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We investigate the zero distribution of �-shi� di�erence polynomials of meromorphic functions with zero order and obtain some
results that extend previous results of K. Liu et al.

1. Introduction and Main Results

In this paper, we assume that the reader is familiar with
the fundamental results and the standard notations of the
Nevanlinna theory (see, e.g., [1, 2]). Let �(�) and �(�) be
two nonconstant meromorphic functions in the complex
plane. By �(�, �), we denote any quantity satisfying �(�, �) =�(	(�, �)) as � → ∞, possibly outside a set of � with nite
linear measure. 
en the meromorphic function � is called
a small function of �(�), if 	(�, �) = �(�, �). If �(�) − �
and �(�)−� have same zeros, countingmultiplicity (ignoring
multiplicity), then we say that �(�) and �(�) share the small
function � CM (IM). 
e logarithmic density of a set � is
dened as follows:

lim sup
�→∞

1
log � ∫[1,�]∩��

1
� ��. (1)

Currently, many articles have focused on value distri-
bution in di�erence analogues of meromorphic functions
(see, e.g., [3–11]). In particular, there has been an increasing
interest in studying the uniqueness problems related to
meromorphic functions and their shi�s or their di�erence
operators (see, e.g., [8, 12–15]). Our aim in this article
is to investigate the uniqueness problems of �-di�erence
polynomials.

Recently, Liu et al. [13] considered uniqueness of di�er-
ence polynomials of meromorphic functions, corresponding
to uniqueness theorems of meromorphic functions sharing
values (see, e.g., [9, 16]). 
ey got the following.

�eorem A. Let �(�) and �(�) be two transcendental mero-
morphic functions with 	nite order. Suppose that � is a nonzero
complex constant and � is an integer. If � ≥ 14 and ��(�)�(�+�) and ��(�)�(� + �) share 1 ��, then �(�) ≡ ��(�) or�(�)�(�) = �, where ��+1 = 1.
�eoremB. Under the conditions of
eoremA, if � ≥ 26 and��(�)�(�+�) and ��(�)�(�+�) share 1 ��, then�(�) ≡ ��(�)
or �(�)�(�) = �, where ��+1 = 1.

In this paper, we consider the case of �-shi� di�erence
polynomials and extend
eorem A as follows:

�eorem 1. Let �(�) and �(�) be two transcendental mero-
morphic functions with �(�) = �(�) = 0. Suppose that �
and � are two nonzero complex constants and � is an integer. If� ≥ 14 and ��(�)�(�� + �) and ��(�)�(�� + �) share 1 ��,

then �(�) ≡ ��(�) or �(�)�(�) = �, where ��+1 = 1.
It is natural to askwhether
eorem 1 holds if��(�)�(��+�) and ��(�)�(�� + �) share 1 IM. Corresponding to this

question, we get the following result.
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�eorem 2. Under the conditions of 
eorem 1, if � ≥ 26 and��(�)�(�� + �) and ��(�)�(�� + �) share 1 ��, then �(�) ≡��(�) or �(�)�(�) = �, where ��+1 = 1.
Next, we consider the uniqueness of �-di�erence prod-

ucts of entire functions and obtain the following results.

�eorem 3. Let �(�) and �(�) be two transcendental entire
functions with �(�) = �(�) = 0, and let � and � be two nonzero
complex constants, and let �(�) = ���� +��−1��−1 + ⋅ ⋅ ⋅ + �1�+�0 be a nonzero polynomial, where ��( ̸= 0), ��−1, . . . , �0 are
complex constants, and � denotes the number of the distinct
zero of �(�). If � > 2� + 1 and �(�(�))�(�� + �) and�(�(�))�(�� + �) share 1 ��, then one of the following results
holds:

(1) �(�) ≡ ��(�) for a constant � such that �� = 1, where� = ���{ 0,  1, . . . ,  �} and
 	 = {� + 1, �	 = 0,

" + 1, �	 ̸= 0, " = 0, 1, . . . , �; (2)

(2) �(�) and �(�) satisfy the algebraic equation #(�(�),�(�)) = 0, where
# (%1, %2) = � (%1) %1 (�� + �) − � (%2) %2 (�� + �) . (3)

Remark 4. A similar result can be found in [15], but the
method of this paper is more concise, and the condition of
this paper is better.

2. Preliminary Lemmas


e following lemma is a �-di�erence analogue of the
logarithmic derivative lemma.

Lemma 5 (see [14]). Let �(�) be a meromorphic function of
zero order, and let � and � be two nonzero complex numbers.

en one has

'(�, � (�� + �)� (�) ) = � (�, �) (4)

on a set of logarithmic density 1.

Lemma 6 (see [7]). If 	 : R+ → R
+ is an increasing function

such that

lim sup
�→∞

log	 (�)
log � = 0, (5)

then the set

/ := {� : 	 (�1�) ≥ �2	 (�)} (6)

has logarithmic density 0 for all �1 > 1 and �2 > 1.

e following lemma is essential in our proof and is due to
Heittokangas et al., see [12, 
eorems 6 and 7].

Lemma 7. Let �(�) be a meromorphic function of 	nite order,
and let � ̸= 0 be 	xed. 
en

7(�, � (� + �)) ≤ 7 (�, � (�)) + � (�, �) ,
7(�, 1

� (� + �)) ≤ 7(�, 1
� (�)) + � (�, �) ,

7 (�, � (� + �)) ≤ 7 (�, � (�)) + � (�, �) ,
7(�, 1

� (� + �)) ≤ 7(�, 1
� (�)) + � (�, �) .

(7)

Lemma8. Let�(�) be ameromorphic functionwith �(�) = 0,
and let � and � be two nonzero complex numbers. 
en

7(�, � (�� + �)) ≤ 7 (�, � (�)) + � (�, �) ,
7(�, 1

� (�� + �)) ≤ 7(�, 1
� (�)) + � (�, �) ,

7 (�, � (�� + �)) ≤ 7 (�, � (�)) + � (�, �) ,
7(�, 1

� (�� + �)) ≤ 7(�, 1
� (�)) + � (�, �) .

(8)

Proof of Lemma 8. We only prove the case |�| ≥ 1. For the
case |�| ≤ 1, we can use the same method in the proof. By a
simple geometric observation, we obtain

7(�, 1
� (�� + �)) ≤ 7(????�???? �, 1

� (� + (�/�))) . (9)

Combining �(�) = 0 with Lemma 6, we obtain

7(????�???? �, 1
� (� + (�/�))) ≤ 7(�, 1

� (� + (�/�)))
+ � (�, �)

(10)

on a set of logarithmic density 1. On the other hand, we have

7(�, 1
� (� + (�/�))) ≤ 7(????��???? , 1

� (� + (�/�))) . (11)


erefore,

7(????�???? �, 1
� (� + (�/�))) = 7(�, 1

� (� + (�/�))) + � (�, �)
(12)

on a set of logarithmic density 1. From (9) and (12), we have

7(�, 1
� (�� + �)) ≤ 7(�, 1

� (� + (�/�))) + � (�, �) .
(13)

By Lemma 7, we have

7(�, 1
� (�� + �)) ≤ 7(�, 1

� (� + (�/�))) + � (�, �)

≤ 7(�, 1
� (�)) + � (�, �) .

(14)
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Similarly, we have

7(�, � (�� + �)) ≤ 7 (�, � (�)) + � (�, �) ,
7 (�, � (�� + �)) ≤ 7 (�, � (�)) + � (�, �) ,

7(�, 1
� (�� + �)) ≤ 7(�, 1

� (�)) + � (�, �) .
(15)

Lemma 9. Let � be a nonconstant meromorphic function of
zero order, and let � and � be two nonzero complex numbers.

en

	 (�, � (�� + �)) ≤ 	 (�, � (�)) + � (�, �) (16)

on a set of logarithmic density 1.

Proof of Lemma 9. By Lemmas 5 and 8, we have

	 (�, � (�� + �)) = ' (�, � (�� + �)) + 7 (�, � (�� + �))
≤ '(�, � (�� + �)� (�) ) + ' (�, � (�))
+ 7 (�, � (�)) + � (�, �)

= 	 (�, � (�)) + � (�, �)
(17)

on a set of logarithmic density 1.

Lemma 10. Let �(�) be an entire function with �(�) = 0, let �
and � be two 	xed nonzero complex constants, and let �(�) =����+��−1��−1+ ⋅ ⋅ ⋅+�1�+�0 be a nonzero polynomial, where��( ̸= 0), ��−1, . . . , �0 are complex constants. 
en

	 (�, � (� (�)) � (�� + �)) = 	 (�, � (� (�)) � (�)) + � (�, �) .
(18)

Proof of Lemma 10. By �(�) = 0 and Lemma 5, we obtain

	 (�, � (� (�)) � (�� + �)) = ' (�, � (� (�)) � (�� + �))
≤ ' (�, � (� (�)) � (�))
+ '(�, � (�� + �)� (�) )

= 	 (�, � (� (�)) � (�)) + � (�, �)
(19)

on a set of logarithmic density 1. Using the similar method as
above, we also get

	 (�, � (� (�)) � (�)) ≤ 	 (�, � (� (�)) � (�� + �)) + � (�, �)
(20)

on a set of logarithmic density 1.
Hence, we have 	(�, �(�(�))�(�)) = 	(�, �(�(�))�(�� +�)) + �(�, �) on a set of logarithmic density 1.

Lemma 11 (see [17]). Let  and � be two nonconstant
meromorphic functions. If  and � share 1 ��, then one of
the following three cases holds:

(i)

max {	 (�, ) , 	 (�, �)}
≤ 72 (�, 1) + 72 (�, ) + 72 (�,

1
�) + 72 (�, �)

+ � (�, ) + � (�, �) ,
(21)

(ii)  = �,
(iii) � ≡ 1,

where 72(�, 1/) denotes the counting function of zero of ,
such that simple zero are counted once and multiple zeros are
counted twice.

In order to prove
eorem 2, we need the following lemma.

Lemma 12 (see [16]). Let  and � be two nonconstant
meromorphic functions, and let  and � share 1 ��. Let

C = 



 − 2



 − 1 −

�


�
 + 2

�

� − 1 . (22)

IfC ̸≡ 0, then
	 (�, ) + 	 (�, �) ≤ 2 (72 (�, 1) + 72 (�, )

+72 (�, 1�) + 72 (�, �))
+ 3 (7 (�, ) + 7 (�, �) + 7(�, 1)

+7(�, 1�)) + � (�, ) + � (�, �) .
(23)

3. Proof of Theorem 1

Let (�) = ��(�)�(�� + �) and �(�) = ��(�)�(�� + �). 
us, and � share 1 CM. Combining the rst main theorem with
Lemma 9, we obtain

�	 (�, � (�)) ≤ 	 (�, �� (�) � (�� + �)) + 	 (�, � (�))
+ E (1) . (24)

Hence, we obtain

(� − 1) 	 (�, � (�)) ≤ 	 (�,  (�)) + � (�, �) . (25)

Using the similar method as above, we have

(� − 1) 	 (�, � (�)) ≤ 	 (�, � (�)) + � (�, �) . (26)

From Lemma 9, we have

	 (�, ) ≤ (� + 1) 	 (�, �) + � (�, �) , (27)

	 (�, �) ≤ (� + 1) 	 (�, �) + � (�, �) . (28)
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By the second main theorem, Lemma 9, and (28), we obtain

	 (�, ) ≤ 7 (�, ) +7(�, 1) +7( 1
 − 1) +� (�, )

≤ 7 (�, �) + 7 (�, � (�� + �)) + 7(�, 1�)

+ 7(�, 1
� (�� + �)) + 7(�, 1

� − 1) + � (�, �)
≤ 4	 (�, �) + 	 (�, �) + � (�, �)
≤ 4	 (�, �) + (� + 1) 	 (�, �) + � (�, �) + � (�, �) .

(29)

Hence, (25) and (29) imply that

(� − 5) 	 (�, �) ≤ (� + 1) 	 (�, �) + � (�, �) + � (�, �) . (30)

Similarly, we have

(� − 5) 	 (�, �) ≤ (� + 1) 	 (�, �) + � (�, �) + � (�, �) . (31)

Equations (30) and (31) imply that �(�, �) = �(�, �). Together
the denition of  with Lemma 9, we have

72 (�, 1) ≤ 27(�, 1�) + 7(�, 1
� (�� + �)) + � (�, �)

≤ 3	 (�, �) + � (�, �) .
(32)

Similarly,

72 (�, 1�) ≤ 3	 (�, �) + � (�, �) ,
72 (�, ) ≤ 3	 (�, �) + � (�, �) ,
72 (�, �) ≤ 3	 (�, �) + � (�, �) .

(33)


us, together (21) with (32)-(33), we obtain

	 (�, ) + 	 (�, �) ≤ 272 (�, 1) + 272 (�, ) + 272 (�,
1
�)

+ 272 (�, �) + � (�, �) + � (�, �)
≤ 12 (	 (�, �) + 	 (�, �)) + � (�, �)
+ � (�, �) .

(34)


en, by (25), (26), and (34), we obtain

(� − 13) [	 (�, �) + 	 (�, �)] ≤ � (�, �) + � (�, �) , (35)

which is a contradiction since � ≥ 14. By Lemma 11, we have ≡ � or � ≡ 1. If  ≡ �, that is, ��(�)�(�� + �) =��(�)�(�� + �). Set C(�) = �(�)/�(�). Suppose that C(�) is
not a constant. 
en we obtain

C� (�)C (�� + �) = 1. (36)

Lemma 9 and (36) imply that

�	 (�,C (�)) = 	 (�,C� (�)) = 	(�, 1
C (�� + �))

≤ 	 (�,C (�)) + � (�,C) .
(37)

Hence, C(�) must be a nonzero constant, since � ≥ 14. SetC(�) = �. By (36), we know ��+1 = 1. 
us, �(�) = ��(�),
where ��+1 = 1.

If � = 1, that is,
�� (�) � (�� + �) �� (�) � (�� + �) = 1. (38)

Let I(�) = �(�)�(�). Using the similar method as above, we
also obtain that I(�) must be a nonzero constant. 
us, we
have �� = �, where ��+1 = 1.
4. Proof of Theorem 2

Let (�) = ��(�)�(�� + �) and �(�) = ��(�)�(�� + �),
and let C be dened in Lemma 12. Using the similar proof
as the proof of 
eorem 1, we prove that (25)–(33) hold. By
Lemma 9, we obtain

7(�,  (�)) ≤ 7 (�, � (�)) + 7 (�, � (�� + �)) + � (�, �)
≤ 2	 (�, �) + � (�, �) .

(39)

Similarly, we obtain

7(�, 1
 (�)) ≤ 2	 (�, �) + � (�, �) ,

7 (�, � (�)) ≤ 2	 (�, �) + � (�, �) ,
7(�, 1

� (�)) ≤ 2	 (�, �) + � (�, �) .
(40)

Together Lemma 12 with (32), (33), (39), and (40), we
have

	 (�,  (�)) + 	 (�, � (�)) ≤ 24 (	 (�, �) + 	 (�, �)) + � (�, �)
+ � (�, �) .

(41)

By (25), (26) and (41) yield that

(� − 1) (	 (�, � (�)) + 	 (�, � (�))) ≤ 24 (	 (�, �) + 	 (�, �))
+ � (�, �) + � (�, �) ,

(42)

which is impossible, since � ≥ 26. Hence, we haveC ≡ 0.
By integrating (22) twice, we have

 = (J + 1) � + (� − J − 1)
J� + (� − J) , (43)
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which yields that 	(�, ) = 	(�, �) + E(1). From (25)–(28),
we obtain

(� − 1) 	 (�, �) ≤ (� + 1) 	 (�, �) + � (�, �) + � (�, �) ,
(44)

(� − 1) 	 (�, �) ≤ (� + 1) 	 (�, �) + � (�, �) + � (�, �) .
(45)

Next, we will prove that  = � or � = 1.
Case 1 (J ̸= 0, −1). If � − J − 1 ̸= 0, by (43), we obtain

7(�, 1) = 7(�, 1
� − (� − J − 1) / (J + 1)) . (46)

Together the Nevanlinna second main theorem with
Lemma 9, (28), and (44), we obtain

(� − 1) 	 (�, �)
≤ 	 (�, �) + � (�, �)
≤7(�, 1�) +7 (�, �) +7(�, 1

� − (� − J − 1) / (J + 1))
+ � (�, �) + � (�, �)

≤ 7(�, 1�) + 7 (�, �) + 7(�, 1) + � (�, �) + � (�, �)

≤ 7(�, 1�) + 7(�, 1
� (�� + �)) + 7 (�, �)

+ 7 (�, � (�� + �)) + 7(�, 1�) + 7(�, 1
� (�� + �))

+ � (�, �)
≤ 4	 (�, �) + 2	 (�, �) + � (�, �)
≤ (4 + 2� + 1� − 1)	 (�, �) + � (�, �) ,

(47)

which yields that �2 − 8� + 3 ≤ 0, which is impossible, since� ≥ 26. Hence, we obtain � − J − 1 = 0, so
 (�) = (J + 1) � (�)

J� (�) + 1 . (48)

Using the similar method as above, we obtain

(� − 1) 	 (�, �)
≤ 	 (�, �) + � (�, �)
≤ 7(�, 1�) + 7 (�, �) + 7(�, 1

� + 1/J) + � (�, �)
≤ 7(�, 1�) + 7 (�, �) + 7 (�, ) + � (�, �)
≤ (4 + 2� + 1� − 1)	 (�, �) + � (�, �) ,

(49)

which is impossible.

Case 2. If J = −1 and � = −1, then � = 1 follows trivially.

erefore, we may consider the case J = −1 and � ̸= − 1. By
(43), we have

 = �
� + 1 − �. (50)

Similarly, we get a contradiction.

Case 3. If J = 0, � = 1 and then  = � follows trivially.

erefore, we may consider the case J = 0 and � ̸= 1. By (43),
we obtain

 = � + � − 1
� . (51)

Similarly, we get a contradiction.

5. Proof of Theorem 3

Since �(�(�))�(�� + �) and �(�(�))�(�� + �) share 1 CM, we
obtain

� (� (�)) � (�� + �) − 1
� (� (�)) � (�� + �) − 1 = L�(�), (52)

where M(�) is an entire function. by �(�) = 0 and �(�) = 0, we
have L�(�) ≡ N as a constant. We can rewrite (52) as follows:

N� (� (�)) � (�� + �) = � (� (�)) � (�� + �) − 1 + N. (53)

If N ̸= 1, by the rst main theory, the second main theory,
and Lemma 9, we have

	 (�, � (� (�))) � (�� + �)
≤ 7(�, 1

� (� (�)) � (�� + �))

+ 7(�, 1
� (� (�)) � (�� + �) − 1 + N) + � (�, �)

= 7(�, 1
� (� (�)) � (�� + �))

+ 7(�, 1
� (� (�)) � (�� + �)) + � (�, �)

≤ (� + 1) 	 (�, � (�)) + (� + 1) 	 (�, � (�)) + � (�, �)
+ � (�, �) .

(54)

By Lemma 10 and (54), we have

(� + 1) 	 (�, � (�)) = 	 (�, � (� (�)) � (�))
= 	 (�, � (� (�))) � (�� + �) + � (�, �)
≤ (� + 1) 	 (�, � (�)) + (� + 1) 	 (�, � (�))

+ � (�, �) + � (�, �) .
(55)
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Hence, we have

(� − �) 	 (�, � (�)) ≤ (� + 1) 	 (�, � (�)) + � (�, �)
+ � (�, �) . (56)

Similarly, we have

(� − �) 	 (�, � (�)) ≤ (� + 1) 	 (�, � (�)) + � (�, �)
+ � (�, �) . (57)

Equations (56) and (57) imply that

(� − 2� − 1) [	 (�, � (�)) + 	 (�, � (�))] ≤ � (�, �) + � (�, �) ,
(58)

which is impossible, since � > 2� + 1. Hence, we have N = 1.
We can rewrite (52) as follows:

� (� (�)) � (�� + �) = � (� (�)) � (�� + �) . (59)

Set ℎ(�) = �(�)/�(�). We break the rest of the proof into two
cases.

Case 1. Suppose that ℎ(�) is a constant. 
en by substituting� = �ℎ into (59), we obtain
� (�� + �) [���� (ℎ�+1 − 1) + ��−1��−1 (ℎ� − 1)

+ ⋅ ⋅ ⋅ + �0 (ℎ − 1) ] ≡ 0, (60)

where ��( ̸= 0), ��−1, . . . , �0 are complex constants. By the fact
that � is transcendental entire function, we have �(�� + �) ̸≡0. Hence, we obtain

���� (ℎ�+1 − 1) + ��−1��−1 (ℎ� − 1)
+ ⋅ ⋅ ⋅ + �0 (ℎ − 1) ≡ 0. (61)

Equation (61) implies that ℎ�+1 = 1 and ℎ+1 = 1 when � ̸= 0
for T = 0, 1, . . . , � − 1. 
erefore, ℎ� = 1, where � is dened as
the assumption of 
eorem 3.

Case 2. Suppose that ℎ is not a constant, then we know by
(59) that � and � satisfy the algebraic equation #(�, �) = 0,
where #(%1, %2) = �(%1)%1(�� + �) − �(%2)%2(�� + �).
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