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Abstract

We introduce the value iteration network (VIN): a
fully differentiable neural network with a ‘planning
module’ embedded within. VINs can learn to plan,
and are suitable for predicting outcomes that involve
planning-based reasoning, such as policies for rein-
forcement learning. Key to our approach is a novel
differentiable approximation of the value-iteration
algorithm, which can be represented as a convolu-
tional neural network, and trained end-to-end using
standard backpropagation. We evaluate VIN based
policies on discrete and continuous path-planning
domains, and on a natural-language based search
task. We show that by learning an explicit planning
computation, VIN policies generalize better to new,
unseen domains.

This paper is a significantly abridged and IJCAI
audience targeted version of the original NIPS 2016
paper with the same title, available here: https:
//arxiv.org/abs/1602.02867

1 Introduction

Over the last decade, deep convolutional neural networks
(CNNs) have revolutionized supervised learning for object
recognition [Krizhevsky et al., 2012], among other computer
vision tasks. Recently, CNNs have been applied to reinforce-
ment learning (RL) tasks with visual observations such as
Atari games [Mnih et al., 2015], robotic manipulation [Levine
et al., 2016], and imitation learning (IL) [Giusti and others,
2016]. In these tasks, a neural network (NN) is trained to
represent a policy — a mapping from an observation of the sys-
tem’s state to an action, with the goal of representing a control
strategy that has good long-term behavior, typically quantified
as the minimization of a sequence of time-dependent costs.
The sequential nature of decision making in RL is inherently
different than the one-step decisions in supervised learning,
and in general requires some form of planning [Bertsekas,
2012]. However, most recent deep RL works [Mnih et al.,
2015; Levine et al., 2016; Giusti and others, 2016] employed
NN architectures that are very similar to the standard networks
used in supervised learning tasks, which typically consist of
CNN:s for feature extraction, and fully connected layers that
map the features to a probability distribution over actions.
Such networks are inherently reactive, and in particular, lack
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Figure 1: Two instances of a grid-world domain. Task is to
move to the goal between the obstacles.

explicit planning computation. The success of reactive policies
in sequential problems is due to the learning algorithm, which
essentially trains a reactive policy to select actions that have
good long-term consequences in its training domain.

To understand why planning can nevertheless be an impor-
tant ingredient in a policy, consider the grid-world navigation
task depicted in Figure 1 (left), in which the agent can observe
a map of its domain, and is required to navigate between some
obstacles to a target position. One hopes that after training a
policy to solve several instances of this problem with different
obstacle configurations, the policy would generalize to solve
a different, unseen domain, as in Figure 1 (right). However,
as we show in our experiments, while standard CNN-based
networks can be easily trained to solve a set of such maps, they
do not generalize well to new tasks outside this set, because
they do not understand the goal-directed nature of the behav-
ior. This observation suggests that the computation learned by
reactive policies is different from planning, which is required
to solve a new task.

In this work, we propose a NN-based policy that can ef-
fectively learn to plan. Our model, termed a value-iteration
network (VIN), has a differentiable ‘planning program’ em-
bedded within the NN structure. The key to our approach is an
observation that the classic value-iteration (VI) planning algo-
rithm [Bellman, 1957] may be represented by a specific type
of CNN. By embedding such a VI network module inside a
standard feed-forward classification network, we obtain a NN
model that can learn the parameters of a planning computation
that yields useful predictions. The VI block is differentiable,
and the whole network can be trained using standard backprop-
agation. This makes our policy simple to train using standard
RL and IL algorithms, and straightforward to integrate with
NNs for perception and control.

We demonstrate the effectiveness of VINs within standard
RL and IL algorithms in various problems, among which re-
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quire visual perception, continuous control, and also natural
language based decision making. After training, the policy
learns to map an observation to a planning computation rele-
vant for the task, and generate action predictions based on the
resulting plan. As we demonstrate, this leads to policies that
generalize better to new, unseen, task instances.

2 Background

We provide background on planning, value iteration, CNNss,
and policy representations for RL and IL. In the sequel, we
shall show that CNNs can implement a particular form of
planning computation similar to the value iteration algorithm,
which can then be used as a policy for RL or IL.

Value Iteration: A standard model for sequential decision
making and planning is the Markov decision process (MDP)
[Bertsekas, 2012]. An MDP M consists of states s € S, ac-
tions a € A, a reward function R(s, a), and a transition kernel
P(s'|s, a) that encodes the probability of the next state given
the current state and action. A policy 7(als) prescribes an
action distribution for each state. The goal in an MDP is to
find a policy that obtains high rewards in the long term. For-
mally, the value V7 (s) of a state under policy 7 is the expected
discounted sum of rewards when starting from that state and
executing policy 7, V7 (s) = E™ [ 32,2 7'r(s¢, ar)| so = s,
where v € (0, 1) is a discount factor, and E™ denotes an expec-
tation over trajectories of states and actions (sg, ag, 1,41 - - . ),
in which actions are selected according to 7, and states evolve
according to the transition kernel P(s’|s,a). The optimal
value function V*(s) = max, V™ (s) is the maximal long-
term return possible from a state. A policy 7* is said to be
optimal if V™" (s) = V*(s) Vs. A popular algorithm for cal-
culating V* and 7* is value iteration (VI):

Vn+1(s) = maXg Qn(sa a) Vs, (1)

where Q,(s,a) = R(s,a) +v> . P(s'|s,a)V,(s"). Itis
well known that the value function V,, in VI converges as
n — oo to V*, from which an optimal policy may be derived
as 7 (s) = argmax, Qoo (s, a).

Convolutional Neural Networks (CNNs) are NNs with a
particular architecture that has proved useful for computer vi-
sion, among other domains [Fukushima, 1979; Krizhevsky
et al., 2012]. A CNN is comprised of stacked convolu-
tion and max-pooling layers. The input to each convolution
layer is a 3-dimensional signal X, typically, an image with [
channels, m horizontal pixels, and n vertical pixels, and its
output h is a I’-channel convolution of the image with ker-

1 U _ 1
nels W, W, hy i o = o (Zz,m‘ Wl,i,le773'—i7j’—j) :

where o is some scalar activation function. A max-pooling
layer selects, for each channel [ and pixel 7,5 in h, the

maximum value among its neighbors N (i, j), by ool —
max;: jren(i,j) iy - Typically, the neighbors N (i, j) are
chosen as a k x k image patch around pixel ¢, j. After max-
pooling, the image is down-sampled by a constant factor d,
commonly 2 or 4, resulting in an output signal with I’ chan-
nels, m/d horizontal pixels, and n/d vertical pixels. CNNs
are typically trained using stochastic gradient descent (SGD),
with backpropagation for computing gradients.
Reinforcement Learning and Imitation Learning: In
MDPs where the state space is very large or continuous, or
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when the MDP transitions or rewards are not known in ad-
vance, planning algorithms cannot be applied. In these cases,
a policy can be learned from either expert supervision — IL, or
by trial and error — RL. While the learning algorithms in both
cases are different, the policy representations — which are the
focus of this work — are similar. Additionally, most state-of-
the-art algorithms such as [Ross et al., 2011; Mnih et al., 2015;
Schulman et al., 2015; Levine et al., 2016] are agnostic to the
policy representation, and only require it to be differentiable,
for performing gradient descent on some algorithm-specific
loss function. Therefore, in this paper we do not commit to a
specific learning algorithm, and only consider the policy.

Let ¢(s) denote an observation for state s. The policy is
specified as a parametrized function 7y (a|¢(s)) mapping ob-
servations to a probability over actions, where 6 are the policy
parameters. For example, the policy could be represented as
a neural network, with 6 denoting the network weights. The
goal is to tune the parameters such that the policy behaves
well in the sense that mg(a|p(s)) =~ 7*(a|¢(s)), where 7 is
the optimal policy for the MDP, as defined in Section 2.

In IL, a dataset of NV state observations and corresponding
optimal actions {¢(s’), a’ ~ w*(qﬁ(si))}i:l v 18 generated
by an expert. Learning a policy then becomes an instance of
supervised learning [Ross ef al., 2011]. In RL, the optimal
action is not available, but instead, the agent can act in the
world and observe the rewards and state transitions its actions
effect. RL algorithms such as in [Sutton and Barto, 1998;
Mnih et al., 2015; Schulman et al., 2015; Levine et al., 2016]
use these observations to improve the value of the policy.

3 The Value Iteration Network Model

We introduce a general policy representation that embeds an
explicit planning module. As stated earlier, the motivation for
such a representation is that a natural solution to many tasks,
such as the path planning described above, involves planning
on some model of the domain.

Let M denote the MDP of the domain for which we design
our policy . We assume that there is some unknown MDP M
such that the optimal plan in M contains useful information
about the optimal policy in the original task M. However,
we emphasize that we do not assume to know M in advance.
Our idea is to equip the policy with the ability to learn and
solve M, and to add the solution of M as an element in the
policy . We hypothesize that this will lead to a policy that
automatically learns a useful M to plan on. We denote by 5 €
S,a € A, R(3,a), and P(5'|3,a) the states, actions, rewards,
and transitions in M. To facilitate a connection between M
and M, we let R and P depend on the observation in M,
namely, R = fr(¢(s)) and P = fp(¢(s)), and learn the
functions fr and fp as a part of the policy learning process.

For example, in the grid-world domain described above, we
can let M have the same state and action spaces as the true
grid-world M. The reward function fr can map an image of
the domain to a high reward at the goal, and negative reward
near an obstacle, while fp can encode deterministic move-
ments in the grid-world that do not depend on the observation.
While these rewards and transitions are not necessarily the
true rewards and transitions in the task, an optimal plan in M
will still follow a trajectory that avoids obstacles and reaches
the goal, similarly to the optimal plan in M.
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Once an MDP M has been specified, any standard plan-
ning algorithm can be used to obtain the value function V*.
In the next section, we shall show that using a particular im-
plementation of VI for planning has the advantage of being
differentiable, and simple to implement within a NN frame-
work. In this section however, we focus on how to use the
planning result V* within the NN policy 7. Our approach is
based on two important observations. The first is that the vec-
tor of values V*(s) Vs encodes all the information about the
optimal plan in M. Thus, adding the vector V* as additional
features to the policy 7 is sufficient for extracting information
about the optimal plan in M. ~

However, an additional property of V* is that the opti-
mal decision 7*(5) at a state § can depend only on a sub-
set of the values of V*, since 7*(3) = argmax; R(3,a) +
v> o P(5'|5,a)V*(5"). Therefore, if the MDP has a local
connectivity structure, such as in the grid-world example
above, the states for which P(5'|5,a) > 0 is a small sub-
set of S. In NN terminology, this is a form of attention [Xu et
al., 2015], in the sense that for a given label prediction (action),
only a subset of the input features (value function) is relevant.
Attention is known to improve learning performance by re-
ducing the effective number of network parameters during
learning. Therefore, the second element in our network is an
attention module that outputs a vector of (attention modulated)
values t(s). Finally, the vector 1 (s) is added as additional fea-
tures to a reactive policy 7 (a|¢(s),1(s)). The full network
architecture is depicted in Figure 2 (left).

Returning to our grid-world example, at a particular state s,
the reactive policy only needs to query the values of the states
neighboring s in order to select the correct action. Thus, the
attention module in this case could return a 1(s) vector with a
subset of V* for these neighboring states.

Let 0 denote all the parameters of the policy, namely, the
parameters of fr, fp, and 7, and note that ¢(s) is in fact
a function of ¢(s). Therefore, the policy can be written in
the form 7y (a|¢(s)), similarly to the standard policy form (cf.
Section 2). If we could back-propagate through this function,
then potentially we could train the policy using standard RL
and IL algorithms, just like any other standard policy repre-
sentation. While it is easy to design functions fr and fp
that are differentiable (and we provide several examples in
our experiments), back-propagating the gradient through the
planning algorithm is not trivial. In the following, we propose
a novel interpretation of an approximate VI algorithm as a par-
ticular form of a CNN. This allows us to conveniently treat the
planning module as just another NN, and by back-propagating
through it, we can train the whole policy end-to-end.

3.1 The VI Module

We now introduce the VI module — a NN that encodes a differ-
entiable planning computation.

Our main observation is that each iteration of VI (1) may
be seen as passing the previous value function V,, and reward
function R through a convolution layer and max-pooling layer.
In this analogy, each channel in the convolution layer corre-
sponds to the Q-function for a specific action, and convolution
kernel weights correspond to the discounted transition proba-
bilities. Thus by recurrently applying a convolution layer K
times, K iterations of VI are effectively performed.

Following this idea, we propose the VI network module,
as depicted in Figure 2B. The inputs to the VI module is a
‘reward image’ R of dimensions [, m, n, where here, for the
purpose of clarity, we follow the CNN formulation and explic-
itly assume that the state space .S maps to a 2-dimensional grid.
However, our approach can be extended to general discrete
state spaces, for example, a graph, as we used in our natural-
language experiments. The reward is fed into a convolutional
layer () with A channels and a linear activation function,
Qa,ir,jr = Zu,j V[/l(?iijl,i'_i’j'_j. Each channel in this layer
corresponds to ()(5, a) for a particular action a. This layer
is then max-pooled along the actions channel to produce the
next-iteration value function layer V, V; ; = maxz Q(a, 1, j).
The next-iteration value function layer V' is then stacked with
the reward R, and fed back into the convolutional layer and
max-pooling layer K times, to perform K iterations of value
iteration.

The VI module is simply a NN architecture that has the ca-
pability of performing an approximate VI computation. Never-
theless, representing VI in this form makes learning the MDP
parameters and reward function natural — by backpropagating
through the network, similarly to a standard CNN.

3.2 Value Iteration Networks

We now have all the ingredients for a differentiable planning-
based policy, which we term a value iteration network (VIN).
The VIN is based on the general planning-based policy defined
above, with the VI module as the planning algorithm. In order
to implement a VIN, one has to specify the state and action
spaces for the planning module S and A, the reward and
transition functions fr and fp, and the attention function;
we refer to this as the VIN design. For some tasks, as we
show in our experiments, it is relatively straightforward to
select a suitable design, while other tasks may require more
thought. However, we emphasize an important point: the
reward, transitions, and attention can be defined by parametric
functions, and trained with the whole policy . Thus, a rough
design can be specified, and then tuned by end-to-end training.

4 Experiments

We evaluated VINs as policy representations on various do-
mains. The full results, implementation details, and source
code are presented in [Tamar ef al., 2016]; here we provide a
brief summary.

Grid-World Domain This domain is a synthetic grid-world
with randomly placed obstacles, where the observation in-
cludes the position of the agent, and also an image of the map
of obstacles and goal position. We conjecture that by learning
the optimal policy for several instances of this domain, a VIN
policy would learn the planning computation required to solve
a new, unseen, task.

In such a simple domain, an optimal policy can easily be
calculated using exact VI. Note, however, that here we are
interested in evaluating whether a NN policy, trained using RL
or IL, can learn to plan. In the following results, policies were
trained using IL, by standard supervised learning from demon-
strations of the optimal policy. In [Tamar er al., 2016], we
report additional RL experiments that show similar findings.
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Shortest path

—— Predicted path

Figure 3: Experiments (best viewed in color). Left: a random
instance of the 28 x 28 gridworld, with VIN-predicted trajec-
tory and ground-truth shortest path. Middle: Navigation with
natural image input of a Mars terrain — VIN-predicted (purple,
cross markers) and ground truth (blue) trajectories. Right:
Continuous control domain — comparing a VIN-predicted tra-
jectory with a CNN policy baseline.

We design a VIN for this task following the guidelines
described above, where the planning MDP M is a grid-world,
similar to the true MDP. The reward mapping fr is a CNN
mapping the image input to a reward map in the grid-world.
Thus, fr should potentially learn to discriminate between
obstacles, non-obstacles and the goal, and assign a suitable
reward to each. The transitions P were defined as 3 x 3
convolution kernels in the VI block, exploiting the fact that
transitions in the grid-world are local . The recurrence K
was chosen in proportion to the grid-world size, to ensure that
information can flow from the goal state to any other state.
For the attention module, we chose a trivial approach that
selects the () values in the VI block for the current state, i.e.,
¥(s) = Q(s, -). The final reactive policy is a fully connected
network that maps v(s) to a probability over actions.

We compare VINS to the following NN reactive policies: (a)
a CNN-based reactive policy inspired by the recent impressive
results of DQN [Mnih et al., 2015], and (b) a Fully Convo-
lutional Network (FCN) [Long et al., 2015], in which each
pixel in the image is assigned a semantic label - the action. In
Table 1 we present the average prediction error of the correct
action (evaluated on a held-out test-set of randomly-generated
maps) for different problem sizes. In addition, we evaluate
the success rate — the probability of successfully reaching the
goal without hitting obstacles. VINs significantly outperform
the reactive networks, and the performance gap increases dra-
matically with the problem size. Importantly, note that the
prediction loss for the reactive policies is comparable to the
VINs, although their success rate is significantly worse. This
shows that this is not a standard case of overfitting/underfitting
of the reactive policies. Rather, VIN policies, by their VI
structure, focus prediction errors on less important parts of the
trajectory, while reactive policies do not make this distinction,
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Value Iteration Network VI Module Figure 2: Planning-based NN
vy I B models. Left: a general pol-
 Prev. Value | icy representation that adds value
Plan on i 2 New Value b
mop izl Y i Reward v function f.eatures.from a planner
R i . to a reactive policy. Right: VI
Opservation I = 1 e s B £ D module — a CNN representation
B(s) ; D of VI algorithm.
Reactive Policy (S VYV VYV VYRSV SV SV SVSVEVEVEVEVEVEVEVIVEVEVEVEVE
re(ale(s),(s)) K recurrence
Domain VIN CNN FCN
Pred. Succ. | Pred. | Succ. | Pred. | Succ.
loss rate loss rate loss rate
8x8 | 0004 | 99.6% | 0.02 | 97.9% | 0.01 | 97.3%
16 x 16 | 0.05 | 99.3% | 0.10 | 87.6% | 0.07 | 88.3%
28 x 28 | 0.11 97 % 0.13 | 742% | 0.09 | 76.6%

Table 1: Performance on grid-world domain. For all domain
sizes, VIN networks significantly outperform standard reactive
networks. Note that the performance gap increases dramati-
cally with problem size.

and learn the easily predictable parts of the trajectory yet fail
on the complete task.

Additional Domains VIN architectures can be easily com-
posed with other NN architectures. We demonstrated this idea
by composing VINs with NNs for perception and control, and
applied the resulting architectures to a navigation task using
overhead images of a Mars terrain, and also to a continuous
control of navigating between obstacles. In addition, we ap-
plied VINs to WebNav [Nogueira and Cho, 2016] — a language
based search task on a graph. We refer to [Tamar ef al., 2016]
for the full details. The main observation from our experiem-
nts is that VINs generalize better than reactive policies to tasks
that were not seen during training.

5 Conclusion and Outlook

While deep RL has gained much interest recently, few works
investigate policy architectures that are specifically tailored
for planning under uncertainty, and current RL theory and
benchmarks rarely investigate the generalization properties of
a trained policy [Sutton and Barto, 1998; Mnih er al., 2015;
Duan et al., 2016]. This work takes a step in this direction, by
exploring better generalizing policy representations. Our VIN
policies learn an approximate planning computation relevant
for solving the task, and we have shown that such a compu-
tation leads to better generalization in a diverse set of tasks.
In future work we intend to learn different planning compu-
tations, based on simulation [Guo et al., 2014], or optimal
linear control [Watter et al., 2015], and combine them with
reactive policies, to potentially develop RL solutions for task
and motion planning [Kaelbling and Lozano-Pérez, 2011].
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