VALUE DISTRIBUTION OF THE PRODUCT OF A MEROMORPHIC FUNCTION AND ITS DERIVATIVE

Indrajit Lahiri and Shyamali Dewan*

Abstract

In the paper we discuss the value distribution of the product of a meromorphic function and its derivative and we improve a recent result of K. W. Yu.

1. Introduction and definitions

Let f be a transcendental meromorphic function defined in the open complex plane C. Hayman [5] proved the following theorem.

Theorem A. If $n(\geq 3)$ is an integer then $\psi=f^{n} f^{\prime}$ assumes all finite values, except possibly zero, infinitely many times.

He further conjectured [7] that Theorem A remains valid even if $n=1$ or 2 . Mues [9] proved the result for $n=2$ and the case $n=1$ was proved by Bergweiler and Eremenko [1] and independently by Chen and Fang [3].

A natural question of investigating the value distribution of $f f^{\prime}-a$, where $a=a(z)$ is a non-zero meromorphic function satisfying $T(r, a)=S(r, f)$, was raised and a number of researchers have worked on the problem.

We call a meromorphic function $a \equiv a(z)$ a small function of f if $T(r, a)=$ $S(r, f)$.

Following two theorems can be derived from two inequalities proved by Zhang $\{[12]$, see also [11]\}.

Theorem B. If $\delta(\infty ; f)>7 / 9$ then $f f^{\prime}-a$ has infinitely many zeros, where $a(\not \equiv 0, \infty)$ is a small function of f.

Theorem C. If $2 \delta(0 ; f)+\delta(\infty ; f)>1$ then $f f^{\prime}-a$ has infinitely many zeros, where $a(\not \equiv 0, \infty)$ is a small function of f.

[^0]However in Theorem C the condition $2 \delta(0 ; f)+\delta(\infty ; f)>1$ can easily be replaced by the weaker condition $2 \Theta(0 ; f)+\Theta(\infty ; f)>1$.

The following result of Bergweiler [2] is worth mentioning.
Theorem D. If f is of finite order and a is a polynomial then $f f^{\prime}-a$ has infinitely many zeros.

In Theorem B and Theorem C we see that some conditions have to be imposed on f to achieve the desired result. On the other hand, though in Theorem D no restriction, except the order restriction, is imposed on f, the desired result is achieved only for polynomials in contrast to arbitrary small functions as the target.

Recently Yu [11] treated the general case but instead of a single small function he achieved the result for a small function and its negative as a pair of targets. His result can be stated as follows.

Theorem E. If a $(\not \equiv 0, \infty)$ is a small function of f then at least one of $f f^{\prime}-a$ and $f f^{\prime}+a$ has infinitely many zeros.

In the paper we prove a result on the value distribution of $(f)^{n_{0}}\left(f^{(k)}\right)^{n_{1}}$, where $n_{0}(\geq 2), n_{1}, k$ are positive integers and as a consequence of this we improve Theorem E though most probably one should not expect any corresponding improvement of Theorem D because of the condition $n_{0} \geq 2$.

Throughout the paper we denote by f a transcendental meromorphic function defined in the open complex plane \boldsymbol{C}. We do not explain the standard notations and definitions of the value distribution theory as those are available in [6].

Definition [8]. Let m be a positive integer. We denote by $N(r, a ; f \mid \leq m)$ $(N(r, a ; f \mid \geq m))$ the counting function of those a-points of f whose multiplicities are not greater (less) than m, where each a-point is counted according to its multiplicity.

In a like manner we define $N(r, a ; f \mid<m)$ and $N(r, a ; f \mid>m)$.
Also $\bar{N}(r, a ; f \mid \leq m), \bar{N}(r, a ; f \mid \geq m), \bar{N}(r, a ; f \mid<m)$ and $\bar{N}(r, a ; f \mid>m)$ are defined similarly where in counting the a-points of f we ignore the multiplicities.

Finally we agree to take $\bar{N}(r, a ; f \mid \leq \infty) \equiv \bar{N}(r, a ; f)$ and $N(r, a ; f \mid \leq \infty) \equiv$ $N(r, a ; f)$.

2. Lemma

In this section we prove a lemma which is required in the sequel.
Lemma. If $N\left(r, 0 ; f^{(k)} \mid f \neq 0\right)$ denotes the counting function of those zeros of $f^{(k)}$ which are not the zeros of f, where a zero of $f^{(k)}$ is counted according to its multiplicity, then

$$
N\left(r, 0 ; f^{(k)} \mid f \neq 0\right) \leq k \bar{N}(r, \infty ; f)+N(r, 0 ; f \mid<k)+k \bar{N}(r, 0 ; f \mid \geq k)+S(r, f) .
$$

Proof. By the first fundamental theorem and Milloux theorem \{p. 55 [6]\} we get

$$
\begin{aligned}
N\left(r, 0 ; f^{(k)} \mid f \neq 0\right) & \leq N\left(r, 0 ; \frac{f^{(k)}}{f}\right) \\
& \leq N\left(r, \frac{f^{(k)}}{f}\right)+m\left(r, \frac{f^{(k)}}{f}\right)+O(1) \\
& \leq k \bar{N}(r, \infty ; f)+N(r, 0 ; f \mid<k)+k \bar{N}(r, 0 ; f \mid \geq k)+S(r, f)
\end{aligned}
$$

This proves the lemma.

3. The main result

In this section we discuss the main result of the paper.
THEOREM. Let $\psi=(f)^{n_{0}}\left(f^{(k)}\right)^{n_{1}}$, where $n_{0}(\geq 2), n_{1}$ and k are positive integers such that $n_{0}\left(n_{0}-1\right)+(1+k)\left(n_{0} n_{1}-n_{0}-n_{1}\right)>0$. Then

$$
\left[1-\frac{1+k}{n_{0}+k}-\frac{n_{0}(1+k)}{\left(n_{0}+k\right)\left\{n_{0}+(1+k) n_{1}\right\}}\right] T(r, \psi) \leq \bar{N}(r, a ; \psi)+S(r, \psi)
$$

for any small function $a(\not \equiv 0, \infty)$ of f.
Proof. First we note that $\{$ cf. [4, 10]\}

$$
T(r, f)+S(r, f) \leq C T(r, \psi)+S(r, \psi)
$$

and

$$
T(r, \psi) \leq\left\{n_{0}+(1+k) n_{1}\right\} T(r, f)+S(r, f)
$$

where C is a constant.
So it is clear that if $a(\not \equiv 0, \infty)$ is a small function of f then a is also a small function of ψ and vice-versa. Hence by Nevanlinna's three small functions theorem $\{$ p. 47 [6]\} we get

$$
\begin{equation*}
T(r, \psi) \leq \bar{N}(r, 0 ; \psi)+\bar{N}(r, \infty ; \psi)+\bar{N}(r, a ; \psi)+S(r, \psi) \tag{1}
\end{equation*}
$$

where $\bar{N}(r, a ; \psi)=\bar{N}(r, 0 ; \psi-a)$.
Now by the lemma we get

$$
\begin{align*}
\bar{N}(r, 0 ; \psi) \leq & \bar{N}(r, 0 ; f)+N\left(r, 0 ; f^{(k)} \mid f \neq 0\right) \tag{2}\\
\leq & \bar{N}(r, 0 ; f)+k \bar{N}(r, \infty ; f)+N(r, 0 ; f \mid<k) \\
& +k \bar{N}(r, 0 ; f \mid \geq k)+S(r, f) \\
\leq & (1+k) \bar{N}(r, 0 ; f)+k \bar{N}(r, \infty ; f)+S(r, f) .
\end{align*}
$$

Again we see that

$$
\begin{aligned}
N(r, 0 ; \psi)-\bar{N}(r, 0 ; \psi) \geq & \left\{(1+k) n_{0}+n_{1}-1\right\} \bar{N}(r, 0 ; f \mid \geq 1+k) \\
& +\left(n_{0}-1\right) \bar{N}(r, 0 ; f \mid \leq k)
\end{aligned}
$$

Hence from (2) we get

$$
\begin{aligned}
\bar{N}(r, 0 ; \psi) \leq & (1+k) \bar{N}(r, 0 ; f \mid \geq 1+k)+k \bar{N}(r, \infty ; f) \\
& +\frac{1+k}{n_{0}-1}[N(r, 0 ; \psi)-\bar{N}(r, 0 ; \psi) \\
& \left.-\left\{(1+k) n_{0}+n_{1}-1\right\} \bar{N}(r, 0 ; f \mid \geq 1+k)\right]+S(r, f)
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
\frac{n_{0}+k}{n_{0}-1} \bar{N}(r, 0 ; \psi) \leq & \frac{1+k}{n_{0}-1} N(r, 0 ; \psi)+k \bar{N}(r, \infty ; f) \\
& +\left[1+k-\frac{(1+k)\left\{(1+k) n_{0}+n_{1}-1\right\}}{n_{0}-1}\right] \bar{N}(r, 0 ; f \mid \geq 1+k) \\
& +S(r, f) \\
\leq & \frac{1+k}{n_{0}-1} N(r, 0 ; \psi)+k \bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\bar{N}(r, 0 ; \psi) \leq \frac{1+k}{n_{0}+k} N(r, 0 ; \psi)+\frac{k\left(n_{0}-1\right)}{n_{0}+k} \bar{N}(r, \infty ; f)+S(r, f) \tag{3}
\end{equation*}
$$

If z_{0} is a pole of f with multiplicity p then z_{0} is a pole of ψ with multiplicity $n_{0} p+(p+k) n_{1} \geq n_{0}+(1+k) n_{1}$. Hence

$$
\begin{equation*}
N(r, \infty ; \psi) \geq\left\{n_{0}+(1+k) n_{1}\right\} \bar{N}(r, \infty ; \psi) \tag{4}
\end{equation*}
$$

Since $\bar{N}(r, \infty ; \psi)=\bar{N}(r, \infty ; f)$ and $S(r, \psi)=S(r, f)$, from (1), (3) and (4) we get

$$
\begin{aligned}
T(r, \psi) \leq & \frac{1+k}{n_{0}+k} N(r, 0 ; \psi)+\left\{1+\frac{k\left(n_{0}-1\right)}{n_{0}+k}\right\} \bar{N}(r, \infty ; f)+\bar{N}(r, a ; \psi)+S(r, \psi) \\
\leq & \frac{1+k}{n_{0}+k} N(r, 0 ; \psi)+\frac{n_{0}(1+k)}{\left(n_{0}+k\right)\left\{n_{0}+(1+k) n_{1}\right\}} N(r, \infty ; \psi)+\bar{N}(r, a ; \psi) \\
& +S(r, \psi)
\end{aligned}
$$

i.e.,

$$
\left[1-\frac{1+k}{n_{0}+k}-\frac{n_{0}(1+k)}{\left(n_{0}+k\right)\left\{n_{0}+(1+k) n_{1}\right\}}\right] T(r, \psi) \leq \bar{N}(r, a ; \psi)+S(r, \psi)
$$

This proves the theorem.
The following corollary improves Theorem E.

Corollary. Let $F=f f^{(k)}$, where k is a positive integer. Then for any small function $a(\not \equiv 0, \infty)$ of f

$$
\Theta(a ; F)+\Theta(-a ; F) \leq 2-\frac{2}{(2+k)^{2}}
$$

Proof. Since a^{2} is also a small function of f, we get from the theorem for $n_{0}=n_{1}=2$

$$
\left[1-\frac{(1+k)(3+k)}{(2+k)^{2}}\right] T\left(r, F^{2}\right) \leq \bar{N}\left(r, a^{2} ; F^{2}\right)+S(r, F)
$$

i.e.,

$$
2\left[1-\frac{(1+k)(3+k)}{(2+k)^{2}}\right] T(r, F) \leq \bar{N}(r, a ; F)+\bar{N}(r,-a ; F)+S(r, F)
$$

which shows that

$$
\Theta(a ; F)+\Theta(-a ; F) \leq \frac{2(1+k)(3+k)}{(2+k)^{2}}=2-\frac{2}{(2+k)^{2}} .
$$

This proves the corollary.

Acknowledgement. Authors are thankful to the referee for valuable comments.

References

[1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11 (1995), 355-373.
[2] W. Bergweiler, On the product of a meromorphic function and its derivative, Bull. Hong Kong Math. Soc., 1 (1997), 97-101.
[3] H. H. Chen and M. L. Fang, The value distribution of $f^{n} f^{\prime}$, Sci. China Ser. A, 38 (1995), 789-798.
[4] W. Doeringer, Exceptional values of differential polynomials, Pacific J. Math., 98 (1982), 55-62.
[5] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2), 70 (1959), 9-42.
[6] W. K. Hayman, Meromorphic Functions, Oxford Math. Monogr., Clarendon Press, Oxford, 1964.
[7] W. K. Hayman, Research Problems in Function Theory, The Athlone Press University of London, London, 1967.
[8] I. Lahriri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci., 28 (2001), 83-91.
[9] E. Mues, Über ein Problem von Hayman, Math. Z., 164 (1979), 239-259.
[10] A. P. Singh, On order of homogeneous differential polynomials, Indian J. Pure Appl. Math., 16 (1985), 791-795.
[11] K.-W. Yu, A note on the product of meromorphic functions and its derivatives, Kodai Math. J., 24 (2001), 339-343.
[12] Q. D. Zhang, The value distribution of $\phi(z) f(z) f^{\prime}(z)$, Acta Math. Sinica, 37 (1994), 91-98 (in Chinese).

Department of Mathematics
University of Kalyani
West Bengal 741235
India
e-mail: indrajit@cal2.vsnl.net.in
Department of Mathematics
University of Kalyani
West Bengal 741235
India

[^0]: * The second author is thankful to C.S.I.R. for awarding her a junior research fellowship. 2000 Mathematics Subject Classification: 30D35.
 Keywords and phrases: Meromorphic function, derivative, value distribution.
 Received May 17, 2002; revised July 19, 2002.

