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Abstract

We investigate the problem of automatically constructiffigient rep-
resentations or basis functions for approximating valuefions based
on analyzing_the structure and topology of the state spatgalticu-
lar, two novel approaches to value function approximatienexplored

based on automatically constructing basis functions de sigaces that
ifolds: one approacthasggen-

can be represented as graphs or manif

functions of the Laplacian, in effect performing a globalFer analysis
on the graph; the second approach is based on diffusion gtayethich
generalize classical wavelets to graphs using multisdkgahs induced
by powers of a diffusion operator or random walk on the grapiyether,
these approaches form the foundation of a new generatioetfads for
solving large Markov decision processes, in which the ugiey repre-
sentation and policies are simultaneously learned.

1 Introduction

Value function approximation (VFA) is a well-studied prebi: a variety of linear and
nonlinear architectures have been studied, which are rnotraatically derived from the
geometry of the underlying state space, but rather handciodgnad hoctrial-and-error
process by a human designer [1]. A new framework for VFA calieoto-reinforcement
learning (PRL) was recently proposed in [7, 8, 9]. Instead of learnagk-specific value
functions using a handcoded parametric architecture tadgarn proto-value functions, or
global basis functions that reflect intrinsic large-scaemetric constraints that all value
functions on a manifold [11] or graph [3] adhere to, usingctd analysis of the self-
adjoint Laplace operator. This approach also yields newroblearning algorithms called
representation policy iteratio(RPI) where both the underlying representations (basis-fun
tions) and policies are simultaneously learned. Laplagiganfunctions also provide ways

of automatically decomposing state spaces since they tréfitenecksand other global
geometric invariants.

In this paper, we extend the earlier Laplacian approach ewadirection using the recently
proposediffusion wavelet transforflDWT), which is a compact multi-level representa-
tion of Markov diffusion processes on manifolds and graphs2]. Diffusion wavelets


Xuejun Liao
the structure and topology of the state space.

Xuejun Liao
automatically constructing basis functions on state spaces that
can be represented as graphs or manifolds:

Xuejun Liao
diffusion wavelets,

Xuejun Liao
eigenfunctions
of the Laplacian,

Xuejun Liao
where both the underlying representations (basis functions)
and policies are simultaneously learned.


provide an interesting alternative to global Fourier efgantions for value function ap-
proximation, since they encapsulate all the traditionabadages of wavelets: basis func-
tions have compact support, and the representation isentigrhierarchical since it is
based on multi-resolution modeling of processes at diffespatial and temporal scales.

2 Technical Background

This paper uses the framework of spectral graph theory [Blildl basis representations
for smooth (value) functions on graphs induced by Markovisiea processes. Given

any graphz, an obvious but poor choice of representation is the “tédxdtip” orthonor-
mal encoding, where(i) = [0...i...0] is the encoding of thé'" node in the graph.
This representation does not reflect the topology of theiBpegaph under considera-
tion. Polynomials are another popular choice of orthondtmaais functions [5], where
#(s) = [1 s...s"] for some fixedk. This encoding has two disadvantages: it is numeri-
cally unstable for large graphs, and is dependent on theiagdef vertices. In this paper,
we outline a new approach to the problem_of building basistions on graphs using
Laplacian eigenfunctions and diffusion wavelets.

A finite Markov decision process (MDBRY = (S, 4, P2,, R%.,) is defined as a finite set
of statesS, a finite set of actionsl, a transition modeP" , spemfying the distribution over
future states’ when an actiom is performed in state, anda corresponding reward model
R¢,, specifying a scalar cost or reward [10]. A state value fuorcts a mapping — R

or equivalently a vector irRI°l. Given a policyr : S — A mapping states to actions,
its corresponding value functioni™ specifies the expected long-term discounted sum of
rewards received by the agent in any given statden actions are chosen using the policy.
Any optimal policy7* defines the same unique optimal value funcfiGhwhich satisfies
the nonlinear constraints

s) = m(?xz P2, (R, +~4V*(s"))

ain that partsidhe states into classes:
transient states are visited initially but not after a fitiitee, and recurrent states are visited
infinitely often. InergodicMDPs, the set of transient states is empty. The construofion
basis functions below assumes that the Markov chain indbgeal policy is a reversible
random walk on the state space. While some policies may datmsuch Markov chains,
the set of basis functions learned from a reversible randatk wan still be useful in
approximating value functions for (reversible or non-msilgle) policies. In other words,
the construction of the basis functions can be consideredffapolicy method: just as
in Q-learning where the exploration policy differs from tbetimal learned policy, in the
proposed approach the actual MDP dynamics may induce aatiffarkov chain than the
one analyzed to build representations. Reversible randaliksvgreatly simplify spectral
analysis since such random walks are similar to a symmetecator on the state space.

2.1 Smooth Functionson Graphs and Value Function Representation

We assume the state space can be modeled as a finite undiveageded grapfiG, E, W),
but the approach generalizes to Riemannian manifolds. Wieede ~ y to mean an edge
betweenz andy, and the degree of to bed(z) = >, w(z,y). D will denote the
diagonal matrix defined by, = d(z), andW the matrix defined byV,, = w(z,y) =
w(y,z). The£? norm of a function oG is || f||3 = >, |f(2)|*d(x). The gradient
of a function isV f (i, ) = w(i, j)(f (i) — f(4)) if there is an edge connecting to j, 0
otherwise. The smoothness of a function on a graph, can bsurezbby the Sobolev norm

1115 = IAE + VAR =Y 1F@)Pd) + Y 1f (@) = fy)Pwlz,y). @)

r~y
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The first term in this norm controls the size (in terms3tnorm) for the functionf, and
the second term controls the size of the gradient. The smaflg,:, the smoother ig.
We will assume that the value functions we consider haveIstdalinorms, except at a
few points, where the gradient may be large. Important tiaria exist, corresponding to
different measures on the vertices and edges.of

Classical techniques, suchwdue iterationandpolicy iteration[10], represent value func-
tions using an orthonormal basis;, . . ., ¢/ ) for the spaceR!S! [1]. For a fixed precision
€, a value functiori/™ can be approximated as

VT — > afell <e

1€S(€)

with a; =< V7™, ¢e; > since thee;'s are orthonormal, and the approximation is measured
in some norm, such a&? or H2. The goal is to obtain representations in which the index
setS(¢) in the summation is as small as possible, for a given appratkim errore. This
hope is well founded at least whéfT is smooth or piecewise smooth, since in this case it
should be compressible in some well chosen bgsis.

3 Function Approximation using L aplacian Eigenfunctions

The combinatorial Laplaciah [3] is defined as

Lf(z) =Y w(z,y)(f(x) = f(y) = (D -W)f.

Yy~

Often one considers thermalized_aplacians = D~z (D—W)D~2 which has spectrum
in [0,2]. This Laplacian is related to the notion of smoothness asalsince(f, Lf) =
Yo f@Lf(z) =3,  wx,y)(f(z) — f(y))* = [[Vf]|3, which should be compared
with (1). Functions that satisfy the equatidif = 0 are callecharmonic The Spectral
Theorem can be applied 1 (or L), yielding a discrete set of eigenvaluest g < A\ <
...A; <...and a corresponding orthonormal basis of eigenfuncf@ns>o, solutions to
the eigenvalue probleri¢; = \;&;.

The eigenfunctions of the Laplacian can be viewed as an woottmoal basis of global
Fourier smooth functions that can be used for approximadimg value function on a
graph. These basis functions capture large-scale feabfitbg state space, and are par-
ticularly sensitive tq “bottlenecks”, a phenomenon wi ied in Riemannian metry
and spectral graph theory [3]. Observe thasatisfies||V¢;||3 = \i. In fact, the varia-
tional characterization of eigenvectors shows thas the normalized function orthogonal
to &, ..., &—1 with minimal ||V¢&;||2. Hence the projection of a functighon S onto the
top k eigenvectors of the Laplacian is the smoothest approximadif, in the sense of the
norminH2. A potential drawback of Laplacian approximation is thatdtects only global
smoothness, and may poorly approximate a function whicbtiglobally smooth but only
piecewise smooth, or with different smoothness in differegions. These drawbacks are
addressed in the context of analysis with diffusion wagelahd in fact partly motivated
their construction.

4 Function Approximation using Diffusion Wavelets

Diffusion wavelets were introduced in [4, 2], in order to foem a fast multiscale analysis
of functions on a manifold or graph, generalizing waveletlgsis and associated signal
processing techniques (such as compression or denoisifighttions on manifolds and
graphs. They allow the fast and accurate computation of payters of a Markov chain
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Di f f usi onWavel et Tree (Ho, o, J, €):

/I Hy: symmetric conjugate to random walk matrix, representetherbasisb,
/I ®g : initial basis (usually Dirac’s-function basis), one function per column
/I J : number of levels to compute
I €: precision
for j from O to Jdo,
1. Compute sparse factorizatiéh; ~. Q; R;, with Q; orthogonal.
2. @jp1 — Q= HiR; " and[H'|g7" ~je Hyp — RiR;.
3. Compute sparse factorizatién- @, 195, = Q;R’;, with Q’; orthogonal.
4. \11j+1 — Q;
end

Figure 1: Pseudo-code for constructing a Diffusion Wavélee

P on the manifold or graph, including direct computation & tBreen’s function (or fun-
damental matrix) of the Markov chaif] — P)~1!, which can be used to solve Bellman’s
equation. Here, “fast” means that the number of operatiegsired isO(|S|), up to loga-
rithmic factors.

Space constraints permit only a brief description of thestmction of diffusion wavelet
trees. More details are provided in [4, 2]. The input to thgodthm is a “precision”
parametee > 0, and a weighted grap{G, £, W). We can assume thét is connected,
otherwise we can consider each connected component selgafdte construction is based
on using the natural random walk = D~'W on a graph and its powers to “dilate”, or
“diffuse” functions on the graph, and then defining an assted coarse-graining of the
graph. We symmetriz& by conjugation and take powers to obtain

H'=DiP'D™% = (D WD %) =(I-L)'=> (1-M'&O&) @)
i>0

where{\;} and{¢;} are the eigenvalues and eigenfunctions of the Laplaciarbagea
Hence the eigenfunctions &f' are agairg; and thei'" eigenvalue ig1 — \;)*. We assume
that ! is a sparse matrix, and that the spectruniZdfhas rapid decay.

A diffusion wavelet tree consist of orthogonal diffusioraliog functions®; that are
smooth bump functions, with some oscillations, at scalghiy2’ (measured with respect
to geodesic distance, for smg)| and orthogonal wavelets; that are smooth localized os-
cillatory functions at the same scale. The scaling funstbpspan a subspadg, with the
property that/;; C Vj, and the span o ;, IW;, is the orthogonal complement & into
Vj+1. This is achieved by using the dyadic powérs’ as “dilations”, to create smoother
and wider (always in a geodesic sense) “bump” functions¢tvhépresent densities for the
symmetrized random walk aft@f steps), and orthogonalizing and downsampling appro-
priately to transform sets of “bumps” into orthonormal gegifunctions.

Computationally (Figure 1), we start with the badig = I and the matrixH, := H',
sparse by assumption, and construct an orthonormal basislbfocalized functions for
its range (the space spanned by the columns), up to precisitmough a variation of
the Gram-Schmidt orthonormalization scheme, describgd]inin matrix form, this is a
sparse factorizatiotl, ~. QoRo, with Q¢ orthonormal. Notice thatl, is |G| x |G|,
but in generalQ, is |G| x |G| and Ry is |G| x |G|, with |G| < |G|. In fact
|G| is approximately equal to the number of singular value#fgflarger thane. The



columns of@, are an orthonormal basis of scaling functidnsfor the range of{, written
as a linear combination of the initial basis. We can now writeH§ on the basisp;:
Hy = [HQ]g = Q§HoHoQo = RoR{, where we usedl, = H{. This is a compressed
representation of{3 acting on the range offy, and it is a|G™")| x |G| matrix. We
proceed by induction: at scajewe have an orthonormal basis; for the rank ofH?' 1
up to precisiorye, represented as a linear combination of elemen®,in;. This basis
containgG)| functions, whereGU)| is comparable with the number of e|genvalu§$)f

Hy such that\?’ =1 > ¢. We have the operatdi2’ represented of; by a|GU)| x |G|
matrix H;, up to precisionje. We compute a sparse decomposmorﬂyfw Q;R;, and

obtain the next basi®;,; = Q; = HJRj and represent/> " on this basis by the
matrix H;, .= [H? |g’"" = Q1H,;H;Q; = R,R:.

D41
Wavelet bases for the spadé§ can be built analogously by factorizidg, — Q;+1Q7 1,
which is the orthogonal projection on the complemenigf; into V;. The spaces can
be further split to obtain wavelet packets [2]. A Fast D|f{msWaveIet Transform al-
lows expanding inO(n) (wheren is the number of vertices) computations any function
in the wavelet, or wavelet packet, basis, and efficientlyceéor the most suitable basis
set. Diffusion wavelets and wavelet packets are a very efftdbol for_representation and
approximation of functions on manifolds and graphs [4, 2peralizing to these general
spaces the nice properties of wavelets that have been sessfiglty applied to similar tasks
in Euclidean spaces.

Diffusion wavelets allow computingﬂkf for any fixedf, in orderO(kn). This is non-
trivial because while the matrii is sparse, large powers of it are not, and the computation
H-H...-(H(Hf))...) involves2* matrix-vector products. As a notable consequence,
this yields a fast algorithm for computing the Green’s fumrct or fundamental matrix,
associated with the Markov procelisvia(I—H') ' f = 3", oo H* = [0 (I+H2") .

In a similar way one can computé — P)~!. For large classes of Markov chains we can
perform this computation in tim@(n), in a direct (as opposed to iterative) fashion. This is
remarkable since in general the matfix- H')~! is full and only writing down the entries
would take timeO(n?). It is the multiscale compression scheme that allows toiefftty
represent! — H')~! in compress form, taking advantage of the smoothness oftiies

of the matrix. This is discussed in general in [4]. We use dpigroach to develop a faster
policy evaluation step for solving MDPs described in [6]

5 Experiments

Figure 2 contrasts Laplacian eigenfunctions and diffusiavelet basis functions in a three
room grid world environment. Laplacian eigenfunctionsevproduced by solvind. f =
Af, whereL is the combinatorial Laplacian, whereas diffusion wavélasis functions
were produced using the algorithm described in Figure 1.ifjet to both methods is an
undirected graph, where edges connect states reachatlgtha single (reversible) action.
Such graphs can be easily learned from a sample of transitbuich as that generated by
RL agents while exploring the environment in early phasegatity learning. Note how
the intrinsic multi-room environment is reflected in the laagan eigenfunctions. The
Laplacian eigenfunctions are globally defined over therestate space, whereas diffusion
wavelet basis functions are progressively more compadghehlevels, beginning at the
lowest level with the table-lookup representation, andveoging at the highest level to
basis functions similar to Laplacian eigenfunctions. FégBicompares the approximations
produced in a two-room grid world MDP with30 states. These experiments illustrate
the superiority of diffusion wavelets: in the first experimétop row), diffusion wavelets
handily outperform Laplacian eigenfunctions becauseuhetfon is highly nonlinear near
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Figure 2: Examples of Laplacian eigenfunctions (left) affidision wavelet basis functions
(right) computed using the graph Laplacian on a completéreaied graph of a determin-
istic grid world environment with reversible actions.

the goal, but mostly linear elsewhere. The eigenfunctiomsain a lot of ripples in the flat
region causing a large residual error. In the second exgatifbottom row), Laplacian
eigenfunctions work significantly better because the valuetion is globally smooth.
Even here, the superiority of diffusion wavelets is clear.

Figure 3: Left column: value functions in a two room grid wbMDP, where each room
has21 x 15 states connected by a door in the middle of the common waltdiitwo
columns: approximations produced hyliffusion wavelet bases and Laplacian eigenfunc-
tions. Right column: least-squares approximation ermg @cale) using up tB00 basis
functions (bottom curve: diffusion wavelets; top curveplacian eigenfunctions). In the
top row, the value function corresponds to a random walk.henkiottom row, the value
function corresponds to the optimal policy.

5.1 Control Learning using Representation Policy Iteration

This section describes results of using the automaticahegated basis functions inside
a control learning algorithm, in particular the RepresgataPolicy Iteration (RPI) al-
gorithm [8]. RPI is an approximate policy iteration algbrit where the basis functions



¢(s,a) handcoded in other methods, such as LSPI [5] are learneddraandom walk of
transitions by computing the graph Laplacian and then caimgthe eigenfunctions or the
diffusion wavelet bases as described above. One strikioggnty of the eigenfunction and
diffusion wavelet basis functions is their ability to rel@onlinearities arising from “bot-
tlenecks” in the state space. Figure 4 contrasts the vahai@n approximation produced
by RPI using Laplacian eigenfunctions with that producealppolynomial approximator.
The polynomial approximator yields a value function thathiBnd” to the nonlinearities
produced by the walls in the two room grid world MDP.

Figure 4: This figures compares the value functions prodige&PI using Laplacian

eigenfunctions with that produced by LSPI using a polynéragproximator in a two

room grid world MDP with a “bottleneck” region representitng door connecting the two
rooms. The Laplacian basis functions on the left clearlytwagpthe nonlinearity arising
from the bottleneck, whereas the polynomial approximatoth@ right smooths the value
function across the walls as it is “blind” to the large-sagg®metry of the environment.

Table 1 compares the performance of diffusion wavelets apldcian eigenfunctions us-
ing RPI on the classic chain MDP from [5]. Here, an initial dam walk of5000 steps
was carried out to generate the basis functions 0 atate chain. The chain MDP is a
sequential open (or closed) chain of varying number of statbere there are two actions
for moving left or right along the chain. In the experimeriiewn, a reward ot was pro-
vided in stated 0 and41. Given a fixedk, the encodingy(s) of a states for Laplacian
eigenfunctions is the vector comprised of the values ofthidowest-order eigenfunctions
on statek. For diffusion wavelets, all the basis functions at lev&lere evaluated at state
s to produce the encoding.

Method #Trials | Error Method #Trials | Error
RPI DF (5) 4.4 2.4 LSPI RBF (6) 3.8 20.8
RPI DF (14) 6.8 4.8 LSPIRBF (14) 4.4 2.8
RPI DF (19) 8.2 0.6 LSPI RBF (26) 6.4 2.8

RPILap (5) | 4.2 3.8 || LSPIPOly (5) | 4.2 Z
RPILap (15)| 7.2 3 [SPIPoly (15)] 1 344
RPILap (25)| 9.4 2 [SPTPoly (25)] 1 36

Table 1: This table compares the performance of RPI usirfggidih wavelets and Lapla-
cian eigenfunctions with LSPI using handcoded polynonmidledial basis functions on a
50 state chain graph MDP.

Each row reflects the performance of either RPI using leabasis functions or LSPI with
a handcoded basis function (values in parentheses indleateumber of basis functions
used for each architecture). The two numbers reported aps $b convergence and the
error in the learned policy (hnumber of incorrect actionsgraged over 5 runs. Laplacian
and diffusion wavelet basis functions provide a more stpeldormance at both the low
end and at the higher end, as compared to the handcodeduradisfis. As the number of



basis functions are increased, RPI with Laplacian basistioms takes longer to converge,
but learns a more accurate policy. Diffusion wavelets cogwelower as the number of
basis functions is increased, giving the best results dweith 19 basis functions. Unlike
Laplacian eigenfunctions, the policy error is not monotaily decreasing as the number
of bases functions is increased. This result is being inyatstd. LSPI with RBF is unstable
at the low end, converging to a very poor policy dpasis functions. LSPI with adegree
polynomial approximator works reasonably well, but itsfpenance noticeably degrades
at higher degrees, converging to a very poor policy in ong fetek = 15 andk = 25.

6 FutureWork

We are exploring many extensions of this framework, incigdéxtensions to factored

MDPs, approximating action value functions as well as laigte spaces by exploiting
symmetries defined by a group of automorphisms of the grapbes& enhancements will
facilitate efficient construction of eigenfunctions andfuliion wavelets. For large state
spaces, one can randomly subsample the graph, construggtrgunctions of the Lapla-

cian or the diffusion wavelets on the subgraph, and thempgbtate these functions using
the Nystrom approximation and related low-rank lineaealgic methods. In experiments
on the classic inverted pendulum control task, the Nystajproximation yielded excel-

lent results compared to radial basis functions, learnimgee stable policy with a smaller

number of samples.
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