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Value of Information in Capacitated 

Supply Chains 

Srinagesh Gavirneni * Roman Kapuscinski * Sridhar Tayur 
Austin Product Center-Research, Schlumberger, Austin, Texas 78726 
University of Michigan Business School, Ann Arbor, Michigan 48109 

Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 

WATe incorporate information flow between a supplier and a retailer in a two-echelon 
VV model that captures the capacitated setting of a typical supply chain. We consider three 

situations: (1) a traditional model where there is no information to the supplier prior to a 
demand to him except for past data; (2) the supplier knows the (s, S) policy used by the 
retailer as well as the end-item demand distribution; and (3) the supplier has full information 
about the state of the retailer. Order up-to policies continue to be optimal for models with 
information flow for the finite horizon, the infinite horizon discounted and the infinite horizon 
average cost cases. Study of these three models enables us to understand the relationships 
between capacity, inventory, and information at the supplier level, as well as how they are 
affected by the retailer's (S - s) values and end-item demand distribution. We estimate the 
savings at the supplier due to information flow and study when information is most 
beneficial. 
(Information Sharing; (s, S) Policy; Optimal Policies; Capacitated Production-Inventory Model; 
Infinitesimal Perturbation Analysis) 

1. Introduction 
The industrial supplier-retailer relations have under- 
gone radical changes in recent years as the philosophy 
behind managing manufacturing systems continues to 
be influenced by several Japanese manufacturing 
practices. As more organizations realize that success- 
ful in-house implementation of Just-in-Time alone will 
have limited effect, they are encouraging other mem- 
bers of their supply chain to change their operations. 
This has resulted in a certain level of co-operation, 
mainly in the areas of supply contracts and information 
sharing, that was lacking before. This is especially true 
when dealing with customized products, and is most 
commonly seen between suppliers and their larger 
customers (retailers). 

Our primary motivation to develop the models in 
this paper came from two sources. One was from the 
food industry, when a Pittsburgh based manufacturer 

-the largest supplier on the East Coast to a large 
fast-food chain-was asked to take the lead in inte- 
grated supply chain management. One of the goals of 
the manufacturer was to improve the understanding 
of the interactions between information, inventory, 
and capacity (because it affects customer service and 
cost), providing insights for the entire supply chain, 
consisting of 160 suppliers. Consequently, we take the 
supplier's point of view in this paper. The second (and 
a broader) motivation to study the benefits of infor- 
mation arose because of differing reactions to Elec- 
tronic Data Interchange (EDI) benefits from industrial 
sources: While some were very happy with improved 
information, others were disappointed with its bene- 
fits (see Armistead and Mapes (1993) and Takac 
(1992)). Thus, while information is always beneficial, 
we wished to investigate when it is most beneficial 
and when it is only marginally useful. In the latter 
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case, we wanted to explore how improving some 
other characteristic of the system, such as end-item 
demand variance or supplier capacity might allow one 
to expect significant benefits from information. 

The degree of cooperation varies significantly from 
one supply chain to another. The type of information 
sharing could range from generic (e.g. type of inven- 
tory control policy being used, type of production 
scheduling rules being used) to specific (e.g. day-to- 
day inventory levels, exact production schedules). We 
develop and analyze new models of these recent 
developments in information sharing. 

Previous research in this area, i.e. incorporating 
information flow into inventory control and supply 
chains, has mainly followed two approaches. The first 
approach used by Scarf (1959), Iglehart (1964), Azoury 
(1985), Lovejoy (1990), and Lariviere and Porteus 
(1995, 1996) was to use the history of the demand 
process to more accurately forecast the demand dis- 
tribution using Bayesian updates. The second ap- 
proach, used in this paper, incorporates the informa- 
tion flow by developing new analytical models. This 
approach is used by Zheng and Zipkin (1990) to 
analyze the value of information flow in a two- 
product setting. They showed that using the informa- 
tion about the outstanding orders of both products 
results in improvements of system performance. Zip- 
kin (1995) extended this to a multiitem production 
facility. Hariharan and Zipkin (1995) incorporated 
information about order arrivals, termed demand 
lead-times. Chen (1995) studied the relative benefits of 
echelon-stock policies over those of installation-stock 
policies in a multi-echelon environment. The latter 
decisions at a given facility depend only on local 
inventory information as opposed to this information 
combined with information on other facilities. A dif- 
ferent way of expressing information is through rela- 
tions among demand states. A stream of papers (e.g. 
Song and Zipkin (1993) and Sethi and Cheng (1997) 
models the demand process as dependent on exoge- 
nous ("informational") variables which themselves 
fluctuate according to a given stochastic process. Tra- 
ditional capacitated models have recently received 
attention: Federgruen and Zipkin (1986a, b) provide 
the optimal policy for the stationary demand case; 

Glasserman and Tayur (1994, 1995) study multiech- 
elon systems operated via a base stock policy; Aviv 
and Federgruen (1997), Kapuscinski and Tayur (1998) 
and Scheller-Wolf and Tayur (1998) study nonstation- 
ary demand settings. 

In this paper, we study partial and complete infor- 
mation sharing in a supplier-retailer setting, and also 
compare these to a base case of no information. The 
retailer faces positive integer demands which are i.i.d. 
in any period ("the end-item demand") and places 
orders with the supplier according to an (s, S) policy 
(i.e., at the supplier-retailer interface there is an im- 
plicit fixed ordering cost). In a traditional setting 
(Model 0), the supplier is unaware of the retailer's 
demand or ordering policy, and merely observes the 
orders from her, i.e. he assumes that the demands 
from the retailer are i.i.d. in each period (we illustrate 
them as originating from a black box, cf. Figure 1). In 
Model 1, the supplier knows the demand distribution 
faced by the retailer, the fact that orders are placed 
according to an (s, S) policy, and the specific param- 
eters s and S (see Figure 2). Finally, in Model 2 the 
supplier receives, in addition, immediate (periodic) 
information about the retailer's demands, perhaps via 
EDI links (see Figure 3). 

Some of our qualitative results are as follows. It is 
intuitive that the optimal policy in a model with 
additional information should perform better than the 
optimal policy in a model with restricted information, 
and this is confirmed by our experimental results. 
However, when the end-item demand variance is 
high, or the value of A = S - s is very high or very 

Figure 1 Model 0-The Traditional Supply Chain 

Supplier Demand 
Inventory 
Control 

Figure 2 Model 1-Supply Chain with Some Information Flow 

Supplier Demand Retailer i.i.d Demand 
Inventory (s,S) Policy 
Control 
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Figure 3 Model 2-Supply Chain with Full Information Flow 

Supplier Demand Retailer i.i.d Demand 

Control Day to Day Inventory levels ( ' ) Y 

low, information is not that beneficial. On the other 
hand, if the end-item demand variance is moderate, 
and the value of S - s is not extreme, the benefits of 
information are great. Similarly, information is not as 
beneficial if the supplier's capacity is low as compared 
to when it is high. With regard to penalty costs (at the 
supplier), the benefits of information appear to first 
increase and then drop off. Thus, before embarking on 
an EDI implementation, the supplier should verify his 
capacity and the fixed order cost faced by the retailer 
(as reflected by the retailer's A), while the retailer 
should attempt to reduce the end-item demand vari- 
ance. When A and the demand variance are reduced to 
moderate values, and the supplier has moderate to 
high capacity, the information link is expected to be 
most beneficial. We justify these insights and other 
results in subsequent sections. 

The rest of the paper is organized as follows: In ?2 
we describe the models and present structural prop- 
erties of the optimal order up-to levels. Section 3 
contains the computational results and insights. As a 
by-product, we obtain a simple heuristic for comput- 
ing inventory levels. We conclude in ?4 by summariz- 
ing our findings and discussing future directions of 
research. 

2. Models 
We consider a periodic review inventory control prob- 
lem. The sequence of events in every period is as 
follows. First, the supplier decides on his production 
quantity for the period. Next, the retailer realizes her 
demand for the period. After satisfying (fully or 
partially) the demand, if her ending inventory level is 
below s, she places an order with the supplier to bring 
her inventory level to S. This order arrives at the 
beginning of the next period. If the supplier cannot 
satisfy the full order of the retailer, we assume that the 
retailer acquires the missing part of the order else- 
where. All this happens with no lead time. The (s, S) 

policy is optimal for the retailer, for example, when 
she incurs fixed plus linear ordering costs, linear 
holding and backlogging costs (under full backlog- 
ging) and if she faces i.i.d. demands, see e.g. Scarf 
(1962). 

The supplier incurs linear holding and penalty costs 
(for portions of demand not satisfied from inventory), 
at unit rates h and b respectively. Every unit pur- 
chased costs a given, constant amount, which there- 
fore has no impact on the optimal policy under the 
long run average cost criterion. 

2.1. Model 0 
In Model 0, the supplier has no information about the 
retailer, except what is available from past demand 
data. There are a number of ways to use this demand 
data to understand the demand process. Indeed, if the 
supplier senses that a (s, S) policy is being used, 
estimation of its parameters from data could lead to a 
model very close to Model 1 (described below) with- 
out obtaining any additional information from the 
retailer. However, for the purpose of studying the 
value of information, we assume that the supplier 
follows a naive approach and assumes that the de- 
mands from the retailer are following an i.i.d. process 
(that is, assuming a "traditional" model). Under this 
assumption, it is optimal for the supplier to use a 
modified order up-to policy with the same order up-to 
level in every period.' 

We compute the appropriate order up-to level using 
infinitesimal perturbation analysis (IPA). By using 
IPA, we avoid having to make any assumptions on the 
distribution of the demands and at the same time 
account for the presence of finite capacity. The i.i.d. 
assumption considerably simplifies the model, and 
can be analyzed as in Glasserman and Tayur (1994, 
1995). 

2.2. Model 1 
At the beginning of each period, the supplier knows 
the number of periods i that have elapsed since the 
last order was placed. Recall that we have assumed 
the end-item demand is at least one unit per period; 

1 A different straw man model is studied in Gavimeni (1997), and 
the results obtained there are qualitatively similar to those described 
in this paper. 
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therefore, the states are i = O, 1, ..., A - 1. Given 
this "external" state variable, future demands at the 
supplier are independent of past demands. Because 
the retailer obtains all of the ordered parts (some 
possibly from other sources), she brings her inventory 
position to S (after ordering) independent of the 
supplier's inventory position. Since the supplier 
knows that the retailer follows an (s, S) policy and 
since he knows the value of A = S - s, he can 
determine the probability pi that an order will be 
generated at the end of the coming period and the cdf 
(Di( * ) of the order size, given that an order is placed. 
Note that (with di end-item demand in period i) 

pi =Prob{d, + d2 + + di+, 

-Ald + .+ di /<A}, and 

(Di(x) = Prob{d, + d2 + + di+, 

'xld + ..+ di < A and 

di + d2 + + di+, :: Al. 

We further assume that p p pi for all i < A - 1, 

p,_1 = 1, and that (Di( * ) > (Di+,( ), i.e., the random 
variable associated with (Di( ( ) is stochastically 
smaller than that associated with (FD+,( ). This mono- 
tonicity assumption is satisfied if the end-item de- 
mand to the retailer has an Increasing Failure Rate 
(IFR) distribution (such as Uniform, Normal or Erlang 
distributions); see Gavirneni (1997) for a proof. 

We briefly note some results for Model 1. As de- 
fined in Federgruen and Zipkin (1986a, b), a modified 
order up-to policy with level z is one where: If the 
inventory level is less than z, we raise it to z; if this 
level cannot be reached, we exhaust the available 
capacity; if the inventory level is above z, we produce 
nothing. 

PROPERTY 1. For.finite and infinite horizons (discount- 
ed or average costs) an order up-to policy is optimal. 

PROOF. The proof follows standard steps as in 
Federgruen and Zipkin (1986a, b) and Kapuscinski 
and Tayur (1998). See Gavirneni (1997). FI 

In the infinite horizon the optimal order up-to level 
in a period depends only on the state of the system in 
that period. Let z i be the infinite horizon optimal order 

up-to level in state i. In the finite horizon, the optimal 
order up-to level also depends on the remaining 
horizon length. Let y' be the optimal order up-to level 
in state i, when n periods are left until the end of the 
horizon. 

PROPERTY 2. Optimal order up-to levels are increasing 
in i for both finite horizon and infinite horizon (discounted 
or average cost) models, i.e., y -< ? Y+ and zi ? zi+. 

PROOF. The proof follows from the monotonicity of 

pi and (Di( * ). For details see Gavirneni (1997). FI 
We compute the optimal order up-to levels via 

simulation based optimization (using infinitesimal 
perturbation analysis, IPA). As in Glasserman and 
Tayur (1994) and Kapuscinski and Tayur (1998) we 
write the simulation recursions and differentiate them. 
Validation of the procedure follows standard steps for 
both the finite and infinite horizon. For the infinite 
horizon, we exploit the monotonicity of order up-to 
levels to show that regeneration occurs if and only if 

zi+1 C max{zi + C, [ZA1 - Al]+ + C} 

fori < A - 1 wherezo = 0 and x+ = max(O, x). 

See Gavirneni (1997). 

2.3. Model 2 
At the beginning of each period, the supplier knows 
j = the number of units sold by the retailer since her 
last order (j = 0, 1, . . . , A - 1). Clearly, if j is known, 
having knowledge of the number of periods since the 
last order is of no incremental value. Moreover, given 
the "external" state variable j, future demands for the 
supplier are again independent of past demands. The 
supplier can determine pj, the probability that an 
order will be placed at the end of the coming period, 
given the period starts in state j, as well as Fj( * ), the 
cdf of order size, given an order is placed: 

pj = Prob{d \ A - j} 

and 

1Dj(x) = Prob{d c x - jId- A - j}. 

It is easily verified that pj ' pj+l, for all j < A - 1, 
pA-j = 1, and hj( * ) -j+> ( * ), i.e., the probability 

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 19 



GAVIRNENI, KAPUSCINSKI, AND TAYUR 
Value of Information in Capacitated Supply Chains 

Figure 4 The Experimental Setup 

Normal(20,20) Normal(20,10) 
Normal(20,5) 

Supplier Demand Retailer i.i.d Demand mean=20 

)to Day I n (s,S) Policy A =150,10o,150,200,250,300) 
Control ay Inventory Levels Uniform[0,40] Exponential(20) 

b=14 (Model 2) Uniform[10,30] Erlang(2,10) 

C= 125,35,45,55,65 Uniform[15,25] Erlang(4,5) 

and quantity of realization of demand increases with j. 
Here we do not need the IFR assumption on the 
end-item demand distribution for monotonicity. 

All the properties of Model 1 also hold for Model 2. 
Briefly: (1) the cost function is convex and the optimal 
policy is modified order up-to; (2) the order up-to 
levels are ordered; and (3) IPA can be used to find the 
optimal order up-to levels. 

3. Computational Results 
In this section we implement the solution procedures 
developed previously for all three models. Our goal is 
to understand the trade-offs between inventories, ca- 
pacities, and information. We vary h, A, and the 
variance of end-item demand. (Since proportionally 
increasing both b and h does not change the results, it 
is sufficient to vary only one of them.) 

The experimental design is shown in Figure 4. The 
values of b and mean demand were held constant at 14 
and 20 respectively. The holding cost h was varied 
from 1 to 5 in increments of 1, while the capacity was 
varied from 25 to 65 in increments of 10. The value of 
A varied from 50 to 300 in increments of 50. We used 
nine demand distributions (all with mean 20 and 
various standard deviations u): Uniform[0, 40] (v 
= 11.55), Uniform[10, 30] (v = 5.77), and Uniform[15, 
25] (v = 2.87); Exponential(20) (v = 20), Erlang(2, 10) 
(v = 14.14), and Erlang(4, 5) (v = 10); Normal(20, 13.5) 
(v = 13.5), Normal(20, 9.5) (v = 9.5), and Normal(20, 
5) (v = 5). (Note: An Erlang(k, ,u) results from adding 
k independent exponential distributions, each with 
mean ,u, and a Normal(,u, v) has a mean ,u and 
standard deviation o_.2) There were a total of 675 
instances in this computational setup. 

2While generating demands using the Normal distribution, the 
nonpositive demands were discarded. To account for this, we 
selected the non-truncated mean so that the accepted demands had 

Figure 5 Plot of % Benefit Versus Capacity Between Model 0 and Model 
1 

90 - 1 - Uniform[15,25] 

A - Erlang(2,10) 
0 - Normal(20.5) 

70 

P 50 

30 A 

25 35 45 55 65 
Capacity 

3.1. Costs and Savings 
We observed that for all the models the total cost 
increases if the holding cost or variance increases, or 
capacity decreases. These results are expected and so 
we will not elaborate on them further. We will look 
more closely at the savings realized due to additional 
information flow and their dependency on capacity, 
holding cost, variance, and A. The cost for Model 2 
was always smaller than that for Model 1 which in 
turn was smaller than that for Model 0. This leads us 
to conclude that information is always beneficial. 

First, we study the percentage savings realized 
between Models 0 and 1: the benefits of some informa- 
tion. The graph of these savings versus capacity is 
given in Figure 5 for a representative sample of 
demand distributions. (See Gavirneni (1997) for 
graphs relating percentage benefits to holding cost, A, 
and end-item demand variance.) The savings vary 
from 10% to 90%, with an average around 50%; they 
increase with capacity. These savings are largely due 
to the simplistic nature of Model 0. The stationary 
modified order up-to policy, optimal for Model 0, 
requires inventories to be held in every period. Model 

a mean of 20. The standard deviations of the observed demands for 
these three cases were 13.5, 9.5, and 5 and these values were used 
while analyzing the results. 
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Figure 6 Plot of % Benefit Comparing Model 1 to Model 2 Versus 
Capacity 

40 - 

30 F.] - Uniform[15,25] 

A - Exponential(20) 
0 - Normal(20,10) 

20 

10-A 

25 35 45 55 65 
Capacity 

1 results in lower costs, in particular at higher capac- 
ities, since information in state i is used to schedule 
production more efficiently. However, reasonable 
benefits are noticed even at low capacities. We also 
observed that the benefit increases with the holding 
cost rate; see Gavirneni (1997) for details. 

We next study the percentage savings realized be- 
tween Model 1 and Model 2: the benefits of increased 
(and full) information. The plots of these savings with 
respect to capacity, ratio of penalty to holding cost, 
and standard deviation are given in Figures 6, 7, and 
8 respectively. These savings range widely, from 1% to 
35%. Details are described below. 

1. Effect of Capacity. For every value of capacity and 
each demand distribution we averaged the percentage 
savings over all the holding costs. A representative 
sample of these results is presented in Figure 6. It is 
easily noticed that the percentage savings increase 
with capacity, and in contrast to what we noticed in 
Figure 5, there is almost no benefit at low capacities: 
When the capacity is 25, since the end-item mean 
demand is 20, one does not have much choice other 
than to produce in every period (the S - s value does 
not really affect this) to meet the demand. However, 
when the capacity is high, the supplier has flexibility 
and thus can use the information to delay production 
or produce a larger quantity in a given period (if 
necessary). 

Figure 7 Plot of % Benefit Versus the Ratio of Penalty to Holding Cost 
Between Model 1 to Model 2 

40 L- I - Uniform[15,25], cv = 0.14 

O - Normal(20,5), cv = 0.25 
* - Normal(20,20), cv = 0.68 

30 - *A - Exponential(20), cv 1.00 

30~~~~~~~~~~~~~~~~~~~~~~~F 

20-- -- 

10 -0- 

3 6 9 12 15 

Ratio of Penalty Cost to Holding Cost 

Figure 8 Plot of % Saving from Model 1 to Model 2 Versus Standard 
Deviation 

40 U- * - Uniform[0,40] 
OI - Uniform[10,30] 
L - Uniform[15,25] 
A - Exponential(20) 

30 A - Erlang(2,10) 
A - Erlang(4,5) 
0 - Normal(20,20) 
0 - Normal(20, 10) 

; 20 0 - Normal(20,5) 

10 

0.2 0.4 0.6 0.8 1.0 

Coefficient of Variation 

2. Effect of Ratio of Penalty to Holding Cost. First, let 
us look at extreme values of the ratio. If the ratio is 
very close to 0, the supplier will not produce before 
seeing the demand, while a huge ratio makes it 
beneficial to keep extremely high inventory all the 
time due to finite capacity faced by the supplier. In 
both cases, additional information would have very 
limited benefit. Figure 7 shows the information bene- 
fits for moderate ratios. Interestingly, the range in 
which we observe increase (or decrease) in the benefit 
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of information appears to be highly dependent on the 
coefficient of variation: For small coefficients of vari- 
ation, the benefit of information is observed to in- 
crease for a broad range of ratios (and a peak is 
reached at high penalty cost), while for high coeffi- 
cients of variation, a peak is reached at a small 
penalty. 

3. Effect of End-Item Demand Distribution and Stan- 
dard Deviation. First, note that for standard deviation 
o- = 0, there is no difference between Models 1 and 
2, and, therefore, % Benefit = 0. Figure 8 contains 
the plot of percentage savings versus standard 
deviation for each of the demand distributions. For 
the Uniform distribution, as the coefficient of vari- 
ation was decreased from 0.578 to 0.288 to 0.144 the 
percentage savings first increased and then de- 
creased. Similarly, for the Normal distribution as 
the standard deviation was changed from 0.675 to 
0.475 to 0.25 the percentage savings initially in- 
creased from 7.55O/% to 9.37% and then dropped to 
7.37%. For the Erlang distributions, as the coefficient 
of variation was decreased from 1 to 0.707 to 0.5 the 
percentage savings increased. It appears that as 
standard deviation increases, the percentage benefit 
drops. This could be due to the fact that, as in item 
2 above, when the variance is very high the reduc- 
tion in uncertainty due to additional information at 
the supplier is not significant. In other words, the 
information available relative to the overall system 
uncertainty is small, and thus does not reduce costs 
as effectively. Thus, we observe that information is 
most beneficial at moderate values of variance. 

4. Effect of A. The percentage savings between Mod- 
els 1 and 2 as a function of i\ are displayed in Figure 
9 for two distributions, Exponential(20) and Erlang(4, 
5). For both distributions, as the value of i\ is increased 
these savings increase initially and then start to de- 
crease. This behavior can be explained as follows. 
When i\ is large (compared to capacity and mean 
end-item demand), due to finite capacity, in anticipa- 
tion of a large order we must start building up 
inventory over time, effectively reducing the benefit of 
information. On the other hand, when i\ is small 
(relative to mean end-item demand), the end-item 
demand is passed through to the supplier almost 

Figure 9 Plot of % Savings from Model 1 to Model 2 Versus A 

20-_ 

15 

= ~~~~~~~ / *~~~~~~ - Exponential(20) 
s / ~~~~~~~~~~~~~~A - Erlang(4,5) m 10- 

5 

_- I I I I I 
50 100 150 200 250 300 

Delta 

Figure 10 The Optimal Order Up-to Levels for exp(20), h = 5, Model 1 

80-_ 

70 

> 60- 
60 

,50 
2 /1 *~~~~~~~~~~~~~ - Capacity = 25 
; 40 - _ /1 *~~~~~~~~~ - Capacity = 45 40 

A - Capacity =65 

30 

20 

10 

1*/ 24 3' 4 5 6 7 8 E1 1 1 

Periods since last demand 

every period and there is no significant difference 

between Models 1 and 2. So it appears that information 

is less beneficial at extreme values of A. 

3.2. Inventory Levels 
The optimal order up-to levels for Model 1 for the case 

of Exponential(20), h = 5 are given in Figure 10. When 

C = 65, the order up-to levels are zero for the two 

periods immediately folfowing a demand. In period 3 

the order up-to level jumps to 55 and from then on 

slowly climbs to around 80. In fact we can show that: 
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PROPERTY 3. When C = oo the optimal order up-to 
levels satisfy 

1. zi = O,for all i < i*; 
2. z* ' i\; and 
3. Z k A + Y, 

where i = min{ilpi > h/(h + b)}, T( ) is the end-item 
demand distribution, and 'y = inf yT( y) - b/(h + b)}. 

PROOF. See Gavirneni (1997). D 
Next observe the optimal order up-to levels for 

other values of capacity: The optimal order up-to 
levels do not change significantly in periods 3 and 
above. The major changes occur, if at all, in periods 
immediately after the demand to facilitate reaching 
the required inventory level for period 3 (= i*). Simi- 
lar observations regarding the order up-to levels ap- 
ply to other distributions. Using these observations we 
can draw the following insight into how one can 
approximate order up-to levels in the finite capacity 
case without IPA: Solve a given finite capacity system 
as if it had infinite capacity (we provide a quick 
recursive procedure to compute the optimal order 
up-to levels for infinite capacity in Gavirneni (1997) to 
obtain the order up-to levels { zi particularly i* and 
zi. To obtain the order up-to levels { z'} for finite 
capacity, set z4c = z., i - i* and zll = (z4c - C)+, for 
all i < i*, so that the order up-to level in i* can be 
reached under the capacity restriction. 

4. Conclusions 
In this paper we have incorporated information flow 
into inventory control models. This gave rise to inter- 
esting nonstationary demand processes. Optimal pol- 
icy structures are order up-to policies. An extensive 
computational study provided us with insights on the 
savings and relative benefits due to information flow. 
These insights were useful in the design of a major 
fast-food company's (FFC) supply chain, and we out- 
line the setting briefly. 

Due to extraordinary performance (in terms of on- 
time delivery and quality of products) by a food 
manufacturer (NSP) for two consecutive years, FFC 
asked NSP to manage the other 160 or so suppliers. 
Thus, FFC "outsourced" supplier management to 
NSP. A new organization called Hi Logistics was 
created. Among its many tasks was the following: to 

determine whether EDI links -between FFC ware- 
houses and suppliers would be beneficial. 

As part of this effort, based on transportation times, 
type of product, end-item demand, volumes, and 
capacity, we first decided which supplier would ship 
directly to a FFC warehouse, and which supplier 
would ship it to NSP warehouse (which would, after 
consolidation, ship to a FFC warehouse). Similarly, the 
period length was determined, and this was either one 
day, one week or 2 weeks. Overnight transportation is 
possible between some suppliers and NSP, between 
NSP and some FFC warehouses, and between some 
suppliers and some FFC warehouses. The longest 
transportation time between locations in the supply 
chain is under 2 days, typically over the weekend. Due 
to judicious selection of period length and choice of 
transportation, our periodic review model with zero 
lead time was considered adequate. Furthermore, FFC 
expects a near perfect supply, and suppliers either 
work overtime or shift capacity pre-allocated to other 
brands to meet this requirement. This additional cost, 
that is supplier dependent, is captured as penalty cost. 
The holding costs are also different across suppliers. 
Based on relative values of holding and penalty costs, 
the suppliers were classified as low, medium or high 
in terms of holding and penalty costs. 

Similarly, based on capacities of suppliers relative to 
the period volumes (end-item demand at the ware- 
house, for example), and the high fixed costs of 
ordering, we classified suppliers as having low (high) 
capacity and warehouses as having a low (high) i\ 
value. This helped us understand when information 
would be most useful, and also how we could further 
improve the supply chain performance. While several 
real-world concerns such as correlation and produc- 
tion variabilities were ignored in our models, the 
management at NSP and Hi Logistics viewed the 
insights gained as useful in their decision making; for 
example, EDI links were added between FFC ware- 
houses and those suppliers with medium to high 
capacity and for products with moderate demand 
variation. 

Future work is planned in four directions: (1) 
performing similar studies of two stage models 
under a less restrictive setting; (2) extending this 

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 23 



GAVIRNENI, KAPUSCINSKI, AND TAYUR 
Value of Information in Capacitated Supply Chains 

analysis to multiple retailers; (3) studying inventory- 
information-capacity interactions in a supply chain with 
more than two stages; and (4) studying, at a theoretical 
level, more general demand processes3 at the supplier, 
where the transition from one state to another follows a 
general probability matrix, of which the current non- 
stationary situations are special cases.4 

3We thank Professor George Shanthikumar for this suggestion. 
4We have incorporated many of the suggestions by the Departmental 
Editor and the Associate Editor that have improved the presentation of 
this paper. We also thank the referees for their comments and sugges- 
tions. Alan Scheller-Wolf's editorial help has been most invaluable. 
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