
REVIEW
published: 16 November 2017
doi: 10.3389/fphy.2017.00055

Frontiers in Physics | www.frontiersin.org 1 November 2017 | Volume 5 | Article 55

Edited by:

Alexander Merle,

Max Planck Institute for Physics

(MPG), Germany

Reviewed by:

Eligio Lisi,

National Institute for Nuclear Physics,

Italy

Fedor Simkovic,

Comenius University, Slovakia

*Correspondence:

Jouni T. Suhonen

jouni.suhonen@phys.jyu.fi

Specialty section:

This article was submitted to

High-Energy and Astroparticle

Physics,

a section of the journal

Frontiers in Physics

Received: 19 June 2017

Accepted: 17 October 2017

Published: 16 November 2017

Citation:

Suhonen JT (2017) Value of the

Axial-Vector Coupling Strength in β

and ββ Decays: A Review.

Front. Phys. 5:55.

doi: 10.3389/fphy.2017.00055

Value of the Axial-Vector Coupling
Strength in β and ββ Decays:
A Review
Jouni T. Suhonen*

Department of Physics, University of Jyvaskyla, Jyvaskyla, Finland

In this review the quenching of the weak axial-vector coupling strength, gA, is discussed

in nuclear β and double-β decays. On one hand, the nuclear-medium and nuclear

many-body effects are separated, and on the other hand the quenching is discussed

from the points of view of different many-body methods and different β-decay and

double-β-decay processes. Both the historical background and the present status are

reviewed and contrasted against each other. The theoretical considerations are tied to

performed and planned measurements, and possible new measurements are urged,

whenever relevant and doable. Relation of the quenching problem to the measurements

of charge-exchange reactions and muon-capture rates is pointed out.
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1. INTRODUCTION

The neutrinoless double beta (0νββ) decays of atomic nuclei are of great experimental and
theoretical interest due to their implications of physics beyond the standard model of electroweak
interactions. Since these processes occur in nuclei, nuclear-structure effects play an important role
and they may affect considerably the decay rates. The nuclear effects are summarized as the nuclear
matrix elements (NMEs) containing information about the initial and final states of the nucleus and
the action of the 0νββ transition operator on them. The NMEs, in turn, are computed numerically
using some nuclear-theory framework suitable for the nuclei under consideration. The possible
future detection of the 0νββ decay in the next generation of ββ experiments constantly drives
nuclear-structure calculations toward better performance. Accurate knowledge of the NMEs is
required in order that the data will be optimally used to obtain information about the fundamental
nature and mass of the neutrino [1–7]. In addition, the 0νββ decay relates also to the breaking of
lepton-number symmetry and the baryon asymmetry of the Universe [8, 9]. A number of nuclear
models, including configuration-interaction based models like the interacting shell model (ISM),
and various mean field models, have been adopted for the calculations. The resulting computed
NMEs have been analyzed in the review articles [4, 10–12]. Most of the calculations have been done
by the use of the proton-neutron quasiparticle random-phase approximation (pnQRPA) [13].

The performed 0νββ-decay calculations, as also those of the two-neutrino double beta (2νββ)
decay, indicate that the following nuclear-structure ingredients affect the values of NMEs:

(a) The chosen valence space of single-particle orbitals and their nucleon occupancies [14–16].
(b) The effects stemming from the shell closures [10, 17]. These closures are formed by

the bunching of single-particle orbitals in the nuclear mean-field potential to form the so-called
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major shells that are separated by large energy gaps. The gaps
occur at “magic numbers” of nucleons and have sometimes
drastic effects on nuclear properties.

(c) The nuclear deformation and seniority truncation [18–22].
In ground states of even-even (even number of protons
and neutrons) nuclei all nucleons are paired to angular
momentum zero and form a superfluid-like state with total
angular momentum zero. This is called seniority-zero state.
If one pair is broken, extra angular momentum is generated
and this contributes to excited states of nuclei. These are
called seniority-two states. Breaking more pairs generates
higher-seniority states that can mix with the lower-seniority
states by the nuclear residual interaction. Cutting the higher-
seniority contributions, i.e., performing a seniority truncation,
simplifies calculations considerably.

(d) Also, it has to be noted that the adopted closure
approximation, i.e., omitting the energy dependence
of the involved energy denominator and replacing the
contributions coming from the intermediate virtual states by
a unit operator (for all other nuclear models, except for the
quasiparticle random-phase approximation, QRPA), for the
0νββ-decay calculations does not hold for the calculations of
the 2νββ-decay rates [1, 23, 24].

(e) A further important aspect can be added to the list, namely
the uncertain value of the weak axial-vector coupling strength
gA, leading to an effective value of gA in nuclear-model
calculations. This deviation (usually quenching) from the free-
nucleon value can arise from the nuclear medium effects and
the nuclear many-body effects described in more detail in the
following sections of this review.

At the nuclear level, β decay can be considered as a mutual
interaction of the hadronic and leptonic currents mediated by
massive vector bosons W± [25]. The leptonic and hadronic
currents can be expressed as mixtures of vector and axial-
vector contributions [26–28]. The weak vector and axial-vector
coupling strengths gV and gA enter the theory when the
hadronic current is renormalized at the nucleon level [29]. The
conserved vector-current hypothesis (CVC) [26] and partially
conserved axial-vector-current hypothesis (PCAC) [30, 31] yield
the free-nucleon values gV = 1.00 and gA = 1.27 [25] but
inside nuclear matter the value of gA is affected by many-
nucleon correlations and a quenched or enhanced value might be
needed to reproduce experimental observations [32–35]. Precise
information on the effective value of gA is crucial when predicting
half-lives of neutrinoless double beta decays since the half-lives
are proportional to the fourth power of gA [1, 36].

Since the vector bosons W± have large mass and thus
propagate only a short distance, the hadronic current and the
leptonic current can be considered to interact at a point-like
weak-interaction vertex with an effective coupling strength GF,
the Fermi constant. The parity non-conserving nature of the
weak interaction forces the hadronic current to be written at the
quark level (up quark u and down quark d) as a mixture of vector
and axial-vector parts:

J
µ
H = ū(x)γ µ(1− γ5)d(x), (1)

where γ µ are the usual Dirac matrices and γ5 = iγ 0γ 1γ 2γ 3.
Renormalization effects of strong interactions and energy scale
of the processes must be taken into account when moving from
the quark level to the hadron level. Then the hadronic current
between nucleons (neutron n and proton p) takes the rather
complex form

J
µ
H = p̄(x)[Vµ − Aµ]n(x), (2)

where the vector-current part can be written as

Vµ = gV(q
2)γ µ + igM(q2)

σµν

2mN
qν (3)

and the axial-vector-current part as

Aµ = gA(q
2)γ µγ5 + gP(q

2)qµγ5. (4)

Here qµ is the momentum transfer, q2 its magnitude, mN

the nucleon mass (roughly 1 GeV) and the weak couplings
depend on the magnitude of the exchanged momentum. For the
vector and axial-vector couplings one usually adopts the dipole
approximation

gV(q
2) =

gV
(

1+ q2/M2
V

)2 ; gA(q
2) =

gA
(

1+ q2/M2
A

)2 , (5)

where gV and gA are the weak vector and axial-vector coupling
strengths at zero momentum transfer (q2 = 0), respectively. For
the vector and axial masses one usually takes MV = 84MeV
[37] and MA ∼ 1GeV [37–39] coming from the accelerator-
neutrino phenomenology. For the weak magnetism term one can
take gM(q2) = (µp−µn)gV(q2) and for the induced pseudoscalar
term it is customary to adopt the Goldberger-Treiman relation
[40] gP(q2) = 2mNgA(q2)/(q2 +m2

π ), wheremπ is the pion mass
and µp − µn = 3.70 is the anomalous magnetic moment of the
nucleon. It should be noted that the β decays and 2νββ decays are
low-energy processes (few MeV) involving only the vector [first
term in Equation (3)] and axial-vector [first term in Equation (4)]
parts at the limit q2 = 0 so that the q dependence of Equation (5)
does not play any role in the treatment of these processes in this
review. Contrary to this, the 0νββ decays and nuclear muon-
capture transitions involve momentum transfers of the order of
100MeV and the full expression (2) is active with slow decreasing
trend of the coupling strengths according to Equation (5).

2. EFFECTIVE VALUES OF GA: PREAMBLE

The effective value of gA can simply be characterized by a
renormalization factor q (in case of quenching of the value of gA
it is customarily called quenching factor):

q =
gA

gfreeA

, (6)

where

gfreeA = 1.2723(23) (7)
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is the free-nucleon value of the axial-vector coupling measured
in neutron beta decay [41] and gA is the value of the axial-
vector coupling derived from a given theoretical or experimental
analysis. This derived gA can be called the effective gA so that from
(6) one obtains for its value

geffA = qgfreeA . (8)

Equations (6)−(8) constitute the basic definitions used in this
review.

The effective value of gA can be derived from several
different experimental and theoretical analyses. In these analyses
it is mostly impossible to separate the different sources of
renormalization affecting the value of gA: (i) the meson-exchange
currents (many-body currents) that are beyond the one-
nucleon impulse approximation (only one nucleon experiences
the weak decay without interference from the surrounding
nuclear medium), usually assumed in the theoretical calculations,
(ii) other nuclear medium effects like interference from non-
nucleonic degrees of freedom, e.g., the 1 isobars and (iii) the
deficiencies in the nuclear many-body approach that deteriorate
the quality of the wave functions involved in the decay processes.

The effects (i) and (ii) can be studied by performing
calculations using meson-exchange models and allowing non-
nucleonic degrees of freedom in the calculations. These
calculations that go beyond the nucleonic impulse approximation
are described in section 3 in the context of Gamow-Teller
β decays for which the related effects are measurable. The
calculations yield a fundamental quenching factor qF and the
related fundamentally renormalized effective gA for the space
components (µ = 1, 2, 3) of the axial current (4) via the effects of
the virtual pion cloud around a nucleon. The time component of
µ = 0, the axial charge ρ5, is, however, fundamentally enhanced
by, e.g., heavy meson exchange and the corresponding effective
coupling geffA (γ5) is discussed in section 8.2, in the context of
first-forbidden 0+ ↔ 0− transitions for which the effect is
measurable.

The ISM has the longest history behind it in studies of the axial
quenching in Gamow-Teller β decays. The reason for this is the
success of the ISM to describe nuclear spectroscopy of light nuclei
and the rather large amount of data on these type of allowed β
decays. The results of these studies are presented in section 5.
In the same section the ISM results are compared with those
obtained by the use of the pnQRPA. In section 6.2 the effective
value of gA is analyzed for the first-forbidden unique β decays
for which there are some experimental data available. In section 7
this study is extended to higher-forbidden unique β decays where
no experimental data are available and one has to resort to mere
theoretical speculations. In section 8 the forbidden non-unique
β decays are discussed. Experimentally, there are available data
for the above-mentioned first-forbidden non-unique 0+ ↔ 0−

and other β transitions. For the higher-forbidden non-unique
transitions, discussed in section 9, there are scattered half-life and
β-spectrum data but more measurements are urgently needed,
in particular for the shapes of the β spectra. Unfortunately,
in all these studies it is not possible to completely disentangle

the nuclear-medium effects (i) and (ii) from the nuclear-model
effects (iii).

In the last two sections, 11, 12 more exotic methods to extract
the in-medium value of gA are presented: The spin-multipole
strength functions and nuclear muon capture. Measurements
of the spin-multipole strength functions, in particular the
location of the corresponding giant resonances, help theoretical
calculations fine-tune the parameters of the model Hamiltonians
such that the low-lying strength of, say 2− states, is closer to
reality. Hence, more such measurements are called for. The
nuclear muon capture probes the axial current (4) at 100 MeV
of momentum transfer and thus suits perfectly for studies of
the renormalization of the NMEs related to 0νββ decays. This
means that muon-capture experiments for medium-heavy nuclei
are urgently needed.

The renormalization of gA which stems from the nuclear-
model effects (iii) depends on the nuclear-theory framework
chosen to describe the nuclear many-body wave functions
involved in the weak processes, like β and ββ decays. This is
why the effective values of gA can vary from one nuclear model
to the other. On the other hand, the different model frameworks
can give surprisingly similar results as witnessed in section 9 in
the context of the comparison of the measured β spectra with
the computed ones. The renormalization of gA can also depend
on the process in question. For the zero-momentum-exchange
(q2 = 0) processes, like β and 2νββ decays, the renormalization
can be different from the high-momentum-exchange (q2 ∼ 100
MeV) processes, like 0νββ decays (in section 9 the related gA is
denoted as geffA,0ν) or nuclear muon captures.

This introduction to the many-faceted renormalization of the
axial-vector coupling is supposed to enable a “soft landing” into
the review that follows. As can be noticed, the renormalization
issue is far from being solved and lacks a unified picture thus far.
There is not yet a coherent effort to solve the issue, but rather
some sporadic attempts here and there. The most critical issue
may be the nuclear many-body deficiencies (iii) that hinder a
quantitative assessment of the nuclear-medium effects (i) and (ii)
in light, medium-heavy and heavy nuclei. Only gradually this
state of affairs will improve with the progress in the ab-initio
nuclear methods extendable to nuclei beyond the very lightest
ones. Hence, the lack of perfect nuclear many-body theory is
reflected in this review as a wide collection of different effective gA
variants, different for different theory frameworks and processes
and not necessarily connected to each other (yet). The hope
is that in the future the different studies would point to one
common low-energy renormalization of gA for the β and two-
neutrino ββ decays and that we would have some idea about
the renormalization mechanisms at work in the case of the
neutrinoless ββ decays.

On the other hand, there are some attempts to disentangle
the nuclear medium effects from the nuclear many-body
effects. Examples are the fundamental quenching elaborated in
section 3 and the nuclear-medium-independent quenching factor
k introduced in section 5.2 for the Gamow-Teller β decays, and
in sections 6.2, 7 for the unique-forbidden β transitions. This
factor is designed to give hints about the impact of the changes in
the complexity of the nuclear model on the value of the effective
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axial coupling. Also the previously mentioned method based on
the examination of β spectra in section 9 is largely nuclear-
model independent and seems to be a reasonable measure of the
nuclear-medium effects (i) and (ii). More measurements of the β
spectra are thus urgently called for.

3. NUCLEAR-MEDIUM EFFECTS

Based on the early shell-model studies of Gamow-Teller β decays,
effects of 1 resonances and meson-exchange currents on the
weak axial-vector coupling strength of the space part, A, of
the axial current Aµ (4) is expected to be quenched in nuclear
medium and finite nuclei. Contrary to this, the coupling strength
of the time part, A0, of (4) is expected to be enhanced by, e.g., the
contributions coming from exchanges of heavy mesons. Many
of these modifications in the strengths of the axial couplings
stem from processes beyond the impulse approximation where
only one nucleon at a time is experiencing a weak process,
e.g., β decay, without interference from the surrounding nuclear
medium. In fact, based on general arguments concerning soft-
pion amplitudes [42] the space part of Aµ is quenched and
the time part of Aµ is enhanced relative to the single-particle
processes of the impulse approximation.

The origin of the quenching of the space part of Aµ is not
completely known and various mechanisms have been proposed
for its origin: studied have been the 1-isobar admixture in the
nuclear wave function [43], shifting of Gamow-Teller strength to
the 1-resonance region, and renormalization effects of meson-
exchange currents. The β− and β+ Gamow-Teller strengths were
related to the 1-isobar region e.g., in Delorme et al. [44] and
sizable 1-resonance effects on β decays of low-lying nuclear
states by tensor forces were reported in Oset and Rho [45]
and Bohr and Mottelson [46]. In Towner and Khanna[47, 48]
very simple nuclear systems were used to study the tensor force
and related effects in order to minimize the impact of nuclear
many-body complexities. Studied were the tensor effects and
their interference with the1-isobar current andmeson-exchange
currents in building up corrections to the Gamow-Teller matrix
elements. Also relativistic corrections to the Gamow-Teller
operator were included. Large cancellations among the various
contributions were recorded and corrections below some 20%
were obtained for the light (simple) nuclei. However, recent
experimental studies of (p,n) and (n,p) reactions [49] report that
the1-nucleon-hole admixtures into low-lying nuclear states play
only a minor role in the quenching of gA, in line with the results
of Suhonen [43]. Also extended sum rules have been derived for
relating gA to pion-proton total cross sections [50–52], or the
method of QCD sum rules has been utilized [53].

InWilkinson [54] the renormalization of the β-decay operator
by the two- or many-nucleon correlations, in terms of inter-
nucleonic and intra-nucleonic mesonic currents, leads to the
notion effective “fundamentally” renormalized axial coupling
gAeF. The quenching of gA is then described by the fundamental
quenching factor qF such that qF > q since q contains,
in addition, the quenching stemming from the inadequate
treatment of the nuclear many-body problem. From here on

the above notation is adopted for the renormalization of gA
stemming from the (fundamental) mesonic-current effects.

In the early study of Ericson [55] of the sum rule for Gamow-
Teller matrix elements a (fundamental) quenching of roughly

qF = 0.9 (9)

was obtained for very light nuclei (A ≤ 17) by the examination
of the effects of meson-exchange currents on the pion-nucleon
interaction vertex and extending the result to a sum rule
for Gamow-Teller matrix elements. This (practically) model-
independent study produces the following (fundamentally)
renormalized value of the axial coupling strength

gAeF = 0.9× 1.27 = 1.1. (10)

The above result does not necessarily apply to individual Gamow-
Teller transitions between low-energy nuclear states.

The work of Ericson [55] was followed by the works
[56, 57] where it was found that the renormalization should
be universal for all transitions, in particular applicable to the
mentioned Gamow-Teller transitions at low nuclear excitations.
The procedure bases on the fact that the partially conserved
axial current (PCAC) hypothesis [30, 31] enables one to calculate
the full axial-current matrix element in terms of a pion-nucleus
vertex [58]. At the low-momentum-exchange limit, relevant for
the nuclear β decays, the PCAC leads to the Goldberger-Treiman
relation [40, 59] which relates the effective value of gA to the
effective value of the pionic coupling constant gπ by Ericson [55]

geffA
geffπ

=
gfreeA

gfreeπ

=
fπ√
2mN

, (11)

where mN is the nucleon mass and fπ = 0.932mπ is the
pion decay constant, mπ being the pion mass. The pionic
coupling constant is, in turn, renormalized by the effects on
the virtual pion field by the presence of other nucleons. For
large nuclei (surface effects can be omitted) the renormalization
arises from nucleonic short-range correlations leading to voids
between nucleons and the renormalization can be understood
via an electromagnetic analog: an electric dipole in a correlated
dielectric medium is renormalized in a similar way as the pionic
coupling constant. There is also a connection to the low-energy
scattering of pions on nuclei: the short-range correlations quench
the p-wave pion-nucleon amplitude by the same amount as the
dielectric effect. For finite nuclei a model-dependent surface
factor has to be taken into account [55]. The size renormalization
emerges from the nuclear surface layer of a thickness of the order
of the pion Compton wavelength and thus the quenching of gA
increases with increasing nuclear radius and, as a consequence,
with increasing nuclear mass.

In Rho [57] the pion-nucleus vertex was calculated and the
related quenched gA agreed with the one of Ericson [55] to
leading order. In infinite nuclear matter This quenching turns out
to be [57]

q∞F = 0.76 (infinite nuclear matter) (12)
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leading to the quenched effective axial coupling strength

g∞AeF = 0.76× 1.27 = 0.96. (infinite nuclear matter) (13)

in infinite nuclear matter.
The works of Ericson [55, 56] and Rho [57] were used by

Wilkinson [54] to bridge the gap between the infinite nuclear
matter and finite nuclei. In Wilkinson [54] it was argued that the
fundamental quenching can be described by the formula

qF =
√

(q∞F )2 +
[

1− (q∞F )2
]

/A0.17 (14)

for finite nuclei of mass number A. This formula includes the
short-range correlation effect and the finite-size factor [56, 57]
and gives for the fundamental quenching, using (12), between
A = 50 − 150 the value qF = 0.88. This means that the
fundamental quenching is practically constant over the range of
nuclei of interest to the double beta decay. The corresponding
fundamentally quenched value of the axial-vector strength is
plotted in Figure 2, and its value is practically 1.1 through the
whole range of interest.

In Siiskonen et al. [60] the renormalization of the axial current
(and vector and induced pseudoscalar terms of the nucleonic
current) was studied for several nuclear systems as a function of
transition energy by including effective transition operators up to
second order in perturbation theory. Thus, the renormalization
of gA contains both the fundamental and nuclear many-body
aspects. It was found that the renormalization was practically
constant up to 60 MeV in transition energy, in agreement with
the q dependence of gA in relation (5). The obtained quenchings
are as follows

geffA = 1.0 (1s0d shell); 0.98 (1p0f shell); 0.71 (56Ni); 0.52 (100Sn).
(15)

The results (15), obtained by using the nuclear-medium-
corrected transition operators have been repeated in Table 1 of
section 5.1 and Figure 3 of section 5.2 in order to compare them
with the more phenomenological shell-model results. Effective
operators have also been used in the connection with the
calculations for the double beta decays in a solvable model [69]
and for the nucleus 92Mo [70] and the nuclei 76Ge and 82Se
[71, 72] in the framework of the interacting shell model.

As speculated in Wilkinson [54], the mesonic effects (meson-
exchange currents) show up as effective two-body contributions
to the β-decay operators. These two-body currents quench gA
and this quenching was first estimated in Menéndez [73], in the
framework of the chiral effective field theory (cEFT) where both
the weak currents and nuclear forces can be described on the
same footing and to a given order of approximation (leading
order, next-to-leading order, etc.) In Menéndez [73] the two-
body currents were replaced by an effective one-body current
derived from the cEFT, leading to a momentum-dependent
effective coupling geffA (q2), renormalized with respect to the bare
axial coupling of (5). It turned out that the additional quenching
is caused by the short-range nucleon-nucleon coupling present
in the original two-body current. The additional quenching

decreases with increasing q, being the strongest at the zero-
momentum-transfer limit, affecting mostly the nuclear β and
2νββ decays. In fact, the strength of the short-range nucleon-
nucleon coupling in the two-body current can be adjusted such
as to reproduce the empirical quenching of the Gamow-Teller
β decays discussed in section 5. As the 0νββ decay is a high-
momentum-transfer process (q ∼ 100MeV) it is expected that
the two-body currents have not such a drastic effect on the one-
body current (4) for the 0νββ decay. Here it should be noted that
the one-body current (2) has been fully taken into account in all
0νββ-decay calculations and the two-body currents introduce a
renormalization, geffA (q2), that deviates from the one-body dipole
gA(q2) of (5) the less the higher themomentum exchange q is. The
quenching caused by the two-body currents could probably be
measured by using charge-exchange reactions [49] in advanced
nuclear-physics infrastructures.

In Menéndez [73] it was estimated, by using the ISM many-
body framework in the mass range A = 48 − 136, that the
effect of the two-body currents on the value of the 0νββ NME
is between −35 and 10% depending on the (uncertain) values
of the cEFT parameters, the smallest corrections occurring for
A = 48. In Engel [74] the effect of the two-body currents
was studied in the framework of the pnQRPA in the mass
range A = 48 − 136, and a quenching effect of 10–22%
was obtained for the 0νββ NMEs, the 10% effect pertaining
to the case of 48Ca. A more complete calculation, including
three-nucleon forces and consistent treatment of the two-body
currents and the nuclear Hamiltonian, was performed in Ekström
[75]. Application to the Gamow-Teller β decays in 14C and 22,24O
nuclei yielded the quenching q = 0.92 − 0.96 by comparison
of the computed strengths to that of the Ikeda 3(N − Z) sum
rule [35, 76]. This <10% quenching is in line with the trend
observed in the studies [73, 74] where the quenching approaced
the 10% limit for light nuclei. It should be noted that the two-
body meson-exchange currents appear also in neutrino-nucleus
scattering [77] but at energies where two nucleons are ejected
as a result of the scattering (the so-called two-particle-two-
hole exchange currents). The higher energy evokes considerable
difficulties in handling the two-body meson-echange currents, as
demonstrated in Simo et al. [78].

The meson-exchange currents can cause also enhancement
phenomena, like in the case of the renormalization of the one-
body weak axial charge density ρ5 [time part of Aµ in (4)]
in the case of the 0− ↔ 0+ nuclear β transitions [42, 79].
In this case the γ 5 operator mediates the first-forbidden non-
unique β transition and the corresponding axial-vector coupling
strength is enhanced quite strongly. In the work of Kirchbach
and Reinhardt [79] the effects of a pionic two-body part of ρ5
was studied for 4 nuclear masses and the corresponding leading
single-particle transitions. This work was extended by Kirchbach
et al. [80] and Towner [81] by taking into account also the heavy-
meson exchanges. In Towner [81] 6 nuclear masses and a number
of single-particle transitions were computed by using nuclear
wave functions from the ISM. An interesting investigation of the
role of the two-particle-two-hole excitations in the A = 16 nuclei
was performed in Towner and Khanna [82]. The renormalization
of the weak axial charge by the meson-exchange currents had to
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be taken into account in order to explain the measured rates of
both the 0− → 0+ β decay and the 0+ → 0− muon capture. The
axial-charge enhancement is elaborated further, quantitatively, in
section 8.2.

Very recently break-through results in the calculations of the
axial charge and axial-vector form factors have been achieved
in the lattice QCD (quantum chromodynamics) calculations
[83–85]. In the work [84] the result

gfreeA = 1.278(21)(26) (lattice calculation) (16)

was obtained, where the first uncertainty is statistical and the
second comes from the extrapolation systematics. This computed
value is quite compatible with the measured free value of gA in
(7). Also the lattice QCD calculations of the double beta decay
are advancing in the two-nucleon (toy) systems (see [86]).

4. NUCLEAR-MODEL EFFECTS

The studies on the effective value of the axial-vector coupling
strength, gA, have mainly been performed for β decays in
established nuclear many-body frameworks. Also the magnetic
moments of nuclei have been studied [87, 88] for simple one-
particle and one-hole nuclei in order to pin down the effects
of the tensor force in shifting low-energy strength of Gamow-
Teller type to higher energies, and thus effectively quenching
the spin-isospin operator for Gamow-Teller decays. The used
many-body frameworks encompass the interacting shell model
(ISM) [89] and the pnQRPA [13, 90]. Also the frameworks of
the microscopic interacting boson model (IBM-2) [91] and the
interacting boson-fermion-fermion model, IBFFM-2 [92], have
been used. Let us discuss next the various many-body aspects of
these models that may affect the (apparent) renormalization of
the magnitude of gA. It is appropriate to note here that in all these
studies the nuclear many-body framework can be considered
more or less deficient and thus the many-body effects cannot
be disentangled from the nuclear-medium effects, discussed in
section 3.

4.1. Many-Body Aspects of the ISM
The ISM is a many-body framework that uses a limited set
of single-particle states, typically one harmonic-oscillator major
shell or one nuclear major shell, to describe nuclear wave
functions involved in various nuclear processes. The point of the
ISM is to form all the possible many-nucleon configurations in
the given single-particle space, each configuration described by
one Slater determinant, and diagonalize the nuclear (residual)
Hamiltonian in the basis formed by these Slater determinants. In
this way the many-body features are taken into account exactly
but only in a limited set of single-particle states. The problem is to
extend the single-particle space beyond the one-shell description
due to the factorially increasing size of the sparse Hamiltonian
matrix to be diagonalized. In this way only the low-energy
features of a nucleus can be described, leaving typically the giant-
resonance region out of reach. The other problem with the ISM is
to find a suitable (renormalized) nucleon-nucleon interaction to
match the limited single-particle space. Since this space is small,

the renormalization effects of the two-body interaction become
substantial. Typically, mostly in the early works, all the matrix
elements of the two-body interaction were fitted such that the
computed observables, energies, electromagnetic decays, etc., are
as close as possible to the corresponding measured ones (see
section 5.1). In some works also perturbative approaches through
particle-hole excitations from the valence to the excluded space
have been considered (see, e.g., [93–95] and the references
therein).

From early on there have been difficulties for the ISM to
reproduce the measured β-decay rates [96]. This has lead to a
host of investigations of the effective (quenched) value of gA in
the ISM framework (see section 5.1 below). The main limitation
of the ISM is its confinement to small single-particle spaces,
typically comprising one oscillator major shell or a magic shell,
leaving one or two spin-orbit partners out of the model space.
From, e.g., pnQRPA calculations [15, 16] and perturbative ISM
calculations [72, 97] one knows that inclusion of all spin-orbit
partners in the single-particle model space is quite essential. This
has been noticed also in the extended ISM calculations where
the missing spin-orbit partners have been included at least in an
effective way [20, 98]. Even extension of the ISM to include two
harmonic-oscillator shells (1s0d and 1p0f shells) has been done
for the calculation of the 0νββ decay of 48Ca [99].

Several advanced shell-model methods have been devised in
order to include larger single-particle spaces into the calculations.
One can try to find clever ways to select the most important
configurations affecting the observables one is interested in. Such
an established algorithm is theMonte Carlo shell model (MCSM)
where statistical sampling of the Slater determinants is used [100,
101]. One can also use importance-truncation schemes [102] or
very advanced ab initiomethods, like the coupled-cluster theory,
where the two- and three-body interactions can be derived from
the chiral effective field theory (cEFT) [103]. One can also use the
in-medium similarity renormalization group (IM-SRG) method,
like in Bogner [104], where an ab initio construction of a non-
perturbative 1s0d-shell Hamiltonian, based on cEFT two- and
three-body forces, has been done. Another new method is the
density matrix renormalization group (DMRG) algorithm [105],
which exploits optimal ordering of the proton and neutron
single-particle orbitals and concepts of quantum-information
theory.

All the new methods extend the traditionally used ISM model
spaces and the future β-decay calculations using these methods
will either confirm or reduce the amount of quenching of gA
observed in the older ISM calculations, described in section 5.1
below. The ab initio methods are already available for the light
nuclei, occupying the 0p and 1s0d shells, and later for the
medium-heavy and heavy nuclei dwelling in the higher oscillator
shells. The quenching problem can only be solved by usingmany-
body methods with error estimates, including a systematic way
to improve their accuracy. At the same time the two- and three-
body forces used in the calculations should be produced on
the same footing as the many-body framework itself, preferably
from ab initio principles. One should not forget that also the
operators used in the computations should be made effective
operators that match the adopted single-particle valence spaces.

Frontiers in Physics | www.frontiersin.org 6 November 2017 | Volume 5 | Article 55

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Suhonen Effective Value of gA

Using these prescriptions one can eliminate the deficiencies of the
nuclear many-body framework and obtain information about the
quenching of gA in the nuclear medium (see section 3), beyond
the effects caused by the deficiencies of a nuclear model.

4.2. Many-Body Aspects of the pnQRPA
The random-phase approximation (RPA) is an extension of
the Tamm-Dancoff model (TDM) in the description of magic
nuclei (at closed major shells) by particle-hole excitations across
the magic gaps between closed nuclear major shells [35, 106].
In the RPA the simple particle-hole vacuum, with the single-
particle orbitals fully occupied up to the Fermi surface at the
magic gap, is replace by the correlated vacuum, containing two-
particle–two-hole, four-particle–four-hole, etc. excitations across
the magic gap. The use of the correlated vacuum in the RPA
enhances the strength of collective transitions [35, 106]. Its
quasiparticle version, quasiparticle RPA (QRPA) describes open-
shell nuclei, outside the closures of magic shells, by replacing
the particle-hole excitations by two-quasiparticle excitations.
Usually these quasiparticles are generated by the use of the
Bardeen-Cooper-Schrieffer (BCS) theory [107] from the short-
range interaction part of the nuclear Hamiltonian in an even-
even reference nucleus. The quasiparticles can be viewed as partly
particles and partly holes, inducing fractional occupancies of
the nuclear single-particle orbitals and leading to a smeared
Fermi surface for protons and/or neutrons for open-shell nuclei.
The proton-neutron version of the QRPA (pnQRPA) uses two-
quasiparticle excitations that are built from a proton and a
neutron quasiparticle. This enables description of odd-odd nuclei
starting from the even-even BCS reference nucleus.

The strong point of the pnQRPA theory is that it can include
large single-particle valence spaces in the calculations. There are
no problems associated with leaving spin-orbit-partner orbitals
out of the computations. On the other hand, the pnQRPA
has a limited configuration space, essentially including two-
quasiparticle excitations on top of a correlated ground state
[35]. Deficiencies of the pnQRPA formalism have been analyzed
against the ISM formalism, e.g., in Menéndez [21] by using a
seniority-based scheme (seniority was defined earlier, at point
(c) in section (1). In that work the pnQRPA was considered to
be a low-seniority approximation of the ISM. But on the other
hand, the ground-state correlations of the pnQRPA introduce
higher-seniority components to the pnQRPA wave functions
and the deficiencies stemming from the incomplete seniority
content of the pnQRPA should not be so bad [108]. Also the
renormalization problems of the two-body interaction are not
so severe as in the ISM due to the possibility to use large
single-particle model spaces. On the other hand, it is harder to
find a perturbative scheme for the effective Hamiltonian due
to the incompleteness of the available many-body configuration
space. Due to this, schematic or G-matrix-based boson-exchange
Hamiltonians have widely been used (see section 5.2).

In any case, the configuration content of the pnQRPA
is limited and extensions and improvements of the theory
framework are wanted in order to see how the quenching
problem of gA evolves with these extensions and improvements.
Such extensions have been devised, including, e.g., the

renormalized QRPA (RQRPA) [109, 110] and similar
“fully” renormalized schemes [111–113]. Another possible
improvement of the pnQRPA is the relativistic quasiparticle
time-blocking approximation (RQTBA), in particular its proton-
neutron version, the pn-RQTBA, advocated in Robin and
Litvinova [114]. It shows good promise for improvements over
the β-decay calculations of the ordinary pnQRPA the use of
which clearly points out to need for a quenched value of gA in
β-decay calculations, as discussed in section 5.2.

The (charge-conserving) QRPA framework, with linear
combinations of proton-proton and neutron-neutron
quasiparticle pairs, phonons [35], can be used to describe
(collective) excitations of even-even nuclei (collectivity is where
the name phonon stems from). These, in turn, can be used as
reference nuclei in building the excitations of the neighboring
odd-mass (odd-proton or odd-neutron) nuclei by coupling
the QRPA phonons with proton or neutron quasiparticles.
This phonon-quasiparticle coupling can be carried out in
a microscopic way, based on a realistic effective residual
Hamiltonian. This has been achieved, e.g., in the microscopic
quasiparticle-phonon model (MQPM) [115, 116] where a
microscopic effective Hamiltonian based on the Bonn G matrix
has been used to produce the one- and three-quasiparticle states
in odd-mass nuclei. This extension of the QRPA has been used
to describe β decays, and in particular in connection with the
renormalization problem of gA, as discussed in section 9.

It should be noted that odd-mass nuclei can also be described
by starting from an odd-odd reference nucleus, described by the
pnQRPA phonons [35]. By coupling either proton or neutron
quasiparticles with pnQRPA phonons one can, again, create the
states of either a neutron-odd or a proton-odd nucleus. This
approach was coined the proton-neutron MQPM (pnMQPM)
and was used to describe forbidden beta decays in Mustonen
and Suhonen [117]. Although the pnQRPA-based phonons better
take into account the Ikeda sum rule [35, 76] and the Gamow-
Teller giant-resonance region of the β−-type strength function,
the pnMQPM lacks the important three-proton-quasiparticle
and three-neutron-quasiparticle contributions, essential for good
reproduction of the low-energy spectra of odd-mass nuclei. This
is why its use in β-decay calculations has been very limited.

4.3. Many-Body Aspects of the IBM
In its simplest version, the interacting boson model (IBM), the
theory framework consists of s and d bosons which have as
their microscopic paradigms the 0+ and 2+ coupled collective
Fermion pairs present in nuclei. Even a mapping of the collective
Fermion pairs to these bosons can be devised [91]. An extension
of the IBM is the microscopic IBM (IBM-2) where the proton
and neutron degrees of freedom are explicitly separated. The
IBM and IBM-2 are sort of phenomenological versions of the
ISM, containing the seniority aspect and the restriction to one
magic shell in terms of the single-particle valence space. The
Hamiltonian and the transition operators are constructed from
the s and d bosons as lowest-order boson expansions with
coupling coefficients to be determined by fits to experimental
data or by relating them to the underlying fermion valence
space through a mapping procedure [118, 119]. Thus, the IBM
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and its extensions use more or less phenomenological operators
mimicking the renormalized operators used in the ISM (see
section 4.1).

The two versions of the IBM can be extended to include
higher-multipole bosons, like g bosons, as well. Further extension
concerns the description of odd-mass nuclei by the use of the
interacting boson-fermion model (IBFM) and its extension, the
microscopic IBFM (IBFM-2) [92]. The IBM concept can also be
used to describe odd-odd nuclei by using the interacting boson-
fermion-fermionmodel (IBFFM) and its proton-neutron variant,
the proton-neutron IBFFM (IBFFM-2) [120]. Here the problems
arise from the interactions between the bosons and the one or
two extra fermions in the Hamiltonian, and from the transition
operators containing a host of phenomenological parameters to
be determined in some way. The IBM-2 and the IBFFM-2 have
been used to access the renormalization of gA, as described in
section 10.2.

5. EFFECTIVE VALUE OF GA IN ALLOWED
GAMOW-TELLER β DECAYS

Gamow-Teller decays are mediated by the Pauli spin operator σ

and they are thus able to change the initial nuclear spin Ji by one
unit. In the renormalization studies the simplest Gamow-Teller
transitions are selected, namely the ground-state-to-ground-state
ones. In Figure 1 are depicted Gamow-Teller ground-state-to-
ground-state β− and β+/EC transitions between even-even 0+

and odd-odd 1+ ground states in the A = 100 Zr-Nb-Mo-Tc-
Ru region. Shown are three different situations with a cascade
pattern (left panel), lateral feeding to a middle nucleus (middle
panel), and lateral feeding from a middle nucleus (right panel).
All these transitions are mediated by a Gamow-Teller NME,
MGT, of the Pauli spin operator, defined, e.g., in Suhonen [35].
The corresponding β-decay data can be obtained from ENSDF 1.
In the figure this NME is denoted byML (MR) in the case it is to
the left (right) of the central nucleus. The corresponding reduced

1ENSDF at NNDC site, http://www.nndc.bnl.gov/

transition probability BGT can be written as

BGT =
g2A

2Ji + 1
|MGT|2 , (17)

where Ji is the spin of the ground state of the initial nucleus,
gA is the weak axial-vector coupling strength, substituted by
the effective coupling strength geffA of Equation (8) in practical
calculations of the β-decay rates involving nuclear levels of low
excitation energy [Hence, the coupling strength gA is probed at
the q2 → 0 limit in (5)]. It is worth noting that the Gamow-Teller
decays probe only gA, not gV which is carried by the vector part
(Fermi spin-zero operator) of the β transitions, not active for the
here discussed 1+ ↔ 0+ transitions due to the conservation of
angular momentum.

The comparative half-lives (log ft values) of the 1+ ↔ 0+

Gamow–Teller transitions are given in terms of the reduced
transition probabilities as given in Suhonen [35]

log ft = log10(f0t1/2[s]) = log10

(

6147

BGT

)

(18)

for the β+/EC or β− type of transitions. The half-life of the initial
nucleus, t1/2, has been given in seconds.

Next we inspect the evolution of the quenching concept, based
on (17) and (18), in nuclear-structure calculations performed
during the last four decades.

5.1. Interacting Shell Model
Traditionally the renormalization of the axial-vector coupling
strength has been addressed in the context of the ISM in a wealth
of calculations pertaining to Gamow-Teller β decays of very light
(p-shell), light (sd-shell), and medium-heavy (pf -shell and sdg-
shell) nuclei. In these calculations it appears that the value of gA is
quenched. As indicated by the ISM results below, the quenching
factor (6) is roughly a decreasing function of the nuclear mass
number A, implying stronger quenching with increasing nuclear
mass. The studies can be grouped according to the mass regions
as follows.

FIGURE 1 | Gamow-Teller beta decays in the A = 100 Zr-Nb-Mo-Tc-Ru region.
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5.1.1. Results for the 0p-Shell Nuclei
A thorough study of the Gamow-Teller β decays of the 0p-shell
nuclei was performed in Chou et al. [61]. A 0p − 1s0d cross-
shell Hamiltonian derived by Warburton and Brown [121] was
used in the calculations. The thus derived phenomenological
(the fundamental, section 3, and nuclear-model induced
renormalization cannot be disentangled) quenching factor [see
Equation (6)] (from a least-squares fit, with one standard
deviation error) assumed the value

q = 0.82± 0.02, (19)

when using the then adopted value gfreeA = 1.26 in contrast to
the presently adopted value of Equation (7). Since the presently
adopted free value of gA is a bit larger, the quenching increases
slightly and for the effective value (8) of gA we have to use

geffA = (0.82± 0.02)×
1.26

1.27
× 1.27 = 1.03+0.03

−0.02, (20)

leading to an effective quenched value of gA close to unity.

5.1.2. Results for the 1s0d-Shell Nuclei
A pioneering early work of Wilkinson [122] investigated
Gamow-Teller β decays in the 0p shell and lower 1s0d shell
for the quenching of gA. In this work Wilkinson obtained a
quenching factor which was slightly corrected in Wilkinson [54]
based on new experimental data. The corrected value reads (from
a least-squares fit, with one standard deviation error)

q = 0.899± 0.035, (21)

when using the then adopted value gfreeA = 1.25. Using again the

correction for gfreeA we have

geffA = (0.899± 0.035)× 1.25 = 1.12+0.05
−0.04. (22)

The same quenching was obtained in Brown et al. [123] by
using a different ISM effective Hamiltonian indicating that the
quenching is not very sensitive to the detailed aspects of the shell-
model analysis. In Wilkinson [54] the empirical result (21) was
combined with relativistic corrections to yield

q = 0.927± 0.038. (with relativistic corrections) (23)

This yields

geffA = (0.927± 0.038)× 1.25 = 1.18± 0.05. (24)

when including the relativistic corrections.
In Wilkinson [122] and Wilkinson [54] it was speculated

that the renormalization effects of the Gamow-Teller transitions
at low nuclear excitation are of the order expected from
fundamental mesonic effects [55–57] (nuclear medium effect,
see section 3) or from the lifting of Gamow-Teller strength to
higher energies by the nuclear tensor force [87, 88] (nuclear
model effect, see section 4). Indeed, by using sum-rule arguments
of Ericson [55] the expected quenching by the meson-exchange

effects would be around q = 0.93 for nuclei in the vicinity of
A = 16. This is in very good agreement with the relativistically
corrected empirical result (23).

A full sd-shell analysis of the quenching was performed in
Wildenthal [62] with a new set of wave functions derived from
a Hamiltonian reproducing the global spectroscopic features of
the 1s0d-shell nuclei. The least-squares study (with one standar
deviation error) yielded the (empirical) quenching factor q =
0.77± 0.02 and thus leads to the global gfreeA -corrected 1s0d-shell
effective axial-vector coupling of

geffA = (0.77± 0.02)× 1.25 = 0.96+0.03
−0.02, (25)

which is notably smaller than (22) obtained for the lower 1s0d
shell. In the least-squares-fit studues, like this and the one
of Chou et al. [61] (see section 5.1.1), the separation of the
fundamental quenching (see section 3) from the total quenching
is impossible.

5.1.3. Results for the 1p0f(0g9/2)-Shell Nuclei
In the work [63] 64 Gamow-Teller β decays for the nuclear
mass range A = 41 − 50 were studied. This mass range covers
the lower part of the 1p0f shell. The shell-model work was
based on Caurier et al. [124] and KB3 two-body interaction
was adopted. In Martínez-Pinedo et al. [63] the experimental
values of Gamow-Teller matrix elements (extracted by using the
free value of gA) were compared with their computed values by
plotting them against each other in an xy plane. The plot was
well described by a line with the slope giving a phenomenological
quenching factor. From the slope and its error the quenching
factor

q = 0.744± 0.015 (26)

was derived, when using the their adopted value gfreeA = 1.26.

Then the gfreeA -corrected lower pf -shell quenching amounts to

geffA = (0.744± 0.015)× 1.26 = 0.937+0.019
−0.018. (27)

It is interesting to note that with this value of geffA the half-life
of the 2νββ decay of 48Ca could be predicted [125] in perfect
agreement with the later measured value [126]. In the work
[127] it was confirmed that the value q = 0.77 reasonably
describes the quenching in the A = 48 region. The quenching
in the 1s0d and 1p0f shells was also studied in Auerbach et
al. [128] for the nucleus 26Mg (1s0d model space) and for the
nuclei 54Fe and 56Ni (1p0f model space) by using both the
random-phase approximation and the ISM. The computed β+

Gamow-Teller strengths were compared with those derived from
the (n,p) charge-exchange reactions. This comparison implied a
phenomenological quenched value of geffA ∼ 0.98, not far from
the value (25), extracted in the 1s0d shell by Wildenthal [62] and
the value (27), extracted in the 1p0f shell.

The upper 1p0f (0g9/2)-shell Gamow-Teller transitions were
analyzed in Honma [65] in the 0f5/21p0g9/2 valence space using a
renormalized G-matrix-based two-body interaction, fitted in the
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mass region A = 63− 96. A rough phenomenological quenching
factor

q = 0.6 (28)

was adopted in the subsequent calculations of the 2νββ-decay
rates of 76Ge and 82Se. This, in turn, leads to an upper
1p0f (0g9/2)-shell effective coupling strength of

geffA = 0.6× 1.26 = 0.8, (29)

which is considerably smaller than (27) obtained for the lower
1p0f shell.

5.1.4. Results for the 0g7/21d2s0h11/2-Shell Nuclei

In Caurier et al. [66] an analysis of the Gamow-Teller β decays
in the (incomplete) sdg shell (for A = 128 − 130) was
performed using the 0g7/21d2s0h11/2 single-particle space. A
model Hamiltonian based on a renormalized Bonn-C G-matrix
with a subsequent fitting of about 300 energy levels of some 90
nuclei in the 0g7/21d2s0h11/2 shell was used in the calculations.
The resulting phenomenological quenching factor was

q = 0.57, (30)

implying a 0g7/21d2s0h11/2-shell effective coupling strength of

geffA = 0.57× 1.26 = 0.72, (31)

which is a bit smaller than those obtained in the 1p0f (0g9/2) shell.
In Caurier et al. [66] also the case of A = 136 was discussed

for the 2νββ decay of 136Xe using the above-mentioned single-
particle space. Comparing the experimentally available [129]
(p,n) type of strength function on 136Xe (up to excitation energies
of 3.5 MeV in 136Cs) with the computed one, the authors
concluded a phenomenological quenching factor

q = 0.45 (32)

for A = 136. This leads to a heavily quenched effective axial-
vector coupling strength of

geffA (A = 136) = 0.45× 1.26 = 0.57, (33)

for the A = 136 region of the 0g7/21d2s0h11/2 shell. On the
other hand, more recent calculations by Horoi et al. [68, 130] for
the 2νββ NMEs of 130Te and 136Xe suggest a milder quenching
and a larger value geffA (A = 130 − 136) = 0.94 [68] for the
effective coupling strength. This is in a rather sharp tension with
the results (31) and (33) of Caurier et al. [66].

In Juodagalvis et al. [67] a cross-shell study for the mass
region A = 90 − 97 was performed in the single-particle space
1p1/20g9/2 for protons and 0g7/21d0s0h11/2 for neutrons by using
a Bonn-CD-based potential with perturbative renormalization.
Again, lack of the full space of spin-orbit partners lead to a strong
phenomenological Gamow-Teller quenching

q = 0.48, (34)

leading to a cross pf − sdg-shell effective coupling strength of

geffA = 0.48× 1.26 = 0.60. (35)

The above-derived quenching is not far from the quenching
q = 0.5 derived in Brown [131] for nuclei in the 100Sn region
using a 0f5/21p0g9/2 proton-hole space and 0g7/21d0s0h11/2
neutron-particle space.

A quite recent ISM analysis of the nuclei within the mass
range 52 ≤ A ≤ 80 was performed by Kumar et al. [64]. There
the 1p0f -shell nuclei, 52 ≤ A ≤ 67, were treated by using the
KB3G interaction, and the comparison with the experimental
β−-decay half-lives produced a phenomenological quenching
factor leading to the effective coupling strength

geffA = 0.838+0.021
−0.020 (52 ≤ A ≤ 67). (36)

The 0f5/21pg9/2-shell nuclei, 67 ≤ A ≤ 80, were computed by
using the JUN45 interaction, producing the effective coupling
strength

geffA = 0.869± 0.019 (67 ≤ A ≤ 80). (37)

In this work the error estimation is given by the slopes-of-the-
lines method [63], discussed in the context of Equation (26)
above.

TABLE 1 | Mass ranges and effective values of gA extracted from the works of the

last column.

Mass range geff
A

References

Full 0p shell 1.03+0.03
−0.02 Chou et al. [61]

0p− low 1s0d shell 1.12+0.05
−0.04 Wilkinson [54] (no RC)

1.18± 0.05 Wilkinson [54] (with RC)

Full 1s0d shell 0.96+0.03
−0.02 Wildenthal et al. [62]

1.0 Siiskonen et al. [60]

A = 41− 50 (1p0f shell) 0.937+0.019
−0.018 Martínez-Pinedo et al.

[63]

1p0f shell 0.98 Siiskonen et al. [60]

56Ni 0.71 Siiskonen et al. [60]

A = 52− 67 (1p0f shell) 0.838+0.021
−0.020 Kumar et al. [64]

A = 67− 80 (0f5/21p0g9/2
shell)

0.869± 0.019 Kumar et al. [64]

A = 63− 96 (1p0f0g1d2s

shell)

0.8 Honma et al. [65]

A = 76− 82 (1p0f0g9/2
shell)

0.76 Caurier et al. [66]

A = 90− 97 (1p0f0g1d2s

shell)

0.60 Juodagalvis et al. [67]

100Sn 0.52 Siiskonen et al. [60]

A = 128− 130

(0g7/21d2s0h11/2 shell)

0.72 Caurier et al. [66]

A = 130− 136

(0g7/21d2s0h11/2 shell)

0.94 Horoi et al. [68]

A = 136

(0g7/21d2s0h11/2 shell)

0.57 Caurier et al. [66]

RC in lines 2 and 3 denotes relativistic corrections.
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All the results of the ISM analyses have been collected in
Table 1. There the mass range (magic shell), value of geffA , and the
author information are given. Also the results of Siiskonen et al.
[60], from section 3, obtained by the use of effective operators
in the nuclear medium, have been given for comparison. In
addition, the ISM results (adding the 100Sn results of Siiskonen
et al. [60]) for masses 60 ≤ A ≤ 136 have been visualized in
Figure 3 of section 5.2. In the figure the results of Honma et
al. [65], Caurier et al. [66], Horoi and Neacsu [68], Juodagalvis
et al. [67], Kumar et al. [64], and Siiskonen et al. [60] (see the
discussions above) have been plotted against the background
(the hatched region of Figure 3) of the results of the pnQRPA
analyses performed in section 5.2. Looking at the figure makes
it obvious that the ISM results of the aforementioned references
are commensurate with the results of the (global) analyses of
Gamow-Teller transitions performed in the framework of the
pnQRPA.

Finally, it is of interest to point out to the recent work [132]
where no-core-configuration-interaction formalism, rooted in
multireference density functional theory, was used to compute
the Gamow-Teller NMEs for T = 1/2 mirror nuclei (pairs of
nuclei where either a neutron or a proton is added to an even-
even N = Z core nucleus) in the 1s0d and 1p0f shells. The
computations were performed in a basis of 10 or 12 spherical
harmonic-oscillator shells by using two different Skyrme forces.
The computed quenching factors coincide surprisingly closely
with those of the ISM quoted in (25) (Wildenthal et al. [62]) for
the 1s0d shell and in (26) (Martinez-Pinedo et al. [63]) for the
1p0f shell, despite the big differences in the two nuclear models.
This would point to the possibility that the quenching in the 1s0d
and 1p0f shells is not so much related to the deficiencies of the
nuclear models but rather to omission of effects coming from
the nuclear medium, like from the two-body currents and other
mesonic effects discussed in section 3.

5.2. Quasiparticle Random-Phase
Approximation
Only recently the important aspect of the effective value of gA
has been addressed within the framework of the pnQRPA. The
situation with pnQRPA is more involved than in the case of
the ISM since the adopted schematic or realistic interactions
are usually renormalized separately in the particle-hole (gph
parameter) and particle-particle (gpp parameter) [133–136]
channels. Typically the particle-hole parameter, gph, is fitted to
reproduce the centroid of the Gamow-Teller giant resonance
(GTGR) obtained from the semi-empirical formula [135, 136]

1EGT = E(1+GTGR)− E(0+gs) =
[

1.444

(

Z +
1

2

)

A−1/3

− 30.0
(

N − Z − 2
)

A−1 + 5.57
]

MeV. (38)

The above formula indicates that the difference 1EGT between
the GTGR and the ground state of the neighboring even-even
reference nucleus depends on the proton and neutron numbers
(Z,N) of the reference nucleus, as well as on its mass number.
For the particle-particle parameter, gpp, there is no unique way

to fix its value, as criticized in Suhonen [137]. Furthermore, the
exact value of gpp depends on the size of the active single-particle
model space. In this review several ways how this can be done
are discussed. As a result of the gpp problems and problems
with systematic renormalization of the two-body interactions, the
fundamental quenching (see section 3) cannot be disentangled
from the nuclear-model effects, discussed in section 4.

The first pnQRPA attempts were inspired by a simultaneous
description of β and 2νββ decays, as elaborated more in
section 10. In Delion and Suhonen [138] 9 isobaric systems,
with A = 70, 78, 100, 104, 106, 110, 116, 128, 130, of the type
displayed in the right panel of Figure 1 were analyzed by using
a spherical pnQRPA with schematic particle-hole and particle-
particle forces. The pnQRPA calculations were performed in the
even-even reference nuclei. For each GTGR-fixed gph the value of
gpp was varied in order to reproduce the experimentally known
ratio MR/ML which is independent of the value of gA. The value
of gA was then determined by requiring MR(th)/MR(exp) = 1.
This produced the mean value

geffA = 0.27 (39)

and the approximate mass dependence gpp ≈ 0.5/
√
A. By

using this dependence of gpp and the above value (39) for gA
the experimental β+/EC and β− NMEs of 218 Gamow-Teller
transitions were quite well reproduced in Delion and Suhonen
[138]. The quite low value obtained for geffA implies that a
larger quenching is required than in the ISM due to the simple
schematic form of the adopted Hamiltonian in the pnQRPA
calculations. in other words, the quenching coming from the
many-body effects is stronger for the pnQRPA calculation than
for the ISM calculation which is more realistic in terms of two-
body interactions and configuration space. In this analysis the
effects coming from the nuclear medium (section 3) cannot be
disentangled from the many-body effects, unfortunately.

In Pirinen and Suhonen [139] an analysis of 26 β− and 22
β+/ECGamow-Teller transitions of the type depicted in Figure 1
in the mass range A = 100 − 136 was performed. In this study
the geometric mean

M̄GT =
√

MLMR (40)

of the extracted experimental NMEs was compared with that
computed by the use of the pnQRPA with realistic effective forces
based on the gph- and gpp-renormalized Bonn-A G matrix. The
use of the geometric mean of the left and right NMEs stabilizes
the values of the mean NMEs and smoother trends can be
obtained. This is based on the fact that the NME for the β−

branch is a decreasing function of gpp and the NME for the
β+/EC branch is an increasing function of gpp. Thus, the product
of the NMEs of these branches remains essentially constant over
a wide range of gpp values (see the figures in Ejiri and Suhonen
[140]).

Like in Delion and Suhonen [138], the pnQRPA calculations
of Pirinen and Suhonen [139] were performed in the even-
even reference nuclei. The value of gph was fixed by the
phenomenological centroid (38) of the GTGR separately for
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each nucleus. In the calculations it turned out that the value
gpp = 0.7 represents a reasonable global value for the particle-
particle interaction strength in the model spaces used in the
calculations: at least one oscillator major shell above and below
those oscillator shells where the proton and neutron Fermi
surfaces lie. Furthermore, an average piece-wise linear behavior

geffA =
{

0.02A− 1.6 for A ≤ 120
1
60A− 43

30 for A ≥ 122
(41)

of gA was found in the calculations. These derived values of geffA ,
plotted in Figure 2, were used, in turn, to describe the Gamow-
Teller and 2νββ decay rates to the ground state and lowest excited
states in the even-even reference nucleus in the A = 100 − 136
mass region. These results were compared with those obtained by
the use of the average value

geffA (ave) = 0.6 (42)

for geffA . The average value reproduced surprisingly well the
experimentally known 2νββ half-lives in this mass region.

The work of Pirinen and Suhonen [139] was extended in
Deppisch and Suhonen [141] to a wider range of nuclei (A =
62− 142) and to a more refined statistical analysis of the results.
The same renormalized Bonn-A G matrix as in Pirinen and
Suhonen [139] was adopted for the pnQRPA calculations, along
with the scaling with the gph and gpp parameters. AMarkov chain
Monte Carlo statistical analysis of 80 Gamow-Teller transitions

FIGURE 2 | Averaged effective values of gA [geffA of (45)] in the 5 different mass

ranges, plotted from the numbers of Table 2. The legends inside the figure

correspond to the following references: Ejiri et al. [140] (dark-hatched boxes);

Whole pnQRPA range: combined results of Pirinen and Suhonen [139],

Deppisch and Suhonen [141], and Ejiri and Suhonen [140] (light-hatched

boxes) illustrate the total range of geffA for each mass region. Also the linear fit

(41) and the “fundamentally” quenched gA, Equation (14), are plotted for

comparison.

in 47 isobaric decay triplets of the kind depicted in Figure 1 was
performed. The analysis was also extended to 28 longer isobaric
chains and the results were compared with those obtained for
the isobaric triplets. Also the measured half-lives of 2νββ decays
occurring in the isobaric chains were analyzed. A roughly linearly
increasing trend of geffA as a function of the mass number A could
be extracted from the analysis of the isobaric triplets for A ≥ 100,
in accordance with the result of Pirinen and Suhonen [139].
Similar features were seen also in the fits to longer multiplets. For
the range 100 ≤ A ≤ 136 the average (42) was roughly obtained
in both analyses.

In contrast to Pirinen and Suhonen [139] also the value of gpp
was kept as a free parameter, the same for the left and right NMEs
of transitions in the triplets like in Figure 1, and different for each
even-even reference nucleus in the longer chains. Both types of
analysis yield a rough average of gpp ≈ 0.7 for the particle-particle
strength parameter in the mass range 100 ≤ A ≤ 136 (see the
last column of Table 2), in accordance with the value used in the
analysis of Pirinen and Suhonen [139]. At this point it should be
noted that the adopted single-particle model spaces used in the
calculations correspond to those of Pirinen and Suhonen [139]
for 100 ≤ A ≤ 136: at least one oscillator major shell above and
below those oscillator shells where the proton and neutron Fermi
surfaces lie.

A slightly different analysis of the Gamow-Teller transitions
in the mass range 62 ≤ A ≤ 142 was carried out in
Ejiri and Suhonen [140]. This is the same mass range as
analyzed in Deppisch and Suhonen [141]. Again the gph- and
gpp-renormalized Bonn-A G matrix was used in a pnQRPA
framework, and the geometric mean (40) was used in the
analysis to smooth the systematics. The mass range was divided

FIGURE 3 | Whole ranges of averaged effective values of gA from Figure 2

(light-hatched regions) plotted against the ISM results of section 5.1. The ISM

results come from Honma et al. [65], Caurier et al. [66], Juodagalvis et al. [67],

Kumar et al. [64] (dark-hatched regions), and Siiskonen et al. [60].

Frontiers in Physics | www.frontiersin.org 12 November 2017 | Volume 5 | Article 55

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Suhonen Effective Value of gA

TABLE 2 | Mass ranges, the corresponding leading pn configurations and average effective values (45) of gA extracted from three different works.

A pn configuration geffA gpp [141]

[140] [141] (tripl.) [141] (mult.) [139]

62–70 1p3/2 − 1p1/2 0.81± 0.20 0.80± 0.20 0.84± 0.15 – 0.71± 0.34

78–82 0g9/2 − 0g9/2 0.88± 0.12 0.77± 0.30 (0.87± 0.74) – 0.53± 0.33

98–116 0g9/2 − 0g7/2 0.53± 0.13 0.54± 0.15 0.53± 0.14 0.52± 0.16 0.74± 0.17

118–136 1d5/2 − 1d5/2 0.65± 0.17 0.65± 0.16 0.59± 0.18 0.67± 0.16 0.56± 0.24

98 ≤ A ≤ 136 0.72± 0.16 0.69± 0.12 0.71± 0.17 0.60± 0.11 0.63± 0.11

138–142 1d5/2 − 1d3/2 1.14± 0.10 1.13± 0.13 1.07± 0.14 – 0.59± 0.11

The numbers of column 4 (5) are obtained from fits to isobaric triplets (multiplets). The last column shows the averaged values of gpp deduced from Deppisch and Suhonen [141]. In all

studies the same single-particle model spaces have been used (see the text). The second last line shows the averages in the mass interval 98 ≤ A ≤ 136. In all analyses the arithmetic

mean with a standard deviation from it has been given.

in 5 sub-ranges according to the leading proton-neutron (pn)
configuration influencing the Gamow-Teller decay rate. The
reduction of the NME in the chain M̄qp → M̄pnQRPA → M̄exp

was followed, where M̄qp is the mean two-quasiparticle NME
(40) for the leading pn configuration, M̄pnQRPA is the pnQRPA-
computed mean NME, and M̄exp is the mean experimental NME,
extracted from the experimental decay-half-life data by using
gfreeA = 1.27. The ratio

k =
M̄pnQRPA

M̄qp
(43)

is a measure of the quenching of the NME when going from a
rudimentary many-body approach toward a more sophisticated
one. This ratio is independent of the nuclear-matter effects and
is usually nuclear-mass dependent (the results of the analysis
[140] are quoted in the second column of Table 4 in section 7).
The quenching of gA by the nuclear-medium and many-body
(inseparable!) effects was incorporated in the ratio

kNM = 〈M̄exp/M̄pnQRPA〉, (44)

representing an average of the ratio M̄exp/M̄pnQRPA of the
experimental NME and the pnQRPA-computed NME over each
sub-range of masses. The resulting effective gA can be extracted
from kNM by using the simple relation

geffA = gfreeA kNM = 1.27kNM. (45)

The resulting values of geffA , along with the mass ranges and
leading pn configurations are listed in Table 2. The pnQRPA
results were obtained by fitting the gph parameter to the
phenomenological centroid (38) of the GTGR separately for each
nucleus, and by adopting gpp = 0.67, in line with the analyses
of Pirinen and Suhonen [139] and Deppisch and Suhonen [141].
Again, the adopted single-particle model spaces correspond to
those of Deppisch and Suhonen [141]: at least one oscillator
major shell above and below those oscillator shells containing the
proton and neutron Fermi surfaces.

In Table 2 also the averaged results of Deppisch and Suhonen
[141] and Pirinen and Suhonen [139] are shown for comparison.

For Deppisch and Suhonen [141] are shown the results of
both the isobaric triplet (tripl.) and multiplet (mult.) fits, as
also the averaged gpp values, extracted from the analysis of the
triplet fits of Deppisch and Suhonen [141]. In all the analyses
the same single-particle model spaces were used: at least one
oscillator major shell above and below those oscillator shells
containing the proton and neutron Fermi surfaces. The triplet
and multiplet fits of Deppisch and Suhonen [141] are quite
consistent, excluding the multiplet fit of mass range 78–82
(the result in parenthesis) which has two fitted multiplets, the
other rendering an ambiguous result. The results of Deppisch
and Suhonen [141] are very close to those of Pirinen and
Suhonen [139] and Ejiri and Suhonen [140]. Most of the (quite
small) differences between the various calculations stem from
the different ways of treating the value of the particle-particle
strength gpp, which for the studies of Ejiri and Suhonen [140]
and Pirinen and Suhonen [139] was kept constant (gpp = 0.67
and gpp = 0.7, respectively) but was allowed to vary in the work
of Deppisch and Suhonen [141] (see the last column of Table 2).

The numbers of Table 2 have been visualized in Figure 2.
Also the linear fit (41) and the “fundamentally” quenched gA,
Equation (14), are plotted for comparison. The plot reveals
quite a simple structure of the ranges of geffA within different
mass regions. The numbers of Ejiri et al. [140] are given as
dark-hatched regions while the light-hatched regions contain the
results of Ejiri et al. plus the results of Pirinen et al. [139] and
Deppisch et al. [141]. A general decreasing trend of the ranges
of geffA (the hatched boxes) can be seen, except for the heaviest
masses A ≥ 138. It is noteworthy that there is a small shift
in the values of geffA at A = 120 indicated by all the pnQRPA
analyses (both light and hatched boxes). Also the linear fit (41)
indicates a discontinuity close to this mass number. The most
probable cause for this displacement is the change in the nuclear
wave functions from the 0g-orbital dominated to the 1d-orbital
dominated proton-neutron configuration, as seen in Table 2. A
similar, even more drastic, displacement is seen between A =
70–78 where the dominating proton-neutron configuration of
the nuclear wave functions shifts from the 1p orbitals to the 0g
orbitals.

The obtained pnQRPA ranges can be compared with results
obtained by performing combined geffA analyses of β and 2νββ
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decay rates in the pnQRPA and other models: The light-
hatched regions of Figure 2 have been plotted in Figure 18 for
comparison with the results of section 10. The result of the linear
fit (41) is not included in that plot since the hatched regions are
a better way to describe the (large) spread of the pnQRPA results
for different masses A. This large spread is not perceivable in the
linear fit.

In Figure 3 the light-hatched regions of Figure 2 (combined
results of the pnQRPA analyses) have been plotted as a
background against the results of the ISM of section 5.1. As can be
seen in the figure, the ISM results and the pnQRPA results are in
excellent agreement with each other. This is a non-trivial result
considering the quite different premises of these two different
calculation frameworks. For the masses A ≥ 138 there is no
comparison between the two approaches since mid-shell heavy
nuclei, with increasing deformation, are hard to access by the ISM
due to an overwhelming computational burden.

6. QUENCHING OF GA IN FORBIDDEN
UNIQUE β DECAYS

The forbidden unique β transitions are the simplest ones that
mediate β decays between nuclear states of large angular-
momentum difference 1J. In particular, if one of the states is a
0+ state, then for a Kth forbidden (K = 1, 2, 3, . . .) unique beta
decay the angular momentum of the other involved state is J =
K + 1. At the same time the parity changes in the odd-forbidden
and remains the same in the even-forbidden decays [35]. The
change in angular momentum and parity for different degrees of
forbiddenness is presented in Table 3, and they obey the simple
rule

(−1)1J1π = −1. (Forbidden unique decays) (46)

Here it is interesting to note that also the Gamow-Teller decays
obey the rule (46) if one of the involved nuclear states has the
multipolarity 0+.

6.1. Theoretical Considerations
The theoretical half-lives t1/2 of Kth forbidden unique β decays
can be expressed in terms of reduced transition probabilities
BKu and phase-space factors fKu. The BKu is given by the NME,
which in turn is given by the single-particle NMEs and one-body
transition densities. Then (for further details see [35])

t1/2 =
κ

fKuBKu
; BKu =

g2A
2Ji + 1

|MKu|2, (47)

TABLE 3 | Change in angular momentum and parity in Kth forbidden unique β

decays with a 0+ state as an initial or final nuclear state.

K 1 2 3 4 5 6 7

1J 2 3 4 5 6 7 8

1π = πiπf −1 +1 −1 +1 −1 +1 −1

where Ji is the angular momentum of the mother nucleus and κ
is a constant with value [142]

κ =
2π3h̄7ln 2

m5
ec

4(GF cos θC)2
= 6147 s, (48)

with GF being the Fermi constant and θC being the Cabibbo
angle. The phase-space factor fKu for the Kth forbidden unique
β± decay can be written as

fKu =
(

3

4

)K (2K)!!

(2K + 1)!!

∫ w0

1
CKu(we)pewe(w0 − we)

2F0(Zf ,we)dwe,

(49)
where CKu is the shape function for Kth forbidden unique β
decays which can be written as (see, e.g., [35, 143])

CKu(we) =
∑

ke+kν=K+2

λkep
2(ke−1)
e (w0 − we)2(kν−1)

(2ke − 1)!(2kν − 1)!
, (50)

where the indices ke and kν (both k = 1, 2, 3...) come from
the partial-wave expansion of the electron (e) and neutrino
(ν) wave functions. Here we is the total energy of the emitted
electron/positron, pe is the electron/positron momentum, Zf
is the charge number of the daughter nucleus and F0(Zf ,we)
is the Fermi function taking into account the coulombic
attraction/repulsion of the electron/positron and the daughter
nucleus2. The factor λke contains the generalized Fermi function
Fke−1 [144] as the ratio

λke =
Fke−1(Zf ,we)

F0(Zf ,we)
. (51)

The integration is performed over the total (by electron
rest-mass) scaled energy of the emitted electron/positron, w0

being the endpoint energy, corresponding to the maximum
electron/positron energy in a given transition.

The NME in (47) can be expressed as

MKu =
∑

ab

M(Ku)(ab)(ψf ||[c†
a c̃b]K+1||ψi), (52)

where the factors M(Ku)(ab) are the single-particle matrix
elements and the quantities (ψf ||[c†

a c̃b]K+1||ψi) are the one-body
transition densities with ψi being the initial-state wave function
andψf the final-state wave function. The operator c

†
a is a creation

operator for a nucleon in the orbital a and the operator c̃a is the
corresponding annihilation operator. The single-particle matrix
elements are given (in the Biedenharn-Rose phase convention)
by

MKu(ab) =
√
4π
(

a||rK[YKσ ]K+1i
K ||b

)

, (53)

where YK is a spherical harmonic of rank K, r the radial
coordinate, and a and b stand for the single-particle orbital
quantum numbers. The NME (53) is given explicitly in Suhonen
[35].

2For positron emission the change Zf → −Zf has to be performed in F0(Zf ,we)
and Fke−1(Zf ,we), Equation (51) below.
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6.2. First-Forbidden Unique β Decays
The first-forbidden unique β transitions aremediated by a rank-2
(i.e., having angular-momentum content 2) parity-changing
spherical tensor operator [a special case of the operator (53)],
schematically written as O(2−). For these decays it is customary
to modify the general structure of Equations (47)–(49) by
replacing the phase-space factor fK=1,u of (49) by a 12 times larger
phase-space factor f1u, i.e.,

f1u = 12fK=1,u, (54)

yielding a factor log 12 = 1.079 times larger comparative half-
lives (18) than in the standard definition (47).

In the quenching studies it is advantageous to use the
simplest first-forbidden transitions, namely the ground-state-to-
ground-state ones. In Figure 4 are depicted the first-forbidden
unique ground-state-to-ground-state β− and β+/EC transitions
between even-even 0+ and odd-odd 2− ground states in the
A = 84 Kr-Rb-Sr isobaric chain. Shown is the lateral feeding from
a middle odd-odd nucleus to adjacent even-even ground states.
In the figure, as also in Figure 1 for the Gamow-Teller transitions,
the NME is denoted byML (MR) in case it is to the left (right) of
the central nucleus.

In the early work [145] a systematic schematic analysis of the
first-forbidden unique β decays was performed from the point
of view of suppression factors stemming from the effect of E1
(electric dipole) giant resonance in the final odd-odd nucleus.
In Towner et al. [146] the suppression mechanism of the first-
forbidden and third-forbidden β decays of light nuclei (A ≤ 50)
was studied by using simple shell-model estimates and first-order
perturbation theory. The hindrance was traced to the repulsive
T = 1 (isospin 1) particle-hole force.

In the work [147] 19 first-forbidden unique ground-state-to-
ground-state β-decay transitions were studied. The interesting
transitions are the ones where bothML andMR NMEs are known
experimentally, like in the case of Figure 4. The experimental

FIGURE 4 | First-forbidden unique beta decays in the A = 84 Kr-Rb-Sr

isobaric chain.

values of the NMEs can be deduced by using Equations (47) and
(48) and by adopting the free value of the axial-vector coupling
strength3. In this case one can use the geometric mean (40) of
the left and right NMEs in the analysis, making the analysis
more stable. In Ejiri et al. [147] a gph- and gpp-renormalized
Bonn-A G matrix was used as the two-nucleon interaction in a
pnQRPA framework. The two-quasiparticle and pnQRPA NMEs
were compared with the ones extracted from the measured
comparative half-lives. Again the relations (44) and (45) can be
used to obtain the value

geffA ≈ 0.45× 1.27 = 0.57 (55)

for the effective axial-vector coupling strength using the pnQRPA
wave functions. The average of the values of the leading two-
quasiparticle NMEs gives in turn

geffA (2qp) ≈ 0.18× 1.27 = 0.23, (56)

implying the ratio

k =
M̄pnQRPA

M̄qp
= 0.4 (57)

and thus a drastic nuclear many-body effect when going from the
two-quasiparticle level of approximation to the pnQRPA level.
The 2qp-NME to pnQRPA-NME comparison is the only one
where a clean separation between the nuclear-medium effects
and the nuclear-model effects can be achieved, the nuclear-model
effect being responsible for the (in this case large) shift in the
values of the NMEs.

7. HIGHER-FORBIDDEN UNIQUE β

DECAYS

Early studies of the quenching in the second- and third-forbidden
unique β decays were performed in Towner et al. [146] and
Warburton et al. [149]. The work of Towner et al. [146] was
discussed in section 6.2. In Warburton et al. [149] these β
decays were studied using a simple ISM and the unified model
(deformed shell model) for six β transitions in the A = 10,
22, 26, 40 nuclei. The interest for these studies derived from
nuclear-structure considerations: how to explain in a nuclear
model the hindrance phenomena occurring in certain measured
β transitions. Beyond this, the incentive to study the Gamow-
Teller (section 5), first-forbidden unique (section 6.2), and
higher-forbidden unique (this section) β decays stems from their
relation to the Gamow-Teller type of NME involved in 0νββ
decays. The 0νββ decays proceed via virtual intermediate states
of all multipolarities Jπ due to the multipole expansion of the
Majorana-neutrino propagator (see, e.g., [1–3, 150–155]). Studies

3In Ejiri et al. [147] the Bohr-Mottelson (BM) formulation [148] of first-forbidden
decays is used. The difference between the present and the BM formulation can
be crystallized into the following relations: M(BM) = M1u/

√
4π , B(BM) =

B1u/(4πg2A), f1(BM) = 3f1u/4. In addition, since gV(BM) = GFgV and gA(BM) =
GFgA, one has to make replacements gA(BM) → gA and gV(BM) → 1 in order to
go from the BM formulation to the present one.
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of the quenching of these two-leg (“left-leg” and “right-leg”
transitions illustrated in the schematic Figure 5 for the 0νββ
decay of 116Cd to 116Sn via the virtual intermediate states in 116In)
virtual transitions is of paramount importance to, e.g., estimate
the sensitivities of the present and future neutrino experiments
to the Majorana-neutrino mass. The possible quenching of these
intermediate multipole transitions in the GT type of 0νββ NME
can be, in a simplistic approach, condensed into an effective axial
coupling, geffA,0ν , multiplying the NME:

M
(0ν)
GTGT = (geffA,0ν)

2
∑

Jπ

(0+
f
||O(0ν)

GTGT(J
π )||0+i ), (58)

whereO(0ν)
GTGT denotes the transition operatormediating the 0νββ

transition through the various multipole states Jπ , 0+i denotes
the initial ground state, and the final ground state is denoted by
0+
f

(here, for simplicity, we assume a ground-state-to-ground-

state transition). The effective axial coupling relevant for 0νββ
decay is denoted as geffA,0ν to emphasize that its value may deviate
from the one determined in single beta and 2νββ decays. The
remarkable feature of Equation (58) is that the effective axial
coupling strength is raised to 2nd powermaking the value of geffA,0ν
play an extremely important role in determining the 0νββ-decay
rate which is (neglecting the smaller double Fermi and tensor
contributions) proportional to the squared NME and thus to the
4th power of the coupling:

0νββ − rate ∼
∣

∣

∣
M

(0ν)
GTGT

∣

∣

∣

2
= g4A,0ν
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∣

∣
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∣

∣

∣
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(59)
The quenching related to the left-leg and right-leg β transitions
of Figure 5 can be studied by using the theoretical machinery

FIGURE 5 | The 0νββ decay of 116Cd to 116Sn via the virtual intermediate

states in 116 In. The transitions between 116Cd (116Sn) and 116 In constitute

the left-leg (right-leg) transitions.

of section 6.1. In Kostensalo and Suhonen [156] this machinery
was applied to 148 potentially measurable second-, third-, fourth-
, fifth-, sixth- and seventh-forbidden unique beta transitions.
The calculations were done using realistic single-particle model
spaces and G-matrix-based microscopic two-body interactions.
The results of Kostensalo and Suhonen [156] could shed light
on the magnitudes of the NMEs corresponding to the high-
forbidden unique 0+ ↔ Jπ = 3+, 4−, 5+, 6−, 7+, 8− virtual
transitions taking part in neutrinoless double beta decay, as
shown in Figure 5.

In Kostensalo and Suhonen [156] the ratio k, Equation (62)
below, of the NMEs, calculated by the pnQRPA, MpnQRPA, and
a two-quasiparticle model, Mqp, was studied and compared with
earlier calculations for the allowed Gamow-Teller 1+ [140] and
first-forbidden spin-dipole (SD) 2− [147] transitions. Based on
this comparison the expected half-lives of the studied β-decay
transitions were predicted. An example case of the expected
half-lives of second-, fourth-, and seventh-forbidden β decays is
shown in Figure 6. The computed NMEs are corrected by the use
of the ratio of the geometric means (40) of the experimental and
pnQRPA NMEs,

kNM =
M̄exp

M̄pnQRPA
, (60)

extracted from the GT work of Ejiri and Suhonen [140], to
predict the transition half-lives of the figure. In the figure one
sees that the expected half-lives range from 4 years to the
astronomical 9 × 1029 years. It is expected that the decays to
and from isomeric states are not measurable and the decays
between the nuclear ground states are masked by transitions to
excited states with lesser degree of forbiddenness. Only in some
cases the high-forbidden β decay exhausts 100% of the decay
rate between two nuclear ground states; one example being the
second-forbidden β− transition 54Mn(3+gs) → 54Fe(0+gs), with a

half-life 4.2(9) × 105 years, shown in Figure 7. Even in this case
the measurement will be challenging due to the Gamow-Teller
type of electron-capture feeding of the first excited 2+ state of
54Cr, taking practically 100% of the feeding intensity.

The geometric mean of the EC/β+ and β− NMEs, defined in
(40), can be generalized to a geometric mean of n NMEs, Mi,
i = 1, 2, . . . n, of successive β transitions with a common mother
or daughter nucleus:

M̄ =
(

n
∏

i= 1

Mi

)1/n

. (61)

Here the aim, as in the case of (40), is to reduce the fluctuations
in the computed NMEs by exploiting the compensating trends of
the β− and β+/EC branches of decay when changing the value
of the particle-particle interaction parameter gpp of the pnQRPA.
One can now define the ratio

k =
M̄pnQRPA

M̄qp
(62)
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FIGURE 6 | Predicted half-lives and their error estimates (in parenthesis) for β− and EC (electron-capture) transitions in the isobaric chain A = 116. The spin-parity

assignments, decay energies (Q values) and life-times of the nuclear ground (gs) and isomeric (isom) states are experimental data and taken from ENSDF (http://www.

nndc.bnl.gov/). The 2νββ half-life is taken from Barabash [157]. In addition to the half-lives the degree of forbiddenness and the leading single-particle transition are

shown.

FIGURE 7 | The same as Figure 6 for the second- and sixth-forbidden β decays in the isobaric chain A = 54.

of the pnQRPA-calculated mean NME, M̄pnQRPA, and the mean
two-quasiparticle NME, M̄qp, computed by using (61). The ratio
k is a measure of the evolution of the nuclear-model dependent

many-body effects on the computed NME. The ratio (62) is
independent of the nuclear-medium effects (the fundamental
quenching of section 3) and gives an idea of how the quenching
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of gA depends on the degree of complexity of the adopted nuclear
model.

In Kostensalo and Suhonen [156] the β transitions were
divided in two groups: GROUP 1 contained only non-magic
even-even reference nuclei (i.e., nuclei where the pnQRPA and
the associated BCS (Bardeen-Cooper-Schrieffer) calculation were
performed), whereas GROUP 2 contained (semi)magic reference
nuclei. The transitions in GROUP 2 were left out from the
analysis of the ratio k of (62) since the BCS results tend to be
unstable at magic shell closures. In Figure 8 the ratio k is shown
for transitions belonging to GROUP 1. The same k distribution is
shown in terms of division to β− and EC/β+ decays in Figure 9.

From Figure 8 it is visible that the second- and fourth-
forbidden β transitions are distributed to masses below A = 62
and above masses A = 92, whereas the third-forbidden decays
occupy the mass range 74 ≤ A ≤ 90. The sixth-forbidden decays

occur within the range 92 ≤ A ≤ 110 and the seventh-forbidden
decays occur above A = 116. The fifth-forbidden decays occur
in a scattered way above A = 84. From Figure 9 one observes
that most of the β− decays are concentrated above mass A =
118 where also quite low values of k can be obtained. The
EC/β+ decays, on the other hand, are more concentrated in the
middle-mass region 82 ≤ A ≤ 116.

Figure 8 suggests that the values of the ratio (62) can be
classified in terms of three mass regions, namely A = 50 − 88
(k∼0.4), A = 90 − 120 (values of k have a scattered, decreasing
trend), and A = 122 − 146 (a low-k region with k∼0.2). The
ratios k for the three mass regions and for various degrees of
forbiddenness K are shown in Table 4 for β transitions belonging
to GROUP 1. A comparison is made to the GT results of Ejiri and
Suhonen [140] and SD results of Ejiri et al. [147]. The ratios are
also plotted in Figure 10 for illustrative purposes. In the figure

FIGURE 8 | Ratio (62) as a function of the mass number A for β transitions involving solely non-magic reference nuclei. The degree of forbiddenness K is indicated by

color and shape of the symbol.

FIGURE 9 | Ratio (62) as a function of the mass number A separated to β− and EC/β+ K-forbidden transitions of Figure 8.
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TABLE 4 | Ratio (62) for three mass regions and for various degrees of forbiddenness K for β transitions belonging to GROUP 1.

A GT [140] K = 1 [147] K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 Avg.

50–88 0.35 0.40 0.25 0.46 0.43 0.43 – – 0.39

90–122 0.52 0.40 0.25 0.35 0.34 0.38 0.41 0.13 0.31

122–146 0.40 0.40 0.30 0.28 0.07 0.35 – 0.19 0.24

Average 0.42 0.40 0.27 0.36 0.28 0.39 0.41 0.16 0.31

The results of the Gamow-Teller (GT, see section 5.2) and first-forbidden (K = 1, see section 6.2) decays are quoted for comparison.

FIGURE 10 | Illustration of the values of the ratio k (62), taken from Table 4, for the three mass regions A = 50− 88, A = 90− 122, and A = 122− 146 for different

degrees of forbiddenness K. GT denotes the ratio k for Gamow-Teller transitions.

one can see that the trend, in terms of the mass number A, is
a bit different for the Gamow-Teller and the forbidden (K ≥
2) transitions. For most of the forbidden transitions, namely
K = 3, 4, 5, k has a decreasing tendency as a function of A, in
particular for the k = 4 transitions. For K = 2 and K = 7 a
slightly increasing tendency is observed. It seems, on average, that
the quenching of the forbidden transitions is somewhat stronger
than that of Gamow-Teller transitions in the mass region A =
90− 146.

The numbers in Table 4 suggest that, in the gross, k
is independent of the degree of forbiddenness and thus
the (low-energy) forbidden unique contributions [obeying the
simple rule (46)] to the 0νββ NME (59) should be roughly
uniformly quenched. If these conclusions can be generalized
to include also the non-unique β transitions, obeying the rule

(−1)1J1π = +1, one can then speak about an effective axial
coupling, geffA,0ν , in front of the 0νββ NME in (58), at least for
low intermediate excitation energies. The quenching for these
low intermediate excitation energies could then be deduced from
the hatched regions of Figure 2, implying the effective axial
couplings listed in Table 5 for the three mass regions of interest
for 0νβ−β−-decay calculations in the pnQRPA framework. At
this point it has to be noted that a “low” excitation energy is still
an undefined notion that has to be investigated in future works.

Finally, it should be stressed that the use of the low-energy
effective axial coupling, geffA,0ν , is particular to the pnQRPA
many-body framework and reflects the deficiencies of pnQRPA
in calculating the magnitudes of the NMEs of the allowed
and forbidden unique β-decay transitions. It is not directly
related to the more fundamental quenching of the axial-vector
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TABLE 5 | Values of the low-energy effective axial coupling, geffA,0ν of (58), for the

three mass regions of interest for 0νβ−β−-decay calculations in the pnQRPA

framework.

Mass range A = 76–82 A = 100–116 A = 122–136

geffA,0ν 0.7− 0.9 0.5 0.5− 0.7

coupling strength gA, related to the meson-exchange currents,
delta isobars, two-body weak currents, etc., discussed in
section 3, but it is rather a nuclear-model effect, discussed in
section 4.

8. QUENCHING OF GA IN FORBIDDEN
NON-UNIQUE β DECAYS

The general theory of forbidden beta decays is outlined in
Behrens and Buhring [144] and Schopper [158]. Streamlined
version of those is given in Mustonen et al. [159].

8.1. Theoretical Considerations
In the forbidden non-unique β decay the half-life can be given,
analogously to (47), in the form

t1/2 = κ/C̃, (63)

where C̃ is the dimensionless integrated shape function, given by

C̃ =
∫ w0

1
C(we)pwe(w0 − we)

2F0(Zf ,we)dwe, (64)

with the notation explained in section 6.1. The general form of
the shape factor of Equation (64) is a sum

C(we) =
∑

ke ,kν ,K

λke

[

MK(ke, kν)
2

+mK(ke, kν)
2 −

2γke
kewe

MK(ke, kν)mK(ke, kν)

]

,(65)

where the factor λke was given in (51) and Zf is the charge
number of the final nucleus. The indices ke and kν (k = 1, 2, 3...)
are related to the partial-wave expansion of the electron (e) and
neutrino (ν) wave functions, K is the order of forbiddenness

of the transition, and γke =
√

k2e − (αZf )2, α ≈ 1/137 being

the fine-structure constant. The nuclear-physics information is
hidden in the factors MK(ke, kν) and mK(ke, kν), which are
complicated combinations of the different NMEs and leptonic
phase-space factors. For more information on the integrated
shape function, see [144, 159].

The quite complicated shape factor (65) can be simplified in
the so-called ξ approximation when the coulomb energy of the
emitted β particle at the nuclear surface is much larger than
the endpoint energy, i.e., ξ = αZf /2R ≫ w0, where R is the
nuclear radius. Then the forbidden non-unique transition can
be treated as a unique one of the same 1J. Applicability of this
approximation has recently been criticized in Mougeot [160].

8.2. First-Forbidden Non-unique β Decays
For the first-forbidden non-unique β decays the shape factor (65)
has to be supplemented with a 1J = |Ji − Jf | = 0 term C(1)(we)
[144, 158, 161, 162], where Ji (Jf ) is the initial-state (final-state)
spin of the mother (daughter) nucleus. Then the shape factor can
be cast in the simple form [144, 158, 163]

C(we) = K0 + K1we + K−1/we + K2w
2
e , (66)

where the factors Kn contain the NMEs (6 different, altogether)
of transition operatorsO of angular-momentum content (rank of
a spherical tensor) O(0−), O(1−), and O(2−), where the parity
indicates that the initial and final nuclear states should have
opposite parities according to Table 3. In the leading order these
operators contain the pieces [148]

O(0−) : gA(γ
5)

σ · pe
MN

; igA
αZf

2R
(σ · r), (67)

O(1−) : gV
pe

MN
; gA

αZf

2R
(σ × r); igV

αZf

2R
r, (68)

O(2−) :
i

√
3
gA [σ r]2

√

p2e + q2ν , (69)

where pe (qν) is the electron (neutrino) momentum, r the radial
coordinate, and the square brackets in (69) denote angular-
momentum coupling. The matrix elements of the operators (67)
and (68) are suppressed relative to the Gamow-Teller matrix
elements by the small momentum pe of the electron and the
large nucleon mass MN or the small value of the fine-structure
constant α. The matrix element of (69) is suppressed by the small
electron and neutrino momenta. The axial operator σ · pe and
vector operator r trace back to the time component of the axial
current Aµ in (4) and vector current Vµ in (3), and the rest of the
operators stem from the space components of Vµ and Aµ. The
renormalization of these pieces is discussed next.

The ξ approximation to the first-forbidden non-unique
transitions has been discussed, e.g., [144, 148, 158]. One of the
first analyses of first-forbidden non-unique transitions in this
approximation was done in Bohr and Mottelson [148] for nuclei
around 208Pb, based on the work of Damgaard and Winther
[164]. Assuming certain dominant single-particle configurations
around the double-closed shell at A = 208, Bohr and Mottelson
obtained two sets of values for the effective vector and axial-
vector coupling when analyzing the decay rates mediated by the
rank-1 operators O(1−) in (68). Combining the two obtained
values we obtain

geffA (sp) = (0.5− 0.6)× 1.18 = 0.46− 0.56, (70)

where the symbol sp refers to single-particle estimate for the
states involved in the β decays in odd-A nuclei. It is interesting
that also an effective value for the vector coupling was derived:

geffV (sp) = 0.3− 0.7. (71)
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This deviates quite much from the canonical value gV = 1
dictated by the CVC hypothesis [26]. Hence, strong nuclear-
model dependent effects are recorded in this case. In the case of
the axial-vector strength the numbers of (70) can be compared
with the ones extracted from the first-forbidden unique decays in
the two-quasiparticle approximation for odd-odd nuclei. There,
in Equation (56), a value geffA (2qp) ∼ 0.2 was obtained, implying
that for the odd-odd systems the quenching is more drastic
than for the odd-mass systems. All in all, a proper many-body
treatment should reduce the quenching markedly, as shown by
the factor k in (57), describing the transition from the two-
quasiparticle approximation to the pnQRPA level in the case of
the unique-forbidden β transitions.

In Ejiri et al. [145] a schematic study of the six NMEs
corresponding to the operators (67)–(69) was performed. The
hindrance factors associated with the NMEs were related to the
E1 (electric dipole) giant resonance in a semi-quantitative way.
The nuclear medium effect, in the form of the meson-exchange
currents, on the σ · pe part of O(0−) in (67) was discussed in
Kubodera et al. [42], Kirchbach and Reinhardt [79] and Towner
[81]. This is the well-known (fundamental) enhancement of the
γ 5 NME (axial charge ρ5, the time component of the axial
current, see section 3), stemming from the renormalization of
the pion-decay constant and the nucleon mass MN in nuclear
medium [165] and exchange of heavy mesons [80, 81]. In this
review the corresponding coupling strength is coined geffA (γ 5)
for short. In Kirchbach and Reinhardt [79] a simple nuclear
approach to the meson-exchange renormalization geffA (γ 5) =
(1 + δ)gfreeA gave the following values of geffA (γ 5) (below are
given the studied nuclear masses and the corresponding active
single-particle transitions):

geffA (γ 5) = 1.90 A = 16 (1s1/2 → 0p1/2)

geffA (γ 5) = 1.96 A = 18 (1s1/2 → 0p1/2)

geffA (γ 5) = 1.84 A = 96 (2s1/2 → 1p1/2)

geffA (γ 5) = 1.78 A = 206 (2p1/2 → 2p1/2) (72)

The work of Kirchbach and Reinhardt [79] was extended by
Towner [81] to include 6 nuclear masses and several single-
particle transitions for each mass. The resulting renormalization
by the meson-exchange currents amounted to

geffA (γ 5) = 2.0− 2.3 (A = 16− 208) (73)

for the masses A = 16− 208.
The above fundamental renormalization of the axial charge

was contrasted with the nuclear-model dependent many-body
effects by using the framework of the interacting shell model in
several studies in the past. For very lowmasses, A = 11 [166] and
A = 16 [167], some 40 − 50% enhancement of the axial charge
was obtained leading to geffA (γ 5) = 1.8−1.9. A further study [168]
of the A = 11− 16 nuclei indicated an enhanced axial charge of

geffA (γ 5) = 2.04± 0.04, (A = 11− 16) (74)

where the uncertainties come solely from the experimental
errors, not from the uncertainties associated with the theoretical
analyses. A general study of the first-forbidden non-unique
decays was carried on inWarburton et al. [169] for 34 ≤ A ≤ 44,
and a further comparison [170] with the measured rate of the β−

decay of 50K indicated an enhanced value of

geffA (γ 5) = 1.93± 0.09, (A = 50) (75)

where the uncertainty is purely experimental.
A thorough shell-model treatment of the mass A = 205− 212

nuclei in the lead region was carried out inWarburton [171–173].
There a rather strongly enhanced value of

geffA (γ 5) = 2.55± 0.07 (A = 205− 212) (76)

was obtained for the axial charge. The uncertainty comes from
the least-squares fit to 18 measured β-decay transitions in the
indicated mass region. For the σ · r operator (space component
of Aµ) essentially no renormalization (quenching, since space
components tend to be quenched opposite to the enhancement
of the time component, see beginning of section 3) was obtained:
gA/g

free
A (0−) = 0.97± 0.06. The value (76) is notably larger than

those obtained for the lower masses and also larger than the lead-
region results of Towner (73). However, in Kubodera and Rho
[165] the theoretical result

geffA (γ 5) = 2.5± 0.3 (A = 205− 212) (77)

was obtained by adopting an effective Lagrangian incorporating
approximate chiral and scale invariance of QCD. This seems to
confirm the phenomenological result of Warburton [172, 173].
For further information see the review [174].

For the O(1−) operator σ × r in (68) the analyses of
Warburton [171, 173] yielded the effective values

geffA (1−) ∼ 0.6; gV(1
−) ∼ 0.6 (Warburton) (78)

due to core-polarization effects caused by the limitedmodel space
used. In the work Rydstrom [175] a shell-model study of the first-
forbidden transition 205Tl(1/2+gs) → 205Pb(1/2−) yielded the
effective values

geffA (1−) ∼ 0.43− 0.65; gV(1
−) ∼ 0.38− 0.85. (Rydström et al.)

(79)

The shell-model analysis of Suzuki et al. [163] of the N = 126
isotones suggests a large quenching for geffA (1−) but a large

quenching of geffV (1−) is not necessarily needed for most of the
studied cases, contrary to (78) and (79), in accordance with the
CVC hypothesis [26].

In the work [176] half-lives of a number of nuclei at the magic
neutron numbers N = 50, 82, 126 were analyzed by comparing
results of large-scale shell-model calculations with experimental
data. Both Gamow-Teller and first-forbidden β decays were
included in the analysis. By performing a least-squares fit to
the experimental data the following quenched weak couplings
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were extracted: For the enhanced γ 5 matrix element the value
geffA (γ 5) = 1.61 was obtained and for the σ · r part the quenching
gA/g

free
A (0−) = 0.66 was obtained. For the 1− part the quenched

values read

geffA (1−) ∼ 0.48; gV(1
−) ∼ 0.65. (Zhi et al.) (80)

Interestingly, also for the first-forbidden unique operator O(2−)
of (69) a quenching

geffA (2−) ∼ 0.53 (Zhi et al.) (81)

was obtained. This is not far from the result geffA ∼ 0.57 [see
Equation (55)] obtained in the analysis of the first-forbidden
unique β decays in Ejiri et al. [147].

The above considerations for the vector coupling coefficient
gV are in conflict with the CVC hypothesis [26] and the findings
of [177] where the shape of the computed β-electron spectrum
was compared with that of the measured one for the fourth-
forbidden β− decay of 113Cd. This comparison confirmed an
unquenched value gV = 1.0 for the vector coupling coefficient,
in accordance with the CVC hypothesis. For more discussion of
the related method for highly-forbidden β decays, see section 9.

9. HIGHER-FORBIDDEN NON-UNIQUE β

DECAYS

The shape functions of forbidden non-unique beta decays are
rather complex combinations of different NMEs and phase-space
factors. Furthermore, their dependence on the weak coupling
strengths gV (vector part) and gA (axial-vector part) is very non-
trivial. In fact, the shape factor C(we) (65) can be decomposed
into vector, axial-vector and mixed vector-axial-vector parts in
the form [177]

C(we) = g2VCV(we)+ g2ACA(we)+ gVgACVA(we). (82)

Integrating equation (82) over the electron kinetic energy, we
obtain an analogous expression for the integrated shape factor
(64)

C̃ = g2VC̃V + g2AC̃A + gVgAC̃VA, (83)

where the factors C̃i in Equation (83) are just constants,
independent of the electron energy.

In Haaranen et al. [177] it was proposed that the shapes
of β-electron spectra could be used to determine the values
of the weak coupling strengths by comparing the computed
spectrum with the measured one for forbidden non-unique β
decays. This method was coined the spectrum-shape method
(SSM). In this study also the next-to-leading-order corrections
to the β-decay shape factor were included. In Haaranen et al.
[177] the β-electron spectra were studied for the 4th-forbidden
non-unique ground-state-to-ground-state β− decay branches
113Cd(1/2+) → 113In(9/2+) and 115In(9/2+) → 115Sn(1/2+)
using the microscopic quasiparticle-phonon model (MQPM)
[115, 116] and the ISM. It was verified by both nuclear models

that the β spectrum shapes of both transitions are highly sensitive
to the values of gV and gA and hence comparison of the
calculated spectrum shape with the measured one opens a way to
determine the values of these coupling strengths. As a by-product
it was found that for all values of gA the best fits to data were
obtained by using the canonical value gV = 1.0 for the vector
coupling strength. This result is in conflict with those obtained
by analyzing first-forbidden non-unique β decays in section 8.2,
where strongly quenched values of gV were obtained.

The work of Haaranen et al. [177] on the 113Cd and 115In
decays was extended in Haaranen et al. [178] to include an
analysis made by using a third nuclear model, the microscopic
interacting boson-fermion model (IBFM-2) [92]. At the same
time the next-to-leading-order corrections to the β-decay shape
factor were explicitly given and their role was thoroughly
investigated. A striking feature of the SSM analysis was that
the three models yield a consistent result, gA ≈ 0.92, when
the SSM is applied to the available experimental β spectrum
[179] of 113Cd. The result is illustrated in Figure 11 where the
three curves overlap best at the values geffA = 0.92 (MQPM),

geffA = 0.90 (ISM), and geffA = 0.93 (IBFM-2). The agreement of
the β-spectrum shapes computed in the three different nuclear-
theory frameworks speaks for the robustness of the SSM in
determining the effective value of gA. For completeness, in
Figure 12 are shown the three components (82) as functions of
the electron energy for the three different nuclear models used
to compute the spectrum shapes of 113Cd in Figure 11. It is seen
that for the whole range of electron energies the two components,
CV(we) and CA(we) are roughly of the same size whereas the
magnitude of the component CVA(we) is practically the sum of
the previous two, but with opposite sign. Hence, for the whole

FIGURE 11 | Comparison of the computed β spectra of 113Cd with the

experiment. The next-to-leading-order corrections to the shape factor have

been included, and only the best matches are shown in the figure. The

canonical value gV = 1.0 is used for the vector coupling strength. The areas

under the curves are normalized to unity.

Frontiers in Physics | www.frontiersin.org 22 November 2017 | Volume 5 | Article 55

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Suhonen Effective Value of gA

FIGURE 12 | Components CV, CA, and CVA of (82) for the electron spectra of the β− decay of 113Cd as computed by the three nuclear models discussed in the

context of Figure 11. Note that the contribution of CVA is negative.

range of electron energies there is a delicate balance between the
three terms, and their sum is much smaller than the magnitudes
of its constituent components.

The works [177, 178] were continued by the work [180]
where the evolution of the β spectra with changing value
of gA was followed for 26 first-, second-, third-, fourth- and
fifth-forbidden β− decays of odd-A nuclei by calculating the
associated NMEs by the MQPM. The next-to-leading-order
contributions were taken into account in the β-decay shape
factor. It was found that the spectrum shapes of the third- and
fourth-forbidden non-unique decays depend strongly on the
value of gA, whereas the first- and second-forbidden decays were
practically insensitive to the variations in gA. Furthermore, the
gA-driven evolution of the normalized β spectra seems to be
quite universal, largely insensitive to small changes of the nuclear
mean field and the adopted residual many-body Hamiltonian.
These features were also verified in the follow-up work [181],
where the ISM was used as the nuclear-model framework.
This makes SSM a robust tool for extracting information on
the effective values of the weak coupling strengths. This also
means that if SSM really is largely nuclear-model independent
there is a chance to access the fundamental renormalization
factor qF of section 3 for (highly) forbidden β transitions. It
is also worth noting that in the works [180, 181] several new
experimentally interesting decays for the SSM treatment were
discovered.

Results of the investigations of Kostensalo et al. [180] and
Kostensalo and Suhonen [181] are summarized in Tables 6, 7,
and in Figures 13–15. Figure 13 displays the β spectra of
the second-forbidden non-unique transitions 94Nb(6+) →
94Mo(4+) (left panel) and 98Tc(6+) → 98Ru(4+) (right panel)
calculated by using the ISM [181]. It is obvious that the shape
of the spectra depends sensitively on the value of gA but not
as strongly as the transitions associated with the mother nuclei
113Cd and 115In, as shown in the figures of Haaranen et al. [177].
It is to be noted that both of the transitions have been observed
experimentally since the branching is 100%, but the electron
spectra are not yet available.

In Figure 14 a comparison of the MQPM (left panel) and
ISM (right panel) calculations [181] for the β spectrum of the
second-forbidden non-unique decay transition 99Tc(9/2+) →
99Ru(5/2+) is shown. Again there is clear sensitivity to the
value of gA, at the level of the 94Nb and 98Tc transitions, but
the remarkable thing is that the spectrum shapes computed
by the two nuclear models agree almost perfectly, giving
further evidence in favor of the robustness of the SSM. Again,
experimentally, the branching to this decay channel is practically
100% so that the β spectrum is potentially well measurable.

Finally, In Figure 15 the β spectrum of the second-forbidden
non-unique decay-transition 137Cs(7/2+) → 137Ba(3/2+) is
shown. Here the spectrum shape is quite independent of the
value of gA and has exactly the same computed shape for the
two applied nuclear-model frameworks: the MQPM and the ISM
[181]. The robustness of the β-spectrum shape against variations
in gA and the calculational scheme makes the measurement of
this spectrum interesting in terms of testing the basic framework
of high-forbidden non-unique β decays. The cause of the inertia
against variations of gA is seen in Table 6 in the decomposition
(83) of the dimensionless integrated shape function C̃ for the
decays of both 135Cs and 137Cs. It is seen that for these two
decays all the components of C̃ are of the same sign, thus adding
coherently. Hence, changes in the value of gA do not affect
the spectrum shape, contrary to those decays where there is
a destructive interference between the axial-vector and mixed
components of (83), like in the cases of Figures 11–14, further
analyzed in Table 8.

Table 7 summarizes the exploratory works of Haaranen et
al. [177, 178], Kostensalo et al. [180] and Kostensalo and
Suhonen [181] in terms of listing the studied decay-transition
candidates and their potential for future measurements. Here
only the studied non-unique β-decay transitions are listed since
the unique forbidden transitions are practically gA-independent
even when the next-to-leading-order terms are included in
the β-decay shape factor [177]. The most favorable cases for
measurements are the ones that have a strong dependence on gA
and the branching to the final state of interest is close to 100%. By
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TABLE 6 | Dimensionless integrated shape functions C̃ (83) and their vector C̃V, axial-vector C̃A, and mixed components C̃VA for the forbidden non-unique β decays of
135Cs and 137Cs.

Transition K Nucl. model C̃V C̃A C̃VA C̃

135Cs(7/2+) → 135Ba(3/2+) 2 MQPM 1.133× 10−8 1.656× 10−8 2.737× 10−8 5.526× 10−8

137Cs(7/2+) → 137Ba(3/2+) 2 MQPM 3.217× 10−5 2.654× 10−5 5.822× 10−5 1.169× 10−4

137Cs(7/2+) → 137Ba(3/2+) 2 ISM 4.211× 10−6 2.836× 10−6 6.879× 10−6 1.392× 10−5

The forbiddenness K and the nuclear model used to calculate C̃ is given. For the total integrated shape factor C̃ the values of the coupling strengths were set to gV = gA = 1.0.

TABLE 7 | List of the studied high-forbidden non-unique β−-decay transitions and their sensitivity to the value of gA.

Transition J
πi
i

(gs) J
πf
f

(nf ) Branching (%) K Sensitivity Nucl. model

36Cl → 36Ar 2+ 0+ (gs) 98 2 None ISM

48Ca → 48Sc 0+ 4+ (2) ∼0 4 None ISM

48Ca → 48Sc 0+ 6+ (gs) ∼0 6 None ISM

50V → 50Cr 6+ 2+ (1) ∼0 4 Weak ISM

60Fe → 60Co 0+ 2+ (1) 100 2 None ISM

85Br → 85Kr 3/2− 9/2+ (gs) ∼0 3 Moderate MQPM

87Rb → 87Sr 3/2− 9/2+ (gs) 100 3 Moderate MQPM, ISM

93Zr → 93Nb 5/2+ 9/2+ (gs) 5≤ 2 Weak MQPM

94Nb → 94Mo 6+ 4+ (2) 100 2 Strong NSM

96Zr → 96Nb 0+ 4+ (2) ∼0 4 None ISM

96Zr → 96Nb 0+ 6+ (gs) ∼0 6 Strong ISM

97Zr → 97Nb 1/2+ 9/2+ (gs) ∼0 4 Strong MQPM

98Tc → 98Ru 6+ 4+ (3) 100 2 Strong ISM

99Tc → 99Ru 9/2+ 5/2+ (gs) 100 2 Strong MQPM, ISM

101Mo → 101Tc 1/2+ 9/2+ (gs) ∼0 4 Strong MQPM

113Cd → 113 In 1/2+ 9/2+ (gs) 100 4 Strong MQPM, ISM, IBFM-2

115Cd → 115 In 1/2+ 9/2+ (gs) ∼0 4 Strong MQPM

115 In → 115Sn 9/2+ 1/2+ (gs) 100 4 Strong MQPM, ISM, IBFM-2

117Cd → 117 In 1/2+ 9/2+ (gs) ∼0 4 Strong MQPM

119 In → 119Sn 9/2+ 1/2+ (gs) ∼0 4 Strong MQPM

123Sn → 123Sb 11/2− 1/2+ (4) ∼0 5 Weak MQPM

126Sn → 126Sb 0+ 2+ (5) 100 2 None ISM

135Cs → 135Ba 7/2+ 3/2+ (gs) 100 2 None MQPM

137Cs → 137Ba 7/2+ 3/2+ (gs) 5.4 2 None MQPM, ISM

125Sb → 125Te 7/2+ 9/2− (3) 7.2 1 None MQPM

141Ce → 141Pr 7/2− 5/2+ (gs) 31 1 Weak MQPM

159Gd → 159Tb 3/2− 5/2+ (1) 26 1 None MQPM

161Tb → 161Dy 3/2+ 5/2− (1) ∼0 1 None MQPM

169Er → 169Tm 1/2− 3/2+ (1) 45 1 None MQPM

Here Ji (Jf ) is the angular momentum of the initial (final) state, πi (πf ) the parity of the initial (final) state, and K the degree of forbiddenness. The initial state is always the ground state

(gs, column 2) of the mother nucleus and the final state is either the ground state (gs) or the nf : th, nf = 1,2,3,4,5, excited state (column 3) of the daughter nucleus. Column 4 gives

the branching to this particular decay channel [with boldface if (almost) 100%], column 5 indicates the sensitivity to the value of gA (with boldface if strong), and the last column lists the

nuclear models which have been used (thus far) to compute the β-spectrum shape.

these criteria the best candidates for measurements are the non-
unique transitions 94Nb(6+) → 94Mo(4+) (second-forbidden),
98Tc(6+) → 98Ru(4+) (second-forbidden), 99Tc(9/2+) →
99Ru(5/2+) (second-forbidden), 113Cd(1/2+) → 113In(9/2+)
(fourth-forbidden), and 115In(9/2+) → 115Sn(1/2+) (fourth-
forbidden). Plans for accurate measurements of (some) of
these transitions are on-going in the DAMA (V. Tretyak,
private communication) and COBRA collaborations (K. Zuber,

private communication). It should be noted that also the
transition 87Rb(3/2−) → 87Sr(9/2+) could be of interest
for measurements since it has a 100% branching and the
corresponding β spectrum is moderately sensitive to gA.

In Table 8 the dimensionless integrated shape functions C̃
(83) have been decomposed into their vector C̃V, axial-vector
C̃A and mixed vector-axial-vector components C̃VA for the
experimentally most promising forbidden non-unique β decays
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FIGURE 13 | Normalized ISM-computed electron spectra for the second-forbidden non-unique decays of 94Nb and 98Tc. The value gV = 1.0 was assumed and the

color coding represents the value of gA.

FIGURE 14 | Normalized electron spectra for the second-forbidden non-unique ground-state-to-ground-state β− decay of 99Tc as computed by using the MQPM

(Left panel) and the ISM (Right panel). The value gV = 1.0 was assumed and the color coding represents the value of gA.

FIGURE 15 | Normalized electron spectra for the second-forbidden

non-unique ground-state-to-ground-state β− decay of 137Cs as computed by

using the MQPM and the ISM. The value gV = 1.0 was assumed and the color

coding represents the nuclear model.

of forbiddenness K of Table 7. In the table also the nuclear model
used to calculate C̃ is given. A characteristic of the numbers
of Table 8 is that the magnitudes of the vector, axial-vector,
and mixed components are of the same order of magnitude,
and the vector and axial-vector components have the same
sign whereas the mixed component has the opposite sign. This
makes the three components largely cancel each other and the

resulting magnitude of the total dimensionless integrated shape
function is always a couple of orders of magnitude smaller than
its components. Thus, the integrated shape function becomes
extremely sensitive to the value of gA, as seen in Figure 13 for the
decays of 94Nb and 98Tc, and in Figure 14 for the decay of 99Tc.

For the beta spectrum of the decays of 113Cd and 115In
there are calculations available in three different nuclear-theory
frameworks as shown in Figure 11 and Tables 7, 8. As visible
in Table 8, an interesting feature of the components of the
integrated shape functions C̃ is that the MQPM and ISM results
are close to each other whereas the numbers produced by IBM-
2 are clearly smaller. Surprisingly enough, the total value of C̃ is
roughly the same in all three theory frameworks. This is another
indication of the robustness of the SSM.

There are indirect ways to access the quenching of high-
forbidden β-decay transitions. One of them is to study
electromagnetic decays of analogous structure. In Jokiniemi et
al. [182] magnetic hexadecapole (M4) γ transitions in odd-A
medium-heavy nuclei were studied by comparing the single-
quasiparticle NMEs against the MQPM-computed NMEs to
learn about the quenching in the analogous third-forbidden
unique β decays (parity change with angular-momentum
content 4). The MQPM calculations suggest a strong quenching
gA ∼ 0.33gfreeA ∼ 0.4 for these transitions. This strong
quenching could be an artifact of the MQPM framework since
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TABLE 8 | Dimensionless integrated shape functions C̃ (83) and their vector C̃V, axial-vector C̃A and mixed components C̃VA for the experimentally most promising

forbidden non-unique β decays of forbiddenness K.

Transition K Nucl. model C̃V C̃A C̃VA C̃

94Nb(6+) → 94Mo(4+) 2 ISM 1.598× 10−8 1.469× 10−8 −3.058× 10−8 1.03× 10−10

98Tc(6+) → 98Ru(4+) 2 ISM 2.723× 10−8 2.544× 10−8 −5.254× 10−8 1.21× 10−10

99Tc(9/2+) → 99Ru(5/2+) 2 ISM 2.240× 10−9 2.130× 10−9 −4.361× 10−9 8.78× 10−12

113Cd(1/2+) → 113 In(9/2+) 4 MQPM 1.925× 10−19 2.094× 10−19 −4.002× 10−19 1.38× 10−21

113Cd(1/2+) → 113 In(9/2+) 4 ISM 1.678× 10−19 1.825× 10−19 −3.494× 10−19 9.90× 10−22

113Cd(1/2+) → 113 In(9/2+) 4 IBM-2 3.228× 10−20 3.007× 10−20 −6.106× 10−20 1.28× 10−21

115 In(9/2+) → 115Sn(1/2+) 4 MQPM 6.503× 10−18 6.126× 10−18 −1.256× 10−17 6.49× 10−20

115 In(9/2+) → 115Sn(1/2+) 4 ISM 3.146× 10−18 3.851× 10−18 −6.939× 10−18 5.74× 10−20

115 In(9/2+) → 115Sn(1/2+) 4 IBM-2 5.531× 10−19 5.444× 10−19 −1.065× 10−18 3.25× 10−20

Also the nuclear model used to calculate C̃ is given. For the total integrated shape factor C̃ the values of the coupling strengths were set to gV = gA = 1.0.

there the excitations of an odd-A nucleus are formed by coupling
BCS quasiparticles to excitations of the neighboring even-even
reference nucleus. Thus, the predicted M4 giant resonance in
the odd-A nucleus might not be strong enough to draw low-
lying M4 strength to higher excitation energies, around the
giant-resonance region.

10. QUENCHING OF GA IN 2νββ DECAYS

The 2νββ decay rate can be compactly written as

[

t
(2ν)
1/2 (0

+
i → 0+

f
)
]−1

= g4AG2ν

∣

∣

∣
M(2ν)

∣

∣

∣

2
, (84)

where G2ν represents the leptonic phase-space factor (without
including gA) as defined in Kotila and Iachello [183]. The initial
ground state is denoted by 0+i and the final ground state by 0+

f
.

The 2νββ NMEM(2ν) can be written as

M(2ν) =
∑

m,n

ML(1+m)MR(1+n )

Dm
, (85)

where the quantity Dm is the energy denominator and the NMEs
ML and MR correspond to left-leg and right-leg virtual Gamow-
Teller transitions depicted in Figure 16. The summation is in
general over all intermediate 1+ states, not just the first one as
implied by the very schematic Figure 5. On the other hand, the
summation in (85) can be dominated by one transition, usually
through the lowest 1+ state if it happens to be the ground state
of the intermediate nucleus. In this case one speaks about single-
state dominance. This dominance has been addressed in several
works (e.g., [184–186]).

The 2νββ decay rate (84) and 0νββ decay rate (59) share the
same strong dependence on gA. It is thus essential to study the
renormalization of gA in beta and 2νββ decays before entering
studies of the 0νββ decay. These studies touch only the 1+

contribution to the 0νββ decay. However, it is known that
contributions from higher multipoles are also very important
for the 0νββ decay (see section 7). It is challenging to relate
the results emanating from the β and 2νββ decay studies to

the value of the 0νββ NME: the former two involve momentum
transfers of a few MeV whereas the latter involves momentum
exchanges of the order of 100 MeV through the virtual Majorana
neutrino. The high exchanged momenta in the 0νββ decay
allow for the possibility that the effective value of gA acquires
momentum dependence, as discussed in section 3. In addition,
the high exchanged momenta induce substantial contributions
from the higher Jπ states to the 0νββ decay rate [155]. The
renormalization of gA for these higher-lying states could be
different from the renormalization for the low-lying states, the
subject matter of this review.

After this preamble we now proceed to discuss the possible
renormalization of the axial-vector coupling strength [at zero-
momentum limit q → 0 in (5)] as obtained from the
combined β-decay and 2νββ-decay analyses performed in
different theoretical approaches. It is important to be aware
that in all the studies of the present section it is impossible to
disentangle between the fundamental, nuclear-matter affected,
and the many-body, nuclear-model affected, contributions to the
renormalization of gA.

10.1. Quasiparticle Random-phase
Approximation
The simultaneous analysis of both β and 2νββ decays opens up
new vistas in attempts to pin down the effective value of the
weak axial-vector coupling strength. Indeed, analysis of these
two decay modes is possible for few nuclear systems where both
the β-decay data (http://www.nndc.bnl.gov/) and 2νββ-decay
data [157, 187] are available. The involved transitions, with the
available data, are depicted schematically in Figure 17. The aim
in using the three pieces of data available for the three isobaric
systems is to gain information on the effective value of gA and
the value of the particle-particle interaction parameter gpp of
pnQRPA in the mass regions A= 100,116,128.

The first work to address the quenching in both β and 2νββ
decays was [188] where both the beta-decay and 2νββ decay data
were analyzed for the A = 100, 116 systems in the framework
of the pnQRPA using the method of least squares to fit the pair
(gpp,gA) to the available three pieces of data, namely the log ft
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FIGURE 16 | The 2νββ decay of 116Cd to 116Sn via the 1+ virtual intermediate states in 116 In. The transitions between 116Cd (116Sn) and 116 In constitute the

left-leg (right-leg) transitions.

values of the left- and right-branch β decays, and the 2νββ half-
life (see Figure 17). Realistic model spaces (large and small basis)
and a phenomenologically renormalized microscopic G-matrix-
based Hamiltonian was used in the investigations. In Faessler et
al. [188] the best fit values geffA = 0.74 (A = 100) and geffA = 0.84
(A = 116) were obtained in the large single-particle model space.
Furthermore, it is interesting to note that in the first version [189]
of the paper [188] also results for the A = 128 system were
included. There the result geffA = 0.39 (A = 128) was quoted.

These values of geffA have been quoted in Table 9 and plotted in
Figure 18 in section 10.2.

In Suhonen and Civitarese [192, 193] realistic single-particle
bases and a G-matrix-based microscopic interaction was used
to analyze the A = 100, 116, 128 systems of β and ββ

decays. A slightly different approach to the one of Faessler
et al. [188, 189] was adopted: by taking the left and right
branches of β-decay data of Figure 17 one can fix the pair
(gpp,gA(β)) by reproducing the available log ft values. By using
the just determined value of gpp one can compute the 2νββ
NME and half-life and compare with the experimental half-
life. This comparison produces a new value of geffA , which
can be denoted as gA(ββ). In an ideal case the two effective
values of gA, namely gA(β) and gA(ββ), are the same but the
over-constrained nature of the problem tends to yield different
values to these parameters. The thus obtained values of gA(β)
and gA(ββ) are quoted in Table 9 and plotted in Figure 18 in
section 10.2.

10.2. Interacting Shell Model and
Interacting Boson Model
Amonotonic behavior of gA(ββ) was parametrized in Barea et al.
[191] by analyzing the magnitudes of 2νββ NMEs produced by
the microscopic interacting boson model (IBM-2) [91] and the
ISM. In this study the obtained gA-vs.-A slopes were very flat,
having the analytic expressions

geffA (IBM-2) = 1.269A−0.18; geffA (ISM) = 1.269A−0.12. (86)

These curves have been plotted in Figure 18 together with
the results obtained in the pnQRPA analyses of ββ decays in
section 10.1. The results of these analyses, together with the the
original numbers for gA(ββ) produced in the IBM-2 calculations
of Barea et al. [191] are quoted in Table 9. The IBM-2 numbers
are given in the last column of the table and the first two lines
refer to the use of the single-state dominance (SSD) hypothesis
in the IBM-2 calculations. Based on the analysis in Suhonen
and Civitarese [192] this assumption is approximately valid
since the magnitudes of the first 1+ contribution and the final
2νββ NME are practically the same for the decays of 100Mo
and 116Cd. The last number of the IBM-2 column in Table 9

refers to the assumption of closure approximation (CA) in the
IBM-2 calculation. It is well established [1, 23] that such an
approximation does not work for the 2νββ decays and thus this
number could be dubious. Indeed, in a later publication [190] a
more consistent theoretical framework was used (the interacting
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boson-fermion-fermion model, IBFFM-2 [120]) and in the case
of A = 128 values of gA were obtained that differ notably from
the ones obtained in Barea et al. [191]. The IBFFM-2 numbers,
based on analysis of both the β and 2νββ decay, are presented in
columns 5 and 6 of Table 9. One can see that the IBFFM-2 values
of gA(β) and gA(ββ) are quite close to those of the pnQRPA-
based calculations. The combined β and ββ results of Yoshida
and Iachello [190] have also been depicted in Figure 18.

Recent ISM calculations [68, 130] for the 2νββ NMEs of 130Te
and 136Xe, and a subsequent comparison with the experimental
NMEs (updated comparison performed in Horoi and Neacsu
[68]) suggest a mild quenching and a rather large value of for the
effective coupling strength:

geffA (A = 130− 136) = 0.94. (87)

FIGURE 17 | Schematic plot of β and ββ decays in the three isobaric chains

(A = 100, 116, 128) with data on both decay modes. Given are the 2νββ

half-life and log ft values of the left- and right-branch β decays.

This result was already discussed in section 5.1 and it was
included in Table 1 of that section. The result (87) was also
illustrated in Figure 3 of section 5.2.

From Figure 18 one sees that the results of the pnQRPA
analyses of Faessler et al. [188, 189] and Suhonen et al. [192]
are consistent with each other, and are in agreement with the
2νββ results of the ISM (the upper dotted curve in Figure 18)
for the masses A = 100, 116. For the mass A = 128 both the
pnQRPA and IBFFM-2 results deviate strongly from the ISM
result, coming closer to the IBM-2 results. Both the ISM and
IBM-2 curves follow, in average, the trend of the pnQRPA results
of the β-decay analyses of section 5.2 (the light-hatched regions
of Figure 18), except for the very heavy masses, A ≥ 138. The
differences in the results of the β-decay and 2νββ-decay analyses
are not drastic but they still exist. The differences may stem from

FIGURE 18 | Sketch of the effective values of gA taken from Table 9 against

the light-hatched ranges of geffA in the 5 mass regions of Figure 2 (the

combined pnQRPA results). The curves are from the 2νββ analysis of Barea et

al. [191] [curves (86)] and the vertical segments display the results of the

combined β and 2νββ analyses of Faessler et al. [188, 189] (solid line) and

Suhonen and Civitarese [192] (dashed lines). Also the (combined) IBFFM-2

result of Yoshida and Iachello [190] is depicted.

TABLE 9 | Extracted values of gA for three isobaric chains hosting a 2νββ transition.

A pnQRPA IBFFM-2 [190] IBM-2 [191]

gA(β + ββ) [188, 189] gA(β) [192] gA(ββ) [192] gA(β) gA(ββ) gA(ββ)

100 0.70–0.79 0.61–0.70 0.75–0.85 – – 0.46(1) [SSD]

116 0.81–0.88 0.66–0.81 0.59–0.65 – – 0.41(1) [SSD]

128 0.37–0.41 0.330–0.335 0.38–0.43 0.25–0.31 0.293 0.55(3) [CA]

The values are obtained in the pnQRPA, in the IBFFM-2, and in the IBM-2 theory frameworks. In the last column SSD denotes single-state dominance, CA denotes closure approximation,

and the errors in parentheses stem from the error limits of the adopted data. The intervals in column 2 correspond to the 1σ errors quoted in Faessler et al. [188, 189] and the ranges

in the third and fourth columns stem from the experimental errors of the adopted data. The range in the fifth column stems from the different obtained values for the β− and β+/EC

branches, respectively.
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the fact that not only one 1+ state takes part in most of the 2νββ
decays. Contributions from the 1+ states above the lowest 1+

state, sometimes the ground state, interfere with each other and
the contribution coming from the lowest one. These interferences
have been discussed (e.g., [184, 186]).

11. SPIN-MULTIPOLE STRENGTH
FUNCTIONS, GIANT RESONANCES AND
THE RENORMALIZATION OF GA

As discussed in sections 5 and 6 the low-lying Gamow-Teller and
higher isovector spin-multipole strengths, in particular the 2−

strength, are quenched against nuclear-model calculations. The
low-lying spin-multipole strength represents the low-energy tail
of the corresponding spin-multipole giant resonance (SMGR).
Usually only the low-energy part, with excitation energies E ≤
5MeV, of the spin-multipole strength function is experimentally
known, and only for low multipoles, like for Gamow-Teller
strength [194] or spin-dipole 2− strength [195]. These strength
functions have been measured using charge-exchange reactions
at low momentum transfers, like the (p,n), (3He,t), (n,p), and
(d,2He) reactions [196–198]. As an example, in Figure 19 is
shown the strength for isovector spin-dipole excitations from the
0+ ground state of 76Ge to the 0−, 1−, and 2− states in 76As.
The centroid energies of the corresponding giant resonances are
roughly 24 MeV (0−), 20 MeV (1−), and 18 MeV (2−) [199].

The measured strength functions for Gamow-Teller
transitions can be pestered by the isovector spin monopole
(IVSM) contributions at high energies [200, 201]. The location
(38) of the Gamow-Teller giant resonance, GTGR, dictates
partly the amount of strength remaining at low energies [at
zero-momentum limit q → 0 in (5)], and thus the quenching of

FIGURE 19 | Isovector β− spin-dipole strengths for 0−, 1−, and 2− states in
76As as excited from the 0+ ground state of 76Ge. The solid envelope curve

represents the sum of the three multipole distributions. The excitation energy is

relative to the 2− ground state of 76As.

the axial-vector coupling strength gA in model calculations [202].
These calculations have mostly been performed in the framework
of the pnQRPA which represents well the centroids of the strong
Gamow-Teller peaks, and extensions of the pnQRPA to two- plus
four-quasiparticle models, like the proton-neutron microscopic
anharmonic vibrator approach (pnMAVA) [203, 204], does not
alter the picture very much.

Like in the case of the Gamow-Teller strength, also the
location of the SMGRs affect the low-lying strength of, e.g.,
isovector spin-dipole (Jπ = 0−, 1−, 2−, see Figure 19) and spin-
quadrupole (Jπ = 1+, 2+, 3+) excitations [199, 205]. This is why
measurements of such giant resonances could help in solving the
quenching problems associated to gA at low energies.

12. EFFECTIVE GA FROM NUCLEAR MUON
CAPTURE

The (ordinary, non-radiative) nuclear muon capture is a
transition between nuclear isobars such that

µ− + (A,Z,N) → νµ + (A,Z − 1,N + 1), (88)

where a negative muon is captured from an atomic s orbital
and as a result the nuclear charge decreases by one unit and a
muon neutrino is emitted. The process is schematically depicted
in Figure 20 for the capture on 76Se, with the final states in
76As. Here also the nucleus 76Ge is depicted since it ββ decays
to 76Se. Properties of the µ-mesonic atoms have been treated
theoretically in Ford and Wells [206] and experimentally in
e.g., [207–210]. Due to the heavy mass of the muon (mµ =
105 MeV) the process has a momentum exchange of the order

FIGURE 20 | Double β triplet 76Ge, 76As, and 76Se with the nuclear states

shown in the intermediate nucleus 76As. These states are populated by the

ordinary muon capture (OMC) transitions from 76Se.
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of q ∼ 100 MeV and is thus similar to the neutrinoless
ββ decay where a Majorana neutrino of a similar momentum
is exchanged. This means that contrary to β decays all the
terms of the hadronic current (2) are activated and that the
contributions from the forbidden transitions J > 1 are not
suppressed relative to the allowed ones, just like in the case of
0νββ decays. Since the induced currents in (2) are activated the
theoretical expressions for the individual capture transitions are
rather complex [211–215] whereas the total capture rates are
much easier to calculate [216, 217].

Most of the theoretical attempts to describe the muon capture
to individual nuclear states have concentrated on very light
nuclei, A ≤ 20 [207, 213, 218–222] or to the mass region
A = 23–40 [209, 210, 214, 215, 223–229]. Also studies in the
1s − 0d and 1p − 0f shells have been performed [230, 231].
Heavier nuclei, involved in ββ-decays, have been treated in
Kortelainen and Suhonen [232, 233]. Interestingly enough, the
muon-capture transitions can be used to probe the right-leg
virtual transitions of 0νββ decays [231–233], but they can also
give information on the in-medium renormalization of the axial
current (4) in the form of an effective gA [210, 223, 225] and
an effective induced pseudoscalar coupling gP (in fact the ratio
gP/gA) [209, 213–215, 219, 220, 223–225, 227, 228] at high
(100 MeV) momentum transfers, relevant for studies of the
virtual transitions of the 0νββ decays. A recent review on the
renormalization of gP is given in Gorringe and Fearing [234].

More experimental data on partial muon-capture rates to
nuclear states are needed for heavier nuclei in order to access
the renormalization of gA and gP for momentum transfers of
interest for the 0νββ decay. The present (see e.g., [235]) and
future experimental muon-beam installations should help solve
this problem.

13. CONCLUSIONS

The quenching of the weak axial-vector coupling strength,
gA, is an important issue considering its impact on the
detectability of the neutrinoless double beta decay. The
quenching appeared in old shell-model calculations as a way
to reconcile the measured and calculated β-decay rates and
strength functions. Later such quenching was studied in other
nuclear-model frameworks, like the quasiparticle random-phase
approximation and the IBM. The quenching of gA can be
observed in allowed Gamow-Teller decays as also in forbidden
β decays. The origins of the quenching seem to be both

the nuclear-medium effects and deficiencies in the nuclear
many-body approaches, but a clean separation of these two
aspects is formidably difficult. Different quenchings have been
obtained in different calculations, based on different many-
body frameworks. There is not yet a coherent approach to the
quenching problem and many different separate studies have
been performed. However, when analyzed closer, the obtained
quenching of gA is surprisingly similar in different many-body
schemes for different physical processes (e.g., for Gamow-Teller
β transitions, for electron spectra of forbidden non-unique
β decays) in the mass range from light to medium-heavy
nuclei.

Different ways to access the quenching have been proposed,
like comparisons with Gamow-Teller β-decay and two-neutrino
double-β-decay data. In a promising new method, the SSM, the
comparison of the computed and measured electron spectra of
high-forbidden non-unique β decays is proposed. The robustness
of the method is based on the observations that the computed
spectra seem to be relatively insensitive to the adopted mean-
field and nuclear models. Measurements of such electron
spectra for certain key transitions are encouraged. Also the
relation of the quenching problem to the low-lying strength for
Gamow-Teller and higher isovector spin-multipole excitations is
worth stressing, as also the relation to the corresponding giant
resonances, accessible in present and future charge-exchange-
reaction experiments. The development of high-intensity muon
beams makes measurements of nuclear muon-capture rates
easier and enables access to the renormalization of the axial
current at momentum exchanges relevant for the neutrinoless ββ
decay.
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