
Journal of Infrastructure

Preservation and Resilience

Zhang et al. Journal of Infrastructure Preservation and Resilience            (2021) 2:16 

https://doi.org/10.1186/s43065-021-00027-0

REVIEW Open Access

Value of information analysis in civil and
infrastructure engineering: a review
Wei-Heng Zhang1,2, Da-Gang Lu1*, Jianjun Qin3, Sebastian Thöns4,5 and Michael Havbro Faber2

Abstract

The concept of Value of Information (VoI) has attracted significant attentions within the civil engineering community
over especially the last decade. Triggered by the increasing focus on structural health monitoring, availability of data
and emerging techniques of Big Data analysis and Artificial Intelligence, important insights on how to take benefit
from VoI in structural integrity management have been gained. This literature review starts out with a summary of the
historical developments and contains (1) a summary of two different VoI analysis origins, (2) a compilation of existing
VoI analyses research and (3) current engineering interpretations and applications of VoI in the field of civil and
infrastructure engineering. VoI analysis has roots in communication theory and Bayesian decision analysis in
conjunction with utility theory. Starting point is thus taken in brief introduction of these theoretical foundations,
followed by a discussion on the relevant modelling aspects such as information, probability and utility modelling. A
detailed review of relevant existing research is presented, divided into the following main areas: computational
methods, optimal sensor placement and engineering risk management. Finally, by way of conclusion and outlook,
challenges and some promising directions for VoI analysis in the field of civil and infrastructure engineering are
identified.

Keywords: Value of information, Bayesian decision theory, Engineering risk analysis, Optimum decision making,
Structural health information

Introduction
Decisions in the context of civil and infrastructure engi-
neering are generally subjected to significant uncertain-
ties. This concerns e.g. our understanding of structural
degradation, extreme load events, effects of interventions,
and quality of workmanship. These uncertainties in turn
imply that we do not know with certainty what effect
different decision alternatives will have and this poses
a rather significant challenge for decision makers. As a
means for managing and reducing some of the major
uncertainties decision makers increasingly take benefit
from the possibility to observe the performances of build-
ing structures and infrastructures more generally through
various technological means such as: Non-destructive
Testing (NDT), Proof Load Testing (PLT), Structural
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Health Monitoring (SHM) and Remote Sensing (RS). The
information collected thus informs decisions with infor-
mation on actual performance and thus helps reducing
the impact of epistemic uncertainty on the uncertainty
associated with the different available decision alterna-
tives. Over the last half century, the application of these
technological tools in civil and infrastructure engineering
has yielded a number of results [1–4], which have con-
tributed importantly to ensuring and documenting the
safety of engineering structures, reducing the probability
of accidental structural failure and reduced the life cycle
costs associated with engineering structures. However, a
question arises, that is, how to deal with the broad range
of sometimes very significant amounts of data associated
with structural performance? In the field of data science
and information management, the Data-Information-
Knowledge-Wisdom (DIKW) model has been proposed
to represent the structural and/or functional relationships
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between data, information, knowledge and wisdom in
order to support decision making. Similarly, in engineer-
ing practice, a DIKW model can be utilised to frame the
context of decision making for integrity management, see
Fig. 1 [5]. As shown in Fig. 1, the information collected
can enhance the quality of engineering risk management.
Since the aim of decision-making is to rank decision alter-
natives relative to their expected utility, it is only natural
that additional information, which can be obtained from
the available data, should be utilised. The concept of Value
of Information (VoI) provides the theoretical foundation
for quantifying the potential benefits of additional infor-
mation, derived from Bayesian decision theory, which has
gained much attentions in recent years and is widely used
in the field of civil and infrastructure engineering. A use-
ful way of describing VoI is to contrast an act-then-learn
approach with a learn-then-act approach [6]. Based on the
concept of VoI, decision makers can quantify the poten-
tial benefits of additional information and thus determine
whether corresponding campaigns of collecting informa-
tion, e.g. through measurements, should be undertaken.
The present paper presents a literature review of exist-

ing research applications of VoI in the field of risk analysis
and decision making in civil and infrastructure engineer-
ing, with the hope of providing researchers with a sys-
tematic review to aid future research in this field. This
work starts out with a brief outline of the history of
VoI developments, followed by an axiomatic description

and classification of VoI definitions and analysis meth-
ods. Next, the considerations of various modelling aspects
in the VoI analysis are categorised and reviewed, subse-
quently, the present work gives a summary of existing
studies and investigations in the field of civil and infras-
tructure engineering. Finally, the summary and promising
prospects of VoI analysis are presented and discussed.

A brief history of value of information analysis
The quantification of VoI has during 1950ies and 1960ies
originated from two different fields of science, namely (1)
information and communication theory, and (2) Bayesian
decision theory. In the domain of information and com-
munication theory, VoI has been derived by assigning util-
ities to probabilistically defined states and by quantifying
the induced values associated with the uncertainty reduc-
tion of information. On the contrary, Bayesian decision
theoretic definition takes basis in assigning probabilities
as weights to a cost-benefit optimisation and then defining
the difference to an expected utility optimisation without
information as the value of information. Both definitions
are utilized in the reviewed literature, however, in the field
of engineering risk analysis, Bayesian decision theory by
far and large dominates.
An early approach of utilizing information for uncer-

tainty reduction can be found in Communication Theory
[7], quantifying the contribution of additional information
to the reduction of uncertainty in the system of relevance

Fig. 1 The DIKW structure for the engineering decisions [5]
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through combining the Shannon’s Information Entropy
with Statistical Decision Theory. Hereafter, in Mccarthy
[8], it was found that any convex function of a set of
probabilities may serve as a measure of VoI. Further-
more, as stated in Howard [9], “no theory that involves
just the probabilities of outcomes without considering
their consequence could possibly be adequate in describ-
ing the importance of uncertainty to a decision maker”, so
the utility associated with the corresponding action and
uncertainty should be taken into account when measur-
ing VoI. A Bayesian formulation of VoI was introduced
in Raiffa and Schlaifer [10] based on the Expected Utility
Theory (EUT) [11] around 1960 through the pre-posterior
decision analysis. They firstly define the VoI in the con-
text of business decisions in their classical textbook, which
provides the first axiomatic definition of VoI in decision
theory together with the consideration of the uncertainty
associated with or contained in the information. On the
basis of existing research, a more in-depth discussion
on the VoI is carried out in Feltham [12], in which the
information attributes of relevance and delay in decision-
making scenarios and the perception of decision-makers
are incorporated into the framework of the VoI analysis.
Miller [13] noted the problem in the value of sequen-
tial information analysis, and found through analysis of
arithmetic examples that when there is a range of infor-
mation, the order in which the information is obtained
has a significant impact on VoI, so that making decisions
in a sequential decision situation is best done through
sequential analysis. In summary, at the early stage, it can
be seen that the study of VoI in both information theory
and economics essentially return to the fundamental point
of the contribution of information to the reduction of the
expected value of losses (or increase in expected value of
gains), and both utilize VoI to inform decision makers in
choosing the utility maximising action before implement-
ing it, to reduce the epistemic uncertainties affecting the
decision problems. Since then, Bayesian decision analysis
and VoI analysis have attracted substantial interests and
been applied in a broad range of research and applica-
tion fields including economics, informatics, medical, and
environmental risk management [6, 14–16]. In terms of
the analysis method, pre-posterior decision analysis is the
most fundamental method, the details of relevance will be
illustrated in the following section.
In the field of civil and infrastructure engineering, the

significance of Bayesian decision analysis as a means for
engineering optimization has been appreciated already
since the 1970s [17, 18]. Hereafter, the concept of VoI has
been applied with success especially in the context of opti-
mal planning of operation and maintenance [19, 20]. The
combination of Markov decision process (MDP) and VoI
for developing the optimal maintenance and rehabilitation
decision on the infrastructure management is investigated

in [21], in which the VoI is utilized to evaluate the poten-
tial benefits of different measurement technologies with
the cost-effectiveness consideration. The utilization of the
concept of VoI as a means in risk-based inspection (RBI)
is investigated in [22] as a means to optimize decisions
on where and how to inspect, when and how to repair.
With the emerging of SHM systems, VoI analysis has
aroused high interests in the context of decision making
with respect to SHM system arrangement and operation
[23–25]. Since then, not least through the COST Action
TU1402 [26], substantial further developments and appli-
cations of VoI analysis in the context of SHM have been
undertaken. The methodologies and research frameworks
on how to apply the VoI analysis of SHM systems, how
to analyze the VoI of SHM systems and how to optimize
the arrangement strategy of SHM systems have attained
extensive attentions and been subjected to numerous
investigations [27–30]. The application of VoI analysis in
the field of civil and infrastructure engineering is reviewed
in detail below. As a means for clarifying the VoI con-
cept and associated relevant computation methods, in the
following two different perspectives with respect to the
concept of VoI will be illustrated and discussed.

Two different perspectives on the value of
information
As mentioned above, at the early stage, the concept of
VoI has two different interpretations from two distinct
application fields. In information theory value is associ-
ated directly with entropy, which is more associated with
the theory of experiment planning from statistical estima-
tion, where experiments are optimized such as to reduce
an invariant of the covariance matrix (of parameters to
be estimated), see e.g. [31, 32]. Whereas in Bayesian deci-
sion analysis, value is associated with the expected value
of utility or consequences, which is more in line with the
economic and management perspective. Therefore, this
section will be partitioned into two categories to illustrate:
(1) Information theory perspective, which deals only with
uncertainty in the VoI analysis, and (2) Bayesian decision
theory perspective, which considers not only uncertainty
but also consequences.

Information & communication theory perspective

The VoI theory is an independent branch of information
theory, but is rooted in communication theory [33]. In the
field of information and communication theory, the con-
cept of VoI connects Shannon information theory with
statistical decision theory, which can be described as the
maximum benefit that can be gained in the process of
minimizing the expected cost from a given amount of
information. The main focus in the area of information
theory is the inherent uncertainty in a random variable,
which Shannon’s entropy can appropriately measure [7].
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On the basis of entropy, suppose ξ is the hypothetical vari-
able and entropy is used as the value function, then the
value function, V (ξ), is defined as:

V (ξ) = H(ξ) = −
∑

ξ

P(ξ) lnP(ξ) (1)

where ξ is a random variable, for illustration, ξ is assumed
as a discrete random variable, and thus P(ξ) is its proba-
bility.
Further, suppose ε is a random variable, which can be

observed by experiments or tests, then the value function
of ξ given an observation on ε can be written as:

V (ξ |ε) = H(ξ |ε) = H(ξ , ε) − H(ε) (2)

Therefore, the VoI of ε can be expressed as the difference
between the entropy for observing and not observing ε:

VoI(ε) = V (ξ) − V (ξ |ε) = I(ξ , ε) (3)

where I(ξ , ε) is the mutual information of ξ and ε, which
is in principle a measure of the distance between P(ξ , ε)
and P(ξ)P(ε). More details on the assessment of VoI based
on the concept of information entropy can be found in
[33, 34]. Originating from the viewpoint of reduction
of the uncertainty, some studies extended the metric of
VoI by establishing novel utility functions considering
the entropy-related concepts, like Kullback-Leibler (K-L)
Divergence, in the field of civil and infrastructure engi-
neering associated with the sensor optimum arrangement
strategy, which will be introduced later.

Bayesian decision analysis perspective

In the field of economics and management, the focus
is on how to make optimal decisions under uncertainty,
which is closely related to the utility function. As stated
in Raiffa and Schlaifer [10], the increase in utility that
results from learning additional information and there-
fore altered prior optimum decision apri will be regraded
as VoI. In the following, the original definition of the VoI
analysis in Raiffa and Schlaifer [10] will firstly be demon-
strated, which is illustrated through the form of decision
tree. Then an analytical form in MDP will be presented,
which is an efficient method for the special case that the

underlying process (to be controlled) follows a random
process with Markovian properties [35].

Representation in decision tree

The decision tree is used as a visual and analytical decision
support tool to calculate the expected utility of compet-
ing alternatives, which is simple to understand and easy
to interpret and generally consists of three types of nodes:
decision nodes, chance nodes and utility nodes [36]. For
illustrating the concept of VoI, a simple decision tree in
[37] is shown in Fig. 2, which represents the pre-posterior
decision analysis scenario.
Let u(e, z, a, s) denote the utility of performing a partic-

ular experiment e, observing a particular outcome z, and
choosing a particular terminal act a, when the true state
of the world is s. It can be seen that u(e, z, a, s) could be
decomposed in:

u(e, z, a, s) = ut(a, s) + us(e, z) (4)

where ut(a, s) is the terminal utility that results from tak-
ing action a when the true state is s, us(e, z) is sampling
utility incurred by performing the experiment e which
results in the outcome z.
For any experiment or sample e, the VoI can be defined

as the difference of utility between the scenarios of given
and not given information, for echo the illustration in the
next section, the VoI for this perspective will be called
the expected value of information (EVI), which can be
formulated as:

EVI(e) = EZ[ut(az, z)]−ut(a0) (5)

where az is optimal action depending on the particular
outcome z from the given experiment e, a0 is the optimal
action without additional experiment e. The next section
will show that EVI will be positive only if the action a is
changed, but if the action a is the same with and with-
out the information given, EVI will be zero. The EVI is the
gross value of information, in which the sampling utility
us(e, z) is not considered. To get the net gain, the expected
net gain of sampling, ENGS, is defined as:

ENGS(e) = EVI(e) + us(e) (6)

Fig. 2 Illustration of preposterior decision analysis in decision tree [37]
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where us(e) is the sampling utility, which is normally
defined as a form of the cost function with a negative value
of utility.
However, the full decision tree is computationally inten-

sive in a sequential decision scenario over the service life,
therefore, to reduce the computation cost, some simpli-
fied methods should be considered [38]. In the following,
MDP-based definition will be given in detail.

Representation inMarkov decision process

MDP is beneficial when the decision problem involves
risks that persist over time and the dynamic environment
can be modelled as a Markov process, the details of MDP
and the comparison between decision tree could be found
in [39].
A MDP [40] constitutes an extension of a Markov chain

[41] by introducing actions and rewards associated to
states. MDP is mainly used to model and solve dynamic
decision analysis with stochastic properties satisfying the
Markov property of past state independence, the most
basic type of a MDP is the discrete time MDP, which is
thus defined with a vector:

[

S,A,Pt,t+1(a),R(st , st+1,π(st)),V
]

(7)

where S is the state space, which can have a system
dimension (as an allocation of system components) and a
temporal dimension; when the state is st ∈ S at time t,
an action a from the action space A should be made fol-
lowing a policy π(st); Pt,t+1(a) is the transition probability
of the system will transfer from state st to state st+1 and
R(st , st+1,π(st)) is the corresponding reward received by
the state st transfer to the state st+1 under policy π(st); V
is the objective function, which may be different for dif-
ferent horizon of time [42]. For a finite horizon with time
period T, an optimal policy π∗(s), s =[ s1, s2, ..., st]T, can
be obtained by Eq. 8, which is written in the form of the
discounted expected total reward:

π∗(s) = argmax
π∗(s)∈�(s)

V

= argmax
π∗(s)∈�(s)

ES

[

T
∑

t=1

dt · R (st , st+1,π(st))

]

(8)

where the d is the discount factor which has the function
of calculating the reward at the time t, �(s) is a set of
possible policies. As such, the objective function with the
optimal policy can be written as:

V ∗(s) =V (π∗(s)) (9)

Further, a partially observable Markov decision process
(POMDP) is an extension for partial observability, i.e.
when the state is not known at the time of the action as
introduced by Åström [43], which is amore suitablemodel

that can be employed in engineering riskmanagement due
to the limitation of MDP [44]. Additionally to the defi-
nitions of the MDP above, the following definitions are
introduced: observation space, �, and conditional obser-
vation probability, O (ok|st+1,π (st)), where ok ∈ �. The
objective function can be written as the MDP objective
function, however, the policy function is reformulated in
dependency of the observations and their probabilities. It
should be noted that the planning with POMDP leads to
the algorithm dependency of the solution, i.e. that there is
no general algorithm, which can uniquely solve a POMDP.
However, there are subclasses of decidable problems, see
e.g. [45].
On the basis of the above illustration, the VoI with

Markov processes can be defined as the optimal reward
difference with and without additional information and
their optimal policies (see e.g. [46–51]):

VoI(�) =E�

[

V ∗(s′|o)
]

− V ∗(s) (10)

where s′ =[ s′1, s
′
2, ..., s

′
t]
T is the set of the updated proba-

bilistic models of the state space based on the observa-
tions.

Basic procedure for value of information analysis
As stated in the foregoing, there are two different meth-
ods for assessing VoI: decision tree analysis and MDP.
Although the basic assumptions here are fundamentally
different, the procedures and basic ideas of the VoI analy-
sis are much the same, the description of the VoI analysis
will then be presented as a decision tree in accordance
with the Raiffa and Schlaifer [10].
The essential issue in engineering decision-making

is to identify the decision scenario and establish the
corresponding feasible representation, through a deci-
sion/event tree. This step should follow the hazard identi-
fication and uncertainty modelling as outlined in [52]. On
the basis of a feasible representation of the relevant deci-
sion scenarios, including the decision alternatives, the cor-
responding probabilistic models, together with the proper
assignment of utility, the numerical evaluation of the risks
associated with the individual decision alternatives may
be performed. Depending on the state of information at
the time of the decision, three different analysis types
are distinguished: prior analysis, posterior analysis and
pre-posterior analysis [53].
The prior decision analysis can be regarded as “deci-

sions with given information”, the representation of the
prior decision scenario is illustrated by decision tree in
Fig. 3. Assuming that the collection of structural state is
represented by the random vector � with the prior prob-
ability distribution f �(θ) and the decision alternatives
considered are collected in the vectorA. According to the
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Fig. 3 Decision tree for prior decision analysis

expected utility theory, the optimal decision alternatives
aopt is the choice of obtaining theminimum expected cost:

aopt = argmin
a∈A

E�[C(a, θ)]= argmin
a∈A

∫

�

C(a, θ)f (θ)dθ

(11)

where C(a, θ) is the cost function related to the structural
state θ and the corresponding action a.
The posterior decision analysis corresponds to the sce-

nario that additional information x has been achieved , on
the basis of which the probabilistic models related to the
decision context may be updated (Bayesian updating), see
Fig. 4. The posterior decision analysis is in principle iden-
tical to the prior decision analysis, with the exception that
the basis for the probabilistic modeling of uncertainty has
been enhanced. The optimal posterior decision action a′

opt
can be made by:

a′
opt=argmin

a∈A
E�′ [C(a, θ |x)]=argmin

a∈A

∫

�′

C(a, θ)f (θ |x)dθ

(12)

it should be noted that the definition of the set of decision
alternatives, A, here is manifold. In Raiffa and Schlaifer
[10], decision alternatives are simply collected in the vec-
tor A. It is up to the user/reader of the decision analyt-
ical framework to interpret this vector. This essentially
means that the vector A may contain several different
classes of decision alternatives which may or may not
be invoked depending on the information which is col-
lected in the future. Such classes of decision alternatives

might include exploratory decisions (decisions on differ-
ent means to collect information) such as inspections,
monitoring, proof load testing, model tests, specimen
material tests, observations of load and degradation pro-
cesses together with review of design basis/ as built
drawings and manufacturing protocols. Another class of
decision alternatives of course concerns changing the
physics (repairs/strengthening/change of use, etc.). The
details of this for the VoI analysis will be discussed in the
next section.
The benefits of additional information x can be cor-

respondingly quantified by the difference between the
expected costs under the posterior and prior optimal
actions, which is defined as conditional value of informa-
tion (CVI):

CVI(x) = E�′ [C(aopt, θ |x)]−E�′ [C(a′
opt, θ |x)]

=
∫

�′

[C(aopt, θ |x) − C(a′
opt, θ |x)] f (θ |x)dθ (13)

It can seen from Eq. 13 that the a′
opt will bring more ben-

efits than the aopt, meaning that CVI is a non-negative
value.
Generally, obtaining additional information is associ-

ated with cost. Optimizing decisions with respect to
collection of additional information is thus an effective
means to help improve decisions on how to collect infor-
mation before actually acquiring it. The key for this
scenario is to consider all possible outcomes from the
measurements on the basis of given probabilistic model of
the outcomes, as shown in Fig. 5. Therefore, the collection
of all the possible additional information may be mod-
eled as a vector of random variables X with a designated
(possibly subjective) probability distribution. In this case,
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Fig. 4 Decision tree for posterior decision analysis

the potential benefits associated with collecting the addi-
tional information are referred to as the expected value of
information (EVI), which can be calculated by:

EVI = EX[ CVI(x)] (14)

As a result of CVI(x) ≥ 0, the EVI in the framework of
Bayesian pre-posterior decision analysis cannot be neg-
ative, which means that the additional information can
always bring positive benefits without the consideration of
itself costs.

Modelling aspects in value of information analysis
In this section, modelling methods accounting for the
information representation, probabilistic model and util-
ity function, together with the discussion of limited mod-
elling aspects in the VoI analysis process, are described
and discussed in relation to the relevant existing research,
respectively.

Information modelling

The question of how to model information in an appro-
priate way is a crucial one in the VoI analysis, and two
cases of information types are proposed [10]: perfect
information, xp, and imperfect information, xip. The dis-
tinction between the two types of information concerns
the uncertainty associated with the information itself. Per-
fect information, as the term suggests, can directly reflect
the true state of the variable, θ , without any uncertainty;
this would correspond to an ideal situation, but is still
a useful consideration as will be discussed later. Corre-
spondingly, imperfect information refers to the case where
the additional information related to the state of target
variable, θ , is either indirect or associated with random

noise, such as is generally the case in real world exper-
imentation, sampling, and so on. The case of imperfect
information is also referred to as sample information in
Raiffa and Schlaifer [10]. While it is true that the decision
maker usually cannot obtain perfect information, ideal-
ized consideration of the case of the expected value for
perfect information (EVPI) is nevertheless of great practi-
cal interest. This is due to the fact that the computational
efforts associated with EVPI analysis are far less than
those required for the case of imperfect information and
the fact that the value of imperfect information cannot
exceed the value of perfect information. The EVPI case is
thus a very useful first step in assessing whether collec-
tion of information at all has the potential to exceed the
costs of collecting the information. If this proves to be the
case, more detailed VoI analysis can be performed on the
imperfect information.
The consideration of uncertainties associated with the

relevant information in civil and infrastructure engineer-
ing is an essential issue in engineering risk analysis.
This e.g. concerns the probability of detection (PoD) for
inspection techniques [54], model uncertainties associ-
uated with SHM information [30], among others. With
respect to measurement errors, there are two types of
error models that have been widely adopted: the additive
error model and the multiplicative error model [55]. The
additive error model is defined as:

x = hadd(θ) + ε (15)

where x is the information, ε is defined as the general-
ized error, including the measurement errors associated
with the selected measurement technique, the uncertainty
associated with the functional relationship between the
measurements and the actual state (also referred to as



Zhang et al. Journal of Infrastructure Preservation and Resilience            (2021) 2:16 Page 8 of 21

Fig. 5 Decision tree for preposterior decision analysis

condition indicators), etc. hadd is used to represent the
relationship between the information and target variable
in the additive error model. Whereas the multiplicative
error model is defined as:

x = hmul(θ)eε (16)

where hmul(θ) is used to represent the relationship
between the information and target variable in the multi-
plicative error model.
Two types of error were suggested to take into account

in Feltham [12]: variability and bias. Variability refers to
random noise affecting the measurement process. This is
often modeled as a zero-mean normal distribution. The
variability cannot affect possible changes in the expected
value of the estimated results obtained from the data,
whereas bias refers to the difference between the expected
value of the measurement information and the actual state
due to possible systematic errors (non-ergodic variations)
in the measurement method. When a measurement can
be regarded as an unbiased experiment, the zero-mean
normal distribution could be employed to model the ran-
dom error of the measurement, which is mainly used
to discuss the influence of the error of information in
existing studies [23, 27, 56, 57]. Whereas the measure-
ment system will inevitably have systematic errors, to this
end, the significance of biases associated with inspection
results is investigated in Ali et al. [58], furthermore, the

often prevailing dependency of inspection performance
over consecutive inspections are also discussed. In addi-
tion, the property of imperfect information can also be
modeled as the likelihood function of the performance
indicator, see e.g. [59, 60].
Recently, an in-depth discussion on the representation

of information in decision analysis is conducted in Nielsen
et al. [61], in which the information is categorized into five
types according to the relationship between information
and decisions:

• The information is relevant and precise
• The information is relevant but imprecise
• The information is irrelevant
• The information is relevant but incorrect
• The flow of information is disrupted or delayed

Understanding and modelling the information source and
corresponding flow is important and significantly affects
the decision making and of course also the outcome of
VoI analysis. To this end, a framework and the related pro-
cessing methods of various types of information for elim-
inating the adverse consequence by misunderstanding
the information are proposed. Moreover, structural life-
cycle integrity management is a time-dependent decision-
making process, in which the possible time-dependent
properties of information and its modelling play impor-
tant roles. The temporal modelling method of SHM
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information during the operational phase of structures is
discussed and proposed in Zhang et al. [5].

Probabilistic modelling

In this subsection, probabilistic modelling is addressed
in terms of two types: information source and likeli-
hood function. Probabilistic modelling of the information
source is the fundamental step in the decision process. As
stated before, the probabilistic model of information in
the prior decision analysis is regarded as the information
source in the pre-posterior decision analysis [10]. In such
a case, an a-priori available database related to the infor-
mation and the corresponding probabilistic model is nec-
essary, which means the benefit of additional information
cannot be assessed through one or a few realizations of
information. In addition, the accuracy of the model of the
information source will significantly affect the correctness
of the VoI analysis results, and the information may come
from various sources, some of which may not be related
to the decision scenario. When performing decision anal-
ysis, the source of the information may be unknown and
may often come from possible competing or alternative
systems [61]. As such, all relevant possible sources must
be accounted for in modelling the probabilistic represen-
tation for amore adequate and accurate prior probabilistic
informationmodel. To this end, a novel big data technique
based approach is presented as a means of developing
probabilistic representations which makes full use of the
prior available knowledge and the information collected
through observations [62].
In Bayesian analysis, the information gained from new

data is represented by the likelihood function, which plays
a key role in Bayesian inference, the likelihood function of
a hypothesis (H) given some data (D) is the probability of
obtaining D given that H is true can be expressed as:

L(h) = P(D|H = h) (17)

The likelihood function is used to update the prior distri-
bution to a posterior distribution through a well-known
conditional probability theorem:

P(θ |D) ∝ P(θ) × P(D|θ) (18)

where θ is the parameter of interest, P(θ) is the prior dis-
tribution of θ . A tutorial of likelihood function and its
applications can be found in [63]. In civil and infrastruc-
ture engineering, there are three common ways to model
the likelihood function for different purposes. The first
way is to establish the likelihood function L(θ) through the
relationship between the measurement outcome x and the
corresponding mathematical function of actual state for
the variable of interest θ with the consideration of additive
measurement error ε (see Eq.15):

L(θ) = fε(x − h(θ)) (19)

where fε(.) is the probabilistic model of the measure-
ment error, this case often can be found in the value of
imperfect information analysis [5, 23, 27, 57]. The sec-
ond method is to directly establish the likelihood function
by using existing experiments, some phenomenological of
physics based models (e.g. finite element models) or past
observations, such as probability of detection (PoD) for
inspection technique, see e.g. [54, 59, 60]. Another way
is to take the statistical uncertainty and the model uncer-
tainty associated with a variable into account by introduc-
tion of so-called hyper-parameters. Then based on Bayes
Theorem the posterior distribution of the random vari-
able is obtained to reduce the relevant uncertainties. This
way can be used in the decision scenarios related to the
life-cycle management or decision making with respect to
information collection in the context of spatial variability
[5, 64, 65].

Utility modelling

The notion of utility is derived from the economic the-
ory of value to describe the satisfaction a person obtains
through consumption or use of a certain commodity.
For investment, it refers to the satisfaction that investors
obtain from different investment portfolios. Compared
with the expected monetary value, when the utility is
used as a decision criterion, it is usually necessary to
consider the decision maker’s attitude towards risk and
the influence of psychological factors. The utility func-
tion is a representation to define individual preferences
for goods or services beyond the explicit monetary value
of those goods or services, which are often expressed as
U(x1, x2, x3, ...) which means that U, our utility, is a func-
tion of the quantities of x1, x2, and so on. In most existing
publications of risk management of civil and infrastruc-
ture engineering, it is often assumed that the decision-
maker is ideally rational and risk-neutral, see.e.g. [66], in
this case, the utility function U can be written in:

U(c(a, θ)) = −c(a, θ) (20)

where c is a expected monetary value conditional on the
action a and the state of system θ .
A number of studies have considered risk attitudes in

engineering decisions, in Wang et al. [67], the utility func-
tions relating to owners’ financial capacity and risk-averse
psychology are used to the pre-posterior decision analy-
sis for optimal bridge inspection planning. In the decision
making process, when the utility functions are consis-
tent, it has been stated earlier and also shown in [27, 57]
that VoI cannot be negative. Recently, it has been shown
that VoI can be negative when the utility functions are
different, due to the fact that different people have dif-
ferent risk attitudes at different stages of the decision
process [68, 69].
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Another situation is where the benefits of information
cannot be measured in economic terms. In this case,
quantitative VoI returns to its original purpose of the
application, namely the value of its contribution to reduc-
ing uncertainty [8]. To a certain extent, VoI analysis can
also be regarded as a special sensitivity analysis, which
is used to obtain the optimum choice of information to
reduce uncertainty in the system. For instance, the infor-
mation entropy was utilized to optimize the location of
sensors in the structure [70], a new formulation of infor-
mation benefits, which takes rigorously into account both
information gain and cost-related benefits, is employed in
VoI analysis to optimize the sensor configuration of ultra-
sonic guided-wave inspection [71]. Moreover, the mea-
sure of VoI is not limited to the technical level, in the field
of civil and infrastructure engineering, more attentions
could be paid to the impact of information on the levels of
the considered system and the society, including consider-
ations on robustness and resilience in the representation
of the utility function [61, 72].

Further VoI modelling aspects

Generally, in existing investigations of the VoI analy-
sis, the collections of decision alternatives are the same
in both scenarios, and the complete additional informa-
tion of interest has been collected as well when making
a decision. As stated earlier, in some cases, the addi-
tional information may not only help reduce the epistemic
uncertainty of decision-making within the original deci-
sion alternatives, but also help decision-makers to expand
the space of decision alternatives or changing the rule of
decision making to optimize benefits. For instance, proof
load information may allow for exploring further action
alternatives [73], the inspection information may help the
time-based maintenance transfer to the condition-based
maintenance [74], among others [58, 75, 76]. To high-
light this feature, the VoI analysis with extended decision
alternatives is defined as the expected value of sample
information and actions (EVSIA) in [73, 76], since it is
computed as the difference of expected benefits from
the prior decision and the optimal decision and action
combination with the consideration of additional infor-
mation. The forms of this extended VoI analysis can be
represented by the decision tree shown in Fig. 6.

Other aspects

As mentioned earlier, without considering the cost of col-
lecting information, the value of information from the
Bayesian pre-posterior framework is strictly non-negative.
This means that the additional relevant information will
always bring benefits. The above conclusions may be con-
trary to people’s perceptions because there is always some
incorrect or fake information in reality [61]. Themain rea-
son lies in the fact that in Bayesian pre-posterior analysis,

it is assumed that the probabilistic model of information
accuracy has been known in advance, even if the infor-
mation is imperfect, people can integrate the error of the
information into the decision by constructing a likelihood
function, thus eliminating the negative effects caused by
imperfect information. Of course, this assumption is ques-
tionable, once people have a wrong knowledge of the
source of information, there is no doubt that the results of
the VoI analysis are meaningless.
In some cases the complete information of interest can-

not be fully collected when making decisions. This should
be adequately addressed when formulating the decision
scenarios, in which the information should be divided into
different types according to the state at the time of the
decision [5]. Furthermore, the optimum time of decision
makingmay bemissed due to the time delay in the process
of information processing and thereby leading to aggra-
vated losses [12]. This point is worth noting since the
amount of information collected from measurements on
engineering structures might be rather substantial, and it
might be practically infeasible to process the information
in real-time. The question on how often to process col-
lected information is central and so is the effect of possible
delays associated with information processing.

VoI analysis in the field of civil and infrastructure
engineering
This section provides a review of applied VoI analysis
in the field of civil and infrastructure engineering. The
section is divided into three main areas: computation
methods, sensor arrangement optimization and engineer-
ing risk management. As the most important aspect, the
last one will be divided into three items for further detail-
ing. A summary of the reviewed literature below is listed
in Table 1 according to the above divisions. In addition,
the trend in the number of papers in this review, shown
in Fig. 7, demonstrates that interest in VoI analysis has
gained grown substantially over time.

Computation methods and efficient algorithm

The computation procedure of the VoI analysis can be
divided into three steps: prior, posterior and pre-posterior
decision analysis, which have been stated in detail ear-
lier. The comprehensive computation framework of the
VoI analysis can be found in [23, 27, 57]. Due to the
nature of pre-posterior decision analysis, analysing VoI
may require a significant computational effort, particu-
larly in the field of civil and infrastructure engineering,
where the probability of structural failure events is rel-
atively small. In some extreme cases, the computational
cost of the tested VoI is also higher than the cost of the
test itself [23]. To this end, some efficient computation
algorithms have been proposed based on the advanced
surrogate model or graphical probabilistic models, see e.g.
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Fig. 6 Decision tree for extended VoI analysis

[77–79]. Further, machine learning algorithms may also
be applied in support of VoI analysis, Vega and Todd
[80] use a variational Bayesian neural network (BNN) to
use SHM data as a means for updating the surrogate
model, then by comparing the expected costs between
the optimal decisions using inspection data only and the
optimal decisions using a BNN surrogate model and the
relevant SHM information to obtain the value of SHM
information.

In the field of civil and infrastructure engineering,
Straub [27] demonstrates how structural reliability meth-
ods could be used to effectively model the VoI and pro-
posed an efficient algorithm for its computation based on
the importance sampling method. In Straub et al. [29], the
influence diagram is utilized to structure the VoI analysis,
which provides a concise overview on the uncertain con-
ditions and decisions scenarios. Some analysis methods
for decision trees could also support the VoI analysis, in

Table 1 An overview of the reviewed studies in the present work

Study Area Main Objects Reference

Computation Methods Basic Analysis Framework [23, 27, 29, 30, 57]

Efficient Algorithm [50, 51, 77–83]

Sensor Arrangement Modelling of Utility Function [70, 71, 85]

Optimum Arrangement Strategy [56, 70, 71, 85–93]

Risk Management Planning and Decision Phase [17, 53, 73, 106, 107]

Operation and Optimal Strategy [5, 21–23]

Maintenance Phase [24, 27, 30, 58, 60, 65, 74, 75]

[67, 82, 83, 97]

[98, 99, 111–116]

[118, 119, 122, 123, 125]

Environment and [59, 126–128]

Emergency Management [129–133]

System Functionality [72, 134–136]
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Fig. 7 Trends in the number of published journal papers and conference papers in the present review. a Ten years period trend; b Annual trend
from 2010 to 2020

Thöns [30], the Bayesian extensive form of pre-posterior
decision analysis, see [10] is used to reduce the compu-
tational cost of the pre-posterior decision analysis on the
quantification of value of SHM information in the con-
text of structural integrity and risk management. In this
way, the VoI in dependency of structural system charac-
teristics is quantified for a fixed SHM strategy. A similar

analysis approach, which is called backward induction,
is employed to develop the optimal decision-making for
SHM systems in Cappello et al. [81]. The life-cycle man-
agement of engineering structures and infrastructures can
be modeled as a sequential decision making problem to
address the property of time dependent. In this case,
VoI needs to be quantified in sequential decision-making
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scenarios, some efficient computation methods on the
VoI have been developed based on MDP, POMDP, among
others (see e.g. [50, 51, 82]). In addition to the sequen-
tial decision making, a holistic decision making approach
is proposed to compute the VoI of periodic testing
in Zou et al. [83]. To apply the VoI analysis easier,
Agusta et al. [84] develop a software tool for moderately
complex problems and demonstrated its progression in
complexity and approaches to cope with computational
challenges.

Sensor arrangement strategy optimization

Making optimal strategies for sensor arrangement is
essentially a decision problem under uncertainty, which
means that the expected utility theory can be used to pro-
vide a metric for assessing the quality of the design. The
key, in this case, is the modeling of the utility function.
Some efforts in this regard have been employed using
information entropy based approaches to establish the
utility function, see e.g. [70]. In Li and Der Kiureghian
[85], three utility functions associated with quadratic loss,
Shannon information and K-L divergence together with
the elicitation of prior information are employed to make
the prior decision on robust optimal sensor placement
strategy. VoI analysis was not taken into account in their
work due to the considered decision scenario. The similar
research can be found in Capellari et al. [86], they per-
form the cost-benefit optimization of a sensor network
by defining the density, type, and positioning of the sen-
sors to be deployed with the Shannon information gain,
and use the K-L divergence as the decision metric to opti-
mize the sensor network. Malings and Pozzi [56] utilize
the VoI as a metric to guide information collection strat-
egy and optimal sensor placement in spatially distributed
systems, they also discuss the computational complexity,
the main limitation in pre-posterior decision analysis, and
use some approximate techniques associated with the util-
ity function and algorithm to decrease the computational
cost. Thereafter, they extend their work from the static
spatial system to the spatio-temporal systems [87]. Fur-
thermore, Malings and Pozzi [88] find, in some cases, the
VoI metric in the perspective of MDP lacks the property
of submodularity, which will cause suboptimal solutions
for sensing. To this end, they investigate the potential
heuristic approach to avoid some of the shortcomings.
In Cantero-Chinchilla et al. [71], they define utility func-
tion as the product of a normalized inverse cost function
and the information gain, thereby the VoI will consist of
two parts: the benefits of the expected information gain
and the relative cost of implementation. It is somehow
different from the VoI analysis in the economic field, in
which the cost of obtaining information is not taken into
account. More works of relevance can also be found in
[89–93].

Engineering risk management

Modelling of relevant structural health information (SHI)

As reported in [94], the SHI type could be classified
according to its characteristics in temporal and spatial
scales together with the relationship between measure-
ments and corresponding structural performance, see
Table 2.
There are two outcomes of an inspection action: no

indication and an indication of damage. The merits of
nondestructive inspection methods have been appreci-
ated in the application of SIM [64, 95, 96]. Inspectionsmay
be used as a tool to reduce the uncertainty in the predicted
deterioration and/or as a means of identifying deterio-
ration before it becomes critical [95]. Straub and Faber
[97] use VoI analysis to determine the optimal number
of components to be inspected, thereby making the opti-
mum RBI planning for the dependent system. Analogous
to inspection, the Damage Detection System (DDS) also
has the same two outcomes, the difference is that DDS
can be modeled with a multivariate probability of indica-
tion based on the damage indicator value distribution for
each damage state [98]. August et al. [99] combine SHM,
DDS and inspection into the SIM and quantified the value
of these SHI, a detailed investigation on the value of DDS
can be found in Long et al. [60].
Proof load testing (PLT) is used to assess the actual

load carrying capacity of a bridge, a successful proof load-
ing test can immediately show that the resistance of the
bridge is greater than the proof load, thereby reducing
uncertainty in the bridge resistance and increasing the
bridge reliability [100]. Nishijima and Faber [101] utilize
the pre-posterior decision analysis to determine whether
the PLT is beneficial and also to optimize the relevant
parameters. A decision theoretic approach is utilized to
demonstrate the optimal strategy for PLT procedures
and collection of information in Kapoor et al. [102] and
Schmidt et al. [103]. Further, on the basis of the PLT
information, Brüske and Thöns [73] introduce a new con-
cept, value of information and action (VoIA), to accom-
modate new decision scenarios to better quantify their
VoI.
A SHM system may be viewed as a full-scale infor-

mation collection system, which collects information of
relevance for integrity management of structures [1]. A
characteristic of the SHM system is that the types of infor-
mation collected are diverse and continuous in time. In
Pozzi and Der Kiureghian [23], VoI analysis is introduced
and discussed in the context of SHM. Faber and Thöns
[24, 104] propose a framework for the quantification of
VoI and provide an outline on how to apply the frame-
work in support of different types of decision contexts
related to the design and life-cycle integrity management
of structures. In Zhang et al. [5], a decision framework for
SHM system arrangement is proposed to maximize the
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Table 2 SHI types example [94]

SHI Type Temporal Spatial Relationship Reference

Charateristic Charateristic

Inspection Discrete Constituent Direct [22, 58, 74, 83, 97],

Technique [112–114, 116, 122]

Damage Detection Continuous or System or Indirect [60, 98, 99]

System periodical subsystem level [110, 117]

Proof Loading Discrete Constituent, Indirect [73, 100, 101]

Testing subsystem or [106, 107, 118]

system level

Structural Health Continuous or Constituent Direct [5, 23, 24]

Monitoring periodical [30, 59, 75]

[51, 65, 68]

[104, 108, 109]

[111, 115, 119]

[123–125]

[127–129]

[130, 131, 136]

expected net gain from the implementation of the SHM
system based on the VoI analysis.
The SHI analyses can be conducted throughout the life

cycle phase accounting for the intact, hazard, constituent,
and system damage and failure states (see Fig. 8), the
details of relevance may be found in Thöns [94]. In the fol-
lowing, a review of existing research will be given in two
main service life phases.

Planning and design phase

In principle, structural design is a decision-making prob-
lem, and its purpose is to determine the structural design
that maximizes the expected utility of the corresponding
decision maker [105]. Before realizing a design, the avail-
able knowledge is limited and any prediction of future
performance is associated with large uncertainties, the
epistemic uncertainty can be decreased by additional
experiment or exploration information of relevance. In
this case, VoI analysis can provide support for the code
and standard calibration, the structural prototype devel-
opment and design by testing, together with the decision-
making of information collection strategies during the
design phase [94]. Some illustrative examples associated
with the utilization of the VoI analysis in the design
phase can be found in [17, 53]. In Espinosa and Köhler
[106, 107], to efficiently allocate the resources at the
design point in time of the offshore wind turbine sup-
port structure, the VoI analysis is utilized to investigate the
potential benefits of site-specific information on avoiding
the resonance. Brüske and Thöns [73] study the influ-
ence of additional information on structural design, and

quantify its potential benefits on reducing the LCC. They
further utilize the case of proof load testing to demon-
strate the influence of the corresponding information on
the selection of wind turbine substructure types, during
the design phase.

Operation andmaintenance phase

Information gathered by SHI could substantially con-
tribute to providing more knowledge on the state of struc-
tures including their performance, loading and environ-
mental conditions, which is beneficial to the prediction
of the structural future performance and the planning of
operation and maintenance. The main part of the existing
works on the VoI analysis is focused on this aspect, which
may be partitioned according to the following classifica-
tion:

• Optimal operation and maintenance (O&M) and

structural integrity management (SIM) strategies
• Management of environmental risks and emergencies
• Assessment of system functionality

(1) Optimal operation and maintenance (O&M) and

structural integrity management (SIM) strategies

In the field of O&M and SIM strategies, Madanat [21]
applies the concept of VoI in infrastructure O&M deci-
sion based on hidden Markov decision processes and
studies the impact of the uncertainty associated with
non-destructive testing technology (NDT). An applica-
tion framework of the concept of VoI in the SIM can
be found in the work of Straub and Faber [22], provid-
ing an extension of generic RBI planning to optimize the
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Fig. 8 Illustration of a value of SHI analyses throughout the life cycle phase [94]

inspection planning on the system-level based on VoI
analysis. In the past twenty years, SHM systems have been
generally appreciated in the context of O&M strategies,
thus the quantification of the value of SHM information
together with the VoI-based O&M strategy has recently
been developed [23, 104].
Optimizing the operational strategies before imple-

menting measurement systems and maintenance mea-
sures through Bayesian pre-posterior decision analysis is
one of the main aspects in existing studies. In Qin et
al. [65], the optimization of the SHM operation period
is addressed in detail, which is based on the con-
cept of VoI; where VoI reflects the reduction of the

statistical uncertainty of the prior probabilistic model
through SHM information. Hereafter, Zhang et al. [108]
extend this method from component level to system level
with the consideration of dependencies. Further inves-
tigations on the decision framework of SHM systems
operation strategies with the consideration of RBI plan-
ning may be found in [5]. Thöns et al. [109] address
a method of quantifying the value of SHM informa-
tion in the context of SIM for a Daniels system sub-
jected to fatigue deterioration. Further, this method is
utilized and extended for the integrity management of a
generic wind park [30]. In addition to the above stud-
ies, a joint consideration of monitoring and inspection in
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VoI analysis can be further found in Agusta et al [99], in
which the joint quantification of the VoI associated with
inspections, SHM and damage detection system (DDS)
is addressed. Further, Agusta [110] proposes a frame-
work for the planning of the structural integrity and risk
management of offshore structures by utilizing the value
of information and action (VoIA) analysis, described in
“Further VoI modelling aspects” section, to better inves-
tigate the value of additional information in conjunction
with the performance of actions. In Long et al. [111], a
VoI analysis focusing on the quantification of the value of
structural and environmental information on the integrity
management of an offshore wind turbine structure is con-
ducted to show the benefits of the wind speed information
and fatigue loading information. The concept of VoI anal-
ysis also provides a new perspective on the optimization of
the inspection planning through maximizing of utility. In
Liu and Frangopol [112], an optimum inspection planning
is proposed aiming to provide the highest information
gain for fatigue damage assessment and risk mitigation,
which was also based on the pre-posterior decision anal-
ysis. Investigating the potential gains on the reduction of
epistemic uncertainties using measurements before opt-
ing for costly maintenance actions may be feasible. To
this end Goulet et al. [113] optimizes the sequence of
actions including capacity interventions, demand limita-
tion, measurements, model refinement and increase risk
acceptance according to the maximum expected utility
theorem. In addition to the time-dependent relationship
in the decision problem, the nature of the spatial cor-
relation is also an important issue to be considered. In
Vereecken [114], a pre-posterior analysis framework for
spatially degraded concrete structures is developed to
optimize inspection and maintenance planning, in which
the VoI is regarded as a metric for evaluating the fea-
sibility of the decision. More investigations associated
with the O&M stratigies and SIM can also be found in
[98, 115–120].
As mentioned earlier, sequential decision-making

involving multiple decisions is usually used to model
the life-cycle management scenario. Recently, the VoI
in sequential O&M decision analysis has received
widespread attentions. In Straub [27], an approximate
solution is proposed to assess the VoI in sequential
decision scenario, which only considers the information
at predefined time instances. This solution may under-
estimate the overall VoI, but for many applications the
approximation may be reasonable. For performance
degradation that can be modeled as discrete Markov pro-
cess, efficient numerical algorithms for solving the MDP
can be utilized. Memarzadeh and Pozzi [50] illustrates
how to assess the value of inspection and monitoring in
the POMDP from the component-level to system-level
by allocation of components. Further, based on the

framework proposed in [50], Li and Pozzi [121] investi-
gate how the features of long-term SHM information and
of the O&M process influence the VoI. Additional inves-
tigations on discussing the VoI analysis within POMDP
may be found in [44, 51]. Recently, an aperiodic sequen-
tial inspection and condition-based maintenance policy
with a VoI metric are proposed in Fauriat and Zio [122].
In their work, the average cost per unit time is selected
as the optimized object, the inspection is regarded as the
source of additional information which can be utilized the
VoI analysis to quantify its potential benefits and further
to optimize the inspection time. Moreover, a holistic VoI
analysis of multiple inspection times considering the
combined effect of life maintenance interventions can be
found in Zou et al. [83, 116].
As stated earlier, with the implementation of SHM sys-

tems, the maintenance alternatives or new decision rules
in the context of SIM could be enriched to further reduce
the expected LCC. In this case, the value of the reduc-
tion of expected LCC could be regarded as the extended
form of VoI. Nilsson and Bertling [123] carry out an anal-
ysis for the LCCs for two different scenarios with and
without CMS implementation, to gain an understand-
ing of whether a CMS is profitable for the wind turbine
farm. A similar approach can also be found in Nielsen and
Sørensen [124], Zou et al. [74] and Ali et al. [58], in which
the VoIs are the difference of LCCs with and without
additional information.
Decisions on service life extensions may also be sup-

ported by additional information. Thereby VoI analyses
may be employed to optimize the information collection
strategy. In Thöns et al. [125], an approach for the quan-
tification of the VoI for determining whether to extend the
service life of a wind park is proposed, which is based on a
LCC analysis and the direct and indirect consequences of
structural damages and failures. Three SHM strategies are
investigated to highlight that VoI may be regarded a very
useful metric in the process of planning and operating
SHM systems for service life extension of wind parks.
(2) Management of environmental risks and emer-

gencies

Environmental effects on structures may lead to safety
issues related to human life, functional disruptions and
economic consequences. At the same time, in some
extreme conditions, such as icing events, floods and
earthquakes, it may cause public safety emergencies. In
Bayraktarli and Faber [126], a city level risk-based deci-
sion analysis for earthquake risks based on a Bayesian
Network is proposed to consider the additional observed
information benefits on the uncertainty reduction.
In order to reduce the risks and support the emer-

gency management for extreme weather condition, spe-
cific types of monitoring systems can be used to monitor
or support the prediction of environmental conditions. In
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Roldsgaard et al. [127], the value of early warning of icing
events is investigated on the basis of the monitoring of
environmental conditions and short-term forecasting. A
Bayesian network is to model probabilistically related to
the ice accretion on bridge cables, which facilitates updat-
ing of the ice occurrence probability with the monitoring
data. Rastayesh et al. [128] address the application of VoI
and VoIA analysis for the installation of heating systems
in wind turbine blades to reduce the risks associated with
human fatality, functional disruptions, and/or economic
losses.
Bridges over waterways can be adversely affected by

scouring erosion, which, in some extreme cases, can
rapidly compromise foundation stiffness and result in
unacceptable movements or even collapse. Giordano et al.
[59] propose a framework of the VoI analysis for mon-
itoring systems of scoured bridges in emergency man-
agement, two actions are considered in the emergency
management: open the bridge and close the bridge, asso-
ciated to direct consequences and indirect consequences.
A similar framework investigating the value of SHM infor-
mation is applied to the case of post-earthquake emer-
gency management in Giordano et al. [129]. Klerk et al.
[130] explore the potential benefits of pore pressure mon-
itoring for earthen flood defences; they also consider the
climate change effects of the future loads. A similar inves-
tigation about the VoI analysis for snow loads monitoring
systems can be found in Diamantidis et al. [131].
Terrorist attacks on engineering structures can be

regarded as deliberate human-made events with high con-
sequences, including direct structural damage and loss
of life, as well as indirect negative social effects. Thöns
and Stewart [132] address the assessment framework of
the cost efficiency of risk mitigation strategies for ter-
rorist attacks with improvised explosive devices for an
iconic bridge structure on the basis of pre-posterior deci-
sion analysis. Further, based on their previous assessment
framework, Thöns and Stewart [133] provide decision
support for identifying the potential benefits of various
risk reducing strategies for large governmental buildings
with the consideration of Life Quality Index (LQI).
(3) Assessment of system functionality

The development and management of the societal
infrastructure is a central task for the continuous devel-
opment of society. As such, the system functionalities like
infrastructure robustness and resilience [134] can also be
regarded as a reference for decision indicators. In Thöns et
al. [125], three SHM strategies are proposed for the wind
park operation associated with direct and indirect benefits
and consequences. Thereby, the corresponding improve-
ments in robustness and vulnerability can be evaluated,
which provide a wider perspective of the VoI analysis. In
Miraglia et al. [135], VoI analysis is utilized for quantifying
the potential benefits of different monitoring strategies

applied as a means for improving the resilience of an inter-
connected system comprised by infrastructure, economy
and environment. Further, Qin et al. [136] illustrate the
utilization of VoI analysis in the case of resilience mod-
elling and management of wind turbine park. In the opti-
mal decision-making process, they maximize the service
life benefits under the constraint of a maximum accept-
able annual probability of resilience failure. Subsequently,
the VoI is quantified under this scenario; more details of
relevance may also be found in Qin et al. [72].

Summary and research challenges
As an important and effective means of supporting engi-
neering decisions in the context of optimal management
of additional information, VoI analysis has achieved sys-
tematic progress in the field of civil and infrastructure
engineering, and has been widely studied not only in
operation and maintenance decisions involving economic
factors, but also in the optimal design of structures and
monitoring systems. The present work illustrates differ-
ent origins of the VoI analysis formulations on the basis
of information and communication theory and Bayesian
decision theory, and also highlights the importance of
awareness of the underlying assumptions and definitions,
and coherence with the modeled systems and scenarios.
Thereafter, a literature review is provided on available VoI
related research in the field of civil and infrastructure
engineering. This review reveals the growing interest in
VoI analysis over the past decade with the rise of big data
related technologies, in the hope of providing a systematic
review for researchers to assist future research in this field.
The concept of and the logics underlying VoI analysis pro-
vide a perspective based on the potential benefits and how
additional information about the perception of engineer-
ing structures can be better used to assist decision makers
in relevant engineering decisions.
However, there are still substantial challenges in how

to efficiently calculate VoI and better conduct VoI analy-
ses for the life-cycle integrity management of engineering
structures, and the directions worthy of future research
are very rich. Some summaries and outlooks on the VoI
analysis in the field of civil and infrastructure engineering
are illustrated in the following:
(1) Information modelling: At present, the modelling

of information is still mainly based on the classifica-
tion of information in classical Bayesian decision theory.
However, as the behaviour of engineering structures is
diverse and coupled, the decomposition and identifica-
tion of information is important for the VoI analysis,
and further refinement of information in engineering
from the perfect and imperfect information into more
realistic categories has been proposed in the existing
literature. Similarly, modelling the spatio-temporal corre-
lation and delay of information is also necessary, and not
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much attention has been paid to this aspect in existing
studies.
(2) Probabilistic modelling: With the emerging technol-

ogy involving big data and industry 4.0, information would
require a rigorous probabilistic modeling and assess-
ment of their value. The selection of a prior probabilistic
representation of information and the construction of
a likelihood function of information and reality is the
most important aspects of VoI analysis. The accuracy
of the prior model plays a decisive role for informa-
tion value, as it determines the source of information in
the pre-posterior model. At present, in many practical
problems, there is information that can be captured with-
out a more mature prior model, and there is not yet a
more mature analytical framework for the VoI analysis in
such cases.
(3) Utility modelling: The main utility criterion in the

existing literature is still the expected monetary value, but
it is more important for decision makers to consider the
utility of stakeholder risk attitudes, while broad indicators
(such as system functionality) should also be considered in
the VoI analysis. How to develop reasonable utility rating
criteria is also an important task in measuring the value
of additional information. Such issues have been noted by
scholars and are currently being studied in greater depth.
(4) Scenario modelling: Modelling decision scenarios

and the way in which information is used in decision-
making in a suitable manner is important for accurately
measuring the value of additional information in the
decision-making of engineering structures. As such, full
life cycle modeling including the dependencies between
the design, construction and operation phases should be
developed. Especially in sequential or time-dependent
decision scenarios, time series information may not be
fully observable at some of these decision time points. In
addition, the correct use of information is another issue
that requires careful consideration, as inappropriate use
of information in certain scenarios can have a negative
impact.
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