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Value of Flexible Resources, Virtual Bidding, and
Self-Scheduling in Two-Settlement Electricity

Markets With Wind Generation – Part I
Jalal Kazempour, Member, IEEE, and Benjamin F. Hobbs, Fellow, IEEE

Abstract—Part one of this two-part paper presents new models
for evaluating flexible resources in two-settlement electricity mar-
kets (day-ahead and real-time) with uncertain net loads (demand
minus wind). Physical resources include wind together with
fast- and slow-start demand response and thermal generators.
We also model financial participants (virtual bidders). Wind is
stochastic, represented by a set of scenarios. The two-settlement
system is modeled as a two-stage process in which the first stage
involves unit commitment and tentative scheduling, while the
second stage adjusts flexible resources to resolve imbalances.
The value of various flexible resources is evaluated through
four two-settlement models: i) an equilibrium model in which
each player independently schedules its generation or purchases
to maximize expected profit; ii) a benchmark (expected system
cost minimization); iii) a sequential equilibrium model in which
the independent system operator (ISO) first optimizes against a
deterministic wind power forecast; and iv) an extended sequential
equilibrium model with self-scheduling by profit-maximizing
slow-start generators. A tight convexified unit commitment allows
for demonstration of certain equivalencies of the four models. We
show how virtual bidding enhances market performance, since,
together with self-scheduling by slow-start generators, it can help
a deterministic day-ahead market to choose the most efficient unit
commitment.

Index Terms– Operational flexibility, wind uncertainty, equilib-

rium, day-ahead, real-time, demand response, virtual bidding,

self-scheduling.

NOTATION

Indices:

d Index for loads

f Index for virtual bidders

i Index for generators

k Index for demand response blocks

n,m Indices for nodes

s Index for wind generation scenarios in real-time

market

t Index for hours

Sets:

F Set of fast-start dispatchable generators

FDR Set of fast demand response (DR) providers

S Set of slow-start dispatchable generators

J. Kazempour is with the Technical University of Denmark, Kgs. Lyngby,
Denmark (seykaz@elektro.dtu.dk). B. F. Hobbs is with the Department of
Environmental Health & Engineering, Johns Hopkins University, Baltimore,
MD USA (bhobbs@jhu.edu). This work was supported by NSF grant ECCS
1230788.

SS Set of slow-start dispatchable generators who self-

schedule

SDR Set of slow DR providers

W Set of wind power generators

Ωn Set of nodes connected to node n

Ψn Set of generators/loads/arbitragers located at node n

Constants:

φs Probability of scenario s

Bn,m Susceptance of transmission line connected node n

to node m [S]

Ci Production cost of dispatchable generator i [$/MWh]

CSU
i Start-up cost of dispatchable generator i [$]

C
↓

d,k,t Downward DR provision cost of block k of load d

in hour t [$/MWh]

C
↑

d,k,t Upward DR provision utility of block k of load d in

hour t [$/MWh]

D
↓

d,k,t Maximum downward DR of block k of load d in

hour t [MW]

D
↑

d,k,t Maximum upward DR of block k of load d in hour

t [MW]

Ld,t Demand level of load d in hour t [MW]

P i Minimum power output of generator i [MW]

P i Capacity of dispatchable generator i [MW]

Fn,m Transmission capacity of line connected node n to

node m [MW]

RD
i Ramp-down limit of generator i [MW/h]

RU
i Ramp-up limit of generator i [MW/h]

WDA
i,t Forecast in day-ahead market for production by wind

generator i ∈ W in hour t [MW]

WRT
i,t,s Forecast in real-time market for production by wind

generator i ∈ W in hour t under scenario s [MW]

Primal variables (day-ahead market):

aDA
n,m,t Power flow from node n to node m in hour t [MW]

cDA
i,t Start-up cost of dispatchable generator i in hour t [$]

d
DA↓

d,k,t Downward DR of block k of load d in hour t [MW]

d
DA↑

d,k,t Upward DR of block k of load d in hour t [MW]

pDA
i,t Power production of generator i in hour t [MW]

uDA
i,t Relaxed commitment status of dispatchable generator

i in hour t

vDA
f,t Trading quantity of virtual bidder f in hour t [MW]

θDA
n,t Voltage angle of node n in hour t [rad]

Primal variables (real-time market):

aRTn,m,t,sPower transferred from node n to node m in hour t

under scenario s [MW]
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cRTi,t,s Start-up cost for fast-start dispatchable generator i ∈

F in hour t under scenario s [$]

d
RT↓

d,k,t,sDownward DR adjustment of block k of load d in

hour t under scenario s [MW]

d
RT↑

d,k,t,sUpward DR adjustment of block k of load d in hour

t under scenario s [MW]

pRTi,t,s Power production adjustment of generator i in hour

t under scenario s [MW]

uRT
i,t,s Commitment status adjustment of fast-start dispatch-

able generator i ∈ F in hour t under scenario s

vRTf,t Trading quantity of virtual bidder f in hour t [MW]

θRTn,t,s Voltage angle of node n in hour t, scenario s [rad]

Dual variables:

λDA
n,t Locational marginal price (LMP) in day-ahead mar-

ket at node n in hour t [$/MWh]

λRT
n,t,s Probability-weighted LMP in real-time market at

node n in hour t under scenario s [$/MWh]

µ, ρ Set of dual variables in day-ahead and real-time

markets, respectively

I. INTRODUCTION

INSTALLED wind capacity in the US approached 75 GW

by 2015, of which 53% was added since 2010 [1]. This

rapid penetration is due to cost improvements and supporting

environmental policies at the federal and state levels. How-

ever, uncertainty and variability in wind output pose serious

operational challenges in short-term, i.e., day-ahead (DA) and

real-time (RT), markets [2]. Specifically, the need to make DA

unit commitment (UC) decisions before net loads are known,

together with a lack of RT operational flexibility, can lead to

cost increases, volatile prices, and even violation of energy

balances.

In markets with significant wind power penetration, a major

concern is that a deterministic clearing of the DA market may

result in inefficient schedules and thereby increased expected

(probability weighted) system cost (or, more generally, re-

duced market surplus or “social welfare”, which equals the

value to consumers minus generation costs), relative to an

optimal stochastic schedule. Flexible resources can potentially

reduce the cost consequences of suboptimal DA schedules.

We consider three types of physical flexible resources in this

paper, including fast-start dispatchable generators (peaking

units), slow demand response (DR) providers (requiring DA

schedules), and fast DR providers (which are dispatchable in

RT). We also consider financial players in this paper. These

players take the form of virtual bidders or arbitragers who own

no physical assets and buy (sell) in the DA market and then

sell (buy) the same amount back in RT [3]-[6], as illustrated in

Fig. 1. In US electricity markets, e.g., CAISO and PJM, they

are allowed to trade through intertemporal energy arbitrage

between DA and RT. The bidding action of these arbitragers

is sometimes called “convergence bidding” (as in CAISO), as

these players usually help the DA and RT market prices to

converge in expectation [7]. Virtual bidding (VB) can occur

by buying (or selling) a fixed MWh quantity in a particular

interval of the day-ahead market at whatever market price
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Fig. 1. Virtual bidding (VB): The virtual bidder buys (sells) in the DA market
and then sells (buys) the same amount back in RT.

occurs, and then sell (buy) the same quantity back in the

corresponding intervals in RT. Or, more commonly, the virtual

bidder can submit a bid to up to a stated amount of MWh in

the DA market at a maximum given price (or offer to sell an

amount at a minimum price); then in the real-time market, the

virtual bidder zeroes out its position by selling (buying) back

the quantity of MWh that it bought (sold) DA. In general,

virtual bidders can enhance the markets ability to cope with

forecast errors by increasing liquidity and giving a means

for players to provide information to the market. Statistically

significant improvements in market efficiency have been found

in [7] and [8]. A PJM report in 2015 ([9], discussed in [10])

reviews the operation of virtual bidders in that energy market,

discusses their roles, and offers some recommendations.

In this paper, we are interested in answering two main

technical questions. First, how do we evaluate the economic

benefits of adding various types of flexible resources to man-

age forecast errors? Secondly, can physical flexible resources

and virtual bidders improve deterministic DA schedules?

More specifically, can VB alone make the deterministic DA

schedules fully efficient, i.e., identical to those obtained from

an ideal stochastic DA optimization model? If not, can the

DA schedules become fully efficient with VB combined with

slow-start dispatchable generators who self-schedule? These

power economics questions motivate the following method-

ological question: how can DA-RT markets with VB and self-

scheduling be simulated? To answer all of these questions,

a two-settlement setup including DA and RT markets is

considered. Then, we propose four different two-settlement

market-clearing equilibrium models that represent different

philosophies of market design (deterministic vs. stochastic

day-ahead; central market clearing vs. self-scheduling), and

subsequently explore their relationships.

It is common in the literature to simulate markets through

optimization models, taking advantage of the well-known

result that competitive markets without market failures can be

simulated by maximizing (expected) market surplus [11]. One

of our four models uses this approach to define an efficient

baseline for comparison with our other models. Optimization

models have often been used to explore the DA-RT price

convergence and other properties of two-settlement electricity

markets under uncertainty (see the survey in [12]). For in-

stance, a two-settlement electricity market-clearing mechanism

is proposed in [13] based on stochastic programming, and is
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proven to be revenue adequate for the independent system

operator (ISO) in each possible RT scenario. Reference [12]

extends that model, using penalties in the DA model to

produce DA prices and quantities equaling expected RT values.

Unlike our market models, neither considers the possible

arbitraging role of virtual bidders, nor do they consider unit

commitment decisions.

In contrast to the optimization approach, we instead directly

formulate most of our market problems as equilibrium models.

One reason is that we want to model the possibility of market

failures, in which market surplus is not maximized; we also

wish to incorporate VB which might contribute to the correc-

tion of market failures. Our two-settlement equilibrium models

consider trading by virtual bidders between the DA and RT

markets together with the ISO who clears those two markets

separately. Several papers in the literature use equilibrium

models to simulate two-settlement markets in power and other

sectors, but for different purposes than ours. For instance,

[14] proposes a stochastic two-settlement equilibrium model

to analyze the effects of policies that alter power market

incentives such as renewable subsidies. Market power was

also the focus of [15], which shows that competitiveness of

markets is improved by including one or more futures market;

they assume that virtual bidders ensure that DA and expected

prices are equal. Building on that work, [16] proposes a

two-settlement electricity market considering not only market

power but also flow congestion, demand uncertainty, and

system contingencies, and uses it to quantify the distorting

impacts of DA zonal pricing.

In the past, research on wind integration costs emphasized

the increased need for operating reserves [17]-[20] and trans-

mission [21]; changes in system costs as wind penetration

increases [22]-[25]; the quantification of the value of physical

flexible resources in wind-integrated markets [26]-[29]. In

contrast to our work, these papers do not represent two-

settlement markets that are financially arbitraged; as we will

show later, including VB can dramatically change solutions

and costs.

There is also work that addresses the impact of VB on two-

settlement markets with stochastic generation. Empirical work

in California indicates that VB has resulted in price conver-

gence between DA and RT, and improved efficiency [7], [8].

Meanwhile, reference [30] describes the circumstances under

which VB cannot improve market efficiency, and provides a

specific case study in California to illustrate these circum-

stances. Equilibrium-based models of markets have been used

to explore possible reasons for that outcome. For instance,

reference [31] points out different inefficiencies arising from

the German balancing market designs, and describes arbitrage

opportunities between the spot market and the balancing mech-

anism. Meanwhile, reference [32] considers a dispatch model

without UC constraints and investigates how VB reduces

merit-order inefficiency in a forward market. In particular, they

show that VB can potentially improve the conventional two-

stage market, except in those cases where the classical merit-

order dispatch needs to be violated. In the classical merit-order

dispatch, the ISO ranks the generators from the cheapest to

most expensive (in terms of variable cost), and then dispatches

them in that order. In practice, departures from merit-order

dispatch are required to meet other constraints at least-cost.

Examples of such constraints include transmission capacity,

ramping limits, and requirements for operating reserves. Our

result can be viewed as a generalization of [32] in which we

consider (i) UC constraints and costs as well as transmission,

which result in out-of-merit dispatch, as well as (ii) incentives

for and impacts of self-scheduling.
Considering the context above, the main contributions of

this two-part paper are as follows. We propose four distinct

two-settlement market-clearing models, including three equi-

librium models and one optimization problem. Within these

models, UC constraints are enforced through a tight convex

relaxation; its convexity allows for demonstration of certain

properties and equivalencies among the models that would

not be possible with discrete (binary) commitment models.

These four models allow the value of various flexible resources

to be quantified under different market assumptions. Another

motivation of this study is to ask whether the ISO and/or all

generators need to do stochastic unit commitment to achieve

the optimal solution (least expected system cost), or whether

virtual bidders in combination with stochastically-optimized

self-scheduling by a few slow-start resources alone are enough

to obtain it. This question is addressed by simulating VB and

self-scheduling of slow-start resources and their impacts on

DA schedules and costs within the equilibrium models.
The paper is organized as follows. In section II, we describe

the various market players as well as our modeling features

and assumptions. In section III, we compare the structure and

motivation of the four proposed two-settlement market models.

Section IV provides the mathematical formulations of the first

of the four models, which is the two-settlement equilibrium

model. Section IV concludes the paper. In the second part of

this two-part paper, we present the other three models, and

then apply all four models to a small test system and to the

24-node IEEE Reliability Test System to quantify the value of

flexible resources and the impact of VB and self-scheduling

on the efficiency of DA schedules.

II. MODEL ASSUMPTIONS AND GENERAL STRUCTURE

The following market players are considered in constructing

our equilibrium models of two-settlement markets: slow-start

and fast-start dispatchable generators; wind power facilities

with variable generation; slow and fast DR providers; arbi-

tragers (virtual bidders); the grid operator; and consumers

(loads). A slow-start dispatchable (thermal) generator makes

its commitment decisions in the DA market, while those

decisions are fixed in the RT market. In other words, it is

only allowed to alter its RT production level while constrained

by its fixed commitment and ramping limits. However, unlike

slow-start generators, a fast-start dispatchable generator can

change its commitment decisions in RT as well as its output.1

A wind power generator is a unit with zero marginal cost, and

usually has the ability to be curtailed. Renewable incentives

are not considered in this paper.

1It is possible to divide RT markets into separate real-time unit commitment
and dispatch-only RT markets, for example, as in the California market, but
this refinement is left for future research.
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As for other market players, we consider two types of

DR providers: slow and fast [33]-[35]. Slow DR providers,

e.g., an industrial plant, can only change their consumption

schedule in the DA market. However, fast DR providers, e.g.,

DR aggregators with HVAC controls, can be scheduled DA and

then redispatched at short notice for RT balancing purposes. It

is assumed that all DR providers can provide both upward and

downward DR services, i.e., they can either increase and/or

decrease their consumption levels to some extent.

Meanwhile, the ISO is, in essence, a spatial arbitrager or

trader who moves power around to maximize the value of the

transactions, while respecting the physical constraints of the

grid [36]. The final market party is consumers; for simplicity,

we assume all system loads to be deterministic and perfectly

inelastic with respect to price, so the only forecast errors occur

for wind power generators. A more general formulation to

include load uncertainty is a straightforward extension [36].

We now review some general assumptions about the market

players’ information, behavior, and costs.

First, we assume that if the ISO solves a deterministic model

to clear the DA market, it uses a single wind forecast (actually,

a single set of offers of MW production by wind plants)

and treats it as if it is a perfect prediction of actual wind

availability.2

Second, we make the simplifying assumption that in the

RT markets, the real-time conditions for the entire day, such

as hourly wind production, become known at the beginning

of the day, but after DA commitments are made. That is,

the actual wind realization for the full 24 hours becomes

known at midnight, and is selected from one of the set

of possible scenarios. More complex assumptions (such as

Markov decision process in real time [37]) are possible and

would result in more hedging in RT commitment and dispatch

decisions [38], but at the cost of a much more complex model.

Our simplifying assumption has been made by many other

wind integration models (e.g., [39]), and does not alter the

fundamental fact that DA scheduling is done under much more

forecast uncertainty than real-time operations. Wind scenario

generation and/or reduction techniques are outside the scope

of this paper.

Third, we assume that all market players act competitively.

That is, when bidding in an ISO-operated market, they offer

truthfully at quantities equal to their available capacities at

prices identical to their marginal costs. On the other hand, if

they self-schedule, we assume that they do so non-strategically,

by assuming that their decisions will not affect prices. In addi-

tion, all players are assumed to be expected-profit maximizers.

2This simplifies the reality of ISO DA market scheduling processes today.
These are actually the result of a complex interaction of deterministic MW
offers by wind generators in the DA financial markets, which result in
schedules of thermal generators that are subject to alteration by so-called
“residual unit commitment” (RUC) processes that instead are based on an
ISO wind forecast. RUC processes complement the financial market-clearing
process, and are intended to assure operators that enough physical resources
have been committed day ahead to meet plausible physical load and renewable
contingencies, irrespective of the load and resources (including offered wind)
that cleared in the financial market. The roles of deterministic wind offers and
ISO forecasts become even more complicated if some renewable resources are
scheduled in the financial market based on ISO forecasts (e.g., the CAISO’s
“Participating Intermittent Resource Program”).

Generalizations that allow for risk aversion (e.g., [14]) and

Nash-Cournot market power (e.g., [16]) are straightforward.

However, if the market requires submission of a single non-

decreasing DA offer curve for each unit that is to apply to all

hours, Cournot price-quantity equilibria might be inconsistent

with this requirement, and more complex supply function

equilibria models could be, in theory, more appropriate [40].

Fourth, the generation-side constraints in this work are

represented by a tight relaxed version of the UC problem

[41], as the resulting model is convex and therefore avoids

equilibrium existence problems that arise with UC models

with 0/1 binary variables. This particular relaxed model pro-

vides more accurate UC cost estimates than either using pure

dispatch models (that ignore 0/1 commitment decisions) or

simply relaxing the 0/1 binary restriction in standard UC

formulations. In particular, the feasible region of the UC

problem is tightened by including the relaxed commitment

variables within ramping constraints as shown below. We

include startup costs, Pmin restrictions and costs, and ramp

limits, but other UC constraints, such as minimum on- and

off-times [42], are omitted for simplicity. Intuitively, this

relaxation allows a continuous portion of a plant (or a set

of identical plants) to be committed at any given time, such

as 570 MW out of a 1000 MW unit. The minimum and

maximum outputs of the generator, as well as its ramp rate

limits, are proportional to the committed capacity. Startup

costs are incurred when the quantity of committed capacity

increases from interval to interval, and are proportional to

the amount of increase.3 We also exclude operating reserve

products from our problem since we do not address forced

outages of the physical assets here. However, a generalization

including reserves is easily derived, but would complicate our

analysis without significantly changing its conclusions.

III. THE FOUR TWO-SETTLEMENT MARKET MODELS

The following four DA-RT market-clearing models are

considered in this paper:

• Stoch-MP : Multi-player stochastic two-settlement equi-

librium model. This is a theoretical model, not imple-

mented in any market, in which the ISO supervises a

market-clearing process both DA and in RT between

parties who each determine on their own what quantities

they want to buy or sell (“self-schedule”) in each of

the markets in response to the DA and RT prices.

It is assumed that the ISO adjusts market prices and

the parties adjust their self-schedules to result in an

equilibrium situation in which no party can increase its

expected (probability-weighted) profit by adjusting the

amounts it sells in any market.

3Our numerical tests of this approximation [41] show that it is most accurate
when there are multiple generating units of a given type, so that the error
resulting from (for example) assuming that, say, 57% of capacity is on line
rather than forcing the solution to be either exactly, say, 5 or 6 out of 10
identical units is negligible. Thus, the approximation is better for larger
systems with many similar units than for smaller systems whose capacity
is dominated by a handful of large generators. Those tests also indicate that
the approximation yields much better estimates of total production costs, plant
capacity factors, and prices than does, for example, load duration curve-type
models that disregard unit commitment constraints entirely.
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Each generator (slow, fast and wind)
Maximize Expected profit
By choosing commitment and production 
levels in DA and RT

Subject to: 
 Production,  ramping  and  start‐up 
limits in DA and RT

 Binary UC variables relaxation

Each virtual bidder

Maximize Expected profit
By  choosing  DA  and  RT  arbitrage 
quantities

Subject to: 
 Sum of arbitrage quantities  in DA and 
RT is zero.

Grid operator

Maximize Expected profit
By choosing network flows in DA and RT

Subject to: 
 Network limits in DA and RT

Each DR provider (slow and fast)

Maximize Expected profit
By choosing DR quantities in DA and RT

Subject to: 
 DR quantity limits in DA and RT

Market clearing

 Power balances in DA
 Power balances in RT

Fig. 2. The structure of multi-player stochastic two-settlement equilibrium
model (Stoch-MP )

• Stoch-Opt : Stochastic optimization model, which min-

imizes the total expected system cost (baseline). This is

also a theoretical model that has not been implemented

in actual markets, in which a central operator solves a

stochastic unit commitment problem day ahead to deter-

mine an optimal day-ahead energy schedule, followed by

real-time resolution of imbalances by the ISO. There are

no self-schedules.

• Seq : Sequential two-settlement equilibrium model. This

market model as well as the next one are simplified rep-

resentations of how US markets now operate, in which a

market operator schedules thermal generation in the DA

market considering only a single (deterministic) demand

and wind forecast, and virtual bidders are allowed to

buy in the DA market and sell back in the real-time

market. This is a simplification of how US markets

actually work, in which the ISO’s demand and wind

forecasts are used in DA “residual unit commitment”

markets to ensure that enough capacity is committed,

while demand bids and wind offers that can depend on

price are considered in the financial DA market.

• Seq-SS : Extended Seq with self-scheduling slow-start

generators. Like the previous model, this is a simplified

representation of today’s markets in the US. This model

also considers the ability of generators in these markets

to self-schedule in the DA market and then adjust output

in the RT market if they find that more profitable than

having the ISO schedule its output.

Note that Stoch-MP , Seq and Seq-SS are equilibrium mod-

els, while Stoch-Opt is an optimization problem, representing

the situation in which the ISO schedules all generation and

DR in both DA and RT using stochastic programming. Across

these four models, we consider identical wind forecasts and

error distributions. In each model, actual RT wind realizations

are assumed to follow a distribution defined by a set of

scenarios and probabilities; what market parties assume about

the wind distribution in the DA market depends on the model,

as explained below. However, we assume perfect VB in all four

models, i.e., the virtual bidders in DA have perfect knowledge

of the distribution of RT prices, and eliminate any arbitrage

profits. That is, they will buy or sell in the two markets

until the DA prices equal the expected RT prices. The market

models differ concerning the role of the ISO as well as which

parties consider the RT distribution of prices when determining

DA schedules, as explained next.

In Stoch-MP , the ISO only allocates scarce transmission

capacity, and does not schedule generation, unlike Stoch-Opt ,

Seq and Seq-SS . Each market player (generators, DR, and

virtual bidders) maximizes its expected profit across the DA

and RT markets considering them simultaneously, each solving

a stochastic profit maximization problem. For instance, a slow-

start thermal generator decides DA how much capacity to com-

mit, how much power to sell in the DA and each of RT market

(one per wind realization), and how much to generate in order

to fulfill those supply schedules. Fast-start thermal generators,

in contrast, do not need to make commitment decisions until

real time, but can also sell in either DA and/or the RT markets.

Wind power generators decide how much to sell DA and in

each of the RT markets, given its distribution of potential wind

production. Slow DR makes its commitment decisions DA

and sells in the DA market, while fast DR waits until real

time, but buys/sells power either DA or in RT, whichever is

most profitable, thus being able to arbitrage the two markets.4

The system operator performs a spatial arbitrage function,

being able to buy at one node and sell at another at the

same time while satisfying transmission constraints. Finally,

the temporal arbitrage function is assigned to virtual bidders.

Simultaneously solving these profit maximization problems for

all players while imposing market clearing forms a stochastic

equilibrium problem. The structure of this equilibrium model

is schematically depicted in Fig. 2. In this model, it is assumed

that each player has the same (and correct) beliefs concerning

the distribution of wind generation scenarios and the RT prices

that result in each. It can be intuitively expected that the VB

has no impact in Stoch-MP since not only virtual bidders,

but also all other players have the same knowledge in DA

concerning wind scenarios in RT, and can decide to schedule

their output or consumption in either market, thus acting as

arbitragers themselves.

In Stoch-Opt , a single optimization problem is solved, in

which the grid operator uses stochastic programming to co-

optimize all generation and DR in both DA and RT markets

to minimize the total expected system cost, and in addition

calculates DA and RT locational marginal prices (LMPs). The

structure of this model is schematically illustrated in Fig. 3.

Similar to Stoch-MP , DA and RT outcomes are determined

simultaneously, so the separate RT scheduling and pricing

problems are solved all at once. Independent virtual bidders

arbitrage the DA and RT markets in Stoch-Opt , so that the

DA and the expected RT prices are the same; however, by

performing stochastic optimization for DA and RT simulta-

neously, the ISO in a sense already performs the arbitrage

function, so the presence or absence of virtual bidders will

not affect the solution.

By design, Stoch-Opt obtains the fully efficient DA sched-

4An alternative formulation could allow the slow DR to also sell in the RT
market, but this would not change the basic market results.
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Minimize [system cost in DA] + [expected system cost in RT]

Subject to: 
 Production, ramping and start‐up limits of generators in DA and RT
 Generators’ binary UC variables relaxation
 Sum of virtual arbitrage quantities in DA and RT is zero
 Network limits in DA and RT
 DR quantity limits in DA and RT
 Power balances in DA and RT

Fig. 3. The structure of stochastic optimization model, which minimizes the
total expected system cost (Stoch-Opt)

ules and the least-possible expected system cost. We demon-

strate later that under mild convexity conditions, the solutions

of Stoch-MP and Stoch-Opt are the same, in the sense that

any solution of one model is also a solution to the other. This

implies that if all market parties independently optimize their

schedules, costs are convex, no one possesses market power,

and everyone has the same expectations about the distribution

of RT prices, then the stochastic equilibrium among market

parties who self-schedule against DA and RT prices results in

the minimum expected cost of meeting demand.

In Seq , unlike Stoch-MP and Stoch-Opt , a sequential

market clearing is simulated in which the ISO first clears

the DA market deterministically considering just the single

deterministic wind forecast. In the basic version of this model,

the operator schedules all generation and DR. Then, in real-

time, the ISO clears the RT market for each wind generation

scenario by scheduling deviations for any generators and DR

who are not self-scheduled. In the basic version of this model,

the virtual bidders are assumed to be the only players that

have perfect knowledge in DA concerning the full distribution

of RT prices resulting from the wind generation scenarios.

Therefore, each virtual bidder considers both DA and RT

markets simultaneously and maximizes its expected profit;

in equilibrium, this arbitrage will eliminate any difference

between DA prices and expected RT prices. In contrast, other

players such as generators are naive in the sense that they allow

the ISO to dispatch them in the DA based on the deterministic

wind forecast in that market, and then are recommitted and/or

redispatched by the ISO in the RT market based on actually

realized wind scenario in that market. Fig. 4 depicts the

structure of this model. Unlike Stoch-MP and Stoch-Opt , it

can be intuitively expected that the VB potentially impacts the

market-clearing outcomes in Seq . Accordingly, we solve Seq

with and without virtual bidders, and then compare the results

obtained, i.e., DA schedules and total system cost, with those

obtained from Stoch-MP and Stoch-Opt . As we will show,

without VB, the sequential solutions of Seq are likely to be

inefficient compared to the ideal (cost-minimizing) solutions

of Stoch-MP and Stoch-Opt , but VB can improve the per-

formance of Seq . In some (but not all) cases, VB eliminates

all the inefficiencies and yields the same DA commitments

as the stochastic solution, even though the ISO is solving a

deterministic market model in the DA market.

In Seq-SS , we consider an extension of Seq in which

selected slow-start generators are allowed to self-schedule

[43], under the assumption that they (like virtual bidders)

Minimize System cost in DA
By  choosing  commitment  and  production  levels  of  generators,  DR  schedules  and 
network flows in DA 

Subject to: 
 Production, ramping and start‐up limits of generators in DA 
 Generators’ binary UC variables relaxation
 Network limits in DA 
 DR quantity limits in DA 
 Power balances in DA 

DA market clearing

Minimize Probability‐weighted system cost in RT
By choosing production levels of generators, commitment of fast‐start generators, fast 
DR schedules and network flows in RT 

Subject to: 
 Production, ramping and start‐up limits of generators in RT 
 Fast‐start generators’ binary UC variables relaxation
 Network limits in RT 
 Fast DR quantity limits in RT 
 Power balances in RT 

RT market clearing for each wind scenario

Each virtual bidder

Maximize Expected profit
By choosing DA and RT arbitrage quantities

Subject to: 
 Sum of arbitrage quantities in DA and RT is zero.

Fig. 4. The structure of sequential two-settlement equilibrium model (Seq)

Minimize System cost in DA
By choosing commitment and production levels of generators (excluding self‐scheduling 
slow‐start generators), DR schedules and network flows in DA 

Subject to: 
 Production, ramping and start‐up limits of generators in DA 
 Generators’ binary UC variables relaxation
 Network limits in DA 
 DR quantity limits in DA 
 Power balances in DA 

DA market clearing

Minimize Probability‐weighted system cost in RT
By choosing production levels of generators, commitment of fast‐start generators, fast 
DR schedules and network flows in RT 

Subject to: 
 Production, ramping and start‐up limits of generators in RT 
 Fast‐start generators’ binary UC variables relaxation
 Network limits in RT 
 Fast DR quantity limits in RT 
 Power balances in RT 

RT market clearing for each wind scenario

Each virtual bidder

Maximize Expected profit
By choosing DA and RT arbitrage quantities

Subject to: 
 Sum of arbitrage quantities in DA and RT is zero.

Each self‐scheduling slow‐start generator 

Maximize Expected profit
By choosing commitment and production levels in DA and RT

Subject to: 
 Production, ramping and start‐up limits in DA and RT
 Binary UC variables relaxation

Fig. 5. The structure of extended Seq with self-scheduling slow-start
generators (Seq-SS )

correctly anticipate the RT distribution of prices. They op-

timize their schedules in the DA and RT markets based on

the DA and RT prices calculated by the ISO. Thus, this

model includes in a single equilibrium model: (i) deterministic

scheduling of all DR and some generators by the operator, as

in Seq ; (ii) independent self-scheduling by selected slow-start
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DA settlement 
(The set of wind scenarios and their 
probabilities are known in DA, but 
which one actually occurs in RT is 

unknown.)

..
.

RT operation
for each wind scenario

..
.

Fig. 6. The decision sequence in stochastic models (i.e., Stoch-MP and
Stoch-Opt)

generators (the so-called self-scheduling generators), based on

expected profit-maximizing, similar to Stoch-MP ; and (iii)

virtual bidders as in Stoch-MP , Stoch-Opt and Seq . The

structure of this model is illustrated in Fig. 5. The results

of Seq-SS (in the second of this two-part paper) show that

this extension tends to improve the solutions of Seq further, if

they are not already efficient. This model enables us to address

whether a deterministic DA market followed by RT markets

with VB and self-scheduling can result in fully efficient DA

schedules and least-possible system cost, as in Stoch-MP and

Stoch-Opt .

Among these four models, Stoch-Opt has the attractive

theoretical property of achieving the lowest expected operating

cost, under the assumption that the ISO can obtain the stochas-

tic information (e.g., probability distributions) required for

stochastic clearing. However, this assumption is incompatible

with the current practice of real-world electricity markets, and

its implementation would place a large burden on the ISO

to develop this information and to obtain stakeholder consent

for the procedures involved. In contrast, and in line with the

structure of current markets, the ISO sticks to deterministic

clearing in Seq and Seq-SS , while instead allowing the

virtual bidders and self-scheduling generators to adjust energy

schedules to deal with uncertainty.5

We now describe at what point of time each model is solved.

The decision sequence in stochastic models, i.e., Stoch-MP

and Stoch-Opt , is illustrated in Fig. 6. In these two ideal

models, the set of RT wind scenarios and their probabilities

are known at the DA stage. Therefore, the DA schedule as

well as the RT schedules by scenario are solved in one shot, so

that DA decisions are made fully recognizing what adaptations

5What our analysis indicates is that it is possible that a subset of market
parties acting based on high quality stochastic information, can achieve
the same efficiencies as central stochastic clearing by the ISO. Therefore,
despite the theoretical appeal of the latter approach, its practical difficulties
together with the efficiency of Seq-SS suggest that ISOs should not embrace
the central stochastic model, but should instead carefully evaluate whether
self-scheduling and VB in fact already allow markets to realize most of
the potential efficiencies of stochastic scheduling. Although there has been
previous works comparing deterministic and stochastic clearing mechanisms
[44]-[47], they have not modeled VB and self-scheduling; further theoretical
and empirical work is needed before a definite conclusion can be made about
whether stochastic information is best incorporated through central (Stoch-
MP ) or distributed (Seq-SS ) types of processes.

DA settlement 
(based on a 

deterministic wind 
forecast)

..
.

Actual wind 
power is 
realized

..
.DA outcomes 

are fixed

Sequential (DA‐RT) clearing by ISO: 

DA settlement 
(Distribution of RT 

prices across scenarios 
is known)

..
.

RT operation
for each scenario

..
.

Stochastic two‐stage decision making by each virtual bidder 
(and by each self‐scheduling generator in Seq‐SS):  

RT operation
for any potential 
wind realization

Fig. 7. The decision sequence in sequential models (i.e., Seq and Seq-SS )

might happen in real time. Meanwhile, the decision sequence

in sequential models, i.e., Seq and Seq-SS , is depicted in Fig.

7. Similar to the stochastic models, Seq and Seq-SS are solved

day ahead at once. The reason for this is that although the

ISO clears DA and RT markets sequentially (the upper box

in Fig. 7), the virtual bidders (and self-scheduling generators

in Seq-SS ) make their DA and RT decisions simultaneously,

recognizing their interdependency and the uncertainty in RT

(the lower box in Fig. 7). (This is because a decision to sell

X MW in the DA market irrevocably binds the virtual bidder

to buying back the same amount in RT.) When calculating

the overall market outcomes in these two models, however,

we consider the decision-making problems of the ISO, virtual

bidders and self-scheduling generators together, forming an

equilibrium model. This allows us to assess the value of

informed VB and self-scheduling. This equilibrium calculation

simulates the receipt by the ISO of the offers and bids of

virtual bidders and self-scheduled generators, and then the

sequential clearing of the DA and RT markets at different

points of time.

It is worth mentioning that we consider the same distribution

of uncertain wind production in all four models since each

of them are solved at once at the DA stage, assuming the

same closing time and thus wind information availability at

that stage. All models assume that there is no uncertainty in

real time.

The mathematical formulation of Stoch-MP is provided

next. The other three models are described in the companion
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paper [48], based on the assumptions described above along

with several of the individual market party problems given

below.

A. Stoch-MP : Multi-Player Stochastic Two-Settlement Equi-

librium Model

As illustrated in Fig. 2, several profit-maximization prob-

lems are considered in Stoch-MP , one per player. These

problems are defined in this subsection by (1). Note that

dual variables are listed alongside each constraint. First, the

profit-maximization problem for each slow-start dispatchable

generator i ∈ S is given by (1a) below.

{

Maximize
uDA

i,t
,cDA

i,t
,pDA

i,t
,pRT

i,t,s

∑

t

[

pDA
i,t

(

λDA
(n:i∈Ψn),t

− Ci

)

− cDA
i,t

]

+
∑

t,s

φs

[

pRTi,t,s

(

λRT
(n:i∈Ψn),t,s

φs

− Ci

)

]

(1aa)

subject to:

uDA
i,t P i ≤ pDA

i,t ≤ uDA
i,t P i : µ

i,t
, µi,t ∀t (1ab)

uDA
i,t P i ≤

(

pDA
i,t + pRTi,t,s

)

≤ uDA
i,t P i : ρ

i,t,s
, ρi,t,s

∀t, s (1ac)

− uDA
i,(t−1) R

D
i ≤

(

pDA
i,t − pDA

i,(t−1)

)

≤ uDA
i RU

i : µD
i,t, µ

U
i,t

∀t (1ad)

− uDA
i,(t−1) R

D
i ≤

(

pDA
i,t + pRTi,t,s − pDA

i,(t−1) − pRTi,(t−1),s

)

≤ uDA
i,t RU

i : ρDi,t,s, ρ
U
i,t,s ∀t, s (1ae)

cDA
i,t ≥ CSU

i

(

uDA
i,t − uDA

i,(t−1)

)

: µSU
i,t ∀t (1af)

uDA
i,t ≤ 1 : µrlx

i,t ∀t (1ag)

uDA
i,t ≥ 0; cDA

i,t ≥ 0 ∀t

}

∀i ∈ S. (1ah)

Objective function (1aa) maximizes the expected profit of

slow-start generator i ∈ S in the DA and RT markets. Note

that
λRT

n,t,s

φs
refers to the probability-adjusted real-time LMP

at node n, hour t under scenario s. Constraints (1ab) and

(1ac) bound the production levels in DA and RT markets,

respectively. Constraints (1ad) and (1ae) enforce the ramp

rate limits of slow-start generator in DA and RT markets,

respectively. Finally, constraints (1af)-(1ah) calculate the start-

up cost of generator i ∈ S and relax its corresponding

commitment variables in the DA market.

According to (1a), a slow-start generator makes all commit-

ment decisions in the DA market, with the chosen commitment

schedule being imposed in all RT scenarios. It is assumed

that DA and RT schedules must both be feasible relative

to generation capacity and ramping constraints. However, an

alternative formulation can omit the DA constraints (1ab) and

(1ad), in which case the DA schedule is purely financial, and

the generator can act as an unrestrained financial arbitrager

between the DA and RT markets. In the presence of separate

virtual players, as in this model, this omission would not affect

the equilibrium prices, unit commitment, or total (DA plus RT)

dispatch of generators or DR.

The profit-maximization problem for each fast-start dis-

patchable generator i ∈ F is given by (1b) below:

{

Maximize
uDA

i,t
,cDA

i,t
,pDA

i,t
,uRT

i,t,s
,cRT

i,t,s
,pRT

i,t,s

∑

t

[

pDA
i,t

(

λDA
(n:i∈Ψn),t

− Ci

)

− cDA
i,t

]

+
∑

t,s

φs

[

pRTi,t,s

(

λRT
(n:i∈Ψn),t,s

φs

− Ci

)

− cRTi,t,s

]

(1ba)

subject to:

(1ab), (1ad), (1af) − (1ah) (1bb)
(

uDA
i,t + uRT

i,t,s

)

P i ≤
(

pDA
i,t + pRTi,t,s

)

≤
(

uDA
i,t + uRT

i,t,s

)

P i : ρi,t,s, ρi,t,s ∀t, s (1bc)

−

(

uDA
i,(t−1) + uRT

i,(t−1),s

)

RD
i ≤

(

pDA
i,t + pRTi,t,s − pDA

i,(t−1) − pRTi,(t−1),s

)

≤
(

uDA
i,t + uRT

i,t,s

)

RU
i : ρDi,t,s, ρ

U
i,t,s ∀t, s (1bd)

cDA
i,t + cRTi,t,s ≥ CSU

i

(

uDA
i,t + uRT

i,t,s − uDA
i,(t−1) − uRT

i,(t−1),s

)

: ρSUi,t,s ∀t, s (1be)

cDA
i,t + cRTi,t,s ≥ 0 : ρci,t,s ∀t, s (1bf)

uDA
i,t + uRT

i,t,s ≤ 1 : ρrlxi,t,s ∀t, s (1bg)

uRT
i,t,s ≥ 0 ∀t, s

}

∀i ∈ F . (1bh)

Unlike the slow-start generators, the commitment status of

each fast-start generator can be adjusted in the RT market.

Objective function (1ba) maximizes the expected profit of fast-

start generator i ∈ F in DA and RT markets. The generation

constraints of fast-start generator in the DA market are en-

forced by (1bb), while (1bc)-(1bh) represent the analogous

constraints in the RT market. Note that uRT
i,t,s in (1bg) is

appropriately viewed as the incremental commitment in RT

relative to the DA commitment.

The profit-maximization problem for each wind power

generator i ∈ W is given by (1c) below:

{

Maximize
pDA

i,t
,pRT

i,t,s

∑

t

[

pDA
i,t λDA

(n:i∈Ψn),t

+
∑

s

φs pRTi,t,s
λRT
(n:i∈Ψn),t,s

φs

]

(1ca)

subject to:

pDA
i,t ≤ WDA

i,t : µi,t ∀t (1cb)

0 ≤
(

pDA
i,t + pRTi,t,s

)

≤ WRT
i,t,s : ρ

i,t,s
, ρi,t,s ∀t, s (1cc)

pDA
i,t ≥ 0 ∀t

}

∀i ∈ W. (1cd)
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Objective function (1ca) maximizes the expected profit of wind

generator i ∈ W in the DA and RT markets. In addition,

constraints (1cb)-(1cd) enforce its production limits in DA and

RT markets. Note that constraint (1cc) implicitly allows the

excessive wind power to be spilled. Note also that the upper

bound of (1cc), i.e., stochastic parameter WRT
i,t,s, represents the

scenarios of potential RT wind power output.

The profit-maximization problem for each slow DR provider

d ∈ SDR is given by (1d) below:

{

Maximize
d
DA↓

d,k,t
,d

DA↑

d,k,t

∑

k,t

[

d
DA↓

d,k,t

(

λDA
(n:d∈Ψn),t

− C
↓

d,k,t

)

+ d
DA↑

d,k,t

(

C
↑

d,k,t − λDA
(n:d∈Ψn),t

)

]

(1da)

subject to:

d
DA↓

d,k,t ≤ D
↓

d,k,t : µ
↓

d,k,t ∀k, t (1db)

d
DA↑

d,k,t ≤ D
↑

d,k,t : µ
↑

d,k,t ∀k, t (1dc)

d
DA↓

d,k,t ≥ 0; d
DA↑

d,k,t ≥ 0 ∀k, t

}

∀d ∈ SDR. (1dd)

Objective function (1da) maximizes the profit of slow DR

provider d ∈ SDR in the DA market. Note that this DR re-

source does not provide balancing services in RT. Constraints

(1db)-(1dd) bind its downward and upward DR quantities.

The profit-maximization problem for each fast DR provider

d ∈ FDR is given by (1e) below:

{

Maximize
d
DA↓

d,k,t
,d

DA↑

d,k,t
,d

RT↓

d,k,t,s
,d

RT↑

d,k,t,s

∑

k,t

[

d
DA↓

d,k,t

(

λDA
(n:d∈Ψn),t

− C
↓

d,k,t

)

+ d
DA↑

d,k,t

(

C
↑

d,k,t − λDA
(n:d∈Ψn),t

)

]

+
∑

k,t,s

φs

[

d
RT↓

d,k,t,s

(

λRT
(n:d∈Ψn),t,s

φs

− C
↓

d,k,t

)

+ d
RT↑

d,k,t,s

(

C
↑

d,k,t −
λRT
(n:d∈Ψn),t,s

φs

)

]

(1ea)

subject to:

(1db) − (1dd) (1eb)

0 ≤

(

d
DA↓

d,k,t + d
RT↓

d,k,t,s

)

≤ D
↓

d,k,t : ρ
↓

d,k,t,s
, ρ

↓

d,k,t,s

∀k, t, s (1ec)

0 ≤

(

d
DA↑

d,k,t + d
RT↑

d,k,t,s

)

≤ D
↑

d,k,t : ρ
↑

d,k,t,s
, ρ

↑

d,k,t,s

∀k, t, s

}

∀d ∈ FDR. (1ed)

Objective function (1ea) maximizes the expected profit of fast

DR provider d ∈ FDR in the DA and RT markets. Note

that unlike the slow DR providers, each fast DR provider can

participate in both DA and RT markets. Constraints (1eb) bind

its upward and downward DR quantities in the DA market,

while similar constraints in the RT market are enforced by

(1ec) and (1ed).

The profit-maximization problem for each virtual bidder f

is given by (1f) below:

{

Maximize
vDA

f,t
,vRT

f,t

∑

t

[

vDA
f,t λDA

(n:f∈Ψn),t

+
∑

s

φs vRTf,t

λRT
(n:f∈Ψn),t,s

φs

]

(1fa)

subject to: vDA
f,t + vRTf,t = 0 : ρf,t ∀t

}

∀f. (1fb)

Objective function (1fa) maximizes the expected profit of

virtual bidder f participating in the DA and RT markets. Note

that the trading quantities in DA and RT markets, i.e., vDA
f,t

and vRTf,t , are both scenario-independent since virtual bidders

own no physical assets and so are obliged to zero out their

financial position. In other words, as constrained by (1fb),

each virtual bidder buys/sells a quantity in the DA market and

then sells/buys back that quantity in the RT market. Note also

that (1f) implicitly imposes the equality of DA and expected

RT prices at bus n within the equilibrium problem. It is

straightforward to yield this price equality condition through

the Karush-Kuhn-Tucker (KKT) conditions of (1f).

The profit-maximization problem for the ISO is given by

(1g). Note that the following formulation is based on the B−θ

formulation of the linearized DC load flow, and is equivalent

to the power transfer distribution factor (PTDF)-based grid

operator problem in [36]:

Maximize
aDA
n,m,t,θ

DA
n,t ,a

RT
n,m,t,s,θ

RT
n,t,s

∑

n,m∈Ωn,t

[

aDA
m,n,t λ

DA
n,t +

∑

s

φs

(

aRTm,n,t,s − aDA
m,n,t

) λRT
n,t,s

φs

]

(1ga)

subject to:

aDA
n,m,t = Bn,m

(

θDA
n,t − θDA

m,t

)

: µn,m,t ∀n,m ∈ Ωn, t

(1gb)

aRTn,m,t,s = Bn,m

(

θRTn,t,s − θRTm,t,s

)

: ρn,m,t,s

∀n,m ∈ Ωn, t, s (1gc)

aDA
n,m,t ≤ Fn,m : µflow

n,m,t ∀n,m ∈ Ωn, t (1gd)

aRTn,m,t,s ≤ Fn,m : ρflown,m,t,s ∀n,m ∈ Ωn, t, s (1ge)

θDA
(n=1),t = 0 : µ1

t ∀t (1gf)

θRT(n=1),t,s = 0 : ρ1t,s ∀t, s. (1gg)

Objective function (1ga) maximizes the expected profit that

the ISO gains by transferring energy throughout the network

in DA and RT markets. Constraints (1gb) and (1gc) define

the power flow across each transmission line in DA and RT

markets, respectively. Constraints (1gd) and (1ge) enforce the

line limits in the two markets. Finally, constraints (1gf) and

(1gg) introduce node n = 1 as the voltage angle reference

node. Note that the physical load flow and flow capacity

constraints are enforced in both DA and RT markets, although
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for each slow‐start generator  

Profit‐maximization problem (1b) 
for each fast‐start generator  

Profit‐maximization problem (1c) 
for each wind power generator  

Profit‐maximization problem (1d) 
for each slow DR provider  

Profit‐maximization problem (1e) 
for each fast DR provider  

Profit‐maximization problem (1f) 
for each virtual bidder  

Profit‐maximization problem (1g) 
for the grid operator  

Shared constraints (1h) 
for market clearing  

KKT conditions of (1a)   

KKT conditions of (1b)

KKT conditions of (1c)

KKT conditions of (1d)

KKT conditions of (1e)

KKT conditions of (1f)

KKT conditions of (1g)

Shared constraints (1h) 
for market clearing  

Equilibrium model Stoch‐MP A MLCP that is equivalent to Stoch‐MP

Fig. 8. Model Stoch-MP recast as a mixed linear complementarity problem
(MLCP).

the DA constraints could be omitted without changing the

equilibrium profits and prices.

Finally, the market-clearing constraints in the DA and RT

markets are respectively given by (1ha) and (1hb) below:

∑

d∈Ψn,k

(

Ld,t + d
DA↑

d,k,t − d
DA↓

d,k,t

)

+
∑

m∈Ωn

aDA
n,m,t −

∑

i∈Ψn

pDA
i,t

−
∑

f∈Ψn

vDA
f,t = 0 : λDA

n,t ∀n, t (1ha)

∑

d∈Ψn,k

(

d
RT↑

d,k,t,s − d
RT↓

d,k,t,s

)

+
∑

m∈Ωn

(

aRTn,m,t,s − aDA
n,m,t

)

−
∑

i∈Ψn

pRTi,t,s −
∑

f∈Ψn

vRTf,t = 0 : λRT
n,t,s ∀n, t, s. (1hb)

The DA balancing constraint (1ha) implies that at each node

and in each hour, the load based on DR schedules is equal to

dispatchable and wind generation plus injection of arbitragers

into the grid and net power inflows from other nodes. The

RT production forecast errors are accommodated in (1hb) by

generator redispatch, fast generator commitment, and fast DR

schedules. Note that the dual variables of (1ha) and (1hb)

provide day-ahead and probability-weighted real-time LMPs,

respectively.

The solution of Stoch-MP , i.e., the multi-player stochastic

two-settlement Nash-Bertrand equilibrium point, can be ob-

tained by simultaneously solving the KKT conditions of all

players together with market clearing [36], as illustrated in

Fig. 8. The resulting model is a mixed linear complementarity

problem (MLCP) that can be solved using PATH or other

complementarity problem solvers. This is a Nash-Bertrand

equilibrium because each player believes it cannot affect prices

by its actions; this model could be generalized to a closed

loop Nash-Cournot model if some or all players recognize

how quantities supplied/purchased affect prices through the

demand function. The equilibrium conditions of Stoch-MP

(i.e., the KKT and market-clearing conditions) are described

in Appendix of [48]. A general introduction to equilibrium

and complementarity models can be found in [49].

IV. CONCLUSIONS

In the first part of this two-paper series, four different

models for clearing the two-settlement markets (day-ahead

and real-time) are proposed. These include (i) a multi-player

stochastic equilibrium in which all players have the same

beliefs about the distribution of RT prices, (ii) co-optimization

of all schedules by the ISO using stochastic UC, (iii) a

sequential equilibrium in which the operator first selects DA

schedules considering a deterministic wind forecast, and then

rebalances the market in RT against the actual wind realization,

and (iv) an extension of the sequential equilibrium with some

self-scheduling slow-start generators. The assumptions of each

are summarized, and the players’ individual profit maximizing

models that make up the first model are presented.

These four models provide a framework to quantify the

economic value of flexible resources. In addition, the models

can address whether grid operators must use stochastic UC

models to achieve the optimal solution, or whether virtual

bidders along with some self-scheduling generators could

obtain it. The companion paper [48] provides the formulation

of Stoch-Opt , Seq and Seq-SS as well as results from a

simple illustrative example and a large-scale case study that

quantify the economic value of different types of flexible

resources. The applications also confirm that, indeed, the errors

of deterministic DA scheduling can be corrected by virtual

bidders and a few self-scheduled generators.
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