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INTRODUCTION

This chapter provides an overview of reinforcement
learning and temporal difference learning and relates
these topics to the firing properties of midbrain dopa-
mine neurons. First, we review the Rescorla�Wagner
learning rule and basic learning phenomena, such as
blocking, which the rule explains. Then we introduce
the basic functional anatomy of the dopamine system
and review studies that reveal a close correspondence
between responses emitted by dopamine neurons
and signals predicted by reinforcement learning.
Finally, we introduce the generalization of the
Rescorla�Wagner rule to sequential predictions as
provided by temporal difference learning, and discuss
its application to phasic activation changes of dopa-
mine neurons. Subsequent chapters in this section deal
with more advanced topics in reinforcement learning
and presume that the reader is familiar with material
covered in this chapter.

LEARNING: PREDICTION AND
PREDICTION ERRORS

An important problem facing decision makers is
learning, by trial and error, which decisions to make,
so as best to obtain reward or to avoid punishment. In
computer science, this problem is known as reinforce-
ment learning (RL; for a more thorough introduction,
see Sutton and Barto, 1998), and algorithms to accom-
plish it have been studied extensively. This chapter
reviews the rather striking correspondence between
theoretical algorithms and evidence from neuroscience
and psychology about how the brain solves the RL
problem. The prime correspondence between these
two areas of research centers around the dopaminergic
neurons of the midbrain (reviews can also be found in
Glimcher, 2011; Niv, 2009; Schultz, 2007; Schultz et al.,
1997; Tobler, 2009).

To understand the role these neurons play, we first
review research in learning, decision, and reward. We
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begin with evidence from classic experiments in psy-
chology using an experimental preparation � classical
conditioning (also known as pavlovian conditioning) �
which involves learning, but not decisions. This is an
important subcomponent of the full RL problem,
because choice between actions can be based on pre-
dicting how much reward they will produce.

Pavlov (1927/1960) famously exposed dogs to
repeated pairings whereby an initially neutral stimu-
lus, such as a bell, accompanied food, such as meat
powder. He observed that following such training, the
dogs would salivate to the sound of the bell even if it
was presented without the food, by virtue of the bell’s
predictive relationship with the food. This conditioned
response offers a direct window on how organisms use
experience to learn to predict reward. Variations of
this basic experiment have been conducted with a vari-
ety of species, from molluscs to humans, using a vari-
ety of appetitive and aversive outcomes as rewards
and a variety of anticipatory behaviors as responses,
and many basic phenomena are widely preserved
across this range of species.

One popular view of the learning process that
emerges from these experiments is that learning in
classical conditioning is based on a comparison
between what reward the organism experiences on a
particular trial, and what reward it had expected on
the basis of its previous learning (Bush and Mosteller,
1951). The difference between these two quantities is
known as a prediction error: if the difference is large,
predictions did not match observations, and there is a
need for more learning to update those predictions.

More formally, assume that an animal maintains a
set of predictions of the reward associated with each
stimulus, s, called V(s) (for value). Also assume that
these predictions determine the animal’s conditioned
response to whichever stimulus is observed. Then
upon observing stimulus sk (e.g., the bell on trial k)
and receiving a reward on that trial, rk, the prediction
error is

δk 5 rk 2VkðskÞ ð15:1Þ

As we will see below, this prediction error (with
further refinements) appears to be carried by dopami-
nergic neurons (Houk et al., 1995; Montague et al.,
1996; Schultz et al., 1997).

The animal then updates the prediction in the direc-
tion of the prediction error, so as to reduce it. Thus,
the predicted value on the next trial, k1 1, of the stim-
ulus sk is:

Vk11ðskÞ5VkðskÞ1αUδk ð15:2Þ

(The value of stimuli that aren’t observed remains the
same, i.e. Vk11(s)5Vk(s), for all s 6¼sk.) In Equation 15.2,
α is a learning rate parameter, between 0 and 1, which

determines the size of the update step. Its interpreta-
tion is clearer in an algebraically rearranged form of
the update rule, Vk11ðskÞ5 ð12αÞVkðskÞ1αrk. This
form reveals that the error-driven update accomplishes
a weighted average between the observed reward
(with weight α) and the previous reward prediction
(with weight (12α)). Thus a larger learning rate
updates the value prediction to look more like the cur-
rent reward and a smaller learning rate relies more on
older estimates than on the current reward.

A related way to understand this model, resulting
from further algebraic manipulation, is to realize that
it computes a weighted running average of all rewards
received previously in the presence of the stimulus,
with the most recent reward weighted most heavily
and the weight for prior rewards declining exponen-
tially in their lag. Here, the learning rate can be equiv-
alently seen as controlling the steepness of the decay,
with higher learning rates producing averages more
sharply weighted toward the most recent rewards.
Such an exponential pattern (Figure 15.1a) is a key
hallmark of this sort of error-driven updating, which
we will see verified in both behavioral and neural data
later in this chapter.

Accordingly, applied to a simulated conditioning
experiment (in which a bell is repeatedly paired with
meat powder), the error-driven learning model
described above nudges the prediction toward the
observation on each trial, producing a gradual, asymp-
toting learning curve that ultimately predicts the actual
magnitude of the average reward (Figure 15.1b). If
rewards are stochastic (if meat powder is delivered
based on the flip of a fair coin), then positive and neg-
ative prediction errors will be interleaved, and the net
effect of all of these is that the prediction will climb
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FIGURE 15.1 (A) The weights on rewards received at different
past trials, according to the Rescorla/Wagner model. Weights decline
exponentially into the past, with a steepness that depends on the
learning rate parameter. (B) Simulation of Rescorla/Wagner model
learning about four different cues, which are reinforced (from top to
bottom) 100%, 75%, 50%, and 25% of the time. Learning curves grow
to asymptote; for the stochastically rewarded stimuli, the prediction
is noisy (driven by random patterns of reward and non-reward)
around the underlying average reward.
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more sporadically to oscillate around the average
reward (Figure 15.1b).

A further question (Rescorla and Wagner, 1972) is
how animals learn stimulus�reward (for example:
light�meat powder) relationships, when the experi-
ence with that stimulus is accompanied by other sti-
muli (the light is accompanied by a bell) that may
themselves have previous reward associations. Kamin
(1969) found behaviorally that such previous learning
(about the bell) can attenuate (or block) new learning
(about the light). Imagine that one of Pavlov’s dogs
has learned that a bell predicts meat powder and reli-
ably salivates upon presentation of the bell. Now a
light is presented simultaneously with the bell, and
both of them are followed by meat powder. When the
light is tested on its own, the dog’s salivation to it is
reduced (e.g., relative to a control situation in which
the bell was also novel). Previous learning about the
bell has blocked learning about the light’s relationship
with reward. The blocking phenomenon suggests that
stimuli interact or compete with each other to explain
the same rewards.

The Rescorla�Wagner (1972) model captures this
effect by specifying that when multiple stimuli are
observed (light and tone), the animal makes a single
net prediction that is the sum of all of their predic-
tions. Formally, Vnet

k 5
P

iVkðsiÞ, where the sum is over
all stimuli present on trial k. This leads to a net predic-
tion error δ

net
k 5 rk 2Vnet

k , which is then used to
update each of the observed stimuli as before, using
Equation 15.2.

In the above example, the pre-trained bell already
predicts the meat powder, whereas the added light
predicts nothing initially, over and above what the bell
already predicted. Thus, the sum of both predictions
predicts the meat powder. Accordingly, no prediction
error ensues and nothing is learned about the light
even though it is reliably paired with the meat pow-
der. According to this model (though this is not the
only explanation for blocking) the blocking effect
demonstrates that learning is driven by prediction
errors.

The Rescorla�Wagner model successfully explained
many basic learning phenomena and has made new
predictions borne out by subsequent experiments.
However some phenomena do not find a straightfor-
ward explanation with the Rescorla�Wagner model.
One example is second-order conditioning, which is
relevant here because it has an elegant explanation in
terms of an elaborated model (temporal difference
learning) that we introduce below, and also is closely
related to important features of dopaminergic
responses.

In second-order conditioning, if one stimulus (for
example, a click) is consistently paired with another

stimulus (the bell) that itself had previously been
trained to predict reward, then the animal can learn to
salivate to the click, even though the click has never
itself been directly paired with reward. Such an effect
is not predicted under the Rescorla�Wagner model,
because the prediction error on a trial with the click
and bell, but no reward, is negative. Before we treat
this in greater detail, let us first consider how dopa-
mine neurons and their target structures process
reward prediction errors.

FUNCTIONAL ANATOMY OF
DOPAMINE AND STRIATUM

The majority of dopamine neurons reside in the
midbrain and form three cell groups, the retrorubral
nucleus (RRN; cell group A8 in the rat), the substantia
nigra pars compacta (SNpc; A9), and the ventral teg-
mental area (VTA; A10). These cell groups are contigu-
ous, such that there are no clear boundaries between
them. From these small nuclei, the dopamine neurons
send widespread, ascending projections to regions
such as the striatum (caudate and putamen), the amyg-
dala and the (primarily frontal) cerebral cortex
(Figure 15.2). The diffuse nature of these projections
makes them well suited for broadcasting a scalar sig-
nal like Rescorla and Wagner’s net prediction error.

The basal ganglia are a group of several subcortical
nuclei that interact with cortex. In the striatum, dopa-
mine axons target mostly medium spiny neurons (inset
of Figure 15.2b; Freund et al., 1984; Groves et al., 1994),
which are also the recipient neurons for the projection
to striatum from cortex, the primary input to the basal
ganglia. The dopamine axons make multiple synapses
onto spines and shafts of one or several dendrites
(Groves et al., 1994). Each of the about 100,000 dopa-
mine neurons in the macaque has an extensive and
branching axon with about 500,000 synaptic and non-
synaptic release sites. As a consequence, each dopa-
mine neuron innervates a large proportion of the
31 million striatal neurons, reflecting a strong diver-
gence of the dopamine projection (Andén et al., 1966;
German et al., 1988).

Dopamine neurons are electrically coupled to one
another (electrical currents pass directly from cell to
cell ensuring an unusually high degree of interneuro-
nal synchrony; Grace and Bunney, 1983; Vandecasteele
et al., 2005), which may at least partly explain why
they tend to show a homogenous response profile in
electrophysiological recordings. Taken together with
the divergence, this homogeneity implies that most of
the target regions receive a similar message from
dopamine neurons, again, consistent with the idea that
they report a scalar signal, a single numerical quantity,
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like a prediction error. (Note, though, that the same
signal received at different areas in the brain could
have different effects due to locally varying dopamine
release and reuptake properties, distinct effects of
dopamine on different receptors, cell types, and net-
works, or to differences in the other inputs to an area;
see, e.g., Schultz, 2007).

What is the function of dopamine in its target
regions, particularly the striatum? Over the past sev-
eral decades, suggestions clustered around two key
areas: on the one hand, dopamine has been hypothe-
sized to play a role in movement control, and on the
other hand, in motivation and reward. Note, though,
that these two hypotheses are not necessarily mutually
exclusive. On the motor side, damage to the basal gan-
glia produces a variety of movement impairments
ranging from paralysis to tics. Parkinson’s disease
results from the progressive degeneration of the dopa-
minergic input to striatum; its symptoms primarily
involve movement impairments and problems with
movement initiation. Classically, these effects have
been understood in terms of a simplified model of the
loop-like circuitry of the basal ganglia. Neurons in the
cortex project onto striatal medium spiny neurons and
ultimately have those connections reciprocated,
through the loops, via a series of further steps through
additional basal ganglia nuclei (Alexander and
Crutcher, 1990; DeLong, 1990). According to the move-
ment control model, these loops contain different path-
ways that end up having either, in the net, excitatory
or inhibitory effects on cortex and on the performance
of movements. The shortage of dopamine in
Parkinson’s disease leads to an overabundance of
activity in the inhibitory pathways that is seen as inhi-
biting movement production.

At the same time, dopamine is also tightly associ-
ated with reward and motivation, so much so that an
early and influential article (the “anhedonia hypothe-
sis;” Wise, 1982) argued that it alone was essentially
the brain’s reward system. As we will discuss below,
modern accounts tend to refine this hypothesis by dis-
tinguishing different aspects of reward; for instance,
rather than being involved in feelings of subjective
pleasure associated with reward, dopamine is now
thought to be involved in effects like reinforcement
(the tendency to repeat rewarded actions; see
Chapter 20). In any case, among the phenomena sup-
porting these ideas is that essentially all major drugs
of abuse act directly or indirectly via the dopamine
system (reviewed in Wise, 1996). Nicotine, morphine,
and ethanol all either directly or indirectly activate
dopamine neurons. Cocaine and amphetamine block
the dopamine reuptake mechanism and thus enhance
dopamine’s action in the natural synapse. In addition,
amphetamine causes the release of dopamine from

presynaptic terminals into the synapse. As a net effect,
all these drugs lead to increased dopamine levels in
the ventral striatum and other areas, and this is
believed to underlie their addictive action.

How should one reconcile the two not obviously
related functions � movement and reward? One key
concept originated in the analysis of Mogenson and
colleagues (1980) of the ventral striatum. They pro-
posed that this structure is the interface where reward
influences action. For instance, if the basal ganglia are
involved in the selection of actions (a widespread
hypothesis) then rewards may influence which actions
are chosen through activity in these areas. In particu-
lar, reward-related signals carried by dopamine may
influence action selection in the striatum, for instance
by affecting plasticity there (Reynolds and Wickens,
2002) so as to reinforce rewarded actions and make
them more likely to recur. This is essentially the view
taken by the reinforcement learning models discussed
in the present chapter.

Of course, it is not necessary that these two (or even
further) functions of dopamine be completely recon-
ciled. For instance, some of the effects of dopamine on
movement, such as possibly those in Parkinson’s dis-
ease, appear not to be mediated by learning of the sort
described above (Gallistel et al., 1974). Instead, it
appears as though the overall tendency toward move-
ment is modulated by the overall background (“tonic”)
level of dopamine. On this view, phasic dopamine sig-
nals would serve reinforcement learning whereas tonic
dopamine levels in the striatum would facilitate move-
ment (Schultz, 2007). It thus could be more or less
coincidental that the same neurotransmitter accom-
plishes these two different functions at different time-
scales; it has also been proposed that there is a deeper
explanation relating them both, a point developed in
the subsequent chapter (and in Niv et al., 2007).

To better understand dopamine’s role in learning,
we next turn to its role in basic instrumental and clas-
sical conditioning tasks.

RESPONSES OF DOPAMINE
NEURONS TO OUTCOMES

Dopamine neurons recorded in behaving animals
show a rather slow (about 0.1�7 Hz) baseline firing
rate punctuated by phasic excitatory and inhibitory
responses to a number of different sorts of events. It
has been argued (Houk et al., 1995; Montague et al.,
1996; Schultz et al., 1997) that the phasic responses eli-
cited by these events can collectively be understood as
a reward prediction error similar to, but more general
than (see below), the Rescorla/Wagner prediction
error.
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In one of the first examinations of dopamine neu-
rons in behaving primates, the animals would perform
arm movements for small pieces of food hidden within
a box (Schultz, 1986). Whenever they found food in the
box, a strong phasic activation occurred in the majority
of the cells at around the time when the animals
touched the food. This activation did not occur when
non-food objects were hidden within the box. Thus,
dopamine neurons respond differentially to unpre-
dicted objects of differing reward value, which is con-
sistent with a prediction error signal since the
prediction error δk 5 rk 2VkðskÞ will be positive when a
reward is delivered (e.g., rk5 1) but not expected (e.g.,
Vk(sk)5 0).

However, to verify that the responses really reflect a
prediction error (rather than, for instance, just a report
of the reward itself) it is necessary to investigate
whether they are systematically modulated by predic-
tions as well as rewards. One way to do this is to vary
the probability with which the animal expects a
reward. In one such study (Fiorillo et al., 2003; also
described in Chapter 9), five different visual condi-
tioned stimuli (colored images presented on a screen)
predicted delivery (versus nondelivery) of liquid
reward with different probabilities, ranging in steps of
0.25 from certain delivery (p5 1) to certain nondeliv-
ery (p5 0).

According to the Rescorla�Wagner model, when
the animal has learned the task, the prediction Vk(sk)
for each stimulus would track the average reward
obtained for that stimulus � e.g., 1 for the certain
reward stimulus, 0.5 for the stimulus rewarded 50% of
the time, and so on. Thus the prediction error for
reward delivery (rk5 1 minus the prediction Vk(sk))
would be zero for the always rewarded stimulus, one
for the never-rewarded stimulus, and something in-
between for the others. Indeed, phasic dopamine
responses to a reward have this property, they increase
with the size of the prediction error (or, equivalently,
decrease with the degree to which the reward was
expected; Figure 15.3).

Moreover, when rewards fail to occur, dopamine
neurons show a phasic decrease in firing at the time
reward would have been expected, consistent with the
coding of negative prediction errors. In this case, the
prediction error is rk5 0 minus the predictions, and
thus the error is negative. For these negative
responses, it is harder to detect modulation of firing
rate by the degree of expectation, because the back-
ground firing rate is already low. Nevertheless, on a
more detailed analysis, longer inhibitions are seen
when errors are more strongly negative, in accord with
the prediction error model (Bayer et al., 2007).

Taken together, the responses of dopamine neurons
at the time of reward or non-reward are well explained

by a Rescorla�Wagner prediction error. Note again
that the responses are not a simple signal of reward
delivery or non-delivery, because they are also modu-
lated by expectancy. For this reason it would be incor-
rect to say that dopamine neurons simply encode the
magnitudes of experienced rewards.

FIGURE 15.3 Peri-stimulus time histograms from a primate
dopaminergic neuron in a classical conditioning experiment, repro-
duced from Fiorillo et al. (2003). The five traces correspond to five
cues trained with stochastic reinforcement at different probabilities.
Only responses on rewarded trials are shown. Top is from two dif-
ferent situations (separated by thick vertical black bar), with unpre-
dictedly rewarded trials measured in situations without any
preceding stimulus. Adapted with permission from Fiorillo et al. (2003).
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Also, although we have so far considered just the
response to the outcome at the end of a trial, as can be
seen in Figure 15.3, dopamine neurons also respond to
the conditioned stimuli that predict reward. These
responses can be understood as another reflection of a
reward prediction error, but such an understanding
requires an extension of the Rescorla�Wagner model
to include sequential predictions across time (see
below).

The response at the time of the reward or non-
reward following training in the blocking experiment
described at the beginning of this chapter (Figure 15.4)
further corroborates the notion that dopamine neurons
code something similar to Rescorla�Wagner predic-
tion errors (Waelti et al., 2001). The absence of reward
after a “blocked” stimulus does not reduce dopamine
activity, in line with the notion that reward is not
expected after a blocked stimulus and that its absence
thus results in no prediction error. By contrast, reward
delivery after a blocked stimulus elicits dopamine
activity together with a positive prediction error
(Figure 15.4b).

A great deal of converging evidence for this account
has been reported from other recording experiments in
monkeys (Bayer and Glimcher, 2005; Bayer et al., 2007;
Hollerman and Schultz, 1998; Kawagoe et al., 2004;
Matsumoto and Hikosaka, 2009; Mirenowicz and
Schultz, 1994; Morris et al., 2006; Nakahara et al., 2004;
Satoh et al., 2003; Takikawa et al., 2004; Tobler et al.,
2003, 2005), humans (Zaghloul et al., 2009), mice
(Cohen et al., 2012) and rats (e.g., Oyama et al., 2010;
Roesch et al., 2007). Thus, data from a variety of spe-
cies suggest that dopamine plays a role that can be
captured with learning models based on prediction
errors.

For instance, recall that the Rescorla�Wagner model
(Figure 15.1a) implies that predictions, V, are derived
from the weighted average over previous rewards,
with the weights exponentially declining over trials.
The prediction error, in turn, is the sum of the current
reward, weighted positively, and the negative
expected reward (i.e., the sum over previous rewards
weighted exponentially, but subtracted). Bayer and
Glimcher (2005) used a task in which reward predic-
tions shifted over time in conjunction with a regression
analysis to estimate the weights that best explained the
elicited, fluctuating dopamine response at the time of
the reward (Figure 15.5). The weights estimated to
explain dopamine responses bear an uncanny resem-
blance to that of a Rescorla�Wagner prediction error:
they are positive for the current reward, and negative
for the preceding rewards, decreasing over trials with
a roughly exponential shape.

Data from other measurement techniques also corro-
borates the notion that dopamine neurons encode a

prediction error. For instance, transient changes in
dopamine concentration, reflecting dopamine release
at target sites such as the striatum, can be recorded in
rodents using voltammetry to detect dopamine’s
chemical signature. These measurements follow many
of the same features of the Rescorla�Wagner predic-
tion error (Day et al., 2007).

Moreover, human fMRI experiments have shown
prediction-error correlates in the striatal blood oxygen
level dependent (BOLD) response resembling those
seen in animal dopamine recordings (Figure 15.6),
including phasic (event-related) positive and negative
prediction error responses (e.g., McClure et al., 2003;
O’Doherty et al., 2003) that scale with probability (e.g.,
Abler et al., 2006; Spicer et al., 2007; Tobler et al., 2007;
Chapter 9) and reflect blocking (Tobler et al., 2006) and
Rescorla�Wagner-like adjustments to recent rewards
(Daw et al., 2011). Going beyond what has been
reported for dopamine neurons, the striatal BOLD sig-
nal has also been formally shown to comply with the
class of reward prediction error theories using an axi-
omatic definition, as discussed in Chapter 1 (Rutledge
et al., 2010). There is evidence that dopamine modu-
lates these hemodynamic correlates of prediction error,
particularly in the striatum (e.g., Düzel et al., 2009;
Knutson and Gibbs, 2007; Pessiglione et al., 2006;
Schonberg et al., 2010). However, it is worth keeping in
mind that the BOLD signal is a nonspecific metabolic
response and is not an unambiguous report of a partic-
ular neural event such as dopamine release.

SEQUENTIAL PREDICTIONS: FROM
RESCORLA�WAGNER TO TEMPORAL

DIFFERENCE LEARNING

So far, we have reviewed evidence and theory sug-
gesting a role for dopamine in signaling prediction
errors to outcomes. The models we have discussed up
to here have a number of weaknesses, however.
Notably, they treat learning and prediction at the level
of the trial. This makes them unable to explain the
temporal substructure of predictions and prediction
errors during a trial, such as the responses to stimuli
as well as outcomes shown in Figure 15.3. It also
means that the theories only apply to experimental cir-
cumstances with a relatively simple structure: i.e.,
trials in which subjects observe some stimuli and
receive the associated reward, after which the next trial
follows independently.

One way to see that such a structure is overly lim-
ited is to recall that, although we have not yet drawn
out this connection, presumably one of the reasons
that the brain predicts rewards is to guide action
choice toward more rewarding actions. But many
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FIGURE 15.4 (A) Schematic of blocking task used with dopamine recordings (Waelti et al., 2001). In a first pretraining phase, a stimulus is
paired with reward (top left) whereas a control stimulus is not (top right). Accordingly, the animal forms an association between the left stim-
ulus and reward but not between the right stimulus and reward. In a second pretraining phase, additional stimuli are occasionally presented
together with the stimuli previously learned in the first pretraining phase. Both of these compounds are followed by reward. However,
according to the Rescorla/Wagner rule, the reward elicits a prediction error in the control compound on the right but not in the experimental
compound on the left. This is because the added stimulus is followed by unpredicted reward in the control but not in the experimental case.
In consequence, the added stimulus on the left is blocked from learning. The next panels (B, C) are from a third phase during which the added
stimuli were occasionally tested on their own (interspersed with the four trial types used during the pretraining phases in order to maintain
learning). (B) Outcome tests and outcome-induced responses. On top, the blocked stimulus (left) and its control (right) are both followed by
no reward and the responses of a single dopamine neuron at the time of the outcome are shown. The blocked stimulus predicts nothing in
particular and according to the Rescorla/Wagner rule no reward elicits no prediction error. This is reflected by the absence of any dopamine
response. In contrast, the control stimulus predicts reward and the absence of such reward would elicit a negative prediction error. This is
reflected by a phasic depression of the dopamine neuron. On the bottom, the blocked stimulus (left) and its reward-predicting control (right)
are followed by reward. According to the rule, this would elicit a positive prediction error for the former but not the latter. Correspondingly,
the neuron is activated by reward with the former but not the latter. (C) Stimulus tests and responses. After learning has been established,
reward predictive stimuli (top left, middle left and right, bottom right) but not blocked stimuli (bottom left) or stimuli that are not predictive
of reward (top right) elicit phasic dopamine activations, in agreement with the presence or absence of prediction errors as suggested by tem-
poral difference learning models. Adapted with permission from Waelti et al. (2001).
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decisions have longer term consequences than just an
immediate outcome within a trial. Consider, for
instance, the choice of a play in a game like American
football (Romer, 2006). Here, each decision is followed
by many others, and rewards (points) are earned in a
way that depends on the cumulative combination of
many choices in sequence. Other examples of decision
tasks with similar sequential structure include driving,
mazes, chess, and foraging for food.

In American football, teams must move the ball
across the field to the end zone, the goal, in order to
win points. But most plays don’t immediately score
points; instead, they change the field position of the
ball, and thereby increase or decrease the chance that
the team will win points on subsequent plays. The
plays drive changes in the current game situation �

called its state in reinforcement learning � notably, the
field position, how many downs remain and what
team has possession of the ball.

In such a situation, if we are to choose actions by
predicting their consequences, then considering only
the immediate reward (the points scored on a particu-
lar play), is clearly a mistake. Players must plan ahead,
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and try to choose actions that will position the team
well to earn points on future plays. More technically,
they should choose the action that maximizes the
aggregate reward accumulated over the long run.
Predicting this long term-quantity requires a simple
modification to the Rescorla�Wagner model.

As it turns out, the ability to assess the long-run
reward consequences of states and actions is tightly
linked to the aspects of behavioral and neural data
that the Rescorla�Wagner model failed to explain. In
particular, both second-order conditioning and the
dopaminergic response to reward-predictive stimuli
relate to the ability to assess future reward (like
points) on the basis of signals (like field position)
that bear only a predictive relationship to rewards.
As we will see, such a model produces prediction
errors to signals � like a conditioned stimulus that
predicts reward � that give an organism new infor-
mation about its future reward prospects, and in this
way explains dopamine responses to stimuli as well
as rewards.

Let’s return to prediction tasks without decisions, as
in Pavlovian conditioning, to make these ideas a bit
more formal. Imagine that the world proceeds stochas-
tically through a series of states, st, with each state
producing a (possibly zero) reward rt, which we
assume is a function of the state and so can alternately
be written r(st). A crucial difference between the
Rescorla�Wagner model and the ones we are about to
develop is that we are using a new variable, t, to index
the progress of the experiment. Previously, we counted
trials, k; henceforth, we will divide trials up into small
blocks of time and use t to index the progress of time
within each trial. Similarly, we might subdivide a foot-
ball game into plays (also each indexed t and associ-
ated with a state, like field position, and reward, like
points), but a team also plays many football games in
a season. Thus we can think of trials, or indeed whole
football games, as being encountered repeatedly, but
each one made up of many sequential states.

Finally, suppose that, motivated by issues like foot-
ball strategy, instead of predicting just rk on the basis
of sk (as we did with Rescorla�Wagner), we wish to
predict the sum of all future rewards in some episode,
such as a football game or a conditioning trial: r(st)1
r(st11)1 r(st12)1 . . . (Sometimes delayed rewards are
treated as less valuable than immediate ones, a detail
we omit here covered in Chapter 10.)

The temporal difference learning rule (Sutton, 1988)
offers a way to learn such long run predictions. Define

the target of learning, the “value function” V(s), as the
cumulative future reward expected following state s:

VðstÞ5 rðstÞ1E½rðst11Þ1E½rðst12Þ

1E½rðst13Þ1?jst12�jst11�jst�
ð15:3Þ

Although this equation just adds up the rewards in
each future state, starting at st, it has a rather laborious
structure owing to the nested expectations E½Ujst�. This
notation refers to the possibility of randomness in the
sequence of events: for instance, the same play run at
the same situation in football can lead to different out-
comes. Thus in defining the expected cumulative
reward, we take the expected value (probability-
weighted average) over all possible values of st11,
given st, and over all possible st12 given each st11, and
so on.1

The seeming complexity of Equation 15.3 can be
conquered by taking advantage of its repetitive,
nested structure. In particular, let us instead write
the expected future value from the perspective of
the next state, st11, as the sum of rewards starting
there:

Vðst11Þ5 rðst11Þ1E½rðst12Þ1E½rðst13Þ1?jst12�jst11�

ð15:4Þ

But this is just the quantity inside the brackets in
Equation 15.3. We can therefore substitute Equation
15.4 into Equation 15.3 to rewrite the definition of the
value function in a particularly useful recursive form,
known as the Bellman Equation (Bellman, 1957):

VðstÞ5 rðstÞ1E½Vðst11Þjst� ð15:5Þ

This equation embodies a crucial and practically
useful insight. Let us restate in English what this all
means. From any starting state, st, we are trying to pre-
dict the function V, which is the sum of the reward in
that state, plus the reward in the next state, plus the
reward in the state following that one, and so on.
What Equation 15.5 says is just that this unwieldy,
long sum over a series of rewards can equally well be
thought of as the reward in the starting state, plus
all the rest. Crucially, “all the rest” is just the sum over
the series of rewards starting in the next state: that is,
it is the value function viewed from state st11.
Equation 15.5, then, expresses the value at any state st
as the sum of the reward there and the value of the
successor state st11. The latter value, recursively,
accounts for the sum of the rest of the rewards, at st11,
st12, and so on.

1Here and below we have assumed that the task belongs to a family known as Markov processes; each state’s probability depends only

on its predecessor state. This assumption is crucial for temporal difference learning because it is ultimately what allows the value

function to be decomposed into the recursive form of Equation 15.5. We return to this point in the next chapter.
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We can use this definition as the basis of a learning
rule for estimating V from trial-and-error experience
with states and rewards (Sutton, 1988; Sutton and
Barto, 1998). Note that this is a difficult problem, since
V at any state is defined as a long sum over future
rewards. However if the value function is well learned,
then if an organism encounters a state, a reward there,
and a successor state, the equality in Equation 15.5
should hold, on average, for the two successive value
estimates and the reward. (It is only “on average”
since at a particular moment the organism experiences
only one of the possible successor states st11, whereas
the expectation E½Ujst� Equation 15.5 refers to the
probability-weighted average over all possible
successors.)

Conversely, the failure of Equation 15.5 to hold (on
average) means we have not yet learned the value
function. We can subtract the two sides of this equa-
tion to define an error signal expressing the extent of
this mismatch in much the same way that we did to
define Rescorla�Wagner’s trial-based prediction error:

δt 5 rt 1Vðst11Þ2VðstÞ ð15:6Þ

This is called the temporal difference prediction
error. V(st) and V(st11) in this equation now refer to
the learner’s own predictions about these values. (Also
note that we have switched back to the more compact
notation rt for the reward in the state st.) The temporal
difference learning rule (Sutton, 1988) differs from the
Rescorla�Wagner rule discussed above in that it uses
this prediction error to update the prediction V(st),
rather than the prediction error defined by Equation
15.1 above. (The update rule itself is the same as
Rescorla�Wagner’s, from Equation 15.2.)

Apart from the change in the granularity of tempo-
ral indexing (from trials k to timeslices of trials t), the
difference between the new model and Rescorla/
Wagner’s, then, is just the addition of the term V(st11)
to the prediction error. This reflects the desire to learn
not merely the immediate reward, rt, as in Rescorla/
Wagner, but the sum over the series of all the rewards
in subsequent states as well. By the recursive decom-
position of the value at the current state from Equation
15.5, the subsequent state’s value stands in for the sum
of rewards in that state and all states thereafter.

We can take Equation 15.6 apart to better examine
how temporal difference learning works. First, what
does V(st11) mean in this rule? During learning, the
learner is maintaining a set of predictions V, one for
each state, and updating them according to the learn-
ing rule. V(st11) is the learner’s own current estimate of
the value of the new state st11. That is, having
observed that state st was followed by state st11, the
learner uses its estimated value of the new state as a

proxy for the rewards remaining in the rest of the epi-
sode. Although V(st11) represents a long run cumula-
tive prediction, this recursive trick allows it to be
updated immediately at every step � nudging it
toward a new estimate of its true value, rt1V(st11),
rather than waiting to observe all the remaining
rewards in the sequence.

Now consider the interpretation of the expression
V(st11)2V(st). This is the temporal difference after which
the model is named: the change in predicted value
from one step to the next. In many situations (as in
most plays in football, where points are not scored),
rt5 0, and the prediction error is just the temporal dif-
ference. In these cases, if predictions are well learned
(and nothing surprising is happening) the expected
future value should behave smoothly. Fluctuations in
V in the absence of actual reward occur when events
produce changes in reward expectation, which should
drive learning to update the previous expectations.

In particular, if the temporal difference is positive,
this implies that the current reward expectation is bet-
ter than had been anticipated in the previous state. In
football, this might happen if a particularly successful
play led to a field position unexpectedly close to scor-
ing. In this case, the previous value was too pessimistic
and should be increased. Importantly, in this case the
outcome of a play � the new field position � taught
the player something about his future reward pro-
spects, even though points weren’t scored. Conversely, if
the temporal difference is negative, future reward
expectancy has dropped, which indicates that the pre-
vious prediction was too optimistic. For instance, if a
restaurant server unexpectedly clears away your wine
when a few sips remain, your expected cumulative
future reward has dropped by the value of those previ-
ously anticipated sips. Had the server instead spilled
hot coffee on your skin, this would also produce a neg-
ative prediction error, but in this case due to a punish-
ment, instead of a change in your expectations about
future reward.

TEMPORAL DIFFERENCE LEARNING
AND THE DOPAMINE RESPONSE

The key feature of the temporal difference model is
that prediction errors are elicited not just by reward
delivery or non-delivery, but also by any new informa-
tion about future reward expectations. This is because
changes in reward expectation correspond to nonzero
temporal differences V(st11)2V(st). Returning to ani-
mal conditioning experiments, a conditioned stimulus
that predicts reward changes future reward expecta-
tions, because the timing and identity of these stimuli
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are themselves unpredictable. Their arrival therefore
induces changes in the future rewards expected, which
induce prediction errors. The arrival of a stimulus pre-
dicting reward is like an unexpectedly favorable foot-
ball play: it implies that future reward prospects are
better than had been expected.

This sort of reasoning explains the response pattern
emitted by dopamine neurons to stimuli predicting
reward with different probabilities even though at the
time those stimuli are delivered no actual rewards are
obtained (Fiorillo et al., 2003). In Figure 15.3, the stimu-
lus indicating the highest probability of future reward
elicits the strongest dopamine response. With lower
probabilities, responses become smaller. In the model,
prediction errors are also increasing with reward prob-
ability in this same way. This is because the temporal
difference V(st11)2V(st) on observing the stimulus is
larger if the stimulus predicts reward with higher
probability. Indeed, if we assume (for simplicity) that
the value between trials, V(st) is zero, then since the
reward rt is also zero when the stimulus is delivered,
the prediction error from Equation 15.6 is just V(st11),
the value of the stimulus. Note that for the same rea-
son, the temporal difference model doesn’t change our
previous account of the response to the terminal
reward in the trial, since here, V(st11) is the value
between trials, i.e., zero, and Equation 15.6 reduces to
Equation 15.1. In all, the temporal difference rule explains
not only the reward but also the stimulus responses in
Figure 15.3 as reflecting prediction errors.

Dopamine responses to stimuli in a blocking experi-
ment are similarly consistent with the temporal differ-
ence model. A blocked stimulus elicits much less of a
response at the time of the conditioned stimulus than a
non-blocked, reward-predicting control stimulus
(Waelti et al., 2001; Figure 15.4c). This reflects the fact
that the blocked stimulus doesn’t predict reward, but
the control stimulus does. Note however, that if the
newly introduced blocked stimulus were instead
slightly moved in time so as to precede the stimulus
previously paired with reward, then temporal differ-
ence learning predicts (and experiments confirm) that
it should in this case acquire predictive reward value.
Conversely, the Rescorla�Wagner rule is not sensitive
to the relative timing of events in a trial, since it is
trial-based.

This last observation relates to the fact that in the
temporal-difference learning model, stimuli induce
prediction errors when, and only when, they cause a
change in reward expectations, i.e., when they provide
new information. For instance, when one visual stimu-
lus reliably predicts another one, which in turn reliably
predicts reward, then only the first but not the second
stimulus adds new information about the future.
Accordingly, dopamine neurons are activated only by

the first but not the second stimulus (Schultz et al.,
1993). Conversely, when a second stimulus adds addi-
tional information, it does engender prediction error.
Thus, when a 25% predictor of reward is followed by
either a stimulus predicting reward at 100% (positive
prediction error) or another stimulus predicting at 0%
(negative prediction error), then the second stimulus
activates or depresses dopamine neurons, respectively
(Takikawa et al., 2004).

Striatal BOLD correlates of prediction errors in
human neuroimaging also appear to report a full tem-
poral difference prediction error, similar to dopamine
neurons. Thus striatal BOLD responds to conditioned
stimuli according to their reward probability (e.g.,
Abler et al., 2006; Figure 15.6a; see also Chapter 9).
Blocked conditioned stimuli elicit a weaker striatal
BOLD response than non-blocked control stimuli
(Tobler et al., 2006). Moreover, striatal BOLD responses
occur to stimuli predicting points worth money,
suggesting higher-order conditioning (e.g., Tobler
et al., 2007). Within-trial prediction errors to stimuli
providing new value information have even been
described in the human striatum (Daw et al., 2011;
Seymour et al., 2004).

Finally, the temporal difference model also clears up
a behavioral puzzle we noted with the Rescorla/
Wagner model: the source of second-order condition-
ing. As we have just discussed, cues that predict future
reward elicit reward prediction errors and activate
dopamine (via a positive temporal difference V(st11)2
V(st)), in just the same way as unexpected primary
rewards do. This error can in turn train positive reward
predictions in preceding states, even if primary reward
is not subsequently delivered. In this way, the temporal
difference algorithm and its proposed dopaminergic
implementation explain second-order conditioning �

i.e. the transfer of value from one conditioned stimulus
to another � as a direct reflection of their recursive
learning strategy for training previous reward predic-
tions on the basis of subsequent ones.

FROM ERROR-DRIVEN
LEARNING TO CHOICE

We began this chapter with the problem of learning
which action to choose, but so far we have talked only
about learning to predict rewards. The connection
between the two is simple: if a decision maker can pre-
dict the reward following a choice � either in one step,
like Rescorla�Wagner, or cumulatively over multiple
steps, like temporal difference learning � then she can
choose the more rewarding action. In other words, in
decisions by description (“would you rather have a
50% chance at $100, or $40 for sure”) a decision maker
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computes a decision variable for each option and
chooses between them. In a trial and error (“experien-
tial”) learning situation, she must instead learn the deci-
sion variable, and this is exactly what the error-driven
learning rules we have described can accomplish.

But is there evidence that learned predictions drive
choices in the way we have described? And if dopa-
mine carries prediction errors that drive learning about
reward predictions, is it causally involved in choice?

Consider an experiment in which a monkey repeat-
edly chooses between a red and a green target, and
receives juice reward stochastically on the basis of its
choice. One way to approach this sort of task, drawing
on the prediction mechanisms described so far, is to
learn a predicted value Q(a) for the reward expected
following the choice a of either option. Q here is analo-
gous to V previously, but it is traditional to use
different notation to distinguish action- from stimulus-
specific values.2 The Qs can be learned by the
Rescorla�Wagner rule (Equations 15.1, 15.2), updating
an option’s value according to the prediction error
received whenever it is chosen.

It is possible to examine whether animals actually
learn their decision variables in such a manner by
using a regression analysis similar to Bayer and
Glimcher’s (Figure 15.5) dissection of the dopamine
response (Lau and Glimcher, 2005). If animals choose
on the basis of value predictions Q for each option,
and these are learned as some weighted average of the
rewards previously received on that option, then one
can estimate what weights best explain the choices. In
particular, if these are learned by the same sort of
error-driven learning rule associated with Rescorla/
Wagner and the phasic dopamine response, the model
predicts an exponential function (Figure 15.1). This
prediction has been confirmed in two studies of mon-
key decisions (Sugrue et al., 2004, data in Figure 15.7
here; Lau and Glimcher, 2005). Similar results
have been reported for choice experiments with
humans (e.g., Seymour et al., 2012) and rodents (Ito
and Doya, 2009).

All these considerations suggest that predictive
value learning underlying choice is also based on an
error driven mechanism, of the sort associated with

phasic dopamine responses. Dopamine is also well
positioned to drive such learning from an anatomical
point of view, because it affects plasticity at synapses
from cortical neurons onto the medium spiny neurons
of striatum (Reynolds and Wickens, 2002). The corti-
costriatal connections, as we have already mentioned,
are also involved in facilitating and suppressing move-
ments. Combining the two elements, as described in
this form by Frank et al. (2004), goes some way toward
resolving the central puzzle of dopamine with which
this section began � its dual roles in motivation and
movement � and fleshing out the suggestion of
Mogenson and colleagues (1980) a limbic-motor
gateway.

To assess the causal role of dopamine in reinforce-
ment learning, Frank and colleagues (2004) studied
learning to choose or avoid actions in human patients
with Parkinson’s disease playing a reinforcement
learning game similar to the monkey task of
Figure 15.7. By training subjects to develop preferences
between several different pairs of options before test-
ing these options against one another in novel transfer
pairings, the researchers were able to distinguish to
what extent the preferences learned were based on
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FIGURE 15.7 Functions relating choices and previous rewards in
a decision task for two monkeys. These roughly follow an exponen-
tially decaying form, consistent with an error-driven learning model.
Adapted with permission from Sugrue et al. (2004).

2To expand on this notational point, RL distinguishes state values V(s) from state-action values Q(s, a). We previously considered

tasks like Pavlovian conditioning, in which stimuli (states) were followed by rewards or other stimuli, and in this case we defined

the expected value of the state, V(s) as the expected (cumulative) reward following it. If states and rewards also depend on the

agent’s decisions � which is not true in Pavlovian conditioning but is true in football � then to choose an action we want to learn

Q(s, a), the value of an action (e.g., passing) in a state (first down on the 50-yard line). In simple experiments where a monkey faces

the same choice over and over again for immediate reward (e.g., choice between a red and green target) then there is only one state,

and we abbreviate the state-action values Q(a). Finally, state values V(s) are still relevant even in decision tasks, because Q(s, a) is

reduced back to V(s) once we determine a particular policy or choice of action for each state � for instance, if at any state I choose

the action for which Q(s, a) is maximal.
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learning to favor the better option versus avoiding the
worse one. The experimenters reasoned that positive
dopamine action (reporting positive prediction errors)
would promote learning to choose the better action,
and therefore that Parkinson’s patients (since the dis-
ease degenerates dopamine neurons) would tend to
learn the tasks, if at all, primarily via avoidance.
Accordingly, when patients with Parkinson’s disease
were tested off their dopamine-restoring medication,
they tended toward learning to avoid the inferior
action; but when tested on dopamine replacement
therapy, this pattern reversed and medicated patients
tended toward learning to choose the better action.
Similar effects of Parkinson’s disease and its medica-
tion have now been reported from a number of labs
using different reinforcement learning tasks (Bodi
et al., 2009; Cools et al., 2006; Rutledge et al., 2009).

Animal experiments using optogenetic activation of
dopamine neurons also provide causal support for a
role of dopamine in learning about actions and choos-
ing accordingly. Animals learn to return to locations
where their dopamine neurons have been activated
(Tsai et al., 2009), prefer a lever that provides both
food and stimulation of dopamine neurons to one pro-
viding only food (Adamantidis et al., 2011), nose poke
for phasic stimulation of dopamine neurons (Kim
et al., 2012), and avoid locations where their dopamine
neurons have been inhibited (Tan et al., 2012). Also, of
course, the reinforcing action of drugs of abuse (which
pharmacologically activate, mimic, or otherwise
enhance dopaminergic function) is consistent with
such a causal role of dopamine in learning mechan-
isms (Redish, 2004).

The learning mechanisms described also follow on
from the classic idea from psychology (Thorndike,
1911; see Chapter 20) that trial-and-error learning
occurs by the reinforcing action of reward, i.e., that
actions followed by reward are more likely to be
repeated in the future. In the models described above,
reinforcement is not reward per se, but reward predic-
tion error: Actions followed by positive reward predic-
tion error are strengthened, and more likely to be
repeated in the future. This idea is also the basis of a
version of temporal difference algorithms, called actor-
critic methods, which involve separate learning meth-
ods for long run state values V(s) (how much reward
is expected in the future), and which action to take in
each state. Prediction errors computed by the former,
called the critic, serve as reinforcers to help the other
module, the actor, learn which actions to take. This is
particularly useful in the context of sequential decision
tasks, like football, in which the ultimate rewarding
consequences of an action can be deferred by many
steps. The prediction error related to arriving, for
instance, at a better-than-expected field position can

reinforce a good choice immediately, even if scoring
occurs only later.

Finally, then, the choice experiments mentioned
thus far involve only a series of independent, isolated
choices, each with its own reward. But we have
stressed that the temporal difference learning model
associated with dopamine is well suited to sequential
decision tasks like football, involving multiple, inter-
leaved choices and rewards. In this case, we expect a
similar strategy of learning the long run values Q(s, a)
of actions in particular states (e.g., the value of running
or passing at different field positions) via temporal dif-
ference or actor-critic methods, and choosing on this
basis. Choices in sequential decision tasks are consis-
tent with such a mechanism (Daw et al., 2011; Fu and
Anderson, 2008), though (as discussed in Chapter 20)
the same experiments provide evidence that this
mechanism is nonexclusive and organisms also pursue
additional strategies for solving the sequential
decision-making problem.

CONCLUSIONS

Electrophysiological recordings from dopamine neu-
rons suggest that phasic activity changes contribute to
reward learning by coding errors in the prediction of
reward. In this way, dopamine neurons may provide
target neurons in the striatum and cortex with detailed
information about the value of the future. Such infor-
mation could be used to plan and execute
profitable behaviors and decisions well in advance of
actual reward occurrence and to learn about even
earlier reliable predictors of reward. Moreover, the
notion that phasic dopamine actions can be described
with a reward prediction error model captures
empirical findings not only from electrophysiological
recordings in monkeys, rats and humans but also
from other modalities, such as voltammetry and
human neuroimaging. Importantly, decision behavior
in learning tasks is consistent with the proposed
mechanism, and causal experiments involving manip-
ulation of dopamine support this role. Although pre-
diction error coding is probably not the only function
of dopamine neurons, it provides a good approxima-
tion to much of its phasic activity. The next chapter
extends this core hypothesis to consider more
detailed computations and how these mechanisms
interact with other brain systems.
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