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Abstract

This paper introduces a set object, namely a shared object that allows processes to add and remove
values as well as take a snapshot of its content. A new consistency condition suited to such an object
is introduced. This condition, named value-based sequential consistency, is weaker than linearizability.
The paper addresses also the construction of a set object in a synchronous anonymous distributed sys-
tem where participants can continuously join and leave the system. Interestingly, the protocol is proved
correct under the assumption that some constraint on the churn is satisfied. This shows that the notion of
“provably correct software” can be applied to dynamic systems.

Keywords: Churn, Consistency condition, Dynamic system, Infinite arrival model, Set object, Syn-
chronous system.

1 Introduction

A set S is a shared object that stores a (possibly empty) finite set of values. A process can acquire the content
of S through a get operation while it can add (remove) an element to S through an add (remove) operation.
A restricted form of set, namely weak set, has been introduced for the first time by Delporte-Gallet and
Fauconnier in [9]. A weak set is a set without the remove operation. Delporte-Gallet and Fauconnier point
out that (due to the semantic of the object itself) a weak set object is not linearizable [14]. More precisely, a
get operation does not care about the execution order of two concurrent add operations that happened before
the get because the important issue for a get operation is the fact that a value is (or is not) in the weak set
(and not the order in which values have been inserted into the set). The authors show that a weak set is a
useful abstraction to solve consensus in anonymous shared memory systems.

Contribution of the paper The paper presents a set object that extends the notion of weak set proposed
in [9]. A set has operations for joining the computation (i.e. join operation), remove a value from the set
(i.e. remove operation) as well as get and add operations defined in the weak set. The paper has two main
contributions.

• It first introduces a consistency condition for a set object. This new condition is named value-based
sequential consistency. While it allows concurrent get operations to return the same output in the
absence of concurrent add and/or remove operation, this condition is weaker than linearizability [14].



This is because processes are required to see the same order only of concurrent add and remove op-
erations that are on a same value. Concurrent operations executed on distinct values can be perceived
in any order by a process.

• The second contribution is a protocol that implmeentsd a set S on the top of a dynamic anonymous
message-passing synchronous message-passing distributed system. The implementation uses a copy
of S at any process. An important part of that contribution is the proof that the implementation is
correct when the churn reamains below a given threshold. For the churn we use the characterization
given in [5] in which the number of processes in the system is always constant (this means at any time
the same number of processes join and leave the system).

Roadmap Section 2 presents the set objects, details the set operations and introduces the value-based se-
quential consistency. The distributed system model and the model of churn is presented in Section 3. A
protocol implementing the set objects is introduced in Section 4. In the same section we prove that the
protocol satisfies the value-based sequential consistency. Section 5 presents the related work and section 6
concludes the paper.

2 The Set Object
A set object S is a shared object used to store values. Without loss of generality, we assume that (i) S
contains only integer values and (ii) at the beginning of the computation S is empty. A set S can be
accessed by three operations: add and remove that modify the content of the set and get that returns the
current content of the set. More precisely:

• The add operation, denoted add(v), takes an input parameter v and returns a confirmation that the
operation has been executed (i.e. the value OK). It adds v to S. If v is already in the set, the add
operation has no effect.

• The remove operation, denoted remove(v), takes an input parameter v and returns a confirmation that
the operation has been executed (i.e. the value OK). If v belongs to S, it suppresses it from S.
Otherwise it has no effect.

• The get operation, denoted get(), takes no input parameter. It returns a set containing the current
value of S. It does not modifies the content of the object.

Generally, each of these operation is not instantaneous and takes time to be executed; we assume that
every process executes operations sequentially (i;e., a process does not invoke any operation before it got
a response from the previous one). Hence, given two operations executed by two different processes, they
may overlap and the current content of the set may be not univocally well defined. Consider, for example, a
get() operation overlapping with an add(v) operation while v is not present in the set: has v to be contained
in the result of the get()? Moreover, if two processes modify concurrently the set by adding and removing
the same value v, has v yo be returned by a successive get() operation or not?

In the following section the notion of concurrency between operations is defined and the behavior of the
get operation in case of concurrency is specified.

2.1 Basic Definitions

Every operation can be characterized by two events occurring at its boundary: an invocation event and
a reply event. These events occur at two time instants (invocation time and reply time). According to
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these time instants, it is possible to state when two operations are concurrent with respect to the real time
execution. For ease of presentation we assume the existence of a fictional global clock (not accessible by
processes). The invocation time and response time of every operation are defined with respect to that clock.

Given two operation op and op′ having respectively invocation times tB(op) and tB(op′) and return
times tE(op) and tE(op′), we say that op precedes op′ (op ≺ op′) iff tE(op) < tB(op′). If op does not
precede op′ and op′ does not precede op then they are concurrent (op||op′).

By definition, every get() operation, issued on a set object S, should return the current content of S. If
operations occur sequentially, such a content is represented by all the values added by an add() operation
preceding the get() and for which there does not exist a remove() that precedes get(). Conversely, if there
is concurrency between operations, the values added or removed concurrently may belong to the set. In
order to formalize such a behavior, we introduce the notion of admissible sets for an op = get() operation
(denoted Vad(op)). To that end we first define two sets, namely a sequential set (Vseq(op)) and a concurrent
set (Vconc(op)) for an op = get() operation. These sets define admissible values, with respect to a get()
operation, in case of sequential access and concurrent access to S.
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Figure 1: Vseq and Vconc in distinct executions.

Definition 1 (Sequential set for a get() operation) Given an op = get() operation executed on a set ob-
ject S, the set Vseq(op) of sequential values for op contains all the values v such that:

1. ∃ add(v) : add(v) ≺ op and,

2. (a) @ remove(v) or

(b) ∃remove(v) : (remove(v) ≺ add(v) ≺ op) ∨ (add(v) ≺ op ≺ remove(v)).

Informally, given a get() operation, a sequential set will include all the values that have to be returned
by such a get (i.e. all the values for which there exists a terminated add operation and there not exists any
remove between the add and the get). As an example, let consider the execution of Figure 1(a) and let op be
the get() operation represented in Figure 1(a), the sequential set Vseq(op) is equal to {1, 2} because there
exist two add() operations, adding values 1 and 2 respectively, that terminate before the get() operation is
issued and does not exist any remove() operation starting before the get(). Conversely, in the execution of
Figure 1(b) Vseq(op) = ∅ because the only value added to the set is subsequently removed before the get()
operation op is issued.
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Definition 2 (Concurrent set for a get() operation) Given an op = get() operation executed on a set ob-
ject S, the set Vconc(op) of concurrent values for op contains all the values v such that:

1. ∃ add(v) : add(v) || op or

2. ∃ add(v), remove(v) : (add(v) ≺ op) ∧ (remove(v) || op) or

3. ∃ add(v), remove(v) : add(v) || remove(v) ∧ add(v) ≺ op ∧ remove(v) ≺ op.

Informally, given a get() operation, a concurrent set will include all the values that may be returned
by such a get (i.e. all the values for which the add or the remove operation is executed concurrently with
the get or by themself). As an example, let consider the execution of Figure 1(c) and let op be the get()
operation represented in that figure, the concurrent set Vconc(op) is equal to {1} since item 1 of the definition
is satisfied, while, in the execution of Figure 1(d), Vconc(op) = {1} due to item 3.

Now, it is possible to define an admissible set of values for a get() operation.

Definition 3 (Admissible set for a get() operation) Given an op = get() operation issued on a set object
S, its sequential set Vseq(op) and its concurrent set op Vconc(op), its admissible set Vad(op) is such that

1. Vad(op) contains at least the values in op Vseq(op),

2. and, ∀v ∈ Vad(op)/Vseq(op), we have v ∈ Vconc(op).

As an example, let consider the four executions depicted in Figure 1. In Figure 1(a) and Figure 1(b),
there exists only one admissible set Vad(op) for each of the get() operations op and is respectively Vad(op) =
{1, 2} for the execution of Figure 1(a) and Vad(op) = ∅ for the execution of Figure 1(b). Contrarily,
in the executions of Figure 1(c) and Figure 1(d) there exist two different admissible sets for each of the
get() operations. In particular these admissible sets (equal for both the executions) are Vad(op) = ∅ and
Vad(op) = {1}; the first one contains only the element contained in Vseq(op) while the second one contains
also the elements of Vconc(op).

Note that in the executions depicted in Figure 1(c) and Figure 1(d) if another get() operation is issued
after the add() and remove() operations, the get() may return different admissible sets.

2.2 Value-based Sequential Consistency Condition

A consistency condition defines which are the values that a get() operation is allowed to return. In a shared
memory context, a set of formal consistency conditions has been defined [21] as constraints on the partial
order of read() and write() operations issued on the shared memory. In order to specify a condition for a set
object, we introduce the concepts of execution history, legal get and linear extension of an history.

Definition 4 (Execution History) Let H be the set of all the operations issued on the set object S. An
execution history Ĥ = (H,≺) is a partial order on H satisfying the relation ≺.

Definition 5 (Legal get()) Let V be set returned by an op = get() operation. This operation is legal if V is
an admissible set for op.

Definition 6 (Linear extension of an history) A linear extension Ŝ = (S,→s) of an execution history Ĥ
is a topological sort of its partial order where (i) S = H , (ii) op1 ≺ op2 ⇒ op1 →s op2 and (iii)→s is a
total order.
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Figure 2: Sub-History Ĥt at time t of the History Ĥ .

Let us introduce now the notion of value-based sequential consistency for a set object. Informally, this
consistency condition requires that any group of concurrent get() operations that do not overlap with any
other operation, return the same set. Moreover, due to the semantic of the set when considering concurrent
operations involving different values (e.g. add(v) and add(v′)), these operations can be perceived in different
order by different processes. More formally we have th following.

Definition 7 (Value-based sequential consistency) A history Ĥ = (H,≺) is value-based sequentially con-
sistent iff for each process pi there exists a linear extension Ŝi = (S,→si) such that for any pair of concur-
rent operations op=add(v) and op’=remove(v′), with v = v′, if op →si op

′ for some pi then op →sj op
′

for any other process pj .

Note that, if the domain of values that can be written in the set is composed of a single value, then
value-based sequential consistency is equivalent to sequential consistency1 [16]. In fact, in this case, any
pair of concurrent operations occurs on the same value and thus have to be ordered the same way by all
the processes. Since the non-concurrent operations are totally ordered, the result is a unique total order on
which all the processes agree.

Let now consider the following case: each process can add and/or remove only one specific value (e.g.,
its identifier). Value-based sequential consistency boils down to to causal consistency2 [2] . Since each value
is associated with a only one one process and each process executes operations sequentially, it follows that
the concurrent operations are issued on different values and each process can perceive them in a different
order, exactly as in causal consistency.

2.3 Admissible set at time t

Definition 8 (Sub-history Ĥt of Ĥ at time t) Given an execution history Ĥ = (H,≺) and a time t, the
sub-history Ĥt = (Ht,≺) of Ĥ at time t is the sub-set of Ĥ such that:

• Ht ⊆ H ,

• ∀op ∈ H such that tB(op) ≤ t then op ∈ Ht.

As an example, consider the history Ĥ depicted in Figure 2. The sub-history Ĥt at the time t is the
partial order of all the operations started before t (i.e. Ht contains add(4) and get() invoked by pi, get(),
remove(4) and add(1) invoked by pj and add(3) and remove(3) invoked by pk).

1A history Ĥ = (H,≺) is sequential consistent if it admits a linear extension in which all the get() operations are legal.
2Let Ĥi be the sub-history of Ĥ from which all get() operations not issued by pi have been removed. An history Ĥ = (H,≺)

is causal consistent if, for every pi, all the get() operations of Ĥi are legal.
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Definition 9 (Admissible Sets of values at time t) An admissible set of values at time t for S (denoted
Vad(t)) is any possible admissible set Vad(op) for an instantaneous get operation op that would be executed
at time t.

As an example, consider the execution of Figure 2. The possible admissible sets at time t are, by
definition, all the admissible sets for a ”virtual” get() operation op executed instantaneously at time t (i.e.
tB(op) = tE(op) = t). Such a get() operation is concurrent with add(1) issued by pj and remove(3) issued
by pk; it follows add(4) and get() issued by pi, get() and remove(4) issued by pj and add(3) issues by
pj . Hence, the corresponding sequential set and concurrent set for op (the instantaneous get() operation
executed at time t) are respectively Vseq(op) = ∅ (because for both the add() operations preceding op
exists a remove() not following op) and Vconc(op) = {1, 3}. Combining these two sets, we obtain four
possible admissible sets for op and the possible admissible sets at time t are respectively (i) Vad(t) = ∅, (ii)
Vad(t) = {1}, (iii) Vad(t) = {3} and (iv) Vad(t) = {1, 3}.

3 System Model
The distributed system is composed, at each time, by a bounded number of processes that communicate by
exchanging messages. Processes are uniquely identified (with their indexes) and they may join and leave the
system at any point in time.

The system is synchronous in the following sense: the processing times of local computations are negli-
gible with respect to communication delays, so they are assumed to be equal to 0. Contrarily, messages take
time to travel to their destination processes. Moreover we assume that processes can access a global clock3.

We assume that there exists an underling protocol, that keeps processes connected each other. This
protocol is implemented at the connectivity layer (the layer at the bottom of Figure 3).

3.1 Distributed Computation

A distributed computation is formed, at each instant of time, by a subset of processes of the distributed
system. A process p, belonging to the system, that wants to participate to the distributed computation has
to execute a join() operation. Such an operation, invoked at some time t, is not instantaneous: it consumes
time. But, from time t, the process p can receive and process messages sent by any other process that belongs
to the system and that participate to the computation. Processes participating to the distributed computation
implements a set object.

A process leaves the computation in an implicit way. When it does, it leaves the computation forever
and does no longer send messages. From a practical point of view, if a process wants to re-enter the system,
it has to enter it as a new process (i.e., with a new name).

We assume that a process does not crash during the execution of add() and remove() operations.

In order to formalize the set of processes that participate actively to the computation we give the follow-
ing definition.

Definition 10 A process is active from the time it returns from the join() operation until the time it leaves
the system. A(t) denotes the set of processes that are active at time t, while A([t1, t2]) denotes the set of
processes that are active during the interval [t1, t2].

3The global clock is for ease of presentation. As we are in a synchronous system, this global clock can be implemented by
synchronized local clocks.
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Figure 3: System architecture

3.2 Communication Primitives

Two communication primitives are used by processes belonging to the distributed computation to commu-
nicate: point-to-point and broadcast communication as shown in Figure 3.
Point-to-point communication This primitive allows a process pi to send a message to another process pj
as soon as pi knows that pj has joined the computation. The network is reliable in the sense that it does
not loose, create or modify messages. Moreover, the synchrony assumption guarantees that if pi invokes
“send m to pj” at time t, then pj receives that message by time t + δ′ (if it has not left the system by that
time). In that case, the message is said to be “sent” and “received”.
Broadcast Processes participating to the distributed computation are equipped with an appropriate broad-
cast communication sub-system that provides the processes with two operations, denoted broadcast() and
deliver(). The former allows a process to send a message to the processes currently present in the sys-
tem, while the latter allows a process to deliver a message. Consequently, we say that such a message is
“broadcast” and “delivered”. These operations satisfy the following property.

• Timely delivery: Let t be the time at which a process p belonging to the distributed computation
invokes broadcast(m). There is a constant δ (δ ≥ δ′) (known by the processes) such that if p does not
leave the system by time t+ δ, then all the processes that are in the system at time t and do not leave
by time t+ δ, deliver m by time t+ δ.

Such a pair of broadcast operations has first been formalized in [13] in the context of systems where
process can commit crash failures. It has been extended to the context of dynamic systems in [11].

Assuming that the processing times are negligible, the bound δ and δ′ makes the system synchronous.

3.3 Churn Model

The continuous arrival and departure of nodes in the system is usually referred as churn phenomenon. In
this paper, the churn of the system is modeled by means of the join distribution λ(t), the leave distribution
µ(t) and the node distribution N(t) [5]. The join and the leave distribution are discrete functions of the time
that return, for any time t, respectively the number of processes that have invoked the join operation at time
t and the number of processes that have left the system at time t. The node distribution returns, for every
time t, the number of processes inside the system. We assume, at the beginning, n0 processes are inside the
system and we assume that, for each time t, λ(t) = µ(t) = c× n0 (where c ∈ [0, 1] is a percentage of node
of the system) meaning that, at each time unit, the number of processes that join the system is the same as
the number of process that leave it, i.e. the number of processes inside the system N(t) is always equal to
n0.
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4 Set Implementation in a Synchronous Dynamic Distributed System
This section presents a value-based sequentially consistent protocol implementing a set in a dynamic dis-
tributed systems. Its correctness proof shows show that (liveness) every operation eventually terminates and
(safety) the execution history generated by the proposed protocol is value-based sequentially consistency.

4.1 Value-based Seq. Consistent Protocol

Local variables at process pi. Each process pi has the following local variables.
• Two variables denoted seti and sni; seti is a variable that contains the local copy of the set; sni is an

integer variable that count update operations executed by process pi on the local copy of the set.

• A FIFO set variable last opsi used to maintain an history of recent update operations executed by
pi. Such variable contains 4-uples < type, val, sn, id > each one characterizing an operation of type
type = {A or R} (respectively for add() and remove()) of the value val, with a sequence number
sn, issued by a process with identity id.

• A boolean activei, initialized to false , that is switched to true just after pi has joined the system.

• Three set variables, denoted repliesi, reply toi and pendingi, that are used in the period during
which pi joins the system. The local variable repliesi contains the 3-uples < set, sn, ops > that pi
has received from other processes during its join period, while reply toi contains the processes that
are joining the system concurrently with pi (as far as pi knows). The set pendingi contains the 4-uples
< type, val, sn, id > each one characterizes an update operation executed concurrently with the join.

Initially, n processes compose the system. The local variables of each of these processes pk are such
that setk contains the initial value of the set (without loss of generality, we assume that, at the beginning,
every process pk has nothing in its variable setk), snk = 0, activek = true , and pendingk = repliesk =
reply tok = ∅.

The join() operation The algorithm implementing the join operation for a set object, is described in Fig-
ure 4, and involves all the processes that are currently present (be them active or not).

First pi initializes its local variables (line 01), and waits for a period of δ time units (line 02); the
motivations for such waiting period is explained later. After this waiting period, pi broadcasts (with the
broadcast() operation) an INQUIRY(i) message to the processes that are in the system and waits for 2δ time
units, i.e., the maximum round trip delay (line 03). When this period terminates, pi first updates its local
variables seti, sni and last opsi to the most uptodate values it has received (lines 04-05) and then executes
all the operations concurrent with the join contained in pendingi and not yet executed as if the UPDATE

message is just received (lines 06-11). Then, pi becomes active (line 12), which means that it can answer
the inquiries it has received from other processes, and does it if reply to 6= ∅ (line 13). Finally, pi returns
ok to indicate the end of the join() operation (line 16).
When a process pi receives a message INQUIRY(j), it answers pj by sending back a REPLY(< seti, sni, last opsi >
) message containing its local variables if it is active (line 18). Otherwise, pi postpones its answer until it
becomes active (line 19 and line 13). Finally, when pi receives a message REPLY(< set, sn, ops >) from a
process pj it adds the corresponding 3-uple to its set repliesi (line 21).

Why the wait(δ) statement at line 02 of the join() operation? To motivate the wait(δ) statement at line
02, let us consider the execution of the join() operation depicted in Figure 5(a). At time t, the processes pi,
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operation join(i):
(01) sni ← 0; last opsi ← ∅ seti ← ∅; active i← false;

pending i← ∅; repliesi ← ∅; reply toi ← ∅;
(02) wait(δ);
(03) broadcast INQUIRY(i); wait(2δ);
(04) let < set, sn, ls >∈ repliesi

such that (∀ < −, sn′,− >∈ repliesi : sn ≥ sn′);
(05) seti ← set; sni ← sn; last opsi ← ls;
(06) for each < type, val, sn, id >∈ pendingi do
(07) < tupe, val, sn, id >← first element(pending);
(08) if (< type, val, sn, id >/∈ lastopi )
(09) then execute UPDATE(< type, val, sn, id >);
(10) end if
(11) end for;
(12) activei ← true;
(13) for each j ∈ reply toi do
(14) send REPLY (< seti, sni, lastopi >) to pj ;
(15) end for;
(16) return(ok).

—————————————————————————————————
(17) when INQUIRY(j) is delivered:
(18) if (activei) then send REPLY (< seti, sni, lastopi >) to pj

(19) else reply toi ← reply toi ∪ {j}
(20) end if.

(21) when REPLY(< set, sn, ops >) is received:
repliesi ← repliesi ∪ {< set, sn, ops >}.

Figure 4: The join() protocol for a set object in a synchronous system (code for pi)

ph and pk are the three processes composing the system. Moreover, the process pj executes join() just after
t. The set is initially empty. Due to the ‘timely delivery” property of the broadcast invoked by pi to send the
UPDATE message, ph and pk deliver the value to be added (i.e. 1) by t+ δ. But, since pj entered the system
after t, there is no such a guarantee for it. Hence, if pj does not execute the wait(δ) statement at line 02, its
execution of the lines 03-13 can provide it with the previous value of the set, namely ∅. If after obtaining ∅,
pj issues a get() operation it obtains again ∅, while it should obtain the new set {1} (because 1 is the value
added and there is no remove() concurrent with this get() issued by pj).

The execution depicted in Figure 5(b) shows that this incorrect scenario cannot occur if pj is forced to
wait for δ time units before inquiring to obtain the last value of the set.

The get() operation The algorithms for the get() operation is described in Figure 6. The get is purely local
(i.e., fast): it consists in returning the current value of the local variable seti.

The add(v) and the remove(v) operations The add() and the remove() algorithms are shown in Figure 6.
Both the add() operation and the remove() operation have the aim to modify the content of the set object
by adding and removing respectively an element. Hence, the structure of the two protocols implementing
the two operations is the same. In order to assure value-based sequential consistency, all the processes that
execute the update operations on the set, have to execute such updates in the same order by applying some
deterministic rules. In the proposed algorithm, such deterministic rule is given by the total order of the pairs
< sn, id > where sn is the sequence number of the operation and id is the identifier of the process issuing
the operation.

When pi wants to add/remove an element v to/from the set, it increments its sequence number sni (line
02 and line 08 of Figure 6), it broadcasts an UPDATE(type, val, sn, id) message (line 03 and line 09 of
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Figure 6) where type is a flag that identify the type of the update (i.e. A for an add() operation or R for
a remove() operation), val is the value that has to be added or removed, sn is the sequence number of the
operation and id is the identifier of the process that issues the operation. After, it executes the operation on
its local copy of the set (line 04 and line 10 of Figure 6) and it stores locally in its last opsi variable the
tuple< type, val, sn, id > that identifies the last operation executed on the set (line 05 and line 11 of Figure
6). Then pi waits for δ time units (line 06 and line 12 of Figure 6) to be sure that all the active processes
have received the UPDATE message and finally it returns by the operation (line 07 and line 13 of Figure 6).

operation get(): % issued by any process pi %
(01) return(seti).
————————————————————————————————–
operation add(v): % issued by any process pi%
(02) sni ← sni + 1;
(03) broadcast UPDATE(A, v, sni , i);
(04) seti ← seti ∪ {v};
(05) last opsi ← last opsi ∪ {< A, v, sni, i >};
(06) wait(δ);
(07) return(ok).
————————————————————————————————–
operation remove(v): % issued by any process pi%
(08) sni ← sni + 1;
(09) broadcast UPDATE(R, v, sni , i);
(10) seti ← seti/{v};
(11) last opsi ← last opsi ∪ {< R, v, sni, i >};
(12) wait(δ);
(13) return(ok).

(14) when UPDATE(type, val, snj , j) is delivered: % at any process pi %
(15) if(¬activei) then pendingi ← pendingi ∪ {< type, val, snj , j >}
(16) else execute UPDATE(type, val, snj , j)
(17) endif.

Figure 6: The get(), add() and remove() protocol for a synchronous system (code for pi)

When pi receives the UPDATE(type, val, snj , j) from a process pj , if it is not active, it puts the current
UPDATE message in its pendingi buffer and will process it as soon as it will be active, otherwise it executes
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the UPDATE() procedure shown in Figure 7. In the UPDATE() procedure pi checks if the sequence number
snj , corresponding to the current operation, is greater than the one stored by pi and if it is so, then pi exe-
cute the operation (lines 01-04 of Figure 7). Contrary, pi checks if in the set of the last executed operation
last opsi there is some operation occurred on the same value val; if there is not such an operation, pi exe-
cutes the current one (lines 05 - 12 of Figure 7) otherwise, it checks, according to the type of the operation
to be executed, if the two operations are in the right order and in positive case, pi executes the operation
(lines 13 - 21 of Figure 7). Finally pi updates it sequence number (line 22 of Figure 7)).

Garbage Collection Let us remark that the last opsi set variable collects the information related to opera-
tions executed on the set. In order to make the protocol working correctly, only the information related to
recent operations are needed. Moreover, if the rate of operation is high, each process becomes immediately
overloaded of information. To avoid this problem it is possible to define a garbage collection procedure
that periodically removes from the last opsi variable the information related to “old” operation. The thread
managing the garbage collection is very easy; it is always running and each δ time unit, operations stored
more that δ time before are removed. Due to lack of space we omit here the pseudocode of the procedure.

procedure UPDATE(type, val, snj , j) % at any process pi %
(01) if (snj > sni) then last opsi ← last opsi ∪ {< type, val, snj , j >};
(02) if (type = A) then seti ← seti ∪ {val};
(03) else seti ← seti/{val};
(04) endif
(05) else
(06) temp← {X ∈ last opsi|X =< −, val,−,− >}
(07) if (temp = ∅)
(08) then last opsi ← last opsi ∪ {< type, val, snj , j >;
(09) if (type = A) then seti ← seti ∪ {val};
(10) else seti ← seti/{val};
(11) endif
(12) else if ((type = A)∧

(@ < R,−, sn, id >∈ temp | (sn, id) > (snj , j)))
(13) then seti ← seti ∪ {val};
(14) last opsi ← last opsi ∪ {< type, val, snj , j >};
(15) endif
(16) if ((type = R)∧

(@ < A,−, sn, id >∈ temp | (sn, id) > (snj , j)))
(17) then seti ← seti/{val};
(18) last opsi ← last opsi ∪ {< type, val, snj , j >};
(19) endif
(20) endif
(21) endif
(22) sni ← max(sni, snj).

Figure 7: The UPDATE() protocol for a synchronous system (code for pi)

4.2 Correctness proof

In this section we first show that every protocol’s operation terminates (Theorem 1). In order to show that
the protocol generates only value-based sequential consistent histories if the churn is below a certain bound
(Theorem 2) we pass through the following main steps: (i) if every active process maintains at any time an
admissible set, the execution history is always value based sequential consistent (Lemma 5); (ii)if the churn
is below a certain bound, every get operation returns an admissible set (Lemma 4). To get this result we
also prove that if the churn is below a certain bound, a process that issued a join operation becomes active
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endowing an admissible set (Lemma 3).
We omit the proof of Lemma 1, Lemma 2 and Lemma 3 that can be found in [6].

Theorem 1 If a process invokes join() and does not leave the system for at least 3δ time units or invokes a
get() operation or invokes an add() operation or a remove() operation and does not leave the computation
for at least δ time units, then it terminates the invoked operation.

Proof The get() operation trivially terminates. The termination of the join(), add() and remove() operations
follows from the fact that the wait() statements at line 02 of Figure 4 and at line 06 and line 12 of Figure6
terminate s. 2Theorem 1

Lemma 1 Let c < 1/3δ. ∀t : |A[t, t+ 3δ]| ≥ n0(1− 3δc) > 0.

Lemma 2 Let t0 be the time at which the computation of a set object S starts, Ĥ = (H,≺) an execution
history of S, and Ĥt1+3δ = (Ht1+3δ,≺) the sub-history of Ĥ at time t1 + 3δ. Let pi be a process that
invokes join() on S at time t1 = t0 + 1, if c < 1/3δ then at time t1 + 3δ the local copy seti of S maintained
by pi will be an admissible set at time t1 + 3δ.

Lemma 3 Let Ĥ = (H,≺) be the execution history of a set object S, and pi a process that invokes join()
on the set S at time t. If c < 1/3δ then at time t + 3δ the local copy seti of S maintained by pi will be an
admissible set at time t+ 3δ.

Lemma 4 Let S be a set object and let op be a get() operation issued on S by some process pi. If c < 1/3δ,
the set of values V returned by op is always an admissible set (i.e. V = Vad(op)).

Proof Let us suppose by contradiction that there exists a process pi that issues a get() operation op on the
set object S that returns a set of value V not admissible for op. If V is not an admissible set then one of the
following case is verified:

1. There exists a value v contained in Vseq(op) that is not contained in the returned set V (i.e. ∃ v| v ∈
Vseq(op) ∧ v /∈ V );

2. There exists a value v that is returned in the set V but is not contained in Vseq(op) nor in Vconc(op)
(i.e. ∃ v| v ∈ V ∧ v /∈ Vsec(op) ∪ Vconc(op)).

Case 1. If v ∈ Vseq(op) then, by definition, there exists an add(v) that precedes op and does not exists any
remove(v) operation starting before the end of op. Since there exists the add(v) operation then there exists
also a process pj issuing such operation that executes the algorithm of Figure 6.

• If pi = pj , then pi has executed lines 04-05 of Figure 6 and has added v to its local copy seti of the
set object. Since there not exists any remove(v) operation starting before the end of op and since the
get() operation returns the content of the local copy of the set without modifying it (line 01 Figure 6)
then v ∈ V and we have a contradiction.

• If pi 6= pj , then pj has executed, at some time t, line 03 of Figure 6 by sending an UPDATE

(A, v, snj , j) message by using the broadcast primitive. Due to the broadcast property, every pro-
cess that is active at time t will receive the update up to time t+ δ.
If pi ∈ A(t), then pi has received pj’s update and has executed the update procedure. If the sequence
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number attached to the message was greater than the one maintained locally by pi, then it executes
immediately the update by adding v to its local copy of the set (lines 01-04 Figure 6); otherwise it
checks if it has in its last opsi an operation already executed that “collides” with the current one (i.e.
if there is a remove(v) of the same element issued by a process with a lower identifier). Since there
not exist any remove(v) operation starting before the end of the get(), when process pi evaluate the
condition at line 07 it finds an empty set and the executes lines 09 - 10 by adding v to its local copy
of the set. Since there not exists any remove(v) operation starting before the end of op and since the
get() operation returns the content of the local copy of the set without modifying it (line 01 Figure 6)
then v ∈ V and we have a contradiction.
pi /∈ A(t), it means that it is executing or it will execute the join protocol. If it is executing the join
protocol then it will buffer the update message of pj and will execute the update just before become
active (lines 06-11 Figure 4); pi will add v to its local copy of the set. Since there not exists any
remove(v) operation starting before the end of op and since the get() operation returns the content of
the local copy of the set without modifying it (line 01 Figure 6) then v ∈ V and we have a contradic-
tion. Contrary, if pi is not joining the system at time t when it will join, it asks the local copy of the set
to other active processes. Due to Theorem 3, at the end of the join, pi will have in its local copy of the
set a set that is admissible and will include v. Even in this case, since there not exist any remove(v)
operation starting before the end of op and since the get() operation returns the content of the local
copy of the set without modifying it (line 01 Figure 6) then v ∈ V and we have a contradiction.

Case 2. Since at the beginning of the computation pi has in its local copy of the set an empty set and since
v ∈ V then pi has added v to the local copy seti (i) during the join operation or (ii) managing an update
message.

• If pi has added v to seti as consequence of the join, it means that v is a value of an admissible set at
time t of the end of the join (cfr. Theorem 3). If v belongs to an admissible set at time t, it means
that v belongs to Vseq(o) or to Vconc(o), where o is an instantaneous get() operation issued at time t.
If v ∈ Vseq(o) ∪ Vconc(o) then there exists an add() operation that terminates or is running at time
t. Since t < tE(op) and since there not exist any remove(v) operation starting before the end of op,
v ∈ Vseq(op) and we have a contradiction.

• If pi has added v to seti as consequence of an UPDATE message it means that there exists a process pj
that has sent it. An UPDATE message is generated by a process pj when the add() operation is issued;
this means that there exist an add() operation that precedes or is concurrent with op. Since there not
exist any remove(v) operation starting before the end of op, v ∈ Vseq(op) ∪ Vconc(op) and we have a
contradiction.

2Lemma 4

Lemma 5 Let S be a set object and let Ĥ = (H,≺) be an execution history of S generated by the algorithm
in Figure 4 and Figure 6. If every active process pi maintains an admissible set, Ĥ is always value-based
sequential consistent.

Proof Let us suppose by contradiction that there exists an history Ĥ = (H,≺) generated by the algorithms
in Figure 4 and Figure 6 such that Ĥ is not value-based sequentially consistent. If Ĥ is not value-based
sequential consistent then there exist two processes pi and pj that admit two linear extensions, respectively
Ŝi and Ŝj , where at least two concurrent operation op = add(v) and op′ = remove(v′) (with v = v′) appear
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in a different order. Without loss of generality, let us suppose that op and op′ have no other concurrent
operation, op is issued by a process ph, op′ is issued by a process pk and tB(op) < tB(op′).

At time t < tB(op) all the processes has the same value for their sequence numbers4 and let us suppose
that snw = x for every pw. When process ph issues the add(v) operation, it increments its sequence number
sni = x+1 by executing line 02 of Figure 6 and attaches such value to the UPDATE(A, v, x+1, h) message.
We can have two cases: (i) process pk receives the UPDATE message of ph before issuing the remove(v)
operation (Figure 8(a)) or (ii) process pk receives the UPDATE message of ph just after issuing the remove(v)
operation (Figure 8(b)).

add(v)

remove(v')

pi

pj

pk

ph

tB(op) tB(op') tE(op) tE(op')

(a)

add(v)

remove(v')

pi

pj

pk

ph

tB(op) tB(op') tE(op) tE(op')

(b)

Figure 8: Concurrent execution of add(v) and remove(v).

Let us show what happen to pi and pj in both cases.
Case 1. When pk receives the UPDATE(A, v, x+ 1, h), the received sequence number is greater than the one
maintained by pk then pk executes the update (lines 02-04) and sets its sequence number to the one received
by executing line 22 (i.e. snk = x+1). Just after, pk issues a remove(v) operation, it increments its sequence
number snk = x+ 2 by executing line 02 of Figure 6 and attaches such value to the UPDATE(R, v, x+ 2, k)
message. Let us consider the scenario depicted in Figure 8(a) where pi receives first the update message of
the remove(v) sent by pk and then the update message of the add(v) sent by ph while pj receives first the
update message of the add(v) sent by ph and then the update message of the remove(v) sent by pk.
behavior of process pi. When pi receives the UPDATE(R, v, x + 2, k) message, its sequence number is
smaller than the one received (i.e. sni = x) then it executes lines 02-04 removing the value v (if it is
already contained in the set) and storing the tuple < R, v, x + 2, k > in the last opsi set, and then it sets
its sequence number to the one received by executing line 22 (i.e. sni = x + 2). Later, pi receives the
UPDATE(A, v, x + 1, h) message and, since its sequence number is now smaller that the received one, it
executes lines 06-21. In particular, pi examines the last opsi buffer and founds an entry (i.e. < R, v, x +
2, k >) with the value greater than to the one received (line 06) then, it checks if the received operation can
be executed or it is “overwritten” by the one already processes by applying the deterministic ordering based
on the pair < sn, id >. Since the condition at line 12 is false, then pi does not execute the update. Note
that, not executing the add(v) is equal to execute add(v) followed by a remove(v) operation. Hence, in the
linear extension Ŝi of pi we have that op→Si op

′.
behavior of process pj . When pj receives the UPDATE(A, v, x + 1, h) message, its sequence number is
smaller than the one received (i.e. snj = x) then it executes lines 02-04 adding the value v and storing the
tuple < A, v, x + 1, h > in the lastopsj set, and then it sets its sequence number to the one received by
executing line 22 (i.e. snj = x + 1). Later, pj receives the UPDATE(R, v, x + 2, k) message and another
time its sequence number is smaller than the one received (i.e. snj = x+ 1); hence it executes lines 02-04

4Let us recall that the sequence number maintained by every process counts the number of updates issued on the local copy of
the set.
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removing the value v. Hence, in the linear extension Ŝj of pj we have again that op→Sj op
′. Since the two

operations appears in the same order both in Ŝi and Ŝj we have a contradiction.
Case 2. When pk issues the remove(v) operation, it has not yet received the UPDATE messaged sent by ph
and the the two sequence number of both the operation are the same (i.e. snh = snk = x + 1). Let us
consider the scenario depicted in Figure 8(b) where pi receives first the update message of the remove(v)
sent by pk and then the update message of the add(v) sent by ph while pj receives first the update message
of the add(v) sent by ph and then the update message of the remove(v) sent by pk.
behavior of process pi. When pi receives the UPDATE(R, v, x + 1, k) message, its sequence number is
smaller than the one received (i.e. sni = x) then it executes lines 02-04 removing the value v (if it is
already contained in the set) and storing the tuple < R, v, x + 1, k > in the last opsi set, and then it sets
its sequence number to the one received by executing line 22 (i.e. sni = x + 1). Later, pi receives the
UPDATE(A, v, x + 1, h) message and, since its sequence number is equal to the received one, it executes
lines 06-21. In particular, pi examines the last opsi buffer and founds an entry (i.e. < R, v, x + 1, k >)
with the value equals to the one received (line 06) then, it checks if the received operation can be executed
or it is “overwritten” by the one already processes by applying the deterministic ordering based on the pair
< sn, id >. Since the condition at line 12 is false, then pi does not execute the update. Note that, even
in this case not executing the add(v) is equal to execute the add(v) followed by the remove(v) operation.
Hence, in the linear extension Ŝi of pi we have that op→Si op

′.
behavior of process pj . When pj receives the UPDATE(A, v, x + 1, h) message, its sequence number is
smaller than the one received (i.e. snj = x) then it executes lines 02-04 adding the value v and storing the
tuple < A, v, x + 1, h > in the lastopsj set, and then it sets its sequence number to the one received by
executing line 22 (i.e. snj = x + 1). Later, pj receives the UPDATE(R, v, x + 1, k) message and, since its
sequence number is now equal to the received one, it executes lines 06-21. In particular, pj examines the
lastopsj buffer and founds an entry (i.e. < A, v, x + 1, h >) with the value equals to the one received (06)
then, it checks if the received operation can be executed or it is “overwritten” by the one already processes by
applying the deterministic ordering based on the pair < sn, id >. Since the condition at line 12 is true, then
pj executes the update removing v. Hence, in the linear extension Ŝj of pj we have again that op→Sj op

′.
Since the two operations appears in the same order both in Ŝi and Ŝj we have a contradiction.

2Lemma 5

¿From Lemma 4 and Lemma 5 follow the theorem that concludes our proof.

Theorem 2 Let S be a set object and let Ĥ = (H,≺) be an execution history of S generated by the
algorithm in Figure 4 and Figure 6. If c < 1/3δ, Ĥ is always value-based sequential consistent.

4.3 Discussion
Let us point out that the bound on the churn strictly depends on the structure of the protocol. The implemen-
tation proposed here has lightweight set access operations (in terms of messages exchanged and latency to be
completed) and an heavyweight operation to join the computation. This is based on the assumption that set
access operations, namely get() add(), remove(), are more frequent than join(). Other implementations can
be considered h aving lightweight operations to join the computation and heavyweight operations that access
the set based on a request-reply paradigm instead of a simple push based procedure. These implementations
can tolerate higher churn at the cost of more expensive set accesses.
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5 Related Work
Dynamicity Model Dynamic systems are nowadays an open field of research and new models able to cap-
ture all the aspects of such dynamicity are going to be defined. In [1, 20] are presented models, namely
infinite arrival models, able to capture the evolution of the network removing the constraint of having a
predefined and constant size n. These models do not address the way the processes join or leave the system.
More recently, other models have been proposed that take into account the process behavior. This is done
by considering both probabilistic distribution [18], or deterministic distribution [15], on the join and leave
of nodes (but in both cases the value of the system size is constant).

Registers and Weak-Set Among shared objects, registers are certainly one of the basic one. A register is a
shared variable that can be accessed by processes by means of two operations, namely write() and read(),
used to store a value in the register and to retrieve the value from the object. According to the set of values
that can be returned by a read() operation, Lamport has defined different type of registers [17] as regular
or atomic. In [4] an implementation of a regular register in a dynamic distributed system subject to churn
is provided while in [10] an atomic register is implemented in a mobile ad-hoc network. In [9], the authors
show how it is possible to implement a weak-set in a static system, by using a finite number of atomic
registers, in two particular cases: (i) when the number of processes is finite and known and (ii) when the set
of possible values that can be added to the set is finite and show that a weak-set is stronger than a regular
register. Unfortunately, in the model considered in this paper, it is not possible to implement a set object by
using a finite number of registers. The intuition besides such impossibility is that (i) the domain of the set is
possibly infinite and (ii) it is not possible to rely on the number of processes as in the solutions proposed in
[9] without using an infinite number of registers. Even if, at each time unit there are always n processes in
the system, they change along time and possibly infinite processes may participate to the computation.

Tuple Space A tuple space [12] is a shared memory object where generic data structures, called tuples,
are stored and retrieved. A tuple space is defined by three operations: out(t) which outputs the entry t
in the tuple space (i.e. write), in(t̄) which removes the tuple that matches with t̄ from the tuple space (i.e.
destructive read) and rd(t̄) that is similar to the previous one b ut without removing the tuple. A set object, as
presented in this paper, is something different from a tuple space. In fact, even if add(v) and remove(v) can
be seen as a particular case of in(t̄) and out(t) (i.e. where the tuple is composed only from one value), the
set object differs from a tuple space for the possibility to return the complete content of the object without
any parameter (while in a tuple space the rd(t̄) operation needs a tuple t̄ as parameter to be matched).

6 Conclusion
Shared objects provide programmers with a powerful way to design distributed applications on top of com-
plex distributed systems. This paper has introduced a set object suited to dynamic systems. The paper has
presented a consistency condition for set objects that is weaker than sequential consistency (by exploiting
the semantic of the set object and allowing, at the same time, concurrent readings to return the same set in
absence of other operations). The paper also presented a value-based sequentially consistent implementation
of the set object in a dynamic, synchronous and anonymous distributed systems. A proof has been given that
shows that the proposed protocol is correct when the churn remains below a given threshold. This shows
that “provably correct software” can be extended to dynamic systems.
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