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Value distribution and uniqueness of difference polynomials
and entire solutions of difference equations

by Xiaoguang Qi (Jinan)

Abstract. This paper is devoted to value distribution and uniqueness problems for
difference polynomials of entire functions such as fn(f − 1)f(z + c). We also consider
sharing value problems for f(z) and its shifts f(z + c), and improve some recent results
of Heittokangas et al. [J. Math. Anal. Appl. 355 (2009), 352–363]. Finally, we obtain
some results on the existence of entire solutions of a difference equation of the form
fn + P (z)(∆cf)m = Q(z).

1. Introduction and main results. A meromorphic function means
meromorphic in the whole complex plane. We assume that the reader is
familiar with standard symbols and fundamental results of Nevanlinna the-
ory [8, 16]. As usual, the abbreviation CM stands for “counting multiplic-
ities”, while IM means “ignoring multiplicities”. For f meromorphic in C,
denote by S(f) the family of all meromorphic functions a(z) that satisfy
T (r, a) = o(T (r, f)) for r → ∞ outside a possible exceptional set of fi-
nite logarithmic measure. In addition, we define difference operators by
∆cf = f(z + c) − f(z) where c is a non-zero constant. If c = 1, we use
the usual difference notation ∆cf = ∆f .

Let f be a transcendental meromorphic function, and let n be a positive
integer. Concerning the value distribution of fnf ′, Hayman [6, Corollary to
Theorem 9] proved that fnf ′ takes every non-zero complex value infinitely
often if n ≥ 3. Mues [14, Satz 3] proved that f2f ′ − 1 has infinitely many
zeros. Later on, Bergweiler and Eremenko [1, Theorem 2] showed that ff ′−1
has infinitely many zeros as well. Corresponding to these results, Fang [3]
considered the number of zeros of (fn(f − 1))(k) − 1:

Theorem A ([3, Proposition 1]). Let f be a transcendental entire func-
tion, and let n, k be positive integers with n ≥ k+2. Then (fn(f −1))(k)−1
has infinitely many zeros.
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Corresponding to the value distribution of fnf ′, Laine and Yang [9]
investigated the value distribution of difference products of entire functions,
and obtained the following:

Theorem B ([9, Theorem 2]). Let f be a transcendental entire function
of finite order, and let c be a non-zero complex constant. Then for n ≥ 2,
f(z)nf(z + c) assumes every non-zero value a ∈ C infinitely often.

Some improvements of Theorem B can be found in [13]. In the present
paper, we consider the value distribution of f(z)n(f(z)− 1)f(z + c), which
can be seen as a difference analogue of Theorem A in the case k = 1.

Theorem 1. Let f be a transcendental meromorphic function of finite
order σ(f), let a 6= 0 be a small function with respect to f , and let c be a
non-zero complex constant. If the exponent of convergence of the poles of f
satisfies λ(1/f) < σ(f) and n ≥ 2, then f(z)n(f(z) − 1)f(z + c) − a has
infinitely many zeros.

Corollary 1. Let f be a transcendental entire function of finite order,
and let c be a non-zero complex constant. Then for n ≥ 2, f(z)n(f(z) − 1)
· f(z + c) assumes every non-zero value a ∈ C infinitely often.

Remark. The restriction on the order in Theorem 1 cannot be deleted.
This can be seen by taking f(z) = ee

z
, ec = −n (n ≥ 2) and a = −1. Then

f is of infinite order, while f(z)n(f(z)− 1)f(z + c) + 1 = ee
z

has no zeros.

Concerning the uniqueness problems related to Theorem A, some results
have been obtained by Fang [3, Theorem 2] and Lin and Yi [11]. One of
them can be stated as follows.

Theorem C ([11, Theorem 1]). Let f and g be non-constant entire func-
tions, and let n ≥ 7 be an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share 1
CM, then f ≡ g.

The following result is a difference analogue of Theorem C.

Theorem 2. Let f and g be transcendental entire functions of finite
order, let c be a non-zero complex constant, and let n ≥ 7 be an integer.
If f(z)n(f(z) − 1)f(z + c) and g(z)n(g(z) − 1)g(z + c) share a CM, where
a ∈ S(f) ∩ S(g) \ {0}, then f(z) ≡ g(z).

Remark. Very recently, Zhang [18, Theorem 6] has obtained the same
result of Theorem 2. However, our proof is different, being based on Lemma 5
of Section 2, while Zhang does not use that lemma.

Similarly to the above situations, one may also consider sharing value
problems for f(z) and its shifts f(z+ c). Next, we recall a result which may
be understood as a “1 CM + 1 IM” theorem for differences:
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Theorem D ([7, Corollary 3]). Let f be an entire function of finite
order, let c ∈ C, and let a, b ∈ S(f) be distinct periodic functions with
period c. If f(z) and f(z + c) share a CM and b IM, then f(z) ≡ f(z + c)
for all z ∈ C.

Next, we show that “1 CM + 1 IM” in Theorem D can be replaced by
“2 IM”.

Theorem 3. Let f be an entire function of finite order, let c ∈ C, and let
a, b ∈ S(f) be distinct periodic functions with period c. If f(z) and f(z + c)
share a IM and b IM, then f(z) ≡ f(z + c) for all z ∈ C.

Remark. Theorem 3 is the best possible, in the sense that “2 IM” can-
not be replaced by “1 CM”. Indeed, let f = ez and f(z + c) = ez+c, where
c 6= 2nπi, n an integer. It is easy to see that f(z) and f(z + c) share 0 CM,
but f(z) 6≡ f(z+ c). Let f = ez +1 and f(z+ c) = ez+c+1, where c 6= 2nπi,
n is an integer. Clearly, f(z) and f(z+ c) share 1 CM, but f(z) 6≡ f(z+ c).
The proof of Theorem 3 is based on some ideas that Li and Yang used to
prove a result of different nature (see [10, Theorem 2.1]).

We investigate the existence of entire solutions of an equation of the form

(1.1) fn + P (z)(∆cf)m = Q(z).

If m = n and P (z) = Q(z) = 1, then we rewrite (1.1) as

(1.2) fn + (∆cf)n = 1.

It is well known that (1.2) has no entire solutions when n ≥ 3 (see [4,
Theorem 3]). Recently, Liu [12, Proposion 5.3] proved that (1.2) has no
non-constant finite order entire solutions when n = 2. Clearly, if n = 1,
there are no non-constant solutions of (1.2). Thus, there are no non-constant
finite order entire solutions of the equation (1.2).

Recently, Yang and Laine [15] considered the existence of finite order
solutions of a certain type of non-linear difference equation.

Theorem E ([15, Theorem 3.4]). Let P , Q be polynomials. Then the
non-linear difference equation

f(z)2 + P (z)f(z + 1) = Q(z)

has no transcendental entire solutions of finite order.

Theorem F ([15, Theorem 3.5]). The non-linear difference equation

(1.3) f(z)3 + P (z)f(z + 1) = c sin bz

where P (z) is a non-constant polynomial and b, c ∈ C are non-zero con-
stants, does not admit entire solutions of finite order. If P (z) = p is a
non-zero constant, then (1.3) has three distinct entire solutions of finite or-
der whenever b = 3nπ and p3 = (−1)n+1 27

4 c
2 for a non-zero integer n.
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Replacing f(z+ c) with ∆cf in Theorems E and F, we get the following
results.

Theorem 4. Let P , Q be polynomials, and let n and m be integers
satisfying n > m ≥ 0. Then equation (1.1) has no transcendental entire
solutions of finite order.

Remark. The conclusion of Theorem 4 is not true if m > n. In the
special case of

f(z)− (∆−1/4f)2 = z − 1/16

a finite order entire solution is f(z) = 4e8πiz − e4πiz + z.

The reasoning used in proving Theorem 4 yields the following result,
which can be seen as an improvement of Theorem E.

Corollary 2. Let P , Q be polynomials, and let n, m be distinct positive
integers. Then the equation

fn + P (z)f(z + c)m = Q(z)

has no transcendental entire solutions of finite order.

If m 6= 1 and Q 6= 0, then Theorem 4 can be improved.

Theorem 5. If n,m 6= 1 are positive integers such that n > m/(m− 1),
and P , Q 6= 0 are polynomials, then equation (1.1) has no transcendental
entire solutions.

In connection with Theorems 4 and 5, we consider equation (1.1) in the
case m = 1, that is,

(1.4) fn + P (z)∆cf = Q(z).

We get the following result.

Theorem 6. Equation (1.4) has no entire solutions of infinite order if
N(r, 1/∆cf) ≤ T (r, f), n ≥ 3 and P (z), Q(z) 6≡ 0 are polynomials.

Remark. (1) Clearly, if n = 1 and P (z) ≡ 1, then (1.4) has no entire
solutions of infinite order. However, if P (z) 6≡ 1, there may exist such solu-
tions. Indeed, f(z) = ezee

2z
+ 1 is an entire function of infinite order and

satisfies f + 1
2∆cf = 1, where c = πi.

(2) If n = 2, then (1.4) may have an infinite order entire solution. Indeed,
f(z) = ee

z −1/2 is an entire function of infinite order and satisfies f2−∆cf
= 1/4, where ec = 2.

Theorem 7. Let P be a non-constant polynomial, and let b, c ∈ C be
non-zero constants. Then the equation

(1.5) f(z)3 + P (z)∆f = c sin bz
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has no transcendental non-periodic entire solutions of finite order. In partic-
ular, if P (z) = p is a non-zero constant, then (1.5) has three distinct entire
solutions of finite order whenever b = 3kπ and p3 = 27

32c
2 for an odd number k.

The proof of Theorem 7 is similar to the proof of Theorem F. In fact,
one has to apply Lemmas 2 and 4 below, instead of Remark of [15, Lemma
3.2], and use an elementary computation. We omit the details.

2. Some lemmas. The first lemma is a difference analogue of the loga-
rithmic derivative lemma, given by Halburd–Korhonen [5]. Chiang and Feng
have obtained similar estimates for the logarithmic difference [2, Corollary
2.5], and their work is independent of [5].

Lemma 1 ([5, Theorem 2.1]). Let f be a meromorphic function of finite
order, and let c ∈ C and δ ∈ (0, 1). Then

m

(
r,
f(z + c)
f(z)

)
+m

(
r,

f(z)
f(z + c)

)
= o

(
T (r, f)
rδ

)
= S(r, f).

Lemma 2 ([5, Lemma 2.3]). Let f be a meromorphic function of finite
order, and c ∈ C. Then for any small function a ∈ S(f) with period c,

m

(
r,

∆cf

f − a

)
= S(r, f).

Lemma 3 ([5, Lemma 2.2]). Let T : (0,∞)→ (0,∞) be a non-decreasing
continuous function, s > 0, 0 < α < 1, and let F ⊂ R+ be the set of all r
such that

T (r) ≤ αT (r + s).

If the logarithmic measure of F is infinite,then

lim sup
r→∞

log T (r)
log r

=∞.

Lemma 4 ([8, Theorem 2.4.2]). Let f be a transcendental meromorphic
solution of

fnA(z, f) = B(z, f),

where A(z, f), B(z, f) are differential polynomials in f and its derivatives
with small meromorphic coefficients aλ, in the sense that m(r, aλ) = S(r, f)
for all λ ∈ I. If d(B(z, f)) ≤ n, then m(r,A(z, f)) = S(r, f).

Denote by Np

(
r, 1
f−a
)

the counting function of the zeros of f − a, where
an m-fold zero is counted m times if m ≤ p and p times if m > p.

Lemma 5 ([17, Theorem 3.1]). Let fj(z) (j = 1, 2, 3) be meromorphic
functions that satisfy

3∑
j=1

fj(z) ≡ 1.
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If f1(z) is not a constant, and
3∑
j=1

N2

(
r,

1
fj

)
+

3∑
j=1

N(r, fj) < (λ+ o(1))T (r), r ∈ I,

where 0 ≤ λ < 1, T (r) = max1≤j≤3 T (r, fj), and I has infinite linear mea-
sure, then either f2(z) ≡ 1 or f3(z) ≡ 1.

Lemma 6 ([2, Theorem 2.1]). Let f be a non-constant meromorphic
function of finite order σ, and let c be a non-zero constant. Then, for each
ε > 0,

T (r, f(z + c)) = T (r, f(z)) +O(rσ−1+ε) +O(log r).

Next, we introduce the auxiliary function

H =
(

f ′

f − 1
− f ′

f

)
−
(

g′

g − 1
− g′

g

)
,

where f and g are given meromorphic functions. Using the reasoning applied
in [10], we have the following lemma.

Lemma 7. Suppose that f and g are meromorphic functions such that
N(r, f) = N(r, g) = S(r, f). If H .= 0, then either

2T (r, f) ≤ N
(
r,

1
f

)
+N

(
r,

1
f − 1

)
+ S(r, f)

or f ≡ g.

Proof. From H = 0, we get

(2.1)
f − 1
f

= a
g − 1
g

,

where a is a non-zero constant. If a = 1, then we obtain f ≡ g. It remains
to consider the case a 6= 1. It follows from (2.1) that

a− 1
a

f + 1
a−1

f
=

1
g
.

Since N(r, f) = N(r, g) = S(r, f), we get N
(
r, 1
f− 1

1−a

)
= S(r, f). Clearly,

1
1−a 6= 0 and 1

1−a 6= 1, so by the second main theorem, we get

2T (r, f) ≤ N
(
r,

1
f

)
+N

(
r,

1
f − 1

)
+ S(r, f).

3. Proof of Theorem 1. Set F (z) = fn(z)(f(z)− 1)f(z + c). Since f
is a transcendental meromorphic function of finite order σ, we conclude by
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Lemma 6 that

T (r, F ) ≤ T (r, fn(z)(f(z)− 1)) + T (r, f(z + c)) + S(r, f)

≤ (n+ 2)T (r, f) +O(rσ(f)−1+ε) + S(r, f).

Thus, S(r, F ) = o(T (r, f)) = S(r, f). On the other hand, by Lemma 1,

(n+ 2)T (r, f) = T (r, fn+1(f − 1)) + S(r, f)(3.1)

= m(r, fn+1(f − 1)) +O(rλ(1/f)+ε) + S(r, f)

≤ m
(
r,
fn+1(f − 1)

F

)
+m(r, F ) +O(rλ(1/f)+ε) + S(r, f)

≤ T (r, F ) +O(rλ(1/f)+ε) +O(rσ(f)−1+ε) + S(r, f).

The second main theorem yields

T (r, F ) ≤ N(r, F ) +N

(
r,

1
F

)
+N

(
r,

1
F − a

)
+ S(r, F )

(3.2)

≤ N
(
r,

1
F − a

)
+N

(
r,

1
f

)
+N

(
r,

1
f − 1

)
+N

(
r,

1
f(z + c)

)
+O(rλ(1/f)+ε) + S(r, f)

≤ N
(
r,

1
F − a

)
+3T (r, f)+O(rλ(1/f)+ε)+O(rσ(f)−1+ε)+S(r, f).

Combining (3.1) and (3.2), we have

(n− 1)T (r, f) ≤ N
(
r,

1
F − a

)
+O(rλ(1/f)+ε) +O(rσ(f)−1+ε) + S(r, f);

if F − a has finitely many zeros, the above contradicts the fact that f is of
order σ(f). The conclusion follows.

4. Proof of Theorem 2. By the assumptions, we have

(4.1)
fn(z)(f(z)− 1)f(z + c)− a(z)
gn(z)(g(z)− 1)g(z + c)− a(z)

= eh(z),

where h(z) is a polynomial. Let

F1 =
fn(z)(f(z)− 1)f(z + c)

a(z)
, F2 = −e

h(z)gn(z)(g(z)− 1)g(z + c)
a(z)

,

F3 = eh(z), T (r) = max
1≤j≤3

T (r, Fj), S(r) = o(T (r)).
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Then

(4.2) F1 + F2 + F3 = 1.

Next, we will estimate the counting functions of Fj (j = 1, 2, 3). First,

N2

(
r,

1
F1

)
≤ 2N

(
r,

1
f(z)

)
+N

(
r,

1
f(z + c)

)
+N

(
r,

1
f(z)− 1

)
+ S(r, f)

(4.3)

≤ 2
n

(
nN

(
r,

1
f(z)

)
+N

(
r,

1
f(z + c)

)
+N

(
r,

1
f(z)− 1

))
+
(

1− 2
n

)(
N

(
r,

1
f(z + c)

)
+N

(
r,

1
f(z)− 1

))
+ S(r, f).

By a simple geometric observation and Lemma 3, we conclude that

N

(
r,

1
f(z + c)

)
≤ N

(
r + |c|, 1

f(z)

)
= N

(
r,

1
f(z)

)
+ S(r, f)(4.4)

≤ 1
n
N

(
r,

1
fn(z)(f(z)− 1)f(z + c)

)
+ S(r, f).

We easily obtain

(4.5) N

(
r,

1
fn(f(z)− 1)f(z + c)

)
= nN

(
r,

1
f(z)

)
+N

(
r,

1
f(z + c)

)
+N

(
r,

1
f(z)− 1

)
.

By Lemma 1, we know

m

(
r,

1
f(z + c)

)
≤ m

(
r,

1
f(z)

)
+ S(r, f).(4.6)

From (4.6), we obtain

(n+ 1)T (r, f) = T (r, fn(f − 1)) + S(r, f) = m(r, fn(f − 1)) + S(r, f)

≤ m(r, f(z)n(f(z)− 1)f(z + c)) +m

(
r,

1
f(z + c)

)
+ S(r, f)

≤ T (r, F1) +m

(
r,

1
f

)
+ S(r, f)

≤ T (r, F1) + T (r, f) + S(r, f).

Consequently,

N

(
r,

1
f − 1

)
≤ T (r, f) +O(1) ≤ 1

n
T (r, F1) + S(r, f).(4.7)
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Clearly, S(r, f) must be S(r, F1). Then from (4.3)–(4.7), we have

N2

(
r,

1
F1

)
≤ 2
n
N

(
r,

1
F1

)
+
(

1− 2
n

)
1
n

(
N

(
r,

1
F1

)
+ T (r, F1)

)
+ S(r, f)

(4.8)

≤ 4n− 4
n2

T (r, F1) + S(r, F1) ≤ 4n− 4
n2

T (r) + S(r).

Similarly, we conclude that

(4.9) N2

(
r,

1
F2

)
≤ 4n− 4

n2
T (r) + S(r).

Obviously F1 is not a constant, so since n ≥ 7, we obtain
3∑
j=1

N2

(
r,

1
Fj

)
+

3∑
j=1

N(r, Fj) <
48
49
T (r) + S(r).

From Lemma 5, we know that F2 = 1 or F3 = 1. Therefore, either f(z)n ·
(f(z) − 1)f(z + c)g(z)n(g(z) − 1)g(z + c) ≡ a(z)2 or fn(f − 1)f(z + c) ≡
gn(g − 1)g(z + c). The assertion now follows as in [18, p. 407].

5. Proof of Theorem 3. If N
(
r, 1
f−a
)

= 0 or N
(
r, 1
f−b
)

= 0, then
the assertion follows by Theorem C. It remains to consider the case when
N
(
r, 1
f−a
)
6= 0 and N

(
r, 1
f−b
)
6= 0. Let

(5.1) F (z) =
f(z)− a(z)
b(z)− a(z)

and F (z + c) =
f(z + c)− a(z)
b(z)− a(z)

.

Then F (z) and F (z + c) share 0 IM and 1 IM. Clearly, neither 0 nor 1 is a
Picard value of F in this case. Moreover,

T (r, F ) = m(r, F ) + S(r, F ) ≤ m
(
r,

F

F (z + c)

)
+m(r, F (z + c)) + S(r, F )

= T (r, F (z + c)) + S(r, F )

and

T (r, F (z + c)) = m(r, F (z + c)) + S(r, F )

≤ m
(
r,
F (z + c)

F

)
+m(r, F ) + S(r, F ) = T (r, F ) + S(r, F ).

Therefore

(5.2) T (r, F ) = T (r, F (z + c)) + S(r, F ).

Denote

(5.3) V =
F ′(F (z + c)− F )

F (F − 1)
.
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From Lemma 1 and the lemma on the logarithmic derivative, we see that
m(r, V ) = S(r, F ). From (5.3), the poles of V are at the zeros and 1-points
of F , and at the poles of F and F (z + c). Since F (z) and F (z + c) share 0
and 1, and N(r, F ) = N(r, F (z + c)) = S(r, F ) by (5.1), we get N(r, V ) =
S(r, F ). Therefore, T (r, V ) = S(r, F ).

Case 1: V 6= 0. Then F 6= F (z+c). From (5.3) and Lemma 1, we obtain

N

(
r,

1
F

)
+N

(
r,

1
F − 1

)
= N

(
r,

F ′

F (F − 1)

)
+ S(r, F )

= N

(
r,

V

F (z + c)− F

)
+ S(r, F )

≤ T (r, F (z + c)− F ) + S(r, F )
= m(r, F (z + c)− F ) + S(r, F )

≤ m
(
r,
F (z + c)− F

F

)
+m(r, F ) + S(r, F )

≤ T (r, F ) + S(r, F ).

According to the second main theorem and the above inequality, we get

(5.4) T (r, F ) = N

(
r,

1
F

)
+N

(
r,

1
F − 1

)
+ S(r, F ).

Now we define

(5.5) U =
F ′(z + c)(F (z + c)− F )
F (z + c)(F (z + c)− 1)

.

By the same argument as above, we deduce that T (r, U) = S(r, F (z+ c)) =
S(r, F ). We denote by Sf∼g(m,n)(a) the set of those points z ∈ C such that
z is an a-point of f with multiplicity m and an a-point of g with multiplic-
ity n. Let N(m,n)

(
r, 1
f−a
)

and N (m,n)

(
r, 1
f−a
)

denote the counting function
and reduced counting function of f with respect to the set Sf∼g(m,n)(a),
respectively.

For any z0 ∈ SF (z)∼F (z+c)(m,n)(0), we have mn 6= 0, since 0 is not a
Picard value of F . From (5.3), (5.5), and by the Taylor expansion of F and
F (z + c) at z0, we obtain

−V (z0) = m

(
F ′(z0 + c)

n
− F ′(z0)

m

)
,

−U(z0) = n

(
F ′(z0 + c)

n
− F ′(z0)

m

)
,

and thus nV (z0) = mU(z0).
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If nV = mU , then we obtain

n

(
F ′

F − 1
− F ′

F

)
≡ m

(
F ′(z + c)

F (z + c)− 1
− F ′(z + c)
F (z + c)

)
,

which implies that (
F − 1
F

)n
≡ d
(
F (z + c)− 1
F (z + c)

)m
where d is a non-zero constant. If m 6= n then from (5.2) we get nT (r, F ) =
mT (r, F (z+ c)) +S(r, F ) = mT (r, F ) +S(r, F ), which is a contradiction. If
m = n, from Lemma 7 we get

2T (r, F ) ≤ N
(
r,

1
F

)
+N

(
r,

1
F − 1

)
+ S(r, F ),

which contradicts (5.4).
Hence nV 6= mU . Therefore

N (m,n)

(
r,

1
F

)
≤ N

(
r,

1
nU −mV

)
= S(r, F ).

Using the same reasoning, we get

N (m,n)

(
r,

1
F − 1

)
≤ N

(
r,

1
nU −mV

)
= S(r, F ).

It follows that

(5.6) N (m,n)

(
r,

1
F

)
+N (m,n)

(
r,

1
F − 1

)
= S(r, F ).

From (5.4) and (5.6), we obtain

T (r, F ) = N

(
r,

1
F

)
+N

(
r,

1
F − 1

)
+ S(r, F )

=
∑
m,n

(
N (m,n)

(
r,

1
F

)
+N (m,n)

(
r,

1
F − 1

))
+ S(r, F )

=
∑

m+n≥5

(
N (m,n)

(
r,

1
F

)
+N (m,n)

(
r,

1
F − 1

))
+ S(r, F )

≤ 1
5

∑
m+n≥5

(
N(m,n)

(
r,

1
F

)
+N(m,n)

(
r,

1
F − 1

)
+N(m,n)

(
r,

1
F (z + c)

)
+N(m,n)

(
r,

1
F (z + c)− 1

))
+ S(r, F )

≤ 4
5
T (r, F ) + S(r, F ),

which is a contradiction.
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Case 2: V = 0. Then F = F (z + c). Clearly, f(z) = f(z + c). This
completes the proof of Theorem 3.

6. Proofs of Theorem 4–6

Proof of Theorem 4. Suppose that f is a transcendental entire solution
of equation (1.1) of finite order. If ∆cf ≡ 0, then f(z)n = Q(z), and the
conclusion holds. If ∆cf 6≡ 0, then rewrite (1.1) as

fn−1f = Q(z)− P (z)
(∆cf)m

fm
fm.

Applying Lemmas 2 and 4, and invoking the assumption n > m, we conclude
that

T (r, f) = m(r, f) = S(r, f),

a contradiction.

Proof of Theorem 5. Suppose that f is a transcendental entire solution
to equation (1.1). Clearly, if P .= 0, the conclusion follows. It remains to
consider the case P 6= 0. If ∆cf ≡ 0, then f(z)n = Q(z) and the conclusion
holds. If ∆cf 6≡ 0, then by the second fundamental theorem for three small
target functions, we obtain

T

(
r,
fn

P

)
≤ N

(
r,
fn

P

)
+N

(
r,
P

fn

)
+N

(
r,

P

fn −Q

)
+ S(r, f)(6.1)

= N(r, f) +N

(
r,

1
f

)
+N

(
r,

1
∆cf

)
+ S(r, f)

≤ T (r, f) + T (r,∆cf) + S(r, f).

Moreover

(6.2) T

(
r,
fn −Q
P

)
= nT (r, f) + S(r, f) = mT (r,∆cf).

Combining (6.1) with (6.2), we get

nT (r, f) ≤ T (r, f) +
n

m
T (r, f) + S(r, f)

and so (
n− 1− n

m

)
T (r, f) ≤ S(r, f),

which contradicts the assumption that n > m/(m− 1).

Proof of Theorem 6. Suppose that f is an infinite order entire solution
of (1.4). Since P and Q 6= 0 are polynomials, they are small functions to f .
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Using the second main theorem for three small target functions, we obtain

nT (r, f) = T (r, fn) ≤ N(r, fn) +N

(
r,

1
fn

)
+N

(
r,

1
fn −Q

)
+ S(r, f)

(6.3)

≤ N
(
r,

1
f

)
+N

(
r,

1
∆cf

)
+ S(r, f)

≤ 2T (r, f) + S(r, f).

Since n ≥ 3, we get a contradiction.
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