
Int J Parallel Prog (2011) 39:533–552
DOI 10.1007/s10766-010-0155-0

Value Prediction and Speculative Execution on GPU

Shaoshan Liu · Christine Eisenbeis ·
Jean-Luc Gaudiot

Received: 10 September 2010 / Accepted: 8 November 2010 / Published online: 1 December 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract GPUs and CPUs have fundamentally different architectures. It is con-
ventional wisdom that GPUs can accelerate only those applications that exhibit very
high parallelism, especially vector parallelism such as image processing. In this paper,
we explore the possibility of using GPUs for value prediction and speculative execu-
tion: we implement software value prediction techniques to accelerate programs with
limited parallelism, and software speculation techniques to accelerate programs that
contain runtime parallelism, which are hard to parallelize statically. Our experiment
results show that due to the relatively high overhead, mapping software value predic-
tion techniques on existing GPUs may not bring any immediate performance gain. On
the other hand, although software speculation techniques introduce some overhead as
well, mapping these techniques to existing GPUs can already bring some performance
gain over CPU. Based on these observations, we explore the hardware implementation
of speculative execution operations on GPU architectures to reduce the software per-
formance overheads. The results indicate that the hardware extensions result in almost
tenfold reduction of the control divergent sequential operations with only moderate
hardware (5–8%) and power consumption (1–5%) overheads.

S. Liu (B)
Microsoft, Redmond, WA, USA
e-mail: shaoliu@microsoft.com

C. Eisenbeis
Alchemy team, INRIA Saclay - Île-de-France & Univ Paris-Sud 11 (LRI, UMR CNRS 8623),
Orsay 91405, France
e-mail: christine.eisenbeis@inria.fr

J.-L. Gaudiot
University of California, Irvine, CA, USA
e-mail: gaudiot@uci.edu

123



534 Int J Parallel Prog (2011) 39:533–552

Keywords Value prediction · Speculative execution · GPU

1 Introduction

With the introduction of such processors as the IBM Cell Broadband Engine [1] and
the NVIDIA Tesla [2], the computer industry has shifted to many-core designs. How-
ever, the problem of utilizing the enormous computing power delivered by tens or
even hundreds of cores is yet to be solved. There are two major barriers to solving this
problem: first, due to strong data dependencies, application programs may not contain
enough parallelism to fully utilize the computing resources. Second, although some
programs do contain high parallelism, the data dependencies exist in these programs
may be irregular or complex, making the programs hard to parallelize.

Several techniques have been proposed to mitigate these barriers: to exploit more
parallelism, value prediction techniques predict the live-in value to allow the con-
sumer thread to continue instead of idling to wait for the producer thread to finish. On
the other hand, to overcome the parallelization problem, Thread-Level Speculation
(TLS) techniques are used to expose most parallelism by dynamically resolving data
dependencies. While these techniques bring performance gains, the implementations
of these techniques on Chip-Multi-Processors (CMP) suffer from several limitations.
First, communication and synchronization between different cores incur a high over-
head (∼100 cycles); to amortize this overhead, the granularity of the thread need to
be at least 100s of instructions. Second, if the thread granularity becomes too big, it
requires excessive storage of the speculative states.

Unlike the CPU architecture, most of a GPU’s on-chip area is dedicated to data-
paths, thus minimizing the size of the caches and associated control logics [2]. It is
conventional wisdom that GPUs can accelerate only those applications that exhibit
very high parallelism, especially vector parallelism such as image processing. Never-
theless, the GPU architecture provides several advantages over the CPU architecture on
speculative execution. First, the GPU architecture provides abundant closely coupled
hardware threads, a large amount of registers for each thread, and fast synchroni-
zation and communication operations. These tightly coupled threads can be utilized
for speculative execution with very low communication and performance overhead.
Second, GPUs are much more power efficient than CPUs. In this paper we explore
the possibility of using GPUs for speculative executions to accelerate programs that
contain limited parallelism and those that contain irregular and dynamic parallelism,
which are hard to parallelize. Specifically, the main contributions of this paper are as
follows:

1. Develop software methods of mapping speculative execution on GPU architec-
tures

2. Identify the performance bottlenecks of software speculative execution on GPU
architectures

3. Explore hardware solutions to speculative execution on GPU architectures
4. Evaluate the chip area and power consumption overheads introduced by value

predictors on GPU architectures

123



Int J Parallel Prog (2011) 39:533–552 535

The rest of this paper is organized as follows: in Sect. 2, we review various value pre-
diction and speculation techniques and explain why the GPU architecture is suitable
for speculative executions. In Sect. 3, we present the programming framework that
maps value prediction and speculation techniques on GPU architectures. In Sect. 4, we
study the design tradeoffs in mapping software speculative execution on GPU archi-
tectures and propose hardware extensions to accelerate the speculative execution. In
Sect. 5, we evaluate the software speculative execution techniques on a NVIDIA
GeForce 8800 GPU and evaluate the hardware extensions on a Virtex-4 FPGA board.
Finally, in Sect. 6, we conclude and discuss our future work.

2 Background

In this section, we review the background of value prediction and speculation tech-
niques, as well as GPU architectures.

2.1 Value Prediction

The degree of Instruction-Level Parallelism (ILP) is directly related to the amount
of data dependency in the program. To overcome this problem, several studies have
proposed data value prediction techniques to speculatively break data dependency
and improve and exploit ILP: Lipasti et al. [3] introduced the basic design of value
predictors in the context of superscalar architectures. Sazeides et al. [4] demonstrated
that different value prediction mechanisms can achieve prediction accuracies ranging
from 56 to 92% and result in performance gains ranging from 7 to 23%. Sodani et al.
[5] identified the key difference between Instruction Reuse and Value Prediction and
their interactions with the microarchitecture.

Due to the emergence of many-core designs, Thread-Level Speculation (TLS) has
gained much recent attention as several studies have proposed incorporating value
prediction in TLS: Marcuello et al. [6] evaluated the potential for value prediction in
a Clustered Speculative Multithreaded Architecture when speculating at the thread-
level on the innermost loops. Oplinger et al. [7] evaluated the potential benefits to
TLS in terms of memory value prediction, register value prediction, and procedure
return value prediction. In addition, a recent study [8] indicated that modern appli-
cation programs may not contain enough parallelism and value prediction techniques
can significantly improve ILP and TLP.

2.2 Speculation

Applications with irregular or complex runtime data dependencies are hard to par-
allelize. For instance, in a simple loop that calculates A[i] = A[B[i]], it is difficult
to statically resolve the address B[i], in part because these indirect memory acces-
ses often depend on runtime inputs and behaviors. Thread-Level Speculation (TLS)
techniques allow the automatic parallelization of code in the presence of statically
ambiguous data dependences, thus dynamically extracting parallelism by resolving
data dependencies at runtime. Under TLS, threads execute out of order and use spec-

123



536 Int J Parallel Prog (2011) 39:533–552

ulative storage to record the necessary information to track inter-thread dependencies
and to revert to a safe point and restart the computation upon the occurrence of a
dependency violation [15].

Knight was the first to propose hardware support for TLS [9]; his work was in
the context of functional languages. The Multiscalar architecture [10,11] was the first
complete design and evaluation of an architecture for TLS; it breaks a program into a
sequence of arbitrary tasks to be executed, and then allocates tasks in-order around a
ring of processors with direct register-to-register interconnections. While the division
of a program into tasks is done at compile time, all dynamic control of the threads is
performed by ring management hardware at runtime.

One of the problems of existing TLS designs is that they are only able to improve
performance when there is a substantial amount of medium-grained loop-level paral-
lelism in the application. When the granularity of parallelism is too small or there is
limited parallelism in the program, the software overhead overwhelms any potential
performance benefits from speculative thread parallelism. Empirical results [12] have
shown that communication and synchronization operations can take ∼100 cycles for
most speculation operations. Thus, in order to amortize these overheads, the size of
threads should be in the range of ∼1000 instructions.

2.3 The GPU Architecture

We feel that the GPU architecture is suitable for fine-grained speculative executions:
first, the GPU architecture is tightly coupled such that it can simultaneously sup-
port hundreds of active threads. The excessive amount of hardware threads allows
the implementation of aggressive speculative executions. For instance, to perform an
n-thread speculation on CPU, it requires at least n/2 CPUs (with hyper-threading).
On the other hand, a single GPU chip can simultaneously support a large amount of
speculative threads, thus allowing the implementation of aggressive speculative exe-
cution. Second, the GPU architecture provides highly efficient threading supports: the
synchronization operations only cost a few cycles. This facilitates the coordination
and communication between speculative and non-speculative threads. Third, the GPU
architecture provides a large amount of fast-access registers for each thread and shared
memory for each thread block. The on-chip storage can be utilized to hold the specula-
tive states. Fourth, GPUs are much more power efficient than CPUs. The Tesla C1060
GPU provides almost 1 TFlops/s of compute power while consuming only 190 W of
power (0.19 W/GFlop) [2]. On the other hand, the Intel I7 Core CPU provides only
6.4 GFlops/s while consuming 340 W of power (53 W/GFlop) [18]. Thus, speculative
execution would incur a much lower power overhead on GPUs compared to CPUs.

For instance, the GeForce 8800 GPU [13] contains 16 streaming multiprocessors
(SM). each SM contains 8 streaming-processor (SP) cores. In order to efficiently exe-
cute hundreds of threads in parallel, the SM is hardware multithreaded such that it
manages and executes up to 768 concurrent threads in hardware with very low schedul-
ing overhead. However, one of the major performance bottlenecks for GPU is control
divergence. The scheduling unit of each SM creates, manages, schedules, and exe-
cutes threads in groups of 32 parallel threads called warps. Individual threads can be

123



Int J Parallel Prog (2011) 39:533–552 537

inactive due to independent branching or predication. If threads of a warp diverge via a
data dependent conditional branch, the warp serially executes each branch path taken,
and when all paths complete, the threads re-converge to the original execution path.
In this paper, we construct the speculative execution framework using CUDA [14] and
perform experiments on the NVIDIA GeForce 8800 GPU.

3 Speculative Execution on GPU

We are now ready to discuss our implementation of value prediction and speculation
schemes on GPU.

3.1 Value Prediction

To perform value prediction on GPU, we first exploit the intrinsic parallelism by par-
titioning the program into independent thread blocks. For example, if each iteration
calculates A[k][i] = A[k][i − 1] + 1, then the outer loop, which is indexed by k, can
be parallelized such that each thread block handles the calculation with a unique k
index. Within each block, we can start one non-speculative thread (the master thread)
and one or more speculative threads (the slave threads). The non-speculative and spec-
ulative threads can utilize the fast shared memory to store the value prediction table
and the speculative execution results; also we can use barriers to synchronize these
threads. Using the previous example, within each thread block, the non-speculative
thread calculates the value indexed by i whereas the speculative thread calculates the
value indexed by i + 1 using a predicted live-in value.

As shown in Fig. 1, computation with value prediction is carried out in three stages:
the first stage is sequential; the master thread prepares the non-speculative live-in val-
ues. In the second stage, both the non-speculative and the speculative threads start
execution simultaneously, and all threads synchronize at the barrier when they finish
execution. The last stage is again sequential: the master thread verifies the correctness
of the speculative execution, commits the results, and updates the value predictors.

Rollback can be easily handled by re-executing the speculative iteration with
a correct live-in value. Assume that in the current round, the non-speculative
thread is calculating iteration i , and the speculative thread is calculating iter-
ation i + 1; if value prediction were successful, the loop counter is incre-

Fig. 1 Value prediction on GPU

barrier

barrier

Block 1

barrier

barrier

Block n

barrier

barrier

Block 2

Stage 1

Stage 2

Stage 3

master thread slave thread

123



538 Int J Parallel Prog (2011) 39:533–552

mented by two, so that in the next round, the non-speculative thread calculates
iteration i +2 and the speculative thread calculates iterationi +3. Otherwise, rollback
occurs, so that the loop counter is only incremented by one, in the next round, the
non-speculative thread re-calculates iteration i + 1 with the correct live-in value and
the speculative thread calculates iteration i + 2. In this fine-grained value prediction
approach, each speculative iteration only generates a limited number of speculative
states which can be stored in the on-chip registers and fast shared memory. Thus
when rollback occurs, the speculative storage is discarded without affecting the global
memory space.

3.1.1 Data Dependencies

Various regular data dependency patterns exist in program loops. In Fig. 2, we cate-
gorize these data dependency patterns as simple data dependency, in which there is
no communication between computation streams; and complex data dependency, in
which thread blocks communicate with neighbor computation streams.

Simple Data Dependency: as shown in Fig. 2a, each column represents a computa-
tion stream. To map loops with simple data dependencies to GPUs, each computation
stream is assigned to a thread block in an interleaving fashion, and there is no com-
munication between thread blocks.

In the simplest case, each thread block contains one non-speculative thread and one
speculative thread. The non-speculative thread calculates iteration i , and the specu-
lative thread calculates iteration i + 1. The calculation of iteration i + 1 depends on
the result of iteration i , thus the speculative thread uses a predicted live-in value in
order to run in parallel with the non-speculative thread. The calculation results are
temporarily stored in the fast shared memory to be visible to all threads in the same
block.

When the threads finish the current computation, they reach a synchronization bar-
rier. Then, the result of the non-speculative thread is used to verify the predicted live-in
value of the speculative thread. If they match, the master thread commits the specu-
lative and non-speculative results, as well as increment the iteration counter by two.
Otherwise, rollback occurs, and the loop counter is only incremented by one.

Complex Data Dependency: for loops with complex data dependency (Fig. 2b),
we also assign each computation stream to a thread block. However, the computation
streams are no longer independent such that the calculation depends on the values
produced by neighbor computation streams. In addition, these loops take multiple

Fig. 2 Data dependency
patterns

1

2

i

1 2 3

1

2

i

1 2 k

  simple dependency   complex dependency(a) (b)

123



Int J Parallel Prog (2011) 39:533–552 539

live-in values from the current and neighbor computation streams. Thus each compu-
tation stream needs to maintain multiple value predictors, one for each live-in value.
This has two implications: first, the progress of different computation streams may be
uneven, such that the leading thread may have to stall to wait for the lagging thread.
Second, since the GPU architecture does not provide a fast shared memory between
thread blocks, for synchronization of cross-computation streams, we have introduced
a global_tag structure to record the data productions and consumptions of all streams.

In stage 1, the master thread consults the global_tag to compare the progresses of
the current and the neighboring computation streams:

Case 1: the block contains a non-speculative and a speculative thread. The
non-speculative thread fetches the live-in value from memory and the spec-
ulative thread fetches a predicted live-in value.

Case 2: both threads are speculative and both speculative threads obtain live-in val-
ues from the value predictors.

In stage two, both threads execute in parallel, and they reach a barrier upon com-
pletion. In stage three, the master thread first checks whether the live-in value for
the speculative thread can be verified. This depends on the progress of the neighbor
computation stream: the speculative execution can be verified only if the live-in val-
ues from the neighbor computation streams have been produced. If all live-in values
have been produced, then we can compare the live-in values and the predicted live-in
values. The verification is successful only if all live-in values are correctly predicted.

3.1.2 Aggressive Value Prediction Techniques

In this subsection, we discuss more aggressive value prediction techniques that utilize
multiple speculative threads per block to improve performance.

N-Predictors There exist several basic value predictor designs: last value predictor
(LVP), which predicts the current value the same as the previous one; stride value pre-
dictor (SVP), which predicts that the difference between the current value and the first
previous value is the same as the difference between the first previous value and the
second previous value; and finite context predictor (FCP), which maintains multiple
contexts of past values, and when the current context matches one in the context table,
we predict the next value the same as the next value maintained in that context.

In conventional designs, these predictors are combined to form a hybrid predictor,
and runtime decision logic is required to select one component predictor to predict
the next value. This introduces two problems: first, the decision logic introduces per-
formance and power overheads. Second, the decision logic may not always select the
correct predictor. In Sect. 5, we study the hardware and power overheads introduced
by these predictor designs.

Since the GPU architecture provides excessive hardware threads [13], instead of
selecting one predicted value to use, we can spawn multiple speculative threads, each
associated with a value predictor. During the verification stage, as long as one specula-
tive thread has used the correct predicted live-in value, then the speculative execution
is successful. In this way, no decision logic is required. To implement this scheme,

123



540 Int J Parallel Prog (2011) 39:533–552

each computation stream maintains N predictors, thus each thread block contains one
non-speculative thread and N speculative threads.

K-Steps Another way to perform aggressive value prediction is to predict K
steps ahead. In this case, each thread block contains a non-speculative thread, which
computes iteration i , and K speculative threads, each uses a predicted live-in value to
compute an iteration between i + 1 to i + K . In the verification stage, the result of
iteration i is compared to the predicted live-in value of iteration i + 1; if they match,
then the first speculative thread, which calculates iteration i + 1, is successful, and its
result is compared to the predicted live-in value of iteration i + 2, and so on. In the
ideal case, if all speculative threads are successful, we can increment the loop counter
by K + 1, such that in the next round the non-speculative thread computes iteration
i + K + 1.

3.2 Speculation

In programs such as finite-element computations, some loops contain data dependen-
cies that are hard to parallelize statically: if each iteration calculates A[i] = A[B[i]]+
1, then we do not know whether there is a data dependency until we resolve the value
of B[i], which will be generated at runtime. To parallelize this type of loops, we can
speculatively execute multiple iterations assuming no data dependency. Then, when a
data dependency is detected, we re-execute those iterations with violations. Note that
since all threads are speculative, the program is no longer divided into thread blocks;
instead, it is divided into n speculative threads.

As shown in Fig. 3, the computation is carried out in two stages: in the first stage,
the thread resolves the data dependency and determines whether there is a violation.
If a violation is detected, then the thread enters the polling state until the data depen-
dency has been satisfied. Since the target hardware provides no fast shared memory
for threads across different blocks, to determine whether there is a dependency vio-
lation, we implement a global_tag data structure in global memory to keep track of
data productions and consumptions. In the second stage, after the data dependency has
been resolved, the thread fetches the live-in value from global memory and continues
with execution. After execution completes, the thread commits the computation result
to the global memory as well as updates the global_tag.

Dependency Checking In order to guarantee the correctness of the computation, we
used a global_tag structure to keep track of all data productions and consumptions
during execution. This is similar to the LPD test approach [15]. If each iteration com-

Fig. 3 Speculation on GPU Thread 1 Thread 2 Thread n

Stage 1

Stage 2

123



Int J Parallel Prog (2011) 39:533–552 541

putes A[i] = Op(A[B[i]]), we assume no concurrent modification of B[i] during the
execution of the loop.

To determine whether a data item has been produced, all bits in the global_tag are
set to zero when the program starts, and when a data, e.g., A[i], has been produced,
the corresponding bit, here the i th bit, is set to one. A true data dependency violation
occurs if B[i] < i , and A[B[i]] has not been produced (global_tag[B[i]] is not set).
This means that the computation depends on a value that should have been produced
but has not yet been produced.

An anti-dependency violation occurs if the thread is attempting to write a data that
is supposed to be read but has not yet been read. If we are trying to produce A[i],
we need to know whether A[i] is a live-in value to other computation, A[ j]. In the
indirection relationship defined in this loop, i = B[ j], in order to discover j , we
have generated an inverted array B ′ such that j = B ′[i]. Hence, the condition for an
anti-dependency violation is if i > B ′[i] and A[B ′[i]] has not been produced. Here,
i > B ′[i] indicates that the computation of A[B ′[i]] takes the original A[i] as its
live-in value; and A[B ′[i]] has not been produced indicates that if A[i] is overwritten
by the new value now, then the computation of A[B ′[i]] would be using an incorrect
live-in value.

Optimization In the basic scheme, when a thread detects a dependency violation, it
enters the polling state until the data dependency has been resolved. This may cause
a high overhead if a thread is blocked for a long time. We have implemented an opti-
mized scheme such that when a violation is detected, the current computation state is
stored in a buffer and the thread moves on with the next round of computation. Assume
that the current thread computes A[i] and in stage 1, detects a dependency violation,
then the index i is stored in a buffer and the thread moves on to the computation of
A[i + n]. Then in the next round, the thread checks whether the buffer is empty and
attempts to handle the buffered computations before moving on to its normal execution
flow.

4 Design Space Exploration

We perform experiments to identify the design tradeoffs of the speculative execution
schemes. As shown in Fig. 4, the program we use is the discrete transport application.
It contains two loops: the iterations of the outer loop are independent whereas the inner
loop contains data dependencies between the current and the previous iterations.

We parallelize the outer loop such that the program can be divided into n indepen-
dent computation streams. In each stream, we compute two inner loop iterations at
a time with one non-speculative and one speculative thread. Our test platform con-
sists of an NVIDIA GeForce 8800 GTX GPU which contains 128 cores, each runs at
575 MHz; and the host CPU is an Intel Core 2 Duo E6300 running at 1.83 GHz.

Fig. 4 Discrete transport
application 1:    for (l=1 ; l<=m ; l++ ) {

2:      for( k=0 ; k<n ; k++ ) {
3:        xx[l][k+1] = ( x[l][k] - xx[l][k] )* dn + xx[l][k];
4:   }
5:    }

123



542 Int J Parallel Prog (2011) 39:533–552

Fig. 5 Conditions for
performance gain

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
98

0

0.4

0.80

0.5

1

1.5

2

sp
ee

d
 u

p
work ac

cu
ra

cy

1.5-2

1-1.5

0.5-1

0-0.5

We execute the application with three different schemes: the CPU scheme, in which
we execute the program on the host CPU; the GPU scheme, in which we parallelize
only the outer loop; the GPU with prediction scheme, in which we parallelize the
outer loop into independent computation streams such that each stream contains a
non-speculative and a speculative thread.

4.1 Conditions for Performance Gain

First, we identify the conditions under which the GPU with prediction scheme brings
performance gain compared to the GPU scheme. To achieve this, we manipulate two
parameters: the fraction of useful work in the value prediction framework, and the
prediction accuracy. Recall that when we perform value prediction in three stages,
stages 1 and 3 introduce pure overheads whereas stage 2 performs useful computation
work in parallel. Thus, the fraction of useful work represents the workload of stage
2 relative to the overall program workload. To control this parameter, for testing pur-
poses, we artificially inject work into the program loop body to increase the relative
size of stage 2. The second parameter, prediction accuracy, is the fraction of live-in
values that are correctly predicted. Recall that in each round of computation a block
contains a non-speculative thread and a speculative thread, the speculative thread uses
a predicted live-in value. If the prediction is correct, then the speculative execution is
successful. We control this parameter by artificially injecting correct live-in values.

The result is shown in Fig. 5: the x-axis shows the fraction of useful work, the
y-axis shows the prediction accuracy, and the z-axis shows the speedup of the GPU
with prediction scheme over the GPU scheme. When the fraction of useful work is
90%, a speedup of 1 is reached when the prediction accuracy is 20%; when the predic-
tion accuracy reaches 80%, the speedup becomes 1.5. Since in this case we are only
looking one step ahead, when the fraction of useful work is 98% and the prediction
accuracy is 100%, the speedup can reach 1.9. Hence, in order to achieve high perfor-
mance, we need to design value predictors with high prediction accuracy; meanwhile,
the predictors should cause as little overhead as possible.

123



Int J Parallel Prog (2011) 39:533–552 543

Fig. 6 Overheads of value
prediction schemes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LVP SVP FCP Hybrid Complex LVP-K

stage 3

stage 2

stage 1

4.2 Overheads of the Software Approach

Different value prediction schemes vary in their complexity, as well as the perfor-
mance overheads they introduce. We implement six software value prediction schemes
to execute the discrete transport application. These schemes include the component
predictors including last value predictor (LVP), stride value predictor (SVP), finite
context predictor (FCP), and the more sophisticated predictors including complex,
hybrid, and LVP-k. The component predictors only utilize one speculative thread in
each block. Complex combines the three component predictors, but it supports only
one speculative thread thus it requires some decision logic to select a predictor to use.
Hybrid supports three speculative threads, each associated with a component predictor.
LVP-k supports k speculative threads to execute k steps ahead.

The results are shown in Fig. 6: in the LVP and SVP schemes, the overhead intro-
duced by stages 1 and 3 is around 40%. The FCP scheme is more complex than LVP
and SVP since it requires a context table, thus the overhead can reach 60%. The com-
plex scheme combines the three component predictors and one decision module; the
overhead can reach 70%. The hybrid scheme is similar to the complex scheme but it
does not have a decision module, the overhead is 62%. The LVP-k scheme involves
long verification and predictor update, thus the overhead can reach 78%.

4.3 Performance Comparisons

To understand how GPU can be used to accelerate computations, we execute the
application on a CPU, on a GPU without value prediction, and with value prediction.
In this experiment, value prediction is ideal such that all predictions are correct and
the fraction of useful work is 90%. The results are shown in Fig. 7: the x-axis shows
the number of computation streams and the y-axis shows the execution time in micro-
seconds. The line with triangle blocks shows the CPU performance. The line with
square blocks shows the performance on GPU without value prediction, and its per-
formance matches the CPU performance when the number of computation streams
reaches 130. The line with tilted square blocks shows the performance on GPU with
value prediction: its performance is almost double of that of GPU without prediction
due to high prediction accuracy and high fraction of useful work.

123



544 Int J Parallel Prog (2011) 39:533–552

Fig. 7 Performance
comparisons

0

2000

4000

6000

8000

10000

12000

40 80 120 160 200 240 280

number of threads

ex
ec

u
ti

o
n

 t
im

e 
(u

s)

GPU_pred

GPU

CPU

4.4 Analytical Model

We summarize the empirical findings from the previous two subsections in Eqs. 1
and 2, which describe an analytical model capturing the relationship between the
performance of speculative execution and the key design parameters. SpeedupG PU

represents the performance improvement of GPU with speculative execution over that
of GPU without speculative execution; oh represents the overhead incurred by the
particular speculative execution scheme; p represents the prediction or speculation
accuracy; and k represents the look-forward steps used in our execution: for example,
if we have two speculative threads, one calculates i +1 and the other i +2, then k = 2.

SpeedupG PU = 1

(1 + oh)(1 − p) + (1+oh)p
k+1

(1)

oh = ohmem + ohseq + ohcomp (2)

Equation 1 explains the behavior of the proposed value prediction and speculation
techniques. Simple value predictors such as LVP and SVP incur a fairly low over-
head, oh, but the prediction accuracy, p, is also low. Techniques such as FCP, Hybrid,
andComplex may be used to improve p but they incur higher oh. Similarly, LVP-k aims
to improve k but it also results in a high oh due to a long verification stage. Equation 2
breaks down the overhead incurred by the proposed speculative schemes. Note that
these overheads are not orthogonal and they may overlap with each other.

1. Memory access overhead ohmem : the predictors need to consult and update the
prediction table.

2. Sequentialization overhead ohseq : control divergence causes the execution to be
serialized.

3. Computation overhead ohcomp: the value predictors require extra computations to
generate the predicted values.

The analytical model indicates that the key to generate performance gain is to effec-
tively reduce or mask the overhead. The current target hardware is able to hide the
memory access latency effectively: when a long latency memory operation is issued,
it is capable to switch to a new warp of threads with very low overhead. However, the
main bottleneck is the sequentialization (control divergence) problem.

123



Int J Parallel Prog (2011) 39:533–552 545

Fig. 8 Sequential execution of
stage 3

1: ld.param.u32 $r75, [__cudaparm_xx];
2: ld.shared.s32 $r76, [__cuda_spec8+0];
3: mul.lo.u32 $r77, $r18, 4;
4: add.u32 $r78, $r75, $r77;
5: st.global.s32 [$r78+0], $r76;
6: ld.shared.s32 $r81, [step];  
7: add.s32 $r82, $r81, 1;
8: st.shared.s32 [step], $r82; 
9: ld.shared.s32 $r79, [hit];
10: mul.lo.u32 $r83, $r79, 4;
11: add.u32 $r84, $r83, $r20;
12: ld.shared.s32 $r85, [$r84+0];
13: add.s32 $r86, $r18, $r16;
14: mul.lo.u32 $r87, $r86, 4;
15: add.u32 $r88, $r75, $r87;
16: st.global.s32 [$r88+0], $r85;
17: add.s32 $r89, $r85, $r85;
18: ld.shared.s32 $r76, [__cuda_spec8+0];
19: sub.s32 $r90, $r89, $r76; 
20: st.shared.s32 [__cuda_pred16+4], $r90;

4.5 Hardware Acceleration

One effective way to reduce the sequential section is to move some of the control
divergent operations into hardware. In stages 1 (prediction stage) and 3 (verification
stage), most of the instructions are additions, comparisons, and table updates. Specifi-
cally, one effective way of acceleration is instruction collapsing, in which we collapse
a sequence of n instructions (usually the whole basic block) into a single specialized
instruction. As a result, instead of fetching and executing n instructions, we only have
to fetch and execute one instruction. In the ideal case, it results in a speedup of n; or
in other words, it reduces the sequential section by n-fold.

For instance, Fig. 8 shows the assembly code of the verification stage of our specu-
lative execution framework. Lines 1–5 commit the non-speculative result to memory;
lines 9–16 commit the speculative result to memory; and lines 17–20 update the SVP
prediction table. If we could extend the ISA to include two special instructions commit
and table_update, then we could significantly reduce the size of the sequential section.
We explore the impact of this technique in Sect. 5.

5 Experiments and Results

First, we perform a number of experiments on the GPU test platform described in
Sect. 4 to evaluate the software speculative execution schemes. Since most bench-
mark programs are written for CPUs, thus it is very difficult to port the whole programs
onto GPUs. Instead, we extract kernel loops from the SPEC CPU 2006 [16] and the
PARSEC [17] benchmark suites and ported these kernel loops on GPU. Second, we
implement a GPU-like architecture on Virtex-4 FPGA to evaluate the performance,
hardware overheads, and power consumption of the proposed scheme.

123



546 Int J Parallel Prog (2011) 39:533–552

Fig. 9 HFY_PRED
performance

HFY_PRED

10

100

1000

10000

100000

0 50 100 150 200 250

number of streams

ex
ec

u
ti

o
n

 t
im

e 
(u

s)

GPU

CPU

GPU_pred

GPU_pred
no overhead

5.1 Software Value Prediction on GPU

For software value prediction, we use stride value predictors and focus on the
non-aggressive techniques since the aggressive techniques introduce overwhelming
overhead, which in the previous section have been identified as the main performance
bottleneck.

HFY_PRED: this loop is taken from swaptions of PARSEC, in the HJM_
Forward_to_Yield routine. It is a financial application that computes yield rates from
the forward rates supplied. This loop contains simple data dependencies such as dis-
cussed in Sect. 3.1.1. Thus, we map each outer loop iteration to a block; and one
non-speculative iteration and one speculative iteration of the inner loop to the threads
within a block.

Figure 9 shows the experiment results: the x-axis shows the number of indepen-
dent execution streams. Note that with value prediction, each stream contains one non-
speculative and one speculative thread. The y-axis shows the execution time. We show
the CPU performance (the line with square blocks) for reference. In the baseline GPU
approach (the line with tilted square blocks), each independent stream is assigned to
one thread. In the GPU with value prediction approach (the line with triangle blocks),
the performance is always higher than the baseline GPU approach due to the long
sequential section in the program. To understand the overhead incurred by the sequen-
tial section, we also record the execution of only the loop body (the line with cross
blocks), which shows that the overhead of the sequential section reaches 60% in this
case. On the other hand, it implies that if we only consider the parallel loop body and
compare to the GPU baseline, a 30% improvements can be achieved. Note that in the
current GPU architecture, there is no hardware support for value prediction, thus all
operations are done in software, resulting in a high overhead. Nevertheless, this result
implies that if we could add value prediction hardware supports in the GPU archi-
tecture, the sequential overhead could be minimized and this technique can indeed
introduces a high performance gain.

Transform_PRED: this loop is in fp_tree from freqmine of PARSEC.
It transforms a tree structure into an array structure. This loop contains simple data
dependencies such as discussed in Sect. 3.1.1. The mapping of this loop to GPU is
similar to the previous case. Figure 10 shows the experiment results: the GPU_pred
scheme introduces a very high overhead compared to the baseline GPU scheme. This

123



Int J Parallel Prog (2011) 39:533–552 547

Fig. 10 Transform_PRED
performance

transform_PRED

10

100

1000

10000

100000

0 50 100 150 200 250

number of streams

ex
ec

u
ti

o
n

 t
im

e 
(u

s)

GPU

CPU

GPU_pred

GPU_pred_
no_overhead

Fig. 11 PDE_PRED
performance

PDE_PRED

100

1000

10000

100000

1000000

0 50 100 150 200 250 300

number of streams

ex
ec

u
ti

o
n

 t
im

e 
(u

s)

GPU

CPU

GPU_pred

GPU_pred_
no_overhead

is because this loop contains a very low degree of data redundancy, resulting in low
prediction accuracy, and thus an overwhelming overhead. This is confirmed after
we strip the sequential section overhead in GPU_pred_no_overhead: even without
overhead, the GPU with prediction case has similar performance as the GPU baseline
case.

PDE_PRED: we code and port to GPU this wavefront PDE solver. This loop con-
tains complex data dependencies discussed in Sect. 3.1.1: it requires input values from
the left and right neighbor streams, thus cross-block communication and synchroni-
zation is required. Figure 11 shows the experiment results: the GPU with prediction
scheme (the line with triangle blocks) shows an irregular behavior. This is due to the
communication between computation streams. As illustrated in Fig. 3, during exe-
cution, the progresses of the different execution streams cannot be controlled, thus
resulting in fluctuations of the performance behavior. Again, the pure computation
time of the GPU with prediction scheme is improved by about 30% when compared
to the baseline GPU scheme.

5.2 Software Speculation on GPU

For software speculation, we parallelize the loops assuming no data dependencies.
When data dependencies are detected, we re-execute those loops with dependency
violations using the correct live-in values.

Cont_SPEC: this is the concenter routine taken from streamcluster of PARSEC.
It computes the means for the k clusters as well as the relative weight of points in the

123



548 Int J Parallel Prog (2011) 39:533–552

Fig. 12 Cont_SPEC
performance

cont_SPEC

1

10

100

1000

10000

100000

0 500 1000 1500

number of threads

ex
ec

u
ti

o
n

 t
im

e 
(u

s)

GPU

CPU

GPU_spec

GPU_spec_
no_overhead

clusters. This loop is hard to parallelize because the data production in the loop body
goes through a level of indirection such that data consumption can not be performed
until the source data address has been resolved. We implement this loop with the
speculation framework discussed in Sect. 3.2.

The experiment results are shown in Fig. 12: the x-axis shows the number of threads
used in the program whereas the y-axis shows the execution time. Because the loop
is hard to parallelize, we also show the single thread performance of GPU (line with
tilted square blocks) and CPU (line with square blocks) for reference. The speculative
execution on GPU (line with triangle blocks) scales well with the increasing number
of threads. This is due to the limited amount of data dependencies, allowing this tech-
nique to expose a large amount of parallelism. We are also interested in the overhead
introduced by this scheme. Thus, we capture the execution time of only the loop body
(line with cross blocks) as well. This result shows that the speculation overhead is
about 40%.

Decompress_SPEC: this is a kernel loop in the decompress routine inside bzip2
of SPEC CPU 2006. It traverses an array and un-compresses the data. During data
un-compression, it traverses an array that contains the addresses of the source data.
Then, it fetches the data through pointer indirection, performs some mathematical
operations on the piece of data, and then stores it to a target array. Again, since
data dependency depends on runtime behavior, this program is hard to parallelize.
Figure 13 shows the experiment results: compared to cont_SPEC, this loop is not as
scalable due to the existence of strong data dependencies in the loop body. In this case,
many speculative threads would fail due to dependency violations. Under this situa-
tion, these threads would enter a polling state until the dependency violations have
been resolved. Note that when the number of threads exceeds 1000, the execution time
starts to increase due to an increasing thread scheduling overhead. Also, in this case,
the overhead introduced by this scheme is about 40%.

Rebuild_SPEC: this is a kernel loop in the rebuild routine inside fluidanimate of
PARSEC. It rebuilds the grid to simulate the incompressible fluid for interactive ani-
mation purposes. This program is different from the previous two programs in that
its data production, instead of data consumption, goes through a level of indirection.
Specifically, it fetches a piece of data from a source array, performs some operations,
then stores the result to the location which’s address is stored in the target array. Sim-

123



Int J Parallel Prog (2011) 39:533–552 549

Fig. 13 Decompress_SPEC
performance

decompress_SPEC

1

10

100

1000

10000

0 500 1000 1500

number of threads

ex
ec

u
ti

o
n

 t
im

e 
(u

s)

GPU

CPU

GPU_spec

GPU_spec_
no_overhead

Fig. 14 Rebuild_SPEC
performance

rebuild_SPEC

1

10

100

1000

10000

100000

0 500 1000 1500

number of threads

ex
ec

u
ti

o
n

 t
im

e 
(u

s)

GPU

CPU

GPU_spec

GPU_spec_
no_overhead

ilar to the previous two cases, the indirection in data production makes this program
hard to parallelize. In addition, at each iteration, it involves the calculation of nine grid
values and thus contains significantly more work than the previous cases. As shown
in Fig. 14, in this program the speculation operation overhead is only about 10% com-
pared to 40% in the previous cases. This is because the large loop body amortizes the
overhead of speculation.

In Sect. 3.2, we have proposed an optimization scheme such that when a depen-
dency violation is detected, it stores the current iteration information in a buffer and
moves on with the next iteration. Our evaluation shows that this technique is capable
of improving performance by 3–5%. Performance gain comes from the hiding of data
dependencies. However, the performance gain brought by this technique is fairly low
because it is offset by the constant overhead: no matter whether data dependencies are
present or not, this scheme always checks buffer for pending computations.

5.3 Exploration of Hardware Implementation

In this subsection we explore the hardware implementation of speculative execution
operations in order to identify the hardware and power consumption overheads. To
achieve this, we implement a GPU-like architecture onto the ML401 FPGA board
[19]. Our GPU-like architecture emulates a streaming multiprocessor (SM) as in the
NVIDIA GeForce 8800 GPU (please refer to Sect. 2.3). Our implementation consists
of a block RAM to store instructions. In the main datapath, it contains eight ALU

123



550 Int J Parallel Prog (2011) 39:533–552

Table 1 Hardware and power
overheads of different value
predictors

# FF # LUTs Power (mW) Performance
(cycles)

LVP 40 40 3.64 2

SVP 90 70 7.27 2

FCP 190 70 14.55 2

Hybrid 400 220 32.73 4

Overhead (%) 20.00 18.18 22.22 50.00

engines to perform parallel computation of basic arithmetic operations (add, sub-
tract, multiply, divide, and shift). Also, each ALU engine contains 16 32-bit registers.
During execution, a common instruction fetch engine fetches an instruction from the
block RAM and distributes this instruction to all ALUs, which then execute in parallel.
In order to measure the chip power consumption, we place a 0.033 Ohm shunt resistor
on the power supply rail and measure the voltage drop across the shunt resistor. Then
from the voltage drop we derive the current that goes into the Virtex-4 FPGA chip, and
then we multiply this current by the 1.2 V supply voltage to calculate the chip power
consumption under different configurations.

In the first step, we evaluate the hardware and power overhead of standalone hard-
ware value predictors. As summarized in Table 1, we implement standalone LVP, SVP,
FCP, and Hybrid predictors on the FPGA board and measure the usage of hardware
resources including the flip-flops (FF) and the look-up tables (LUT), also we measure
the chip power consumption when the predictors are active. Note that the hybrid pre-
dictor design consists of a LVP, a SVP, a FCP, and a decision circuit. The last row of
Table 1 shows the overheads introduced by the decision circuit, which contribute to
20% of the total hardware cost, 22% of the power consumption, and 50% of the total
latency. The high overheads introduced by the decision circuit imply that it may be
beneficial to perform aggressive value prediction on GPUs, as proposed in Sect. 3.1.2.

Then we implement the GPU-like architecture on the FPGA board and measure the
hardware and power consumption overheads. We consider several cases: baseline rep-
resents existing GPU design such that no hardware value predictor is implemented;
baseline+LVP, baseline+SVP, and baseline+FCP represent the implementation of
one value predictor into the baseline; and baseline+3 VP represent the implemen-
tation of the three value predictors into the baseline, which allows the execution of

Table 2 Incorporation of hardware value predictors onto GPU architectures

# FF # LUTs Hardware Power (mW) Power
overhead (%) overhead (%)

Baseline 17055 26106 0.00 356.36 0.00

Baseline+LVP 17153 28226 5.48 360.00 1.02

Baseline+SVP 17185 28355 5.77 363.64 2.04

Baseline+FCP 17283 28396 6.19 367.27 3.06

Baseline+3 VP 17511 28762 7.75 374.55 5.10

123



Int J Parallel Prog (2011) 39:533–552 551

aggressive value prediction. These designs introduce moderate hardware (5–8%) and
power consumption (1–5%) overheads compared to the baseline (Table 2).

Each hardware value predictor keeps a value history table. These value predictors
run in parallel with the datapath components. When these predictors are triggered,
they generate the predicted values from the value history table; and when the actual
values are generated, the value history tables are updated automatically. In the soft-
ware value prediction implementation, stages 1 and 3 respectively consist of more than
ten and twenty instructions, and they are sequential. As shown previously, this long
sequential section is the main performance bottleneck. In our prototype implementa-
tion, these sequential instructions are collapsed into two instructions predict, with a
latency of two cycles, and verify, with a latency of two cycles. Specifically, predict
triggers the predictors to generate a prediction; and verify compares the actual value
and the predicted value, and updates the value history table. This simple hardware
implementation results in almost tenfold reduction of the sequential section.

6 Conclusions

In this paper we have studied the possibility of using GPUs for speculative execution.
The key idea is that with speculative execution, we can accelerate applications with
limited parallelism and those that are hard-to-parallelize. We evaluated the software
speculative execution schemes on a NVIDIA GeForce 8800 GPU and performed a
space exploration study to identify the performance bottlenecks. In addition, we pro-
posed hardware solutions to minimize the performance bottlenecks and explored these
hardware solutions on a ML401 FPGA board.

The results of this study have demonstrated the potential of speculative execution
on GPU architectures: in the software value prediction case, although it introduces
a fairly high overhead, we observed a great improvement of the pure computation
time (without overhead) of the speculative scheme over the non-speculative scheme.
In the software speculation case, we managed to parallelize loops with complex and
dynamic data dependencies, and the performance of such scheme already surpasses
that of CPU. On the other hand, we also identified several problems in using existing
GPU architectures to execute software value prediction and speculation operations.

1. Sequential execution overhead: control divergence of the target hardware results
in a large sequential section, which is a major performance bottleneck.

2. Lack of cross-block synchronization: without cross-block synchronization support,
it is very hard to manage the speculative execution of programs with cross-block
communication.

3. Memory access overhead: many synchronization and communication operations
have to go through the global memory, which incurs a high latency.

In addition, our exploration on hardware solutions showed that the hardware exten-
sions (hardware value predictors) resulted in almost tenfold reduction of the control
divergent sequential operations with only moderate hardware (5–8%) and power con-
sumption (1–5%) overheads. Thus this result confirmed that it may be beneficial to
add hardware support to existing GPU architectures to support speculative execution.

123



552 Int J Parallel Prog (2011) 39:533–552

This exploratory work naturally leads to two directions of our future work: first,
we will perform a more detailed design and optimization of specialized instructions in
order to enhance speculative execution performance and to reduce power consumption.
Second, we will design and implement more sophisticated and efficient dependency
checking techniques to guarantee the correctness of speculative execution. The cur-
rent dependency checking scheme requires a global_tag data structure to keep track
of data dependencies thus resulting in a very high overhead due to excessive memory
access. We plan to perform optimization on the current technique as well as propose
new methods for dependency checking.

Acknowledgments This work is partly supported by the National Science Foundation under Grant No.
CCF-0541403 and by the French Agence Nationale pour la Recherche (ANR) PetaQCD project. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation or of the ANR.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. IBM Cell Broadband Engine, http://www.ibm.com/developerworks/power/library/pa-cellperf/
2. NVIDIA Tesla Computing Solutions, http://www.nvidia.com/object/tesla_computing_solutions.html
3. Lipasti, M.H., Shen,J.P.: Exceeding the dataflow limit via value prediction. In: Proceedings of the 29th

International Symposium on Microarchitecture, December 1996
4. Sazeides, Y., Smith, J.E.: The predictability of data values. In: Proceedings of the 30th Annual Inter-

national Symposium on Microarchitecture, December 1997
5. Sodani, A., Sohi, G.S.: Understanding the differences between value prediction and instruction reuse.

In: Proceedings of the 31st Annual International Symposium on Microarchitecture, December 1998
6. Marcuello, P., Tubella, J., González, A.: Value prediction for speculative multithreaded architec-

tures. In: Proceedings of the 32nd Annual international Symposium on Microarchitecture (Micro’99),
November 1999

7. Oplinger, J., Heine, D., Lam, M.S.: In search of speculative thread-level parallelism. In: Proceedings of
the 1999 International Conference on Parallel Architectures and Compilation Techniques (PACT’99),
October 1999

8. Liu, S., Gaudiot, J-L.: Potential impact of value prediction on communication in many-core architec-
tures. IEEE Trans. Comput. 58, 6 (2009)

9. Knight, T.: An architecture for mostly functional languages. In: Proceedings of the ACM Lisp and
Functional Programming Conference, August, 1986

10. Franklin, M., Sohi, G.S.: APB: a hardware mechanism for dynamic reordering of memory refer-
ences. IEEE Trans. Comput. 45, 5 (1996)

11. Sohi, G.S., Breach, S., Vijaykumar, T.N.: Multiscalar Processors. In: Proceedings of the 22nd Interna-
tional Symposium on Computer Architecture (ISCA’95), June, 1995

12. Hammond, L., Hubbert, B.A., Siu, M., Prabhu, M.K., Chen, M., Olukotun, K.: The stanford hydra
CMP. IEEE Micro 22, 2 (2000)

13. NVIDIA GeForce 8800, http://www.nvidia.com/page/geforce_8800.html
14. CUDA Zone—the resource for CUDA developers, http://www.nvidia.com/object/cuda_home.html#
15. Rauchwerger, L., Padua, D.: The LRPD test: speculative run-time parallelization of loops with priv-

atization and reduction parallelization. ACM SIGPLAN Notices 30, 6 (1995)
16. SPEC CPU2006, http://www.spec.org/cpu2006/
17. Bienia, C., Kumar, S., Singh, J.P., Li, K.; The PARSEC benchmark suite: characterization and archi-

tectural implications, Princeton University Technical Report TR-811-08, January 2008
18. Intel Core i7 Processor, http://www.intel.com/products/processor/corei7/index.htm
19. Xilinx ML401 Overview, http://www.xilinx.com/products/boards/ml401/index.htm

123

http://www.ibm.com/developerworks/power/library/pa-cellperf/
http://www.nvidia.com/object/tesla_computing_solutions.html
http://www.nvidia.com/page/geforce_8800.html
http://www.nvidia.com/object/cuda_home.html#
http://www.spec.org/cpu2006/
http://www.intel.com/products/processor/corei7/index.htm
http://www.xilinx.com/products/boards/ml401/index.htm

	Value Prediction and Speculative Execution on GPU
	Abstract
	1 Introduction
	2 Background
	2.1 Value Prediction
	2.2 Speculation
	2.3 The GPU Architecture

	3 Speculative Execution on GPU
	3.1 Value Prediction
	3.1.1 Data Dependencies
	3.1.2 Aggressive Value Prediction Techniques

	3.2 Speculation

	4 Design Space Exploration
	4.1 Conditions for Performance Gain
	4.2 Overheads of the Software Approach
	4.3 Performance Comparisons
	4.4 Analytical Model
	4.5 Hardware Acceleration

	5 Experiments and Results
	5.1 Software Value Prediction on GPU
	5.2 Software Speculation on GPU
	5.3 Exploration of Hardware Implementation

	6 Conclusions
	Acknowledgments
	References


