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ABSTRACT

We study the growth and value distribution of meromorphic solu-
tions of difference equations arising from difference polynomials of
various forms, mostly concentrating on the finite order case. For in-
stance, we show that demanding the existence of a transcendental
meromorphic solution of a large class of difference equations con-
taining difference Painlevé I reduces the class either to a smaller
one which still contains the difference Painlevé I, or to a class of
first-order equations. In addition, for certain classes of equations,
we prove the existence of rational solutions and give their forms.
A number of results are obtained concerning the exponents of con-
vergence of zeros of differences g(z), gk(z),

g(z)
f (z) , and gk(z)

f k(z) , where
g(z) = f (z + c1) + f (z + c2) + · · · + f (z + ck)− k f (z) and gk(z) =

f (z + c1) f (z + c2) · · · f (z + ck) − f k(z). Finally, we investigate the
zeros of the difference polynomial Fn(z) = ∑

k
j=1 aj(z) f (z + cj) −

a(z) f n(z).

AMS Mathematics Subject Classification: 39B32, 39A10, 30D35.

Keywords: Mathematical analysis; Nevanlinna theory; Differ-
ence equations; Polynomials; Value distribution theory; Functions,
Meromorphic.
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1 Introduction

Nevanlinna’s value distribution theory was originally formed as
a deep generalization and quantification of Picard’s theorem for
meromorphic functions. Later on due to work of Wittich, Clunie,
Mohon’ko, and many others, Nevanlinna theory has been applied
as a powerful tool to consider complex oscillation and value distri-
bution of meromorphic solutions of complex differential equations.
In recent years these considerations have been extended to the field
of complex difference equations.

The properties of meromorphic solutions of difference equations
have been studied by using Nevanlinna theory by Yanagihara and
others already in 1980’s, but more systematic studied had to wait
until the idea of Ablowitz, Halburd and Herbst in 2000. They sug-
gested that the existence of sufficiently many finite-order meromor-
phic solutions of a difference equation is a good sign that the equa-
tion is of Painlevé type. This can be described as the first purely
complex analytic candidate for the discrete Painlevé property. To
verify their claim, new tools had to be developed to deal with vari-
ous properties of meromorphic solutions of difference equations.

The lemma on the logarithmic derivative is an essential part
of the proof of the second main theorem of Nevanlinna theory. It
has also proved to be extremely useful in the analysis of value dis-
tribution of meromorphic solutions of differential equations [40].
Similarly, difference analogues of the lemma on the logarithmic
derivatives have proved to be among the most important techni-
cal tools in the development of the Nevanlinna theoretical tools for
difference equations. The first versions of this result were obtained
by Halburd-Korhonen [23] and Chiang-Feng [14], independently.
Combining a difference analogue of the lemma on the logarithmic
derivative with methods from Nevanlinna theory, Chiang and Feng
obtained a uniform lower bound for the order of meromorphic so-
lutions of large classes of linear difference equations. Using the dif-
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ference analogue of the lemma on the logarithmic derivative, Hal-
burd and Korhonen [23] gave difference counterparts of the Clunie
and Mohon’ko lemmas [16]. Laine and Yang [42] generalized the
difference analogue of the Clunie lemma to a substantially larger
class of difference equations.

Eremenko, Langley and Rossi have shown that the derivative
functions of relatively slowly growing transcendental meromorphic
functions have infinitely many zeros. Bergweiler and Langley gave
analogous results for differences and divided differences of tran-
scendental meromorphic functions. Hayman has studied a natural
class of differential polynomials f n + a f ′ − b = P(z, f ) showing
that if f is a transcendental meromorpic function, and n ≥ 5, then
P(z, f ) has infinitely many zeros. Hayman’s result has prompted
many generalizations, and related results over the years. The first
difference analogue was given by Laine and Yang, who showed
that an analogous difference polynomial has infinitely many zeros,
provided that f is a transcendental meromorphic function of finite
order.

In this thesis, relying on the methods introduced by Bergweiler
and Langley, combined with some comparatively standard reason-
ing based on Wiman-Valiron theory, we get estimates about the ze-
ros of differences g(z) = f (z + c1) + · · · + f (z + ck) − k f (z) and
gk(z) = f (z + c1) · · · f (z + ck)− f (z)k, for order < 1. Using meth-
ods from Nevanlinna theory, we continue to consider the zeros and
fixed points of g(z) and gk(z), for order ≥ 1. We also investigate
the growth and value distribution of meromorphic solutions of a
first order difference equation with small coefficients in the com-
plex plane.

For the difference equation

f (z + 1) + f (z − 1) = R(z, f (z)), (0.1)

Ablowitz, Halburd and Herbst [1] proved that if f has a non-rational
meromorphic solution of finite order, then degw(R) ≤ 2. Under the

2 Dissertations in Forestry and Natural Sciences No 109
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supposition that (0.1) has an admissible meromorphic solution of fi-
nite order, Halburd and Korhonen [25] derived a class of difference
equations containing

f (z + 1) + f (z) + f (z − 1) =
π1 + π2

f (z)
+ κ1, (0.2)

f (z + 1) + f (z − 1) = p f (z) + q, (0.3)

where πk, κ1, p, q are distinct small functions related to f , κ1 is an
arbitrary periodic function of period 1, and πk are arbitrary finite-
order periodic functions with period k. We study a more general
classes of difference equations

A1(z)w(z + c1) + A2(z)w(z) + A3(z)w(z + c2) =
A4(z)
w(z)

+ A5(z),

(0.4)
A1(z)w(z + c1) + A2(z)w(z + c2) = A3(z)w(z) + A4(z) (0.5)

than (0.2) and (0.3). In fact, we investigate the growth and value dis-
tribution of finite order transcendental meromorphic solutions for
difference equations (0.4) and (0.5). For instance, let c1 + c2 = 0. If
w(z) is a transcendental meromorphic solution of (0.4) with mero-
morphic coefficients such that T(r, Aj) = S(r, w)(j = 1, 2, · · · , 5),
A1(z)A2(z)A4(z) �≡ 0, A2(z + c1)A2(z)− A1(z)A3(z + c1) �≡ 0, then
ρ(w) = ∞. This implies that if difference equation (0.4) has at least
one admissible meromorphic solution of finite order, then either
A1(z)A2(z)A4(z) ≡ 0, or A2(z + c1)A2(z) − A1(z)A3(z + c1) ≡ 0.
In addition, for difference equations (0.4) and (0.5), we prove the
existence of rational solutions and give their forms.

Finally, for the difference polynomial Fn(z) = ∑
k
j=1 aj(z) f (z +

cj)− a(z) f n(z), we obtain an estimate of the number of b− points,
namely, λ(Fn(z)− b) = ρ( f ). The results we obtain improve those
of Liu and Laine [43].

The rest of this survey is structured as follows: In section 2,
we recall the basic notations of Nevanlinna theory, as well as some
elementary results from complex differential equations. In section

Dissertations in Forestry and Natural Sciences No 109 3



Yong Liu:

3, we study the value distribution of differences of meromorphic
functions. In section 4, we concentrate mainly on many recent re-
sults on meromorphic solutions of complex difference equations. In
section 5, we summarize the contents of the Papers I–V.
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2 General background

2.1 AN OUTLINE OF NEVANLINNA THEORY

As was mentioned in the introduction, Nevanlinna theory, or in
particular, Nevanlinna’s second main theorem, generalizes Picard’s
theorem in a very natural and powerful way. Nevanlinna theory is
also a powerful tool for studying meromorphic solutions of differ-
ential and difference equations, and it is applied frequently for this
purpose in this thesis as well. Therefore we go through the basics
of Nevanlinna theory in this section.

For a meromorphic function f in C, we first recall some defini-
tions needed in this section.

The proximity function describes how close f is on average to a
on the circle {|z| = r}.

Definition 2.1.1 (Proximity f unction)[40, p.22]

m(r,
1

f − a
) =

1
2π

∫ 2π

0
log+

∣∣∣ 1
f (reiφ)− a

∣∣∣dφ

suppose f �≡ a ∈ C and

m(r, f ) =
1

2π

∫ 2π

0
log+ | f (reiφ)|dφ,

with log+ x := max{log x, 0}(x > 0).

We use the notation D(z0, r) to denote an open disc of radius r
centered at z0 ∈ C. The counting function describes the number of
times f takes the value a on the closed disc D(0, r).

Definition 2.1.2 (Unintegrated counting f unction)[40, p.20]
Let f �≡ a ∈ C. Let i(z, a, f ) denote the multiplicity of an a− point of f
at z. Then we define

n(r, a, f ) = n(r,
1

f − a
) = n(r, a) := ∑

|z|≤r, f (z)=a

i(z, a, f ),

Dissertations in Forestry and Natural Sciences No 109 5
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i.e., n(r, a, f ) counts the number of the roots of f (z) = a on the closed disc
D(0, r), each root according to its multiplicity. For the pole of f , similarly
we define

n(r, ∞, f ) = n(r, f ) = n(r, ∞) := ∑
|z|≤r, f (z)=∞

i(z, ∞, f ).

The integrated counting function is a sort of integrated logarithmic
measure of the number of roots of f (z) = a. Counting function is
continuous function of r.

Definition 2.1.3 (Counting f unction)[40, p.20]

N
(

r,
1

f − a

)
:=

∫ r

0

n(t, 1
f−a)− n(0, 1

f−a)

t
dt + n(0,

1
f − a

) log r,

suppose f �≡ a ∈ C and

N(r, f ) :=
∫ r

0

n(t, f )− n(0, f )
t

dt + n(0, f ) log r.

The integrated counting function takes into account each a− point
only once.

Definition 2.1.4 (The reduced counting f unction o f f(z)-a)[66, p.31]

N
(

r,
1

f − a

)
:=

∫ r

0

n(t, 1
f−a)− n(0, 1

f−a)

t
dt + n(0,

1
f − a

) log r,

where a is a finite complex number, n(r, 1
f−a ) denotes the number of zeros

of f (z) − a on the closed disc D(0, r), each zero being counted only once,
and

n
(

0,
1

f − a

)
=

{1, i f f (0)=a.

0, i f f (0) �=a.

Similarly, we can define N(r, f ). An explicit expression of the char-
acteristic function can be given in terms of the counting and prox-
imity functions. We have

Definition 2.1.5 (Characteristic f unction)[40, p.22]

T(r, f ) = m(r, f ) + N(r, f ).

6 Dissertations in Forestry and Natural Sciences No 109
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The growth of the function T(r, f ) is a good measure of the com-
plexity of the meromorphic function f (z). The order ρ( f ) and the
hyper-order ρ2( f ) of f are defined by

ρ( f ) = lim sup
r→∞

log+ T(r, f )
log r

and ρ2( f ) = lim sup
r→∞

log+ log+ T(r, f )
log r

.

The exponent of convergence λ( f ) of zeros of f is defined by

λ( f ) = lim sup
r→∞

log+ N(r, 1
f )

log r
.

The function characterizes the density of zeros of f (z). For the
characteristic functions of products and sums of a finite number
of meromorphic functions, we introduce the following elementary
inequalities, which come from the properties of the positive loga-
rithmic function and of the Nevanlinna counting function.

(i) T(r, Σn
i=1 fi) ≤ Σn

i=1T(r, fi) +O(1),

(ii) T(r, ∏
n
i=1 fi) ≤ Σn

i=1T(r, fi),

where fi(i = 1, 2, · · · , n) are meromorphic functions and r ≥ 1. See
[66, P.8]

By applying the Jensen-Nevanlinna formula

T(r, f ) = T(r,
1
f
) + O(1)

(see [66, P. 7]) to f (z)− a, we can easily get the first main theorem

which gives a relation between characteristic functions T
(

r, 1
f−a

)

and T(r, f ). The first main theorem implies that T
(

r, 1
f−a

)
does

not really depend on a, and the smaller m
(

r, 1
f−a

)
is, the larger

N
(

r, 1
f−a

)
is.

Theorem 2.1.6 [First main theorem] Let f be a meromorphic function,
and let a ∈ C. Then

T
(

r,
1

f − a

)
= T(r, f ) +O(1).

Dissertations in Forestry and Natural Sciences No 109 7
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The following theorem due to Valiron and Mohon’ko, see [48], is
a more general version of the first main theorem. It is of essential
importance, for instance, in the studies of the theory of complex
differential and difference equations. For example, by the following
theorem, Ablowitz, Halburd and Herst proved that If ρ( f ) < ∞ and
y(z + 1) + y(z − 1) = R(z, y), then deg R(z) ≤ 2. A proof of this
result can also be found, for instance, in [40, p. 29].

Theorem 2.1.7 [48] Let f be a meromorphic function, and let R(z, f ) be
an irreducible rational function in f of the form

R(z, f ) =
P(z, f )
Q(z, f )

=
∑

p
i=0 ai(z) f i

∑
q
j=0 bj(z) f j

, (2.1.1)

where the coefficients are all small functions with respect to f . Then

T(r, R(z, f )) = max{p, q}T(r, f ) + S(r, f ).

The lemma on the logarithmic derivative is one of the key results
needed in the proof of the Nevanlinna’s second fundamental theo-
rem. The lemma is interesting on itself and is applied frequently.
For the proof, see, e,g [29, p.36].

Lemma 2.1.8 [29] Let f be a non-constant meromorphic function. If
ρ( f ) < ∞, then

m
(

r,
f ′

f

)
= O(log r), (r → ∞),

while if ρ( f ) = ∞, then

m
(

r,
f ′

f

)
= O

(
log r + log T(r, f )

)
, (r → ∞, r �∈ E),

where E is a set of finite linear measure.

In what follows, S(r, f ) means any quantity of growth o(T(r, f ))
as r → ∞ outside of a set of finite linear measure. As usual, the
lemma on the logarithmic derivative can be written in the form:

m
(

r,
f ′

f

)
= S(r, f ).

8 Dissertations in Forestry and Natural Sciences No 109
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The following lemma due to Gundensen is a sharp pointwise ver-
sion of the lemma on the logarithmic derivative in the finite-order
case. This result has been applied, for instance, in obtaining sharp
growth estimates for entire solutions of linear differential equations
with polynomial coefficients, and of arbitrary order.

Lemma 2.1.9 [22, Corollary 1, Corollary 2] Let f (z) be a transcenden-
tal meromorphic function of finite-order σ, and let ε > 0 be a given
constant. Then there exists a set H ⊂ (1, ∞) that has finite logarith-
mic measure, such that for all z satisfying |z| �∈ H ∪ [0, 1] and for all
k, j, 0 ≤ j < k, one has

∣∣∣ f (k)(z)
f (j)(z)

∣∣∣ ≤ |z|(k−j)(σ−1+ε) (2.1.2)

Similarly, there exists a set E ⊂ [0, 2π) of linear measure zero such that
if ψ ∈ [0, 2π) \ E, then there is a constant R0 = R0(ψ) > 1 such that,
for all z satisfying arg z = ψ and |z| ≥ R0, and for all k, j, 0 ≤ j < k, we
have (2.1.2) holds.

The following theorem is the deepest and the most important result
of the value distribution theory. It implies a generalized version of
the classical Picard’s theorem.

Theorem 2.1.10 [Second main theorem] Let f be a non-constant mero-
morphic function, let q ≥ 2, and let a1, . . . , aq be distinct complex con-
stants. Then

m(r, f ) +
q

∑
k=1

m
(

r,
1

f − ak

)
≤ 2T(r, f ) − N1(r) + S(r, f ),

where

N1(r) := 2N(r, f ) − N(r, f ′) + N
(

r,
1
f ′

)
.

Combining Theorem 2.1.6 and Theorem 2.1.10, we can get a
modified form of second main theorem. In loose terms, the follow-
ing theorem implies that the counting function N(r, a) must usually
be much larger than the proximity function m(r, a).

Dissertations in Forestry and Natural Sciences No 109 9
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Theorem 2.1.11 Let f be a non-constant meromorphic function, let q ≥

2, and let a1, . . . , aq be distinct complex constants. Then

(q − 1)T(r, f ) ≤ N(r, f ) +
q

∑
k=1

N
(

r,
1

f − ak

)
+ S(r, f ).

The second main theorem is also valid, if complex numbers are
replaced by small functions, see Yamanoi [60, Corollary 1].

In addition to first and second main theorem, we recall the fol-
lowing two results which play an important role in the proofs of
many results in Papers II-V. The first is the Hadamard’s factoriza-
tion theorem of meromorphic functions of finite order.

Theorem 2.1.12 [65, Theorem 2.7] Let f be a meromorphic function of
finite order ρ( f ). If

f (z) = ckzk + ck+1zk+1 + · · · (ck �= 0, k ∈ Z)

near z = 0, then

f (z) = zkeQ(z) P1(z)
P2(z)

,

where P1(z) and P2(z) are the canonical products of f (z) formed with the
non-zero zeros and poles of f (z), respectively, and Q(z) is a polynomial
of degree at most ρ( f ).

The following theorem is a generalization of Borel’s Theorem on
linear combinations of entire functions.

Lemma 2.1.13 [65, pp.79 − 80] Let fj(z)(j = 1, 2, · · · , n)(n ≥ 2) be
meromorphic functions, gj(z)(j = 1, 2, · · · , n) be entire functions, and
let them satisfy the following conditions:

(i) f1(z)eg1(z) + · · ·+ fk(z)egk(z) ≡ 0;
(ii) when 1 ≤ j < k ≤ n, then gj(z)− gk(z) is not a constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T(r, fj) = o{T(r, egh−gk)} (r → ∞, r �∈ E),

where E ⊂ (1, ∞) is of finite logarithmic measure.
Then fj ≡ 0(j = 1, · · · , n).

10 Dissertations in Forestry and Natural Sciences No 109



General background

2.2 WIMAN-VALIRON THEORY

Wiman-Valiron theory is another important tool for considering en-
tire solutions of differential equations, for example. In this the-
sis, Wiman-Valiron theory plays an important role in the proof of
Lemma 2.3 in Paper I. We will now introduce the basics of Wiman-
Valiron theory, by following [40].

For an entire function f (z) = ∑
∞
n=0 anzn, the largest integer m

such that |am|rm = maxn≥0 |an|rn is called the central index and is
denoted by ν(r, f ). As we know, for a transcendental entire function
f , ν(r, f ) is increasing, piecewise constant, right-continuous and
tends to infinity as r → ∞. With the notation of the central index,
the order of f can be expressed as

ρ( f ) = lim sup
r→∞

log+ ν(r, f )
log r

.

and the hyper-order of f can be expressed as

ρ2( f ) = lim sup
r→∞

log log ν(r, f )
log r

.

See [40, p.55] or [37, p.36-37]. The following theory offers a useful
method for order considerations of entire solutions of differential
equations. The result can also found, for instance, in [40, p. 51].

Theorem 2.2.1 [37, p.187] (Wiman-Valiron) Let f be a transcendental
entire function, let 0 < δ <

1
4 and z be such that

|z| = r and | f (z)| > M(r, f )ν(r, f )−
1
4+δ.

Then
f (n)(z)

f (z)
=

(
ν(r, f )

z

)n

(1 + o(1))

holds for all n ∈ N and all r �∈ F ∪ [0, 1], where F ⊂ (1, ∞) is an
exceptional set of finite logarithmic measure.

Dissertations in Forestry and Natural Sciences No 109 11
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2.3 DIFFERENCE TOOLS FROM NEVANLINNA THEORY

A good number of tools from Nevanlinna theory to consider mero-
morphic solutions of difference equations have been developed over
the recent years. The development of such tool is largely motivated
by the groundbreaking 2000 paper due to Ablowitz, Halburd and
Herbst on the extension of complex analytic Painlevé property to
difference equations. However, there is still a lot to be done before
one can talk about a comprehensive value distribution theory of
difference equations. In this section we give a short survey of some
of the most important results in this field from the point of view of
this thesis.

A shift of f (z) is defined as f (z + c), while the differences
Δn

c f (z) are defined in the standard way by

Δc f (z) = f (z + c)− f (z), Δn
c f (z) = Δc(Δ

n−1
c f ), n = 2, 3, . . . .

The following theorem due to Halburd-Korhonen [23] is a dif-
ference analogue of the logarithmic derivative lemma.

Theorem 2.3.1 [23, Corollary 2.2] Let f be a non-constant meromorphic
function of finite order, c ∈ C, δ < 1. Then

m
(

r,
f (z + c)

f (z)

)
= o

(
T(r + |c|, f )

rδ

)
(2.3.1)

for all r outside of an exceptional set F of finite logarithmic measure.

For a meromorphic function f of finite order, [25, Lemma 2.1]
implies that T(r + |c|, f ) = (1+ o(1))T(r, f ) for all r outside of a set
of finite logarithmic measure. Thus Theorem 2.3.1 can be expressed
as follows:

Theorem 2.3.2 [24, Theorem 2.1] Let f be a non-constant meromorphic
function of finite order, and let c ∈ C, δ < 1. Then

m
(

r,
f (z + c)

f (z)

)
= o

(
T(r, f )

rδ

)
, (2.3.2)

for all r outside of an exceptional set with finite logarithmic measure.
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Chiang and Feng [14] obtained a similar result as the above theo-
rem, independently of [23], in a study concerning finite-order mero-
morphic solutions of linear difference equations.

Theorem 2.3.3 [14, Corollary 2.5] Let f be a non-constant meromorphic
function of finite order ρ( f ) = ρ, and let c ∈ C. Then, for each ε > 0, we
have

m
(

r,
f (z + c)

f (z)

)
= O(rρ−1+ε). (2.3.3)

Recently, Halburd, Korhonen and Tohge obtained the following the-
orem, which generalized the results above and extended the loga-
rithmic difference lemma to meromorphic functions of hyper-order
less than one:

Theorem 2.3.4 [26, Theorem 5.1] Let f be a non-constant meromorphic
function and c ∈ C. If ρ2( f ) = ρ2 < 1 and ε > 0, then

m
(

r,
f (z + c)

f (z)

)
= o

(
T(r, f )
r1−ρ2−ε

)
(2.3.4)

for all r outside of a set of finite logarithmic measure.

The following theorem due to Chiang and Feng [14] gave a relation
between T(r, f ) and T(r, f (z + c)), in the case when f (z) is of finite
order of growth.

Theorem 2.3.5 [14, Theorem 2.1] Let f be a non-constant meromorphic
function of finite order ρ( f ), and let c be a non-zero constant. Then, for
each ε > 0, we have

T(r, f (z + c)) = T(r, f (z)) + O(rρ−1+ε) + O(log r).

The following lemma is an analogous estimate for the pole counting
function of f (z + c).

Lemma 2.3.6 [14, Theorem 2.2] Let f be a meromorphic function with
finite exponent of convergence of poles λ( 1

f ) and c is a non-zero complex
constant. Then, for each ε > 0, we have

N(r, f (z + c)) = N(r, f ) + O(rλ( 1
f )−1+ε) + O(log r).
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We next need the following notions: We consider difference prod-
ucts and difference polynomials. By a difference product, we mean
a difference monomial, that is, an expression of type ∏

s
j=1 f (z +

γj)
νj , where γ1, · · · , γs are complex numbers and ν1, · · · , νs are nat-

ural numbers. The degree of a difference monomial ∏
s
j=1 f (z+γj)

νj

is ν1 + ν2 + · · ·+ νs. A difference polynomial is a finite sum of dif-
ference products, that is, an expression of the form

U(z, f ) = ∑
J

αJ(z)
(

∏
j∈J

f (z + cj)
)

,

where cj, j ∈ J, is a set of distinct complex numbers. In what fol-
lows, we assume that the coefficients of difference polynomials are,
unless otherwise stated, small functions as understood in the usual
Nevanlinna theory; that is, their characteristic is of type S(r, f ). The
total degree of U(z, f ) is the maxima of the degree of each single
term in U(z, f ). See [42, p.557].

By these definitions it would perhaps be more natural to call ”differ-
ence polynomial” by the name ”shift polynomials.” However, since
the former terminology has been already widely adopted in the lit-
erature, we choose to stick with it. Also, by using the substitution
f (z + cj) = f (z + cj) − f (z) + f (z) = Δcj f + f , we can always ex-
press ”shift polynomials” as polynomials in differences of f .

As for difference counterparts of the Clunie lemma [16], see [23;
Corollary 3.3]. The following lemma due to Laine and Yang is a
significantly more general version than the original difference Clu-
nie. It is applicable, for instance, to the difference Painlevé III equa-
tion, whereas [16] is not (see [39]). This fact played a key role in the
classification of Ronkainen in [52], where he isolated the difference
Painlevé III equations from a large class of difference equations us-
ing the criterion due to Ablowitz, Halburd and Herbst.

Theorem 2.3.7 [42, Theorem 2.3] Let f be a transcendental meromorphic
solution of finite order ρ of a difference equation of the form

U(z, f )P(z, f ) = Q(z, f ),
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where U(z, f ), P(z, f ), and Q(z, f ) are difference polynomials such that
the total degree deg U(z, f ) = n in f (z) and its shifts, and deg Q(z, f ) ≤
n. Moreover, we assume that U(z, f ) contains just one term of maximal
total degree in f (z) and its shifts. Then for each ε > 0,

m(r, P(z, f )) = O(rρ−1+ε) + S(r, f ),

Possibly outside of an exceptional set of finite logarithmic measure.

The following lemma due to Halburd and Korhonen [23] is a dif-
ference analogue of a result due to A. Z. Mohon’ko and V. D. Mo-
hon’ko [48] on differential equations. It enables the analysis of the
value distribution of finite-order meromorphic solutions of differ-
ence equations for finite values.

Theorem 2.3.8 [23, 42, Theorem 2.4] Let f (z) be a transcendental mero-
morphic solution of finite order ρ of difference equation

P(z, f ) = 0,

where P(z, f ) is a difference polynomial in f (z) and its shift. If P(z, a) �≡
0 for a slowly moving target function a, that is, T(r, a) = S(r, f ), then

m
(

r,
1

f − a

)
= O(rρ−1+ε) + S(r, f ),

outside of a possible exceptional set of finite logarithmic measure.

Remark 1. By observing the proofs of Theorem 2.3.7 and Theorem
2.3.8 one can see that the two terms in the error term O(rρ−1+ε) +

S(r, f ) arises from two different sources. Namely, the term O(rρ−1+ε)

comes from applying Theorem 2.3.3 to a difference quotient of f
in various parts of the proof, while S(r, f ) arises from sums of
characteristic functions of the coefficients of difference polynomi-
als. Therefore, if one replaces Theorem 2.3.3 by Theorem 2.3.2 in
the proofs of Theorem 2.3.7 and Theorem 2.3.8, the error term in
both theorems becomes

o
(T(r, f )

rδ

)
+ S(r, f ) = S(r, f ),

Dissertations in Forestry and Natural Sciences No 109 15



Yong Liu:

where δ ∈ (0, 1).
By using Theorem 2.3.4, Theorem 2.3.8 can be extended to mero-

morphic functions f such that ρ2( f ) < 1. This has been remarked
in [26].

2.4 OTHER IMPORTANT LEMMAS

We recall some notation and a lemma from [25]. We use the nota-
tion ∞k to denote a pole of w with multiplicity k. Similarly, 0k and
a + 0k denote a zero and a-point of w, respectively, with the multi-
plicity k.

The following lemma was originally introduced in [25, Lemma 3.1]
in order to show explicitly that zeros and poles of small coefficient
functions of difference equations cannot essentially interfere with
the pole behavior of admissible meromorphic solutions. Let us con-
sider the first-order equation f (z + 1) = a(z) f 2(z) as an example.
Suppose f (z) has a pole at z0 of order k0. Then f (z) has (possibly)
another pole at least of order 2k0 − p0 at z0 + 1, where p0 is the or-
der of (possible) zero of a(z) at z0. If a(z0) �= 0, we denote p0 = 0.
Now if p0 ≥ 2k0, then in fact f (z0 + 1) is finite and the iteration
process is stopped. Suppose that f (z) has another pole at z1 �= z0,
of order k1, say. Then f (z) has again another pole at z1 + 1, unless
a(z) has a zero of order 2k1 at least at z1. Suppose that a(z1) �= 0.
Then f (z1 + 1) is a pole of order 2k1 and f (z1 + 2) is a pole of order
4k1 − p1, unless p1 ≥ 4k1, where p1 is the order of zero of a(z) at
z1 + 1. If p1 = 0, and there is no further interference from the zeros
and poles of a(z) to the iteration process, it follows that

f (z1 + n) = ∞2nk1 , (2.4.1)

for all n ∈ N. This gives as a lower bound for the pole count-
ing function of f , which immediately implies a lower bound 1 for
the hyper-order of f . Whether or not we can always find such
a sequence of poles depends on a(z) and the nature of the solu-
tion f (z). If, for instance, a(z) is rational, and f (z) transcendental,
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with infinitely many poles, pole sequence of the type (2.4.1) can be
found (without Lemma 2.4.1). If a(z) is non-rational, and satisfies
T(r, a) = S(r, f ), then, in principle, a(z) may have a zero if and
only if f (z) has a pole even if N(r, f ) = T(r, f ) + S(r, f ). In such a
case, we cannot find a pole sequence, which is exactly of the type
(2.4.1). However, with the help of Lemma 2.4.1 below, we can de-
duce that there is a pole sequence of f (z) which behaves ”almost”
like (2.4.1), and in particular implies the same lower bound 1 for
the hyper-order of f as above.

Lemma 2.4.1 [25, Lemma 3.1] Let w be a meromorphic function having
more than S(r, w) poles, and let as, s = 1, · · · , n, be small meromorphic
functions with respect to w. Denote by mj the maximum order of zeros
and poles of the functions as at zj . Then for any ε > 0, there are at most
S(r, w) points zj such that

w(zj) = ∞kj ,

where mj ≥ εkj.

The following lemma is needed to get rid of an exceptional set of
finite logarithmic measure. See [2] for the first part of the following
lemma. See [21] for the second part of the following lemma.

Lemma 2.4.2 [21, Lemma 5] Let F(r) and G(r) be monotone increasing
functions such that F(r) ≤ G(r) outside of exceptional set E that is of
finite logarithmic measure. Then for any α > 1, there exists r0 > 1 such
that F(r) ≤ G(αr) for all r ≥ r0.

The following lemma finds a uniform upper bound for a finite or-
der meromorphic function. It is a useful tool in dealing with the
value distribution of finite-order meromorphic solutions of differ-
ential equations, both linear and nonlinear.

Lemma 2.4.3 [9, Lemma 1] Let f (z) be a meromorphic function with
ρ( f ) = η < ∞. Then for any given ε > 0, there is a set E1 ⊂ (1,+∞)

that has finite logarithmic measure, such that

| f (z)| ≤ exp{rη+ε},

holds for |z| = r �∈ [0, 1] ∪ E1.
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3 Zeros of differences of mero-
morphic functions

3.1 ASYMPTOTIC BEHAVIOR OF DIFFERENCES

One way to study the properties of differences of meromorphic
functions is to first find an asymptotic relation between derivatives
and differences, and they apply known tools for derivative func-
tions of meromorphic functions. This approaches appears to work
best for slowly growing functions.

Bergweiler and Langley [4] have shown that differences of mero-
morphic functions of order less than one behave asymptotically like
their derivatives in the complex plane.

Theorem 3.1.1 [4, Lemma 3.5] Let f (z) be transcendental and meromor-
phic of order less than 1 in the plane. Let h > 0. Then there exists an
ε − set E′ such that

f (z + c)− f (z) = c f ′(z)(1 + o(1)) as z → ∞ in C \ E′.

uniformly in c for |c| ≤ h.

Here, following Hayman [30, pp.75-76], we define an ε−set to be a
countable union of open discs not containing the origin and sub-
tending angles at the origin whose sum is finite. If E is an ε−set
then the set of r ≥ 1 for which the circle S(0, r) = {z ∈ C : |z| = r}
meets E has finite logarithmic measure, and for almost all real θ

the intersection of E with the ray arg z = θ is bounded.

Another useful result due to Bergweiler and Langley shows that for
transcendental meromorphic functions of order less than one, both
logarithmic derivative and difference quotient are small asymptoti-
cally, outside of an ε − set.
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Theorem 3.1.2 [4, Lemma 3.3] Let f be a function transcendental and
meromorphic in the plane of order less than 1. Let h > 0. Then there
exists an ε− set E such that

f ′(z + c)
f (z + c)

= o(1), f (z + c) = (1 + o(1)) f (z) as z → ∞ in C \ E

uniformly in c for |c| ≤ h. Further, E may be chosen so that for large z
not in E the function f has no zeros or poles in |ς − z| ≤ h.

The following theorem due to Bergweiler and Langley [4] gives an
asymptotic identity on a circle of radius r involving a meromorphic
function of lower order less than one, its derivative and its shift.

Theorem 3.1.3 [4, Lemma 3.6] Let f be a function transcendental and
meromorphic in the plane of the lower order μ( f ) < μ < 1. Then, there
exists arbitrarily large R with the following properties. First,

T(32R, f ′) < Rμ.

Second, there exists a set JR ⊆ [R
2 , R] of linear measure (1 − o(1))R

2 such
that, for r ∈ JR,

f (z + c)− f (z) = (1 + o(1)) f ′(z) on |z| = r.

Asymptotic relations between differences and derivatives can be
found also in the higher order case. The following result of this
type is also due to Bergweiler and Langley.

Theorem 3.1.4 [4, Lemma 4.2] Let n ∈ N. Let f (z) be non-rational
and meromorphic of order less than 1 in the plane. Then there exists an
ε − set En such that

Δn
c f (z) = (1 + o(1)) f (n)(z) as z → ∞ in C\En.

3.2 RESULTS ON ZEROS OF DIFFERENCES OF MEROMOR-
PHIC FUNCTIONS

We begin by introducing the zeros of derivative functions of mero-
morphic functions, and then move on to the zeros of differences of
meromorphic functions. The following theorem considers the zeros
of derivative functions of slowly growing meromorphic functions.
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Theorem 3.2.1 [3, 17, 33] Let f be transcendental and meromorphic in
the plane with

lim inf
r→∞

T(r, f )
r

= 0.

Then f ′ has infinitely many zeros.

Bergweiler and Langley [4] investigated the existence of zeros of
� f and � f (z)

f (z) , and obtained several results, which may be viewed
as discrete analogues of the above theorem on the zeros of f ′. It
was observed by Bergweiler and Langley, that if f satisfies the hy-
potheses of Theorem 3.2.1, by Hurwitz’s theorem, it follows that if
z0 is a zero of f ′(z) then �c f (z) = f (z + c)− f (z) has a zero near
z0 for all sufficiently small c ∈ C \ {0}. Hence it is natural to ask
whether �c f (z) must have infinitely many zeros or not. Bergweiler
and Langley [4] answered this question, and obtained the following
theorems.

Theorem 3.2.2 [4, Theorem 1.3] There exists δ0 ∈ (0, 1
2) with the fol-

lowing property. Let f be a transcendental entire function with order

σ( f ) <
1
2
+ δ0 < 1

Then

G(z) =
�c f (z)

f (z)

has infinitely many zeros.

Theorem 3.2.3 [4, Theorem 1.4] Let f (z) be a function transcendental
and meromorphic of lower order μ( f ) < 1 in the plane. Let c ∈ C \ {0}
be such that at most finitely many poles zj, zk of f (z) satisfy zj − zk = c.
Then �c f (z) has infinitely many zeros.

If f is a transcendental entire function of order < 1, then �c f (z) is
also a transcendental entire function of order < 1. By repetition of
this argument, we know that so is each difference Δn f (z)(n ≥ 1).
Hence, Δn f (z) has infinitely many zeros. So it is natural to consider
Gn(z) instead of Δn f (z) in some cases. Using Theorem 3.1.4 and the
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standard Wiman-Valiron theory, Bergweiler and Langley obtained
the following result.

Theorem 3.2.4 [4, Theorem 1.2] Let n ∈ N, c ∈ C \ {0} and f be a
transcendental entire function of order σ <

1
2 . If

Gn(z) =
�n f (z)

f (z)

is transcendental, then Gn(z) has infinitely many zeros.

The results above show that at least for relatively slow growing
meromorphic functions, there are a large amount of zeros of differ-
ences and divided differences in the complex plane.

Chen and Shon [6] considered zeros and fixed points of differences
and divided differences of entire functions with order of growth
ρ( f ) = 1 and obtained the following theorem.

Theorem 3.2.5 [6, Theorem 3] Let c ∈ C \ {0} and let f be a transcen-
dental entire function of order ρ( f ) = ρ = 1, that has infinitely many
zeros with the exponent of convergence of zeros λ( f ) = λ < 1. Then
�c f (z) has infinitely many zeros and infinitely many fixed points.

Recently, Chen and Shon [7] considered the following three prob-
lems about the zero distribution of differences of meromorphic
functions:

(i) What conditions will guarantee that the difference �c f (z) has
infinitely many zeros for a meromorphic function f (z)?

(ii) What is the exponent of convergence of zeros of the difference
�c f (z) if it has infinitely many zeros?

(iii) What can we say about the zeros of

�c f (z)− l(z) and
�c f (z)

f (z)
− l(z),
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where l(z) is a polynomial?

About question (i), the following theorem shows the condition
that f satisfies λ( 1

f ) < λ( f ) < 1 will guarantee that the difference
�c f (z) has infinitely many zeros without the hypothesis on c.

Theorem 3.2.6 [7, Theorem 1] Let c ∈ C \ {0} be a constant and f a
meromorphic function of order ρ( f ) = ρ ≤ 1. Suppose that f satisfies
λ( 1

f ) < λ( f ) < 1 or has infinitely many zeros (with λ( f ) = 0) and
finitely many poles. Then �c f (z) has infinitely many zeros and satisfies

λ(�c f ) = λ( f ).

Concerning question (ii), Theorem 3.2.6 also shows that if f (z) has
infinitely many zeros under certain circumstances, then

λ(�c f (z)) = λ( f ).

About question (iii), the following two theorems show that

�c f (z)− l(z) and
�c f (z)

f (z)
− l(z),

may have infinitely many zeros, respectively.

Theorem 3.2.7 [7, Theorem 2] Let c and f (z) satisfy the conditions of
Theorem 3.2.6. Suppose that l(z) is a polynomial. Then �c f (z) − l(z)
has infinitely many zeros and satisfies λ(�c f − l) = ρ( f ).

Theorem 3.2.8 [7, Theorem 3] Let c ∈ C \ {0} be a constant and f a
meromorphic function of order ρ( f ) = ρ < 1 or of the form f (z) =

h(z)eaz where a �= 0 is a constant, h(z) being a transcendental mero-
morphic function with ρ(h) < 1. Suppose that l(z) is a nonconstant
polynomial. Then

G1(z) =
�c f (z)

f (z)
− l(z)

has infinitely many zeros.

Some improvements of Theorems 3.2.6– 3.2.8 can be found in Paper
II.
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4 Solutions of complex differ-
ence equations

4.1 EXISTENCE OF SOLUTIONS

We next introduce some results about the existence of meromorphic
solutions of difference equations, by following [1][20][27][31][56].
We begin by discussing the case of differential equations, and then
move on to difference equations. Concerning the case of first-order
differential equations, Malmquist [47, P. 311] has shown a century
ago that, the only equation of the form

y′ = R(z, y),

where R is rational in both arguments, that can have transcendental
meromorphic solutions, is the Riccati equation:

y′ = a0(z) + a1(z)y + a2(z)y2.

In 1954, Wittich [59] obtained the result that if the coefficients
aj(z) are rational functions, then all meromorphic solutions of the
Riccati equation are of finite order.

In the second-order case Picard [50] raised the following prob-
lem in 1889: If R(z, w, w′) is rational in w and w′ and analytic in
z, what are the second order ordinary differential equations of the
form

w′′ = R(z, w, w′) (4.1.0)

with the property that the singularities other than poles of any so-
lutions of (4.1.0) depend only on the equation and not on the con-
stants of integration? (The problem can also be found, for instance,
in [20, p.1]). About the question, Painlevé [49] and Gambier [19]
showed that there exist fifty canonical equations of the form (4.1.0)
such that the property posed by Picard is satisfied. This property is
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now known as the Painlevé property. It turned out that out of the
list of 50 equations all except 6 were solvable or transformable into
another equation in the list, or to a linear equation. The remaining
6 equations are called as Painlevé equations. These equations are
as follows:

w′′ = 6w2 + z, (PI)

w′′ = 2w3 + zw + α, (PII)

w′′ =
(w′)2

w
−

1
z

w′ +
1
z
(αw2 + β) + γw3 +

δ

w
, (PIII)

w′′ =
(w′)2

2w
+

3
2

w3 + 4zw2 + 2(z2 − α)w +
β

w
, (PIV)

w′′ =
3w − 1

2w(w − 1)
(w′)2 −

1
z

w′ +
1
z2 (w − 1)2

(
αw +

β

w

)

+
γw
z

+
δw(w + 1)

w − 1
, (PV)

w′′ =
1
2

( 1
w

+
1

w − 1
+

1
w − z

)
(w′)2 −

(1
z
+

1
z − 1

+
1

w − z

)
w′

+
w(w − 1)(w − z)

z2(z − 1)2

(
α +

βz
w2 +

γ(z − 1)
(w − 1)2 +

δz(z − 1)
(w − z)2

)
, (PVI)

where α, β, γ, δ are arbitrary complex constants. In the above clas-
sification result, those equations in the list of 50 equations that are
solvable explicitly possess meromorphic general solutions (express-
ible e.g. in terms of elliptic functions) and so they have the Painlevé
property. Painlevé equations cannot in general be solved explicitly,
but it has been shown [20, p.6, p.11, p.23] that all solutions of PI , PII

and PIV are meromorphic. Equations PIII and PV can be trans-
formed into equations that have only meromorphic solutions, but
such transformation is not possible for PVI . Nevertheless all solu-
tions of PVI are meromorphic outside of the fixed singularities [20,
p.30]. Hence all equations in the original Painlevé-Gambier list of
50 equations indeed possess the Painlevé property. The orders of
all transcendental solutions of equations PI , PII and PIV are finite
(being at most 5

2 , 3 and 4, respectively) [53, 54, 58].
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Next let us consider difference equations. The following theo-
rem due to Shimomura [55] shows the existence of entire solutions
of a large class of first-order difference equations.

Theorem 4.1.1 [55] For any non-constant polynomial P(w), the differ-
ence equation

w(z + 1) = P(w) (4.1.1)

has a non-trivial entire solution.

Yanagihara [62] considered the case where the right side of (4.1.1) is
rational in w, and he proved the following theorem which extends
Theorem 4.1.1.

Theorem 4.1.2 [62, Theorem 2.5] For any non-constant rational func-
tion R(w), the difference equation

w(z + 1) = R(w) (4.1.2)

has a non-trivial meromorphic solution.

Using a similar method as in the proof of Theorem 4.1.2, Yanagi-
hara obtained the following theorem which shows the existence of
meromorphic solutions for a class of nth order difference equations.

Theorem 4.1.3 [61] For any rational function

R(w) =
apwp + · · ·+ a0

bqwq + · · ·+ b0
,

where ap, · · · , a0 ∈ C, bq, · · · , b0 ∈ C and p ≥ q + 2, the difference
equation

αnw(z + n) + · · ·+ α1w(z + 1) = R(w), αN , · · · , α1 ∈ C,

has a non-trivial meromorphic solution.

Theorems 4.1.1-4.1.3 show that, for difference equations, the exis-
tence of meromorphic solutions appears to be much more common
than in the case of differential equations. Therefore, if one is looking
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for analogues of the Painlevé property, and of Malmquist’s theorem
in the difference case, further restrictions than just the existence of
meromorphic solutions is needed.

Applying methods from Nevanlinna theory into first-order dif-
ference equations, Yanagihara obtained a result which can be seen
as a difference analogue of Malmquist’s theorem.

Theorem 4.1.4 [62, Theorem 2] If the first-order difference equation

w(z + 1) = R(z, w), (4.1.3)

where R(z, w) is rational in both arguments, admits a non-rational mero-
morphic solution of finite order, then deg w(R) = 1.

Many scholars have extended Theorem 4.1.4 to higher order differ-
ence equations, see [1, 31, 41, 51, 64]. For instance, Ablowitz et al
proved the following theorem.

Theorem 4.1.5 [1, Theorem 3, Theorem 5] If the second-order difference
equation

w(z + 1) � w(z − 1) = R(z, w), (4.1.4)

admits a non-rational meromorphic solution of finite order, where R(z, w)

is rational in both of its arguments, and the operation � stands for either
the addition or the multiplication, then deg w(R) ≤ 2.

Ablowitz, Halburd and Herbst also suggested that the existence
of sufficiently many finite-order meromorphic solutions is a good
difference analogue of the Painlevé property.

The class of equations (4.1.4) includes many equations regarded
as Painlevé I-III, but also many other (non-Painlevé) equations.

Theorem 4.1.6 [51] If the second order difference equation

(w(z + 1) + w(z))(w(z − 1) + w(z)) =
P(z, w)

Q(z, w)
, (4.1.5)

where P(z, w) and Q(z, w) are polynomials in w having rational coeffi-
cients and no common roots, admits a non-rational meromorphic solution
of finite order, then degw(P) ≤ 4 and deg w(Q) ≤ 2.
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This class of equations (4.1.5) with degw(P) ≤ 4 and deg w(Q) ≤ 2
includes some equations called as the difference Painlevé IV equa-
tion. Ramani et al [51] also obtained an analogue of Theorem 4.1.6,
where they derived a class of equations including the difference
Painlevé V equation .

The following theorem due to Halburd and Korhonen appears
to indicate that ”sufficiently many” in the conjecture of Ablowitz,
Halburd and Herbst, could mean ”one admissible meromorphic
solution of finite order”.

Theorem 4.1.7 [25, Theorem 1.1] If equation

w(z + 1) + w(z − 1) = R(z, w), (4.1.6)

where R(z, w) is rational and irreducible in w and meromorphic in z, has
an admissible meromorphic solution of finite order, then either w satisfies
a difference Riccati equation

w(z + 1) =
p(z + 1)w(z) + q(z)

w(z) + p(z)
, (4.1.7)

where p, q ∈ S(w), where S(w) denotes the field of small functions with
respect to w, or equation (4.1.6) can be transformed to one of the following
equations:

w(z + 1) + w(z) + w(z − 1) =
π1z + π2

w(z)
+ κ1 (4.1.8)

w(z + 1)− w(z) + w(z − 1) =
π1z + π2

w(z)
+ (−1)zκ1 (4.1.9)

w(z + 1) + w(z − 1) =
π1z + π3

w(z)
+ π2 (4.1.10)

w(z + 1) + w(z − 1) =
π1z + κ1

w(z)
+

π2

w2(z)
(4.1.11)

w(z + 1) + w(z − 1) =
(π1z + κ1)w(z) + π2

(−1)−z − w2(z)
(4.1.12)

w(z + 1) + w(z − 1) =
(π1z + κ1)w(z) + π2

1 − w2(z)
(4.1.13)

w(z + 1)w(z) + w(z)w(z − 1) = p (4.1.14)

w(z + 1) + w(z − 1) = pw(z) + q (4.1.15)
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where πk, κk ∈ S(w) are arbitrary finite-order periodic functions with
period k.

Equations (4.1.8), (4.1.10) and (4.1.11) are known alternative forms
of difference Painlevé I equation, equation (4.1.13) is a difference
Painlevé II and (4.1.14) and (4.1.15) are linear difference equations.
Therefore Theorem 4.1.7 says that the property suggested by Ablowitz,
Halburd and Herbst is sufficient to single out difference Painlevé
equations out of a large class of difference equations. Whether or
not this property is necessary, is still an open question.

S. Shimomura [56] discussed meromorphic solutions mainly for
(4.1.8) in the case where π1, π2 and k1 are constants. He showed
that (4.1.8) has an asymptotic solution in a certain domain contain-
ing the positive real axis, which may be continued meromorphically
to the whole complex plane, and he constructed formal solutions of
(4.1.8). Using a holomorphic function asymptotic to one of these
formal solutions, he derived a nonlinear difference equation equiv-
alent to (4.1.8). Moreover, analogous results for (4.1.11) and (4.1.13)
are obtained by similar arguments in [56]. However, whether or not
these meromorphic solutions are of finite order, remains open.

For higher order difference equations, Heittokangas. et al [31] proved
the following theorem.

Theorem 4.1.8 [31, Proposition 8] Let c1, · · · , cn be a non-zero complex
constants. If the difference equation

n

∑
k=1

f (z + ck) =
a0(z) + ∑

p
i=1 ai(z) f (z)i

b0(z) + ∑
q
i=1 bi(z) f (z)i

with rational coefficients ai(z), bi(z) admits a transcendental meromorphic
solution of finite order, then max{p, q} ≤ n.

4.2 GROWTH OF SOLUTIONS

The following Lemma due to Chiang and Feng is a pointwise esti-
mate for the difference quotient which is a counterpart of Gunder-
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sen’s logarithmic derivative estimate [22].

Lemma 4.2.1 [14, Theorem 8.2] Let f (z) be a meromorphic function of
finite order ρ < ∞, c be a non-zero complex number, and let ε > 0, then
there exists a subset E ⊂ (1, ∞) of finite logarithmic measure, such that
for all |z| = r �∈ E ∪ [0, 1], we have

exp{−rρ−1+ε} ≤

∣∣∣∣ f (z + c)
f (z)

∣∣∣∣ ≤ exp{rρ−1+ε}.

Lemma 4.2.1 is a good tool to deal with the growth of solutions of
higher order linear difference equations. We can find some applica-
tions in [14]. The following theorem on the growth of meromorphic
difference equations is an example of such applications

Theorem 4.2.2 [14, Theorem 9.2] Let A0(z), · · · , An(z) be entire func-
tions such that there exists an integer l, 0 ≤ l ≤ n, such that

ρ(Al) > max
0≤l≤n, j �=l

{ρ(Aj)} (4.2.1)

If f (z) is a meromorphic solution to

An(z)y(z + n) + · · ·+ A1(z)y(z + 1) + A0(z)y(z) = 0, (4.2.2)

then we have ρ( f ) ≥ ρ(Al) + 1.

Ishizaki and Yanagihara [36] considered the growth of transcenden-
tal entire solutions of difference equation

Qn(z)Δn f (z) + · · ·+ Q1(z)Δ f (z) + Q0(z) f (z) = 0, (4.2.3)

where Qn(z), · · · , Q0(z) are polynomials, Δ f (z) = f (z + 1) − f (z)
and Δn f (z) = Δ(Δn−1 f (z)), and obtained the following theorem.
The Newton polygon for (4.2.3) is defined as the convex hull of⋃n

j=0{(x, y) : x ≥ j, y ≤ deg an−j(z)− (n − j)}.

Theorem 4.2.3 [36, Theorem 1.1] Let f (z) be transcendental entire solu-
tions of (4.2.3) and of order χ <

1
2 . Then we have

log M(r, f ) = Lrχ(1 + o(1)),

where a rational number χ is a slope of the Newton polygon for Eq. (4.2.3),
and L > 0 is a constant. In particular, we have χ > 0.
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Comparing Theorem 4.2.2 with Theorem 4.2.3, we see that although
Eq. (4.2.2) can be rewritten as (4.2.3), the condition (4.2.1) and
Aj(0 ≤ j ≤ k) being entire, the polynomial Pl is dominating co-
efficient, guarantees that all transcendental meromorphic solutions
of (4.2.2) satisfy ρ( f ) ≥ 1.

The condition (4.2.4) below guarantees that all transcendental mero-
morphic solutions of (4.2.5) satisfy ρ( f ) ≥ 1 and ρ( f ) = λ( f ).

Theorem 4.2.4 [8, Theorem 1] Let F(z), Pn(z), · · · , P0(z) be polynomi-
als such that FPnP0 �≡ 0 and

deg(Pn + · · ·+ P0) = max{deg Pj : j = 0, · · · , n} ≥ 1. (4.2.4)

Then every finite order transcendental meromorphic solution f (z) of equa-
tion

Pn(z) f (z + n) + · · ·+ P1(z) f (z + 1) + P0(z) f (z) = F(z) (4.2.5)

satisfies ρ( f ) ≥ 1 and ρ( f ) = λ( f ).

In the previous theorem we considered equation (4.2.5) with F �≡ 0.
For the case F = 0, we get the following theorem.

Theorem 4.2.5 [8, Theorem 2] Let Pn(z), · · · , P0(z) be polynomials such
that PnP0 �≡ 0 and satisfy (4.2.4). Then every finite order transcendental
meromorphic solution f (z) of equation

Pn(z) f (z + n) + · · ·+ P1(z) f (z + 1) + P0(z) f (z) = 0

satisfies ρ( f ) ≥ 1 and assumes every non-zero value a ∈ C infinitely
often and ρ( f ) = λ( f − a).

32 Dissertations in Forestry and Natural Sciences No 109



5 Summary of Papers I-V

One of the main themes of this thesis is the investigation of zero
distribution of difference polynomials of the form

Fn(z) =
k

∑
j=1

aj(z) f (z + cj)− a(z) f n(z). (5.0.0)

In paper I and II, we consider the case n = 1, aj(z) = 1, (j =

1, · · · , k), a(z) = k. For this case we can write Fn(z) as F1(z) =

g(z) = f (z + c1) + · · · + f (z + ck) − k f (z). In paper I, using the
methods introduced by Bergweiler and Langley, and Wiman-Valiron
theory, we consider the zeros of g(z) under the assumption ρ( f ) <
1. In paper II, we consider the zeros of g(z) under the assumption
ρ( f ) ≥ 1, by using the standard methods of Nevanlinna theory, for
example, Theorem 2.1.12 and Lemma 2.1.13 from this survey. In
paper V, we consider the case n ≥ 2.

Another theme of this thesis is the application of the methods
described above to the study of value distribution and growth prop-
erties of meromorphic solutions of difference equations. For in-
stance, we consider the class

A1(z)w(z + c1) + A2(z)w(z) + A3(z)w(z + c2) =
A4(z)
w(z)

+ A5(z)

in paper IV and

a0(z) f 2(z + c) + (b2(z) f 2(z) + b1(z) f (z) + b0(z)) f (z + c)

= d4(z) f 4(z) + d3(z) f 3(z) + d2(z) f 2(z) + d1(z) f (z) + d0(z)

in paper III, showing that under certain assumptions on the coeffi-
cients, all meromorphic solutions of these equations are of infinite
order.

Dissertations in Forestry and Natural Sciences No 109 33



Yong Liu:

5.1 SUMMARY OF PAPER I

Differences of the forms f (zj + c1) + f (zj + c2), f (zj + c1) f (zj + c2)

appear in a natural way as a part of many important difference
equations including difference Painlevé I-III, [1, 14, 29, 39].

Thus, it is natural to ask the following questions.

Problem A. What are the exponents of convergence of zeros of differ-
ences and divided differences?

Problem B. What can be said about zeros of differences g(z) = f (z +
c1) + f (z + c2) + · · ·+ f (z + ck)− k f (z) and gk(z) = f (z + c1) f (z +
c2) · · · f (z + ck)− f k(z)?

For k = 2, Chen and Shon [5, Theorem 1–Theorem 6] obtained
some estimates for zeros of differences g(z) = f (z + c1) + f (z +
c2), g2(z) = f (z + c1) f (z + c2).

For the general case, we obtain the following results. The following
theorem shows the conditions that ρ( f ) < 1 and c1 + c2 + · · ·+ ck �=

0 will guarantee that g(z) has infinitely many zeros.

Theorem 5.1.1 Let f (z) be a transcendental entire function of order ρ <

1. Let c1, c2, · · · , ck ∈ C \ {0} be such that c1 + c2 + · · ·+ ck �= 0. Then
g(z) has infinitely many zeros and satisfies λ(g) = ρ(g) = ρ.

In particular, if f has at most finitely many zeros zj satisfying f (zj +

c1) + f (zj + c2) + · · · + f (zj + ck) = 0, then G(z) = g(z)
f (z) satisfies

λ(G) = ρ(G) = ρ.

The exponents of convergence of zeros of differences gk(z) are esti-
mated accurately in the following theorem.

Theorem 5.1.2 Let f , cj (j = 1, 2, · · · , k) satisfy the conditions of The-
orem 5.1.1. Then gk(z) has infinitely many zeros and satisfies λ(gk) =

ρ(gk) = ρ.
In particular, if a set H = {zj} consists of all distinct zeros of f (z),
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satisfying any one of the following two conditions,
(i) at most finitely many zeros zi, zl satisfy zi − zl = cj (j = 1, 2, · · · , k);
(ii) lim inf

j→∞
|

zj+1
zj

| = l > 1,

then Gk(z) = gk(z)
f k(z) has infinitely many zeros and satisfies λ(Gk) =

ρ(Gk) = ρ.

In Theorem 5.1.1, we consider the exponents of convergence of ze-
ros of differences g(z), when f (z) is a transcendental entire func-
tion. A natural question arises: what is the exponent of convergence
of zeros of the difference g(z), if f (z) is a transcendental meromor-
phic function? About this question, we give the following theorem.

Theorem 5.1.3 Let f (z) be a transcendental meromorphic function of or-
der ρ < 1. Let c1, c2, · · · , ck ∈ C \ {0} be such that c1 + c2 + · · ·+ ck �=

0. If f has at most finitely many poles bj, bs satisfying

bj − bs = k1cl1 + k2cl2 (kd = 0,±1, d = 1, 2; l1, l2 ∈ (1, 2, · · · , k)), l1 �= l2

then g(z) has infinitely many zeros and satisfies λ(g) = ρ(g) = ρ.
In particular, if f has at most finitely many zeros zj satisfying f (zj +

c1) + f (zj + c2) + · · ·+ f (zj + ck) = 0, then G(z) = g(z)
f (z) has infinitely

many zeros and satisfies λ(G) = ρ(G) = ρ.

What can we say about the zeros of gk(z) = f (z+ c1) f (z+ c2) · · · f (z+
ck)− f k(z), where f (z) is a transcendental meromorphic function?
Concerning this question, we give the following Theorem 5.1.4.

Theorem 5.1.4 Let f , cj (j = 1, 2, · · · , k) satisfy the conditions of Theo-
rem 5.1.3. If f has at most finitely many poles bj satisfying

f (bj + k1cl1 + k2cl2) = 0, ∞ (kd = 0,±1, d = 1, 2; l1, l2 ∈ (1, 2, · · · , k),

l1 �= l2), then gk(z) has infinitely many zeros and satisfies λ(gk) =

ρ(gk) = ρ.
In particular, if a set H = {zj} consists of all distinct zeros of f (z),

satisfying any one of the following two conditions,
(i) at most finitely many zeros zi, zl satisfy zi − zl = cj (j = 1, 2, · · · , k);
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(ii) lim inf
j→∞

|
zj+1

zj
| = l > 1,

then Gk(z) = gk(z)
f k(z) has infinitely many zeros and satisfies λ(Gk) =

ρ(Gk) = ρ.

5.2 SUMMARY OF PAPER II

The aim of the paper is to generalize Theorems 3.2.7–3.2.9. In [7],
Chen and Shon consider the zeros of the differences �c f (z) un-
der the assumption ρ( f ) ≤ 1. We study the zeros of the sum
gk(z) = �c1 f (z) +�c2 f (z) + · · ·+�ck f (z) of differences under the
assumption ρ( f ) < ∞. In particular, we study the densities of zeros
of gk(z)− l(z) and of

Gk(z) =
f (z + c1) + f (z + c2) + · · ·+ f (z + ck)− k f (z)

f (z)
− l(z).

(5.2.1)
For this purpose, we prove the following three theorems.

According to Theorem 3.2.7 due to Chen and Shon [7], if f is a
meromorphic function of order ρ( f ) ≤ 1 such that λ( 1

f ) < λ( f ) <
1, then the difference Δc f of f satisfies λ(Δc f ) = λ( f ). The follow-
ing theorem is a generalization of this result for gk(z).

Theorem 5.2.1 Let f (z) be a finite order meromorphic function, λ( 1
f ) <

λ( f ) < 1. Let c1, c2, · · · , ck ∈ C \ {0} be such that c1 + c2 + · · ·+ ck �=

0, and let gk(z) �≡ 0. Then
(i): If ρ( f ) = ρ < 1, we have λ(gk) = λ( f ).
(ii): If 1 ≤ ρ( f ) = ρ < ∞, we have λ(gk) ≥ λ( f ).

Theorem 5.2.1 was proved in [45]. We reproduce clarified a version
of the proof here, where we give more details.

Proof of Theorem 5.2.1. By assumption λ( 1
f ) < λ( f ) < 1.

Proof of Claim (i):
We suppose that f satisfies ρ( f ) < 1. By Lemma 2.3 in [44], we
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have that gk(z) is transcendental. Let f (z) = u(z)
v(z) , where u(z) and

v(z) are canonical products (v(z) may be a polynomial) formed by
zeros and poles of f (z), respectively, and

λ(
1
f
) = λ(v) = ρ(v) < λ( f ) = λ(u) = ρ(u).

By Theorem 3.1.1, there exists an ε-set E such that

gk(z) = (c1 + c2 + · · ·+ ck) f ′(z)(1 + o(1)) as z → ∞ in C \ E.
(5.2.2)

Set
H = {|z| : z ∈ E or gk(z) = 0 or f ′(z) = 0},

then H is of finite linear measure. By (5.2.2), for |z| = r �∈ H, we
obtain

|gk(z)− (c1 + c2 + · · ·+ ck) f ′(z)|

= |o(1)(c1 + c2 + · · ·+ ck) f ′(z)|

< |(c1 + c2 + · · ·+ ck) f ′(z)|. (5.2.3)

Thus gk(z) and −(c1 + c2 + · · ·+ ck) f ′(z) satisfy the conditions
of Rouché’s theorem. Applying Rouché’s theorem and (5.2.3), for
|z| = r �∈ H, we have

n(r,
1
gk
)− n(r, gk) = n(r,

1
f ′
)− n(r, f ′). (5.2.4)

Since f ′ = u′(z)v(z)−u(z)v′(z)
v2(z) , λ( 1

f ) < λ( f ) = ρ( f ) < 1, ρ( f ′) =

ρ( f ), we have

λ(
1
f ′
) = λ(

1
f
) < λ( f ) = ρ( f ) = ρ( f ′).

By λ( 1
f ′ ) < ρ( f ′) < 1, we obtain λ( f ′) = ρ( f ′). From λ( 1

f ) <

λ( f ) = ρ( f ′), we obtain

λ(
1
f
) < λ( f ) = λ( f ′) = ρ( f ′).
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Combining this and gk(z) = f (z+ c1)+ f (z+ c2)+ · · ·+ f (z+ ck)−

k f (z), we obtain

λ(
1
gk
) ≤ λ(

1
f
) < λ( f ) = λ( f ′). (5.2.5)

Hence, with (5.2.4) and (5.2.5), we obtain

λ(gk) = λ( f ′) = λ( f ),

since λ
(

1
f ′

)
< λ( f ′). Thus (i) holds.

Proof of Claim (ii):
Since 1 ≤ ρ( f ) < ∞ and λ( 1

f ) < λ( f ) < 1, it follows from the
Hadamard factorization theorem, that

f (z) = h(z)eP(z) =
u(z)
v(z)

eP(z),

where P(z) is a nonconstant polynomial, h(z) is a meromorphic
function such that h(z) = u(z)

v(z) , u(z) and v(z) are canonical products
(v(z) may be a polynomial) formed by zeros and poles of f (z),
respectively, and

λ(
1
f
) = λ(v) = ρ(v) = λ(

1
h
) < λ( f ) = λ(u) = ρ(u) = λ(h) = ρ(h)

< 1. Hence

gk(z) = f (z + c1) + f (z + c2) + · · ·+ f (z + ck)− k f (z)

= h(z + c1)eP(z)+R1(z) + h(z + c2)eP(z)+R2(z) + · · ·

+h(z + ck)e
P(z)+Rk(z) − kh(z)eP(z)

=
(

h(z + c1)eR1(z) + h(z + c2)eR2(z) + · · ·

+h(z + ck)e
Rk(z) − kh(z)

)
eP(z)

= w(z)eP(z),

where Rj(z) = P(z + cj)− P(z)(j = 1, 2, · · · , k), and

w(z) = h(z+ c1)eR1(z) + h(z+ c2)eR2(z) + · · ·+ h(z+ ck)eRk(z)− kh(z).
(5.2.6)
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By this, we get λ( 1
w ) ≤ λ( 1

h ) = λ( 1
f ) < λ( f ) < 1. Since gk(z) �≡ 0,

we have w(z) �≡ 0.
Next, suppose, contrary to the assertion, that λ(gk) < λ( f ) < 1.

If 1 ≤ ρ(w) < ∞, then there exist a nonconstant polynomial
R0(z) and a nonzero meromorphic function Q(z) such that

w(z) = Q(z)eR0(z) =
u1(z)
v1(z)

eR0(z), (5.2.7)

where Q(z) = u1(z)
v1(z)

with u1(z) and v1(z) being the canonical prod-
ucts formed by zeros and poles of w(z), respectively, and

λ(
1
Q
) = λ(v1) = ρ(v1) = λ(

1
w
) ≤ λ(

1
f
) < 1

λ(u1) = ρ(u1) = λ(Q) = λ(w) = λ(gk) < 1

So, we obtain that ρ(Q) = max{λ(Q), λ( 1
Q )} < 1. Without loss of

generality, we assume that ci �= cj, for arbitrary i, j ∈ {1, 2, · · · , k}, i �=
j. Let ck+1 = 0, h(z) = h(z)eRk+1(z), where Rk+1(z) = 0. We next con-
sider the following two cases.

Case (1.1): Suppose there exist i0, j0 (i0, j0 = 0, 1, 2, · · · , k + 1)
such that Rj0(z)− Ri0(z) = A is a constant. We need to consider two
subcases (Rj0(z)−R0(z) is not a constant for all j0 (j0 = 1, 2, · · · , k+
1) or Rj0(z) − R0(z) is a constant for some j0 (j = 1, 2, · · · , k + 1))
separately.

Subcase (1.1.1): Suppose that Rj1(z) − R0(z) is not a constant,
for all j1 (j1 = 1, 2, · · · , k + 1). We are assuming that there exist
1 ≤ i1, j1 ≤ k + 1 such that Rj1(z)− Ri1(z) = A is a constant. Then
we have that P(z+ cj1)− P(z+ ci1) = A. Since P(z) is a polynomial,
it must have the form P(z) = az + d and a �= 0. Hence we have that
Rj1 = acj1 is constant for j1 = 1, 2, · · · , k + 1. From

w(z) = h(z+ c1)eR1(z) + h(z+ c2)eR2(z) + · · ·+ h(z+ ck)eRk(z)− kh(z),

we get ρ(w) < 1. This is a contradiction.
Subcase (1.1.2): Suppose there exists a j2 (j2 = 1, 2, · · · , k + 1)

such that Rj2(z) − R0(z) = A is a constant. If there also exists
i2 (i2 = 1, · · · , j2 − 1, j2 + 1, · · · , k + 1) such that Ri2(z)− R0(z) = B
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is a constant, then we have Rj2(z)− Ri2(z) = A − B. As in Subcase
(1.1.1), we have Rj2 is a constant for j2 = 1, 2, · · · , k + 1. Therefore,
then R0 is a constant, a contradiction. If now Ri(z) − R0(z) is not
constant for any i �= j2, then

h(z + c1)eR1(z) + h(z + c2)eR2(z) + · · ·+ (eAh(z + cj2)− Q(z))eR0(z)

+h(z + ck)e
Rk(z) − kh(z) = 0. (5.2.8)

For any α, β ∈ {0, 1, · · · , j2 − 1, j2 + 1, ·, k+ 1}, α �= β, since deg(Rα(z)−
Rβ(z)) ≥ 1, eRα(z)−Rβ(z) is of regular growth (see, e.g., [29, p. 7]),
ρ(h(z + ci)) < 1 and ρ(eAh(z + cj2)− Q(z)) < 1, we conclude that

T(r, h(z + ci)) = o{T(r, eRα(z)−Rβ(z))}

T(r, eAh(z + cj)− Q(z)) = o{T(r, eRα (z)−Rβ(z))}

Thus, from Lemma 2.1.13 and (5.2.8), we have h(z) ≡ 0, a contra-
diction.

Case (1.2): Suppose then that Rj(z)− Ri(z) is not a constant for
all i, j(i, j = 0, 1, · · · , k + 1, i �= j). By Lemma 2.1.13, h(z + cj) ≡

0 (j = 1, · · · , k), h(z) ≡ 0, a contradiction.
Therefore, ρ(w) < 1. We break the rest of the proof into three cases.

Case (2.1): Suppose there exists exactly one j (j ∈ {1, 2, · · · , k})
such that Rj(z) is a nonconstant polynomial. From (5.2.6), we get
ρ(w) ≥ 1, a contradiction.

Case (2.2): Suppose there exists at least two i0, j0 (i0, j0 = 1, 2, · · · ,
k), with 1 ≤ i0 < j0 ≤ k, such that Ri0(z), Rj0(z) are nonconstant
polynomials. Without loss of generality, we suppose R1(z), R2(z), · · · ,
Rm(z)(m ≥ 2) are nonconstant polynomials, where Rm+1, · · · , Rk

are constants. We now rewrite w(z) as follows

w(z) = h(z + c1)eR1(z) + h(z + c2)eR2(z) + · · ·+ h(z + cm)eRm(z)

+h(z + cm+1)eRm+1 + · · ·+ h(z + ck)e
Rk − kh(z).

If there exist 1 ≤ i, j ≤ m such that Ri − Rj is a constant, we
may apply Subcase (1.1.1) to deduce that Ri(z) is a constant for
i = 1, 2, · · · , m, a contradiction. Then for arbitrary i, j (i, j ∈
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{1, · · · , m}, i �= j) we have that Ri − Rj is not a constant. By Lemma
2.1.13, we have h(z + cj) ≡ 0, a contradiction.

Case (2.3): Suppose Rj is constant for all j = 1, · · · , k. Using
the method of Subcase (1.1.1), we see that P(z) = az + b, a �= 0.
Substituting P(z) = az + b into w(z), we have

w(z) = h(z + c1)eac1 + h(z + c2)eac2 + · · ·+ h(z + ck)e
ack − kh(z).

By Theorem 3.1.2, there exists an ε-set E such that

h(z + c) = h(z)(1 + o(1)), (5.2.9)

as z → ∞ in C \ E. By (5.2.9), we obtain that

w(z) = (eac1 + eac2 + · · ·+ eack)h(z)(1 + o(1))− kh(z)

= (eac1 + eac2 + · · ·+ eack − k)h(z)(1 + o(1)). (5.2.10)

By (5.2.10) and w(z) �= 0, we have eac1 + eac2 + · · ·+ eack �= k. Since
h(z) is transcendental, we know that w(z) is transcendental. Set

H = {|z| : z ∈ E or w(z) = 0 or h(z) = 0},

then H is of finite linear measure. By (5.2.10), for |z| = r �∈ H ∪ [0, 1],
we obtain that

|w(z)− (eac1 + eac2 + · · ·+ eack − k)h(z)|

= |(eac1 + eac2 + · · ·+ eack − k)o(1)|

< |(eac1 + eac2 + · · ·+ eack − k)h(z)|. (5.2.11)

Applying Rouché’s theorem and (5.2.11), comparing (5.2.11) and
(5.2.3), w(z) and gk(z), (eac1 + eac2 + · · · + eack − k)h(z) and (c1 +

c2 + · · ·+ ck) f ′(z), and using a similar method as in the proof of (i),
we obtain

λ(w) = λ(h) = λ(u) = λ( f ),

a contradiction. Hence λ(gk) = λ(w) ≥ λ( f ). Theorem 5.2.1 is thus
proved.
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According to Theorem 3.2.8 due to Chen and Shon [7], if f satis-
fies the conditions of Theorem 3.2.7, and l(z) is a polynomial, then
λ(Δc f − l) = λ( f ). The following theorem is a generalization of
this result for gk(z, l) := gk(z)− l(z).

Theorem 5.2.2 Let f , cj (j = 1, 2, · · · , k), gk(z) satisfy the conditions of
Theorem 5.2.1. Suppose that l(z) is a nonconstant polynomial, and let
gk(z, l) := gk(z)− l(z). Then
(i): If ρ( f ) < 1, we have λ(gk(z, l)) = ρ( f ).
(ii): If 1 ≤ ρ( f ) < ∞, we have λ(gk(z, l)) ≥ 1.

According to Theorem 3.2.9 due to Chen and Shon [7], if f is a
meromorphic function of order ρ( f ) = ρ < 1 or of the form f (z) =
h(z)eaz, where a �= 0 is a constant, h(z) is a transcendental mero-
mophic function such that ρ(h) < 1, then G1(z) =

f (z+c)− f (z)
f (z) − l(z)

has infinitely many zeros. The following theorem is a generaliza-
tion of this result for Gk(z).

Theorem 5.2.3 Let f be a transcendental meromorphic function of order
of growth ρ( f ) = ρ < 1 or of the form f (z) = h(z)eaz where a �= 0 is a
constant, and h(z) is a transcendental meromorphic function with ρ(h) <
1. Let c1, c2, · · · , ck ∈ C \ {0} be such that c1 + c2 + · · · + ck �= 0.
Suppose that l(z) is a nonconstant polynomial. Then Gk(z) has infinitely
many zeros.

5.3 SUMMARY OF PAPER III

According to the classical Malmquist’s theorem [47](see also, e.g.
[40, p.192]), the only equation of the form

f ′ = R(z, f ),

where R(z, f ) is rational in both arguments, that can have non-
rational meromorphic solutions, is the Riccati equation. Let us
consider a more general case of the following first-order algebraic
differential equation

C(z, f )( f ′)2 + B(z, f ) f ′ + A(z, f ) = 0, (5.3.1)
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where C(z, f ) �≡ 0, B(z, f ), and A(z, f ) are polynomials in z and f .
Here we refer the reader to Ishizaki’s work [35], for the cases where
the coefficients of the powers of f in A(z, f ), B(z, f ) and C(z, f ) are
transcendental functions. Steinmetz [56] showed that if (5.3.1) has a
transcendental meromorphic solution, then the equation (5.3.1) can
be reduced to the form

a0(z) f ′2 + (b2(z) f 2 + b1(z) f + b0(z)) f ′

= d4(z) f 4(z) + d3(z) f 3 + d2(z) f 2 + d1(z) f + d0(z), (5.3.2)

where a0(z), bi(z)(i = 0, 1, 2) and dj(z)(j = 0, ..., 4) are polynomials.

A natural discretization of equation (5.3.2) can be obtained by re-
placing f ′ in equation (5.3.2) with f (z + c). We now consider the
growth of meromorphic solutions to the following difference equa-
tion (5.3.3):

Theorem 5.3.1 Let c ∈ C \ {0}. If f (z) is a transcendental meromorphic
solution of

a0(z) f 2(z + c) + (b2(z) f 2(z) + b1(z) f (z) + b0(z)) f (z + c)

= d4(z) f 4(z) + d3(z) f 3(z) + d2(z) f 2(z) + d1(z) f (z) + d0(z), (5.3.3)

with meromorphic coefficients satisfying T(r, a0) = S(r, f ), T(r, bi) =

S(r, f )(i = 0, 1, 2), T(r, dj) = S(r, f )(j = 0, · · · , 4) and d4(z) �≡ 0,
then ρ( f ) = ∞.

In the previous theorem we considered equation (5.3.3) with d4(z) �≡
0. The following four theorems are about the case d4(z) ≡ 0:
If d4(z) ≡ 0, then (5.3.3) becomes

a0(z) f 2(z + c) + (b2(z) f 2(z) + b1(z) f (z) + b0(z)) f (z + c)

= d3(z) f 3(z) + d2(z) f 2(z) + d1(z) f (z) + d0(z). (5.3.4)

The following theorem gives a relation between ρ( f ) and max{λ( f ),
λ( 1

f )}, when a0(z), bi(z)(i = 0, 1, 2), and dj(z), (j = 0, 1, 2, 3) are
polynomials such that deg(b2 − d3) = max{deg b2, deg d3} ≥ 1, and
b2(z)d3(z) �≡ 0.
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Theorem 5.3.2 Let a0(z), bi(z)(i = 0, 1, 2), and dj(z), (j = 0, 1, 2, 3)
be polynomials such that deg(b2 − d3) = max{deg b2, deg d3} ≥ 1, and
b2(z)d3(z) �≡ 0. Let c ∈ C \ {0}. If f (z) is a finite order transcendental
meromorphic solution of (5.3.4), then

1 ≤ ρ( f ) ≤ max{λ( f ), λ(
1
f
)}+ 1. (5.3.5)

The following theorem shows that if (5.3.4) has at least one admis-
sible meromorphic solution of finite order, then either d3(z) = 0 or
b2(z) �≡ 0.

Theorem 5.3.3 Let c ∈ C \ {0}, and let a0(z), bi(z)(i = 0, 1, 2), dj(z), (j
= 0, 1, 2, 3) be meromorphic functions of finite order. If f (z) is a transcen-
dental meromorphic solution of (5.3.4), then
(i) If ρ(a0) < ρ( f ), ρ(bi) < ρ( f )(i = 0, 1, 2), ρ(dj) < ρ( f )(j =

0, 1, 2, 3), f (z)
f (z+c) �≡

b2(z)
d3(z)

and ρ( f ) = ρ < ∞, then

ρ( f ) = max{λ( f ), λ(
1
f
)}.

(ii) If T(r, a0) = S(r, f ), T(r, bi) = S(r, f )(i = 0, 1), T(r, dj) =

S(r, f )(j = 0, 1, 2, 3), d3(z) �≡ 0 and b2(z) ≡ 0, then ρ( f ) = ∞.

The proof of Theorem 5.3.3 (ii) has been omitted in [45], since it
is similar to that of [45, Theorem 1.1]. We take the opportunity to
present the details here.

Proof of Theorem 5.3.3 (ii): Let f be a meromorphic solution of
(5.3.4). Suppose, contrary to the assertion, that ρ( f ) = ρ < ∞. We
write (5.3.4) in the form

d3(z) f 3(z) = Q(z, f ), (5.3.6)

where

Q(z, f ) = a0(z) f 2(z + c) + (b1(z) f (z) + b0(z)) f (z + c)

−d2(z) f 2(z)− d1(z) f (z)− d0(z).
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Since the total degree of Q(z, f ) as a polynomial in f (z) and its
shifts, deg Q(z, f ) ≤ 2, by Remark 1 and (5.3.6), we have

m(r, f ) = S(r, f ).

Hence, f has more than S(r, f ) poles counting multiplicities. In
fact, N(r, f ) = T(r, f ) + S(r, f ). We use zj to denote points in the
pole sequence, and kj ≥ 1 to denote the order of the pole of f (z) at
z = zj. Let mj denote the maximum order of zeros and poles of the
coefficients a0(z), bi(z)(i = 0, 1), dj(z)(j = 0, 1, 2, 3) at zj. If zj is not
a pole or a zero of a0, bi, dj, then mj = 0 and so εkj > mj = 0, for
an arbitrarily small ε ≥ 0. If zj is a pole or a zero of a0, bi, dj, then
Lemma 2.4.1 implies that there are more than S(r, f ) points zj such
that kj satisfies εkj > mj. For ε <

1
4 , by (5.3.6), we either have that

zj + 2c is a pole of f of multiplicity k2,j ≥ ( 3
2 − ε)k1,j, or zj + 2c is

a zero of d3(z) with multiplicity greater than εk1,j. For the former
case, By (5.3.6), we have that zj + 3c is a pole of f of multiplicity
k3,j, where

k3,j ≥ (
3
2
− ε)k2,j ≥ (

3
2
− ε)2k1,j.

This implies that we either have that zj + 4c is a pole of f of mul-
tiplicity k4,j ≥ ( 3

2 − ε)k3,j, or zj + 4c is a zero of d3(z) with multi-
plicity greater than εk1,j. And so on. Not all sequences of iterates
of this type can have a zero of d3(z) with the multiplicity greater
than εk1,j in them. Otherwise d3(z) has more than S(r, w) zeros,
counting multiplicities, and we get d3(z) ≡ 0. This is a contradic-
tion. Hence, there exist at least one infinite sequence zn = z0 + nc
(n ∈ N) of poles of f , the multiplicity of which is kn, such that
kn ≥ ( 3

2 − ε)n−1k1 ≥ ( 3
2 − ε)n−1, and the multiplicity of d3(zn) = 0

is less than εk0 for all n ∈ N.
By a simple geometric observation, we have

zn ∈ D(z1, (n − 1)|c|) ⊂ D(0, |z1|+ (n − 1)|c|) = D(0, rn).

As n → ∞, we have rn ≤ 2(n − 1)|c|, for n large enough. Therefore,

n(rn, f ) ≥ (2 − ε)n−1
>

(5
4

)n−1
.
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Hence,

N(2rn , f ) ≥ (log 2)
(5

4

)n−1
≥ (log 2)

(5
4

) rn
3|c|

.

So, we get λ( f ) = ∞, contradicting our hypothesis that ρ( f ) < ∞.
Hence ρ( f ) = ∞.

We next investigate the exponent of convergence of zeros and poles
of meromorphic solutions of the difference equation (5.3.4):

Theorem 5.3.4 Let c ∈ C \ {0}. Suppose that f (z) is a finite order tran-
scendental meromorphic solution of equation (5.3.4), where a0(z), bi(z)(i =
0, 1, 2), dj(z), (j = 0, 1, 2, 3) are finite order meromorphic functions such
that T(r, a0) = S(r, f ), T(r, bi) = S(r, f )(i = 0, 1, 2), T(r, dj) = S(r, f )(j =
0, 1, 2, 3).
(i) If d0(z) �≡ 0, then λ( f ) = ρ( f ).
(ii) If a0(z) ≡ 0, bi(z) ≡ 0(i = 0, 1) and there exist i(i = 0, 1, 2) such
that di(z) �≡ 0, then λ( 1

f ) = ρ( f ).

The following theorem shows that f (z) has no finite Borel excep-
tional values under certain assumptions.

Theorem 5.3.5 Let a0(z), bi(z)(i = 0, 1, 2), dj(z), (j = 0, 1, 2, 3) be fi-
nite order meromorphic functions such that T(r, a0) = S(r, f ), T(r, bi) =

S(r, f )(i = 0, 1, 2), T(r, dj) = S(r, f )(j = 0, · · · , 4), d0(z) �≡ 0 and
(b2(z)− d3(z))z3 +(a0(z)+ b1(z)− d2(z))z2 +(b0(z)− d1(z))z− d0(z) �≡
0. Suppose that f (z) is a finite order transcendental meromorphic solution
of equation (5.3.4). Then f (z) has no finite Borel exceptional values.

5.4 SUMMARY OF PAPER IV

In 2007, Halburd and Korhonen [24] proved that if equation (4.1.6)
has an admissible meromorphic solution w of finite order, then
either w satisfies a difference Riccati equation (4.1.7) or equation
(4.1.6) can be transformed to one of the equations which are listed
as (4.1.8)-(4.1.15).

Equations (4.1.8), (4.1.10) and (4.1.11) are known as alternative forms
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of difference Painlevé I equation, equation (4.1.13) is a difference
Painlevé II and (4.1.14) and (4.1.15) are linear difference equations.
Chen and Shon [9, 10] considered some value distribution problems
of finite order meromorphic solutions of equations (4.1.7), (4.1.10),
(4.1.11) and (4.1.13).

The main aims of paper IV are the following two points.

(1) We consider the order of growth, zeros and poles of meromor-
phic solutions for the following nonlinear differences equa-
tions (5.4.2) and (5.4.4), where equation (5.4.2) is the more
general form of equation (4.1.8) and (4.1.9), and (5.4.4) is the
more general form of equation (4.1.15).

(2) We consider properties of rational solutions of (5.4.3) and
(5.4.5), where equation (5.4.3) is the more general form of
equation (4.1.8) and (4.1.9), and (5.4.5) is the more general
form of equation (4.1.15).

From the proof of the classification result by Halburd and Kor-
honen [25], it follows that if one chooses as a starting point, instead
of (4.1.6), the equation

w(z + 1) + w(z) + w(z − 1) =
A(z)
w(z)

+ B(z), (5.4.1)

where A(z) and B(z) are rational, then (5.4.1) is reduced exactly to
(4.1.8). This is due to the structure of the proof in [25, Theorem
1.1]. It is composed of many subcases that correspond to various
subclasses of (4.1.6). Equation (5.4.1) corresponds essentially to one
of these subclasses. The following theorem shows that demanding
the existence of a transcendental meromorphic solution of a large
class of difference equations containing (5.4.1) reduces this bigger
class either to a smaller one which still contains (5.4.1) (and thus
the difference Painlevé I), or to a class of first-order equations.

Theorem 5.4.1 Let c1, c2 ∈ C \ {0}. If w(z) is a transcendental mero-
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morphic solution of

A1(z)w(z + c1) + A2(z)w(z) + A3(z)w(z + c2) =
A4(z)
w(z)

+ A5(z),

(5.4.2)
with meromorphic coefficients such that T(r, Aj) = S(r, w)(j = 1, 2, · · · , 5),
A1(z)A2(z)A4(z) �≡ 0, A2(z + c1)A2(z) − A1(z)A3(z + c1) �≡ 0 and
c1 + c2 = 0, then we have ρ(w) = ∞.

Suppose that c1 + c2 = 0. Then Theorem 5.4.1 implies that if (5.4.2)
has at least one admissible meromorphic solution of finite order,
then either A1(z)A2(z)A4(z) ≡ 0, or A2(z+ c1)A2(z)− A1(z)A3(z+
c1) ≡ 0. If A1(z) ≡ 0, then (5.4.2) is reduced to

A3(z)w(z + c2) =
A4(z)− A2(z)w2(z)

w(z)
+ A5(z),

which is a difference equation of order one. By applying Theorem
4.1.7, it follows that A2(z) ≡ 0, and so (5.4.2) is in fact a difference
Riccati equation in this case. If A4(z) ≡ 0, then (5.4.2) becomes a
linear difference equation. In the case A2(z) ≡ 0 and A5(z) ≡ 0,
(5.4.2) is a first order linear difference equation with respect to
W(z) = w(z)w(z + c1), but if A2(z) ≡ 0 and A5(z) �≡ 0, then we
obtain a class of equations which contains (4.1.10) instead of (4.1.8).
Finally, if A2(z + c1)A2(z) − A1(z)A3(z + c1) = 0, then (5.4.1) be-
comes a special case of (5.4.2) with A1(z) = A2(z) = A3(z) = 1.

In the previous theorem we considered equation (5.4.2) with c1 +

c2 = 0. For the case c1 + c2 �= 0, we obtain the following theorem
which shows that the condition Aj(z)(j = 1, 2, · · · , 5) is a polyno-
mial, guarantees that all transcendental meromorphic solutions of
(5.4.2) satisfy ρ(w) ≥ 1.

Theorem 5.4.2 Let c1, c2 ∈ C \ {0}. If w(z) is a transcendental mero-
morphic solution of (1.12), then
(i): If Aj(z)(j = 1, 2, · · · , 5) is a polynomial and c1 + c2 �= 0, then we
have ρ(w) = ρ ≥ 1.
(ii): If A5(z) ≡ 0, A4(z) �≡ 0 and Aj(z)(j = 1, 2, 3, 4) is a polynomial,
then we have ρ(w) = ρ ≥ 1.

48 Dissertations in Forestry and Natural Sciences No 109



Summary of Papers I-V

The previous two theorems were about non-rational solutions of a
generalized form of (4.1.8) and (4.1.9). We next consider the ex-
istence and forms of rational solutions of (5.4.3), and obtain the
following theorem:

Theorem 5.4.3 Let k ∈ C \ {0} and R(z) = A(z)
B(z) be an irreducible

rational function, where A(z) and B(z) are polynomials with deg A(z) =
a and deg B(z) = b.
(i): Suppose that a ≥ b and a − b is zero or an even number. If equation

w(z + 1) + w(z) + w(z − 1) =
R(z)
w(z)

+ k (5.4.3)

has an irreducible rational solution w(z) = m(z)
n(z) , where m(z) and n(z)

are polynomials with deg m(z) = m and deg n(z) = n, then

m − n =
a − b

2
.

(ii): Suppose that a < b. If equation (5.4.3) has an irreducible rational
solution w(z) = m(z)

n(z) , then w(z) satisfies one of the following two cases

(1): w(z) = m(z)
n(z) = δ + S(z)

H(z) , where δ = k
3 , S(z) and H(z) are polyno-

mials with deg S(z) = s and deg H(z) = h, and s − h = a − b.
(2): m − n = a − b.

The following two theorems are concerned with rational and non-
rational solutions of a generalized form of (4.1.15). In addition to
order considerations, a result (see Theorem 5.4.4 (ii)) indicates that
solutions having a finite Borel exceptional value seem to appear in
special situations only.

Theorem 5.4.4 Let c1, c2 ∈ C \ {0}. Let w(z) be a finite order transcen-
dental meromorphic solution of

A1(z)w(z + c1) + A2(z)w(z + c2) = A3(z)w(z) + A4(z), (5.4.4)

where T(r, Aj) = S(r, w)(j = 1, 2, 3, 4). Then we have

(i): If A4(z) �≡ 0 and A1(z)+A2(z)−A3(z)
A4(z)

is not a constant, then w(z) has
no finite Borel exceptional values.
(ii): If A4(z) ≡ 0, ρ(w) > 1 and ρ(Aj) < ρ(w) − 1(j = 1, 2, 3), then
ρ(w) ≤ max{λ(w), λ( 1

w )}+ 1.
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The aim of the following theorem is to show the existence and the
forms of rational solutions of (5.4.5).

Theorem 5.4.5 Let q ∈ C \ {0} and R(z) = A(z)
B(z) be an irreducible

rational function, where A(z) and B(z) are polynomials with deg A(z) =
a and deg B(z) = b. Let s = a − b.
(i): Suppose that q = 2 and s = −2. Then equation

w(z + 1) + w(z − 1) = R(z) + qw(z) (5.4.5)

has no rational solutions.
(ii): Suppose that q = 2 and s = −1. Then (5.4.5) has no rational solu-
tions.
(iii): Suppose that q = 2 and s ≥ 0. If (5.4.5) has an irreducible ra-
tional solution y(z) = m(z)

n(z) , where m(z) and n(z) are polynomials with
deg m(z) = m and deg n(z) = n, then

m − n = s + 2.

(iv): Suppose that q = 2 and s ≤ −3, and suppose that y(z) is defined as
in (iii). Then

m − n = s + 2 or m − n = 1 or m = n.

(v): Suppose that q �= 2, and suppose that y(z) is defined as in (iii). Then

m − n = s.

5.5 SUMMARY OF PAPER V

Hayman [26] proved two classical theorems which can be combined
as follows:

Theorem 5.5.1 [26, Theorem 8]. Let f (z) be a transcendental meromor-
phic function and a �= 0, b be finite complex constants. Then f n(z) +
a f ′(z)− b has infinitely many zeros for n ≥ 5. If f (z) is transcendental
entire, this holds for n ≥ 3, resp. n ≥ 2, if b = 0.
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Recently, a number of papers (see, e.g., [4, 12-15, 22-24, 34, 39, 40])
have focused on complex difference equations and difference ana-
logues of Nevanlinna’s theory.

Liu and Laine [43] established partial difference counterparts of
Theorem 5.5.1, and obtained the following:

Theorem 5.5.2 [43, Theorem 1.2]. Let f (z) be a transcendental entire
function of finite order, not of period c, and let s(z) be a nonzero function,
small compared to f . Then f n(z) + f (z + c)− f (z)− s(z) has infinitely
many zeros, provided n ≥ 3, resp. n ≥ 2, if s = 0.

In 2010, Liu [43] extended the above result by considering meromor-
phic functions. In 2011, Chen [12] gave an estimate of the number
of b− points, namely, λ( f (z + c)− f (z)− a f n(z)− b) = ρ( f ), hence
he also generalized Theorem 5.5.2.

In paper V, we consider the zeros of the difference polynomial

Fn(z) =
k

∑
j=1

aj(z) f (z + cj)− a(z) f n(z),

and obtain the following results which generalize Theorem 5.5.2. In
Theorems 5.5.3 and 5.5.5, we consider the case when the coefficients
of Fn(z) are constants. The following theorem shows Fn(z)(n ≥ 3)
have infinitely many zeros under the condition that ∑

k
j=1 aj(z) f (z +

cj) �≡ b.

Theorem 5.5.3 Let f (z) be a transcendental entire function of finite or-
der ρ( f ), let b, a, cj, aj(j = 1, 2, · · · , k) be complex constants. Set Fn(z) =
∑

k
j=1 aj f (z+ cj)− a f n(z), where n ≥ 3 is an integer. Then Fn(z) have in-

finitely many zeros and λ(Fn(z)− b) = ρ( f ) provided that ∑
k
j=1 aj(z) f (z

+ cj) �≡ b.

In the previous theorem, we consider difference polynomial Fn(z)
with n ≥ 3. The following theorem is about the case n = 2 :
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Theorem 5.5.4 Suppose that f (z) is a finite order transcendental entire
function with a Borel exceptional value d. Let b(z), a(z)( �≡ 0), aj(z)(j =
1, 2, · · · , k) be polynomials, and let cj(j = 1, 2, · · · , k) be complex con-
stants. If either d = 0 and ∑

k
j=1 aj(z) f (z + cj) �≡ 0, or, d �= 0 and

∑
k
j=1 daj(z)− d2a(z) − b(z) �≡ 0, then F2(z)− b(z) = ∑

k
j=1 aj(z) f (z +

cj)− a(z) f 2(z)− b(z) has infinitely many zeros and λ(F2(z)− b(z)) =
ρ( f ).

The following example shows the condition that f (z) has a Borel
exceptional value cannot be omitted in Theorem 5.5.4.

Example 5.5.5 For f (z) = exp{z} + z, a(z) = 4, c1 = 3πi, c2 =

πi, c3 = 0, c4 = 5πi, c5 = 7πi, a1(z) = z, a2(z) = −3z, a3(z) =

6z, a4(z) = −1, a5(z) = 1, a6(z) = · · · = ak(z) = 0, b(z) =

2πi, we have F2(z)− b(z) = ∑
k
j=1 aj(z) f (z + cj)− a(z) f 2(z)− b(z) =

−4 exp{2z}. Here f (z) has no Borel exceptional values, but F2(z)− b(z)
has no zeros.

The following example shows that the zero distribution of f (z)F2(z)
is different from that of F2(z).

Example 5.5.6 For f (z) = exp{z}+ 1, a = 2, c1 = ln 2, c2 = ln 4, c3 =

ln 3, a1 = 3, a2 = 1, a3 = −2, a4 = · · · = ak = 0, we have F2(z) =

∑
k
j=1 aj f (z + cj) − a f 2(z) = −2 exp{2z}. Here F2(z) has no zero, but

f (z)F2(z) = −2 exp{2z}(exp{z}+ 1) has infinitely many zeros.

Next, we consider the question of what can we say about f (z)F2(z)
when f (z) has infinitely many multi-order zeros. For this question,
we obtain the following Theorem 5.5.7:

Theorem 5.5.7 Let f (z) be a finite order transcendental entire function,
and let b, a, aj, cj(j = 1, 2, · · · , k) be complex constants. If f (z) has in-
finitely many multi-order zeros, then H(z) = f (z)(∑k

i=1 aj f (z + cj) −

a f 2(z))− b has infinitely many zeros.

The following example shows that Theorem 5.5.3 may fail for entire
functions of infinite order.
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Example 5.5.8 For f (z) = exp{exp{z}}, c1 = ln 3, c2 = ln 3, c3 =

0, a = 2, a1 = 1, a2 = 1, a3 = 2, a4 = · · · = ak = 0, we obtain

F3(z) =
3

∑
j=1

aj f (z + cj)− a f 3(z) = 2 exp{exp{z}}.

Here F3(z) �= 0.

This following example shows that Theorem 5.5.3 may be fail for
n = 2 and that the condition n ≥ 3 in Theorem 5.5.3 is the best
possible.

Example 5.5.9 For f (z) = exp{z} + 2, a = 2, c1 = ln 3, c2 =

ln 9, c3 = ln 4, a1 = 1, a2 = 1, a3 = −1, a4 = · · · = ak = 0,
we have F2(z) = ∑

k
j=1 aj f (z + cj) − a f 2(z) = −2 exp{2z} − 6. Here

F2(z) �= −6.
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