �"
�
���
 � as $ 
 � for every � and � for which � ��� �� �A ���

3. �"
�
���
 ��� as $ 
 � for every � and ��

4.
�

�

�'� �
"

�
��� � ��

Under these conditions � �$� �� is twice continuously differentiable for all $ 
 �. This prop-
erty is important because � �$� �� is going to be minimized by standard nonlinear programming
algorithms, and they usually require that the objective function has this property. Another con-
sequence of conditions 1-4 is that � �$� ��
 � ��� as $ 
 � and

� �$� ��
 �

�

��
�'�

�A ��

as $ 
 � which is just the average return of portfolio �. Thus, we have the whole range
of approximations from very precise approximations for small values of $ which, however,
leave untouched undesired properties of original VaR function, to very well behaved, almost
linear approximations which, however, retain little information about original VaR function.
Therefore the choice of smoothing parameter $ is governed by tradeoff between two con�icting
objectives of having precise approximation and having smooth approximation with as few local
minima as possible.

A large family of possible selections of coef�cients �"
�
��� from (11) is described in Appendix

(see (23)-(24) and Theorem 2). It turns out that each speci�c expression for �"
�
��� is de�ned by a

certain function %
"
��� of one dimensional parameter � which provides a smooth approximation

for a unit step function %��� 


%��� �

�
� �	 � � �
� !"#�$%���

Function %
"
���which we used in our experiments is de�ned in (25) and shown on Figure 9. This

choice is dictated by computational considerations. Resulting smoothed VaR function � �$� ��
requires a moderate computational overhead compared with original VaR function � ���. The
important fact is that this overhead does not depend on the number of positions in portfolio �
and grows relatively slow with the number of return observations � (see Theorem 5). Figures
4 and 5 show a typical example of smoothed VaR function for different values of smoothing
parameter $�

These �gures similarly to Figures 1-3 show dependence of VaR function � ��� (thin line)
on parameter � which de�nes portfolio ���� as linear combination of portfolios �� and �2 ob-
tained according to (10). Portfolios �� and �2 consisted of three stocks (Schlumberger, Morris,
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Figure 5: VaR (thin line) and smoothed VaR (thick line) for larger value of smoothing parameter $

Commercial Metals) in the following proportion:

�� � ��������� �� ��������, �2 � ��� �������� ��������

VaR was computed on the basis of 500 daily observations for probability 0.95. Thick line on
these �gures represents smoothed VaR computed for different values of smoothing parameter $�
Figure 4 shows the case of small value of smoothing parameter $ � ������ In this case smoothed
VaR � �$� �� follows regular VaR very well, although even in this case the smoothing managed
to cut off many irrelevant local minima. The case of larger value of $ � ����� is represented
on Figure 5. Here local noisy component of VaR is �ltered out completely and only global well
behaved component remains.

Smoothing approach presented here is implemented in MATLAB environment [24] and
presents a robust tool for approximation of sample VaR function by smooth function with pro-
nounced global minimum.

4.2 Minimizing smoothed VaR function

Ef�cient nonlinear programming software present in the market can be used for �nding VaR-
ef�cient portfolios by minimizing smoothed VaR function. In our experiments we used fmin-
con subroutine from MATLAB Optimization Toolbox which is fairly reliable and fast solver
for problems of medium size. Another option is to use nonlinear programming solvers available
in GAMS environment [8].

4.3 Postprocessing

The result of the previous step is portfolio �5V�+ which is either a global minimizer or a good
local minimizer of smoothed VaR function. In most cases this will be enough for practical
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purposes. However, if one wish to improve on this, it can be done taking as a starting point
portfolio �5V�+� Let us consider two possibilities for doing this.

1. Local minimization of VaR function.
In order to do this is is enough to solve linear programming problem of small to medium

size which can be done very fast by current commercial codes. We have found that subroutine
linprog from MATLAB Optimization Toolbox is suf�cient for this purpose. Again, solvers
present in GAMS environment present another good choice.

Let us formulate postprocessing LP. According to de�nition of sample VaR � ��� there exists
index & which depends on �5V�+ such that � ��� � �A5V�+�

� and inequality

�A5V�+�
� � �A5V�+�

� (12)

is satis�ed for at least �k observations ��� � �� &� where �k is the smallest integer which is not
smaller then ��� 	 �� and � is a probability for which VaR is computed. Let us denote by
& an arbitrary set of �k indices for which inequality 12 is satis�ed. Then the solution of the
following linear programming problem is a local minimum of VaR function � ��� and provides
better value of VaR then �5V�+�

���
%

�A �� (13)

�A
�
�� 	 ��

� � �� � � & (14)
�A

�
�� 	 ��

� � �� � � � � �� � �� & (15)
�A � � � (16)

�A1l � �� � � � (17)
Our experience is that improvement of VaR value obtained through solution of this problem is
relatively small.

2. Global minimization of VaR function.
Using notations introduced above we can reformulate VaR optimization problem (9) as fol-

lows:
���
�c\c%

�A �� (18)

subject to constraints (14)-(17) where minimization is performed with respect to all � and
all pairs �&�&� where � � & � � and set & contains exactly �k elements among integers
��� ���� �� � �&� � This is a dif�cult mixed integer programming problem and it is practically
impossible to solve it to optimality for problems of realistic dimension without having good
information about the optimal solution. However, minimum of smoothed VaR function �5V�+
provides just this information. For this reason (18) can be used for improvement of solution
�5V�+� In our experiments we have not used this approach because minimization of smoothed
VaR together with postprocessing according to (13)-(17) gave results which were already good.

5 Comparison of ef�cient frontiers

Now we have in place all tools necessary for utilization of VaR as a criterion for optimal invest-
ment. This is done following classical Markowitz approach [23]: VaR is minimized for different
values of return � by solving problem (3) and mean-VaR feasible set is constructed from which
mean-VaR ef�cient frontier is derived. After this an investor with speci�c risk preferences can
choose the target value of VaR and select portfolio on ef�cient frontier that provides the best
return for a given value of VaR.
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Figure 6: Boundary of mean-VaR feasible set (thick) and images of mean-CVaR boundary
(thin) and mean-variance boundary (dashed)

But how such mean-VaR ef�cient frontier compares with classical mean-variance ef�cient
frontier? If the difference is small there is no point in abandoning classical mean-variance
approach in favour of VaR. In order to answer this question we conducted a study with the
same set of stock market data which was used in previous experiments. The purpose was to
compare mean-variance, mean-CVaR and mean-VaR ef�cient frontiers obtained on the basis
of historical data by solution of problems (7),(8) and (9) for different values of return �. Each
computation of ef�cient frontier involved 200-500 solutions of respective optimization problem.
Problems (7) and (1) are standard quadratic and linear programming problems respectively that
can be solved by wide choice of available commercial software. We have found MATLAB op-
timization toolbox suf�cient for our purposes. VaR optimization problem (9) was solved using
smoothing described in the previous section. The whole implementation consists of a system
of MATLAB M-�les which use solvers fmincon (nonlinear programming) and linprog
(LP) from MATLAB Optimization Toolbox.

Results of a typical experiment are presented on Figures 6,7 and 8.

They depict boudaries of sample mean/VaR, mean/CVaR and mean/variance feasible sets
computed for 500 ten days return observations for the set of stocks which included Texaco, In-
gersoll, Kodak, Fischbach, Gulf and Commercial Metals. Probability 0.95 was used for compu-
tation of VaR and CVaR. Ef�cient frontiers were computed using 201 equidistant return values.

Figure 6 shows boundary of mean-VaR feasible set with thick line. Besides, it shows images
of boundaries of mean-CVaR and mean-variance feasible sets in mean-VaR space with thin and
dashed lines respectively. In order to obtain these images we computed VaR of portfolios that
form mean-CVaR and mean-variance ef�cient frontiers and placed resulting points on Figure
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Figure 7: Boundary of mean-CVaR feasible set (thin) and images of mean-VaR boundary
(thick) and mean-variance boundary (dashed)
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Figure 8: Boundary of mean-variance feasible set (dashed) and images of mean-VaR boundary
(thick) and mean-CVaR boundary (thin)
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6. Horisontal axis on this �gure shows VaR values expressed in percents relative to original
portfolio value. Vertical axis shows expected rate of return after 10 trading days expressed in
percents. Ef�cient frontiers are easily obtained from boundaries of feasible sets.

Figure 7 shows how boundaries of feasible sets and ef�cient frontiers look in mean-CVaR
space. Thus, mean-CVaR ef�cient frontier is depicted with thin line and images of mean-VaR
and mean-variance ef�cient frontiers in mean-CVaR space are shown with thick and dashed
lines respectively. The meaning of axes is similar to Figure 6 except that horisontal axis shows
CVaR values.

Figure 8 shows how boundaries of feasible sets and ef�cient frontiers look in mean-standard
deviation space. Thus, mean-standard deviation ef�cient frontier is depicted with dashed line
and images of mean-VaR and mean-CVaR ef�cient frontiers in mean-standard deviation space
are shown with thick and thin lines respectively. The meaning of axes is similar to Figure 6
except that horisontal axis shows standard deviation values expressed in percents.

The following conclusions can be drawn from this and other similar experiments.
1. Mean-VaR feasible set and respective ef�cient frontier differs from traditional ef�cient

frontiers in the sense thatthey are not convex. However, its distance from convex shape is
relatively small and as the �rst approximation it can be considered ”almost” convex, especially
if compared to irregular behavior of VaR function itself as shown on Figures 1-5.

2. Taken in optimal portfolio selection context, VaR differs substantially from both CVaR
and variance because mean-VaR ef�cient portfolios may differ considerably from mean-CVaR
of mean-variance ef�cient portfolios. Figures 6-8 show several phenomena which point in this
direction. Firstly, the distance between VaR-ef�cient frontier and images of other frontiers is
far larger then distance between frontiers in mean-CVaR space or mean-variance space. In
other words, mean-CVaR and mean-variance ef�cient portfolios provide a poor approximation
to mean-VaR ef�cient portfolios in mean-VaR space, while mean-VaR ef�cient portfolios pro-
vide much better approximation to mean-CVaR and mean-variance portfolios in their respec-
tive spaces. Secondly, mean-CVaR ef�cient portfolios do not approximate mean-VaR ef�cient
portfolios any better than mean-variance ef�cient portfolios do. Actually, in some cases mean-
variance portfolios lie closer to mean-VaR portfolios than mean-CVaR portfolios, as Figure 6
suggests. Vice versa, mean-variance portfolios can approximate mean-CVaR portfolios better
than mean-VaR portfolios do (see Figure 7).

3. For high risk portfolios all frontiers approximate each other fairly well, while for medium
and small risk portfolios frontiers can differ substantially, especially for medium risk portfolios.

6 Summary

We studied here Value-at-Risk (VaR) in the context of VaR optimization for the purpose of se-
lection of mean-VaR ef�cient portfolios similar to classical mean-variance approach. Important
theme of this paper is comparison of VaR with other important risk measures from optimiza-
tion point of view, in particular with classical variance and more recent conditional VaR (CVaR).
This comparison is performed both on theoretical plane and computational plane using the stock
market data.

Our conclusion is that VaR is a substantially different risk measure and investor which ex-
presses her risk preferences in terms of VaR should work with VaR directly in the context of
mean-risk tradeoff. In particular, ef�cient frontiers constructed on the basis of the other risk
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measures can be a poor approximation for mean-VaR ef�cient frontier.
Moreover, we argue that computation of mean-VaR ef�cient portfolios based on historic

data is a feasible task, despite the fact that VaR optimization is more dif�cult than variance opti-
mization or CVaR optimization. For this purpose we developed a set of VaR optimization tools
centered around the notion of smoothed VaR (SVaR) which �lters out nonsmooth irregular local
behavior of historic VaR. Smoothed VaR can be ef�ciently optimized using current commercial
nonlinear programming software.

7 Appendix: construction of SVaR

Here we provide mathematical details about smoothing technique which was used in section 4
for computing of VaR ef�cient portfolios.

Let us consider a �nite collection of functions '����� � � �� ���� � de�ned on some set ( �
�
?� Let us �x  � � �  � � 	 � and de�ne function 	 � � �� which for �xed � equals function

'���� 

	 � � �� � '����, & � &��� (19)

where index & � &��� is de�ned by the following two conditions:
1. Inequality '���� � '���� is satis�ed for at least  functions '����� � �� &�

2. Inequality '���� � '���� is satis�ed for at least � 	  	 � functions '����� � �� &�

In these notations

	 �� 	 �� �� � ���
�$�$�

'����� 	 ��� �� � ���
�$�$�

'����

Taking '���� � �A �� we obtain immediately connection with problem (9) since

�d�k�0G� o��
A ��� � � � � �A ��� � 	 �� 	 ����� ��

Function 	 � � ��will be nondifferentiable for all  even if functions '���� are arbitrarily smooth.
Suppose that '���� are twice continuously differentiable. Our objective is to construct approxi-
mation 	"� � �� which depends on parameter $ such that

1. 	"� � �� is twice continuously differentiable for all $ 
 ��
2. 	"� � ��
 	 � � �� as $ 
 ��

One possible way to obtain such approximation is a straightforward utilization of general
approximation techniques, like spline approximation. However, this approach is impractical
because it leads to exponential increase in computational complexity with respect to dimension
of �. We develop here another approach which exploits speci�c structure of the function 	 � � ��
and results in computational requirements which do not depend on dimension of � once values
of '���� are computed. For example, if '���� � �A �� then the total computational requirements
for computing 	"� � �� at one point grow linearly with dimension of �. Our approximation is
based on the representation of the function 	 � � �� as a linear combination of the composite
functions '���� where coef�cients in the linear combination depend on �:

	 � � �� �
��
�'�

�����'���� (20)

In order to derive expressions for coef�cients ����� we need the following notations:
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� � - set of all integers from 1 to � except �: � � � ��� �� ���� �� � ��� �
&�
&

- arbitrary subset of � � which contains exactly  elements�
( �&�

&
� - subset of �? associated with set &�

&
as follows:

(
�
&�
&

�
�

	
� 
 '���� � '���� for & � &�

&
, '���� � '���� for & � � � � &�

&



'�

&
- family of all different sets &�

&
�

�� - indicator function of set ), i.e.

����� �

�
� if � � )
� otherwise

In order to simplify notations we shall omit dependence of �� on � where it will not cause
confusion. The following lemma gives required representation of function 	 � � ���

Lemma 1 Suppose that 	 � � �� is de�ned by (19). Then

	 � � �� �
�

����

��
�'�

�����'����� (21)

where

����� �
�

\�
&
MX�

&

�
f�\�

&�
� ���� �

��
�'�

����� (22)

Proof.
Suppose that 	 � � �� � 'o���. We are going to prove that also the right hand side of (21)

equals 'o��� provided coef�cients ����� are selected according to (22).
Let us consider an arbitrary � for which '���� 
 'o���� Then inequality '���� � '���� is sat-

is�ed for at least �	 	� functions '���� due to de�nition of function 	 � � ��� Consequently,
inequality '���� � '���� is satis�ed for  � �  functions '���� because from  � �  would
follow '���� � 'o���� This means that � �� ( �&�

&
� for arbitrary &�

&
because due to de�nition

of set ( �&�
&
� we have '���� � '���� for at least  functions '����. Therefore �

f�\�
&�
� � for

arbitrary &�
&

and, consequently, ����� � �� By similar argument we obtain ����� � � also when
'���� 
 'o���. Thus, ����� can differ from zero only if '���� � 'o���� Therefore

�

����

��
�'�

�����'���� � 'o���
�

����

��
�'�

����� � 'o���

due to (22). The proof is completed.�
We are ready now to formulate our main approximation result which de�nes a family of

smooth approximations of function 	 � � ��� It is presented in the following theorem.

Theorem 2 Suppose that '���� are twice continuously differentiable and %
"
��� is an arbitrary

function de�ned for � � �
� and $ � � such that

1. %
"
��� is twice continuously differentiable for $ 
 ��

2. %
"
���
 � as $ 
 � for any �xed � � ��
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3. %
"
���
 � as $ 
 � for any �xed � 
 ��

4. %
"
��� � � for all $ � �� � and %

"
��� � �f for some �f 
 � and all $ � �� � � ��

Then function 	"� � �� de�ned as follows:

	"� � �� �
�

�"���

��
�'�

�"
�
���'����� (23)

�"
�
��� �

�
\�
&
MX�

&

�
�M\�

&

%
"

�
(%

��

� �
�M� �.\�

&

%
"

�	(%

��

�
, (24)

(%

��
� '����	 '����, �"��� �

��
�'�

�"
�
���

is twice continuously differentiable for all $ 
 � and such that 	"� � ��
 	 � � �� as $ 
 � for
any �xed �.

Proof.

Let us �x � and suppose that * is such that 	 � � �� � 'o���. Then from (19) follows that
there exists set &o

&
� 'o

&
such that 'o��� 	 '���� � � for & � &o

&
and '���� 	 'o��� � � for

& � � o � &o
&
. Therefore due to condition 4 we have:

�"��� � �"
o
��� �

�
�M\�

&

%
"

�
(%

��

� �
�M��.\�

&

%
"

�	(%

��

� � �
�3�
f 
 �

where the last estimate does not depend on �. This together with differentiability properties of
'���� and %

"
��� yield existence and continuity of gradient and Hessian of 	"� � �� for arbitrary

� and $ 
 ��

Observe now that %
"
�'���� 	 '����� 
 �ts�E%�$s�E%�� and %

"
�'���� 	 '����� 
 �ts�E%�Ds�E%��

for arbitrary � and $ 
 � due to conditions 2,3. Therefore
�
�M\�

&

%
"

�
(%

��

� �
�M��.\�

&

%
"

�	(%

��

� 
 �
�M\�

&

�ts�E%�$s�E%��

�
�M� �.\�

&

�ts�E%�Ds�E%�� � �
f�\�

&�

which together with Lemma 1 yields �"
�
��� 
 ������ �"��� 
 ���� and �nally 	"� � �� 


	 � � �� for $ 
 � and arbitrary �. The proof is completed. �
By selecting a speci�c function family %

"
��� speci�c smooth approximation of nondifferen-

tiable function 	 � � �� can be obtained. Under additional technical assumptions this approx-
imation will converge uniformly to the original function. Selection of %

"
��� should take into

account computational considerations. For general functions %
"
��� computation of �"

�
��� from

(24) can be a dif�cult task because the number of terms in the sum from (24) grows exponen-
tially with the number of observations � , more precisely it equals

�� 	 ��)
 ) �� 	  	 ��) �

The number of nonzero terms can be drastically reduced by special selection of function family
%
"
���, namely by considering only functions with the property %

"
��� � � if � 
 $. The simplest
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such function that satis�es conditions of Theorem 2 is the cubic spline:
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�	 �S

�"�
�� if � � � � "

e
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"
� 	 H
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�2 � �S

�"�
�� if "

e
� � � �"

e
�S
�
	 �S

"
� � �S

"2
�2 	 �S

�"�
�� if �"

e
� � � $

� if � � $

(25)

This function is depicted on Figure 9 for $ � �� The bene�t of using such functions becomes
clear from the following lemmas.

Lemma 3 Suppose that in addition to conditions of Theorem 2 function %
"
��� is such that

%
"
��� � � if � 
 $� Then the approximation function 	"� � �� can be equivalently represented

as follows:

	"� � �� �
�

�"���

�
�G�8 E&c%�3s�E%��$"

�"
�
���'���� (26)

Proof.
It is enough to prove that �"

�
��� � � if �	 � � ��	 '����� 
 $� Let us �x � and consider the

case when '���� 	 	 � � �� 
 $� Let us select an arbitrary set of indices &�
&
� '�

&
� Suppose

that + � &�
&

and '^��� � ����M\�
&
'^���� Then '^��� � 	 � � �� due to de�nition of 	 � � ���

Therefore
'����	 '^��� � '����	 	 � � �� 
 $

and, consequently, %
"
�'���� 	 '����� � �� Since &�

&
is arbitrary this means that every term in

the sum (24) which de�nes �"
�
��� equals zero and �"

�
��� � �. The case when 	 � � ��	'���� 
 $

is treated similarly. �
Thus, in order to compute 	"� � �� it is enough to consider only those functions '���� for

which �	 � � ��	 '����� � $ which reduces considerably computational effort. Even though
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this approach makes possible to compute the values of 	"� � �� for large � , still considerable
care is needed in implementation of (23)-(24) taking into account that 	"� � �� is going to be
computed many times during optimization process. Let us derive equivalent expression for
coef�cients �"

�
���� keeping in mind computational requirements. We shall consider the case

when %
"
��� � � if � � � similar to (25).

Lemma 4 Suppose that in addition to conditions of Lemma 3 function %
"
��� is such that

%
"
��� � � if � � �� Then coef�cients �"

�
��� from (24) can be represented equivalently as

follows:
�"
�
��� �

�
^coG ^3o'&3&�

3

�3
^
�n
o

(27)
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�
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�
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%
"

�	(%

��

�
(28)

where &o and &^ are arbitrary sets consisting of * and + elements respectively,

&�
"3
�

	
& 
 � � '����	 '���� � $� & � � �



, &�

"n �
	
& 
 � � '����	 '���� � $� & � � �



and  �

3
is the number of elements in set &�

"3
.

Proof.
Let us �x �� select � and denote by &�

3
the set of all indices & � �� ���� � such that '���� �

'����. Suppose that  � is the number of elements in this set. Observe that an arbitrary set
&�
&
� '�

&
can be represented as follows:

&�
&
�

�
&�
3
� &o

� � &^, � � � &�
&
�

��
� � � &�

3

� � &^� � &o
where &o and &^ are arbitrary sets containing * and + elements respectively and such that

&o � &�3, &^ � � � � &�
3

,  � � + 	 * �  

Since %
"

�
(%

��

�
� � if & � &�

3
� &o and %

"

�	(%

��

�
� � if & � � � � &�

3
� &^ we can transform

expression (24) for coef�cient �"
�
��� as follows:
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��� �
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3
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�
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�
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� �
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%
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�
�
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�
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�
3

�
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%
"

�
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��

���
�
� �
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�.\�
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�
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%
"

�	(%

��

���

Assertion of lemma is obtained from the last expression repeating the argument of Lemma 3
which leads to substitution of &�

3
by &�

"3
� � � � &�

3
by &�

"n and  � by  �
3
� �

Expressions (27),(28) allow ef�cient computation of coef�cients �"
�
��� because �3

^
and �n

o

can be computed recursively. Indeed, suppose that , � &�
"3
� Then

�3
^
� %

"
�(%

��
�

�
\^3�\\

�
"3.tr�

�
�M\^3�

%
"

�
(%

��

�
�

�
\^\\

�
"3.tr�

�
�M\^

%
"

�
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��
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The following algorithm utilizes the last expression in order to compute �3
^

for all + � �� ���� +4@ �

+4@ �  �
3

.

Algorithm 1.

1. Initialization. Select an arbitrary ordering &�� ���� &&�
3

of elements of set &�
"3

and denote

-r � %
"

�
(%

��r

�
� , � �� ����  �

3
�

Take �r � �� , � � 
  �3 � ��
2. Computation of �3

^
. Starting from + � � perform consecutively for each + � �� ���� +4@ 


2a. Starting from , � + compute consecutively for each , � +� ����  �
3

:
- Compute � from expression

� �

�
-r�r �	 , � +
-r�r � *� �	 , 
 +

- Take �r � *� if , 
 +.
- Take *� � � if , � +.
2b. Take �3

^
� ��

Now we are ready to answer the following important question. How much additional com-
putational work is needed in order to compute 	"� � �� compared to computation of 	 � � ��+
Preliminary analysis of expressions (23)-(24) is not encouraging because the number of arith-
metic operations necessary for straightforward implementation of (24) grows exponentially with
the number of functions � . This will make the computation of 	"� � �� problematic even for
moderate values of �� However, more re�ned analysis based on Lemma 4 and Algorithm 1
shows that in reality overhead grows relatively slow which makes computation of 	"� � �� an
easy task even for large ��

In order to make this statement precise we need to de�ne exactly what we mean by compu-
tational overhead. For the purposes of the present discussion we shall measure overhead in a
number of arithmetic operations required for computation of 	"� � �� after functions '���� are
already computed. We do not consider comparisons and memory management operations, but
their inclusion will not lead to qualitatively different results. Overhead estimate is contained in
the following theorem.

Theorem 5 Suppose that %
"
��� is computed according to (25). Then there exists an algo-

rithm for which the number . of additional arithmetic operations necessary for computation of
	"� � �� for any �xed  � $ and � can be estimated as follows


. � �� � �
�
�� � (29)

where � is the number of functions '����, �� 
 � as � 
 �� �
�

� �� and �
�

does not
depend on dimension of vector �.

Proof.
The proof is based on estimation of the number of arithmetic operations required by Algoritm

1 and implementation of expressions (26)-(28).
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Let us denote by  �n the number of elements in set &�
"n and by  f the number of elements in

set &&
"
�

&&
"
� �� 
 �	 � � ��	 '����� � $� �

Computation of all -r requires  �
3

subtractions in order to get (%

��r
and another at most

� �
3

operations in order to compute %
"

�
(%

��r

�
if expression (25) is used� Step 2 of Algorithm 1

requires  �
3
� �

3
�����multiplications and

�
 �
3

�2
�� additions to compute all �3

^
for + � �� ����  �

3
�

The same algorithm can be used for computing of coef�cients �n
o

. Computation of sum in (27)
requires at most ����

	
 �
3
�  �n



operations. Therefore we have the following estimate for the

total amount .� of arithmetic operations required for computation of �"
�
��� for arbitrary �xed �:

.� �  �
3
� �

3
���� �n� 

�

n��������
	
 �
3
�  �n



��� �

3
��� �n � �

 �
3

�2
�
�
 �n

�2
���

�
 �
3
�  �n

�
�

The last inequality yields
.� � �2 � ���

because  �
3
�  �n � �� After all �"

�
��� and '���� are computed it is required another � f 	 �

operations in order to compute 	"� � �� from (26). Therefore the following estimate for . holds


. �  f
�
� 2 � ���

�
� � f 	 � � � � � ��� 2 � ��

which completes the proof. �
In reality overhead will be much smaller than (29) because for small and moderate $ we have

 �
3
� ��  �n � ��  f � ��

Estimates similar to (29) hold also for other functions %
"
��� which satisfy conditions of Lemma

4.
Algorithm 1 and (26)-(28) were implemented as Matlab M-�les and were used as integral

part of environment for optimization of nonconvex nonsmooth functions 	 � � �� by methods of
nonlinear programming designed for twice continuously differentiable functions.
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