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VALUE SHARING RESULTS OF A MEROMORPHIC

FUNCTION f(z) AND f(qz)

Xiaoguang Qi, Kai Liu, and Lianzhong Yang

Abstract. In this paper, we investigate sharing value problems related
to a meromorphic function f(z) and f(qz), where q is a non-zero constant.
It is shown, for instance, that if f(z) is zero-order and shares two valves

CM and one value IM with f(qz), then f(z) = f(qz).

1. Introduction

In what follows, a meromorphic function will mean meromorphic in the
whole complex plane. We say that two meromorphic functions f and g share a
value a ∈ C ∪ {∞} IM (ignoring multiplicities) when f − a and g − a have the
same zeros. If f −a and g−a have the same zeros with the same multiplicities,
then we say that f and g share the value a CM (counting multiplicities). We
assume that the reader is familiar with the standard symbols and fundamental
results of Nevanlinna theory, as found in [5, 10].

As usual, by S(r, f) we denote any quantity satisfying S(r, f) = o(T (r, f))
for all r outside of a possible exceptional set of finite linear measure. In addi-
tion, denote by S(f) the family of all meromorphic functions a(z) that satisfy
T (r, a) = o(T (r, f)), for r → ∞ outside a possible exceptional set of finite log-
arithmic measure. In particular, we denote by S1(r, f) any quality satisfying
S1(r, f) = o(T (r, f)) for all r on a set of logarithmic density 1.

The classical results due to Nevanlinna [9] in the uniqueness theory of mero-
morphic functions are the five-point, resp. four-point, theorems:

Theorem A. If two meromorphic functions f and g share five distinct values
a1, a2, a3, a4, a5 ∈ C ∪ {∞} IM, then f ≡ g.

Theorem B. If two meromorphic functions f and g share four distinct values
a1, a2, a3, a4 ∈ C ∪ {∞} CM, then f ≡ g or f ≡ T ◦ g, where T is a Möbius
transformation.
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It is well-known that 4 CM can not be improved to 4 IM, see [3]. Further,
Gundersen [4, Theorem 1] has improved the assumption 4 CM to 2 CM+2 IM,
while 1 CM+3 IM is still an open problem.

In recent papers [6], Heittokangas et al. started to consider the uniqueness
of a finite order meromorphic function sharing values with its shift. They
concluded that:

Theorem C. Let f be a meromorphic function of finite order, let c ∈ C, and
let a1, a2, a3 ∈ S(f) ∪ {∞} be three distinct periodic functions with period c.
If f(z) and f(z + c) share a1, a2 CM and a3 IM, then f(z) = f(z + c) for all
z ∈ C.

Closely related to difference expressions are q-difference expressions, where
the usual shift f(z+c) of a meromorphic function will be replaced by the q-shift
f(qz), q ∈ C \ {0}. The Nevanlinna theory of q-difference expressions and its
applications to q-difference equations have recently been considered, see [1, 7].
In addition, some results about solutions of zero-order for complex q-difference
equations, can be found in the introduction in [1].

A natural question is: what is the uniqueness result in the case when f(z)
shares values with f(qz) for a zero-order meromorphic function f(z). Corre-
sponding to this question, we get the following result:

Theorem 1.1. Let f be a zero-order meromorphic function, and q ∈ C \ {0},
and let a1, a2, a3 ∈ C ∪ {∞} be three distinct values. If f(z) and f(qz) share
a1, a2 CM and a3 IM, then f(z) = f(qz).

Remark 1. Indeed, from the proof of Theorem 1.1, we know the assumption
that share a3 IM can be replaced by one of the following assumptions:

(1) if there exists a point z0 such that f(z0) = f(qz0) = a3; or
(2) if a3 is a Picard exceptional value of f .

However, we give Theorem 1.1 just as a q-difference analogue of Theorem C.

If f is an entire function in Theorem 1.1, then the conclusion will be im-
proved.

Theorem 1.2. Let f be a zero-order entire function, q ∈ C \ {0}, and let
a1, a2 ∈ C be two distinct values. If f(z) and f(qz) share a1 and a2 IM, then
f(z) = f(qz).

Remark 2. As a corollary of Theorem 1.1, we just know that f(z) = f(qz)
provided that f(z) and f(qz) share values under the condition that “1 CM +
1 IM”.

In the following, we consider the value sharing problems relative to F (z) =
fn and F (qz), and we obtain the following results:
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Theorem 1.3. Let f be a zero-order meromorphic function, and q ∈ C \ {0},
n ≥ 4 be an integer, and let F = fn. If F (z) and F (qz) share a ∈ C \ {0} and
∞ CM, then f(z) = tf(qz) for a constant t that satisfies tn = 1.

Remark 3. Theorem 1.3 is not true, if a = 0. This can be seen by considering
f(z) = z and f( 12z) =

1
2z. Then f(z)n and f( 12z)

n share 0 and∞ CM, however,

f(z) = 2f( 12z), 2
n ̸= 1, where n is a positive integer.

Corollary 1.4. Let f be a zero-order entire function, and q ∈ C\{0}, n ≥ 3 be
an integer, and let F = fn. If F (z) and F (qz) share 1 CM, then f(z) = tf(qz)
for a constant t that satisfies tn = 1.

Corollary 1.5. Let f be a zero-order meromorphic function, and q ∈ C \ {0},
n ≥ 4 be an integer, and let F = fn. If F (z) and F (qz) share 0 and 1 CM,
then f(z) = tf(qz) for a constant t that satisfies tn = 1.

Remark 4. By simply calculations, we get |q| = 1 in above results. And some
ideas of this paper are from [8].

2. Some lemmas

Lemma 2.1 ([1, Theorem 1.1]). Let f be a zero-order meromorphic function,
and q ∈ C \ {0}. Then

m

(
r,
f(qz)

f(z)

)
= S1(r, f).

Lemma 2.2 ([1, Theorem 2.1]). Let f be a zero-order meromorphic function,
let q ∈ C \ {0, 1}, and let a1, . . . , ap ∈ C, p ≥ 2, be distinct points. Then

m(r, f) +

p∑
k=1

m

(
r,

1

f − ak

)
≤ 2T (r, f)−Npair(r, f) + S1(r, f),

where

Npair(r, f) = 2N(r, f)−N(r,∆qf) +N

(
r,

1

∆qf

)
and ∆qf = f(qz)− f(z).

Lemma 2.3 ([11, Theorem 1.1 and Theorem 1.3]). Let f be a zero-order mero-
morphic function, and q ∈ C \ {0}. Then

(2.1) T (r, f(qz)) = (1 + o(1))T (r, f(z))

and

(2.2) N(r, f(qz)) = (1 + o(1))N(r, f(z))

on a set of lower logarithmic density 1.

Remark. From Remark 1 after Theorem 1.1 in [11], we know that f(z) and
f(qz) are simultaneously of order zero.
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Lemma 2.4 ([10, Theorem 2.17]). Let f and g be meromorphic functions, and
the order of f and g is less than 1. If f and g share 0 and ∞ CM, then f ≡ kg,
where k is a non-zero constant.

3. Proof of Theorem 1.1

If q = 1, then the conclusion holds. Now we consider the case that q ̸= 1.
Suppose first that a1, a2, a3 ∈ C. Denote

g(z) =
f(z)− a1
f(z)− a2

a3 − a2
a3 − a1

,

then

g(qz) =
f(qz)− a1
f(qz)− a2

a3 − a2
a3 − a1

.

From the assumption of Theorem 1.1, we know g(z) and g(qz) share 0, ∞ CM.
Suppose first that 1 is not a Picard exceptional value of g(z) and g(qz).

Then by Lemma 2.4, we get that g(z) = kg(qz) for some constant k ̸= 0. Take
now z0 such that g(z0) = 1. Since a1 ̸= a2, we deduce that f(z0) = a3. Since
f(z) and f(qz) share a3 IM, we have g(qz0) = 1. Therefore, k = 1 and so
g(z) = g(qz), hence f(z) = f(qz) as well.

Suppose next that 1 is a Picard exceptional value of g(z) and g(qz). Assume
that g(z) ̸= g(qz), and from Lemma 2.2, we obtain

m(r, g) +m

(
r,
1

g

)
+m

(
r,

1

g − 1

)
≤ 2T (r, g)− 2N(r, g) +N(r,∆qg)−N

(
r,

1

∆qg

)
+ S1(r, g),

and so

T (r, g) ≤ N(r, g) +N

(
r,
1

g

)
+N

(
r,

1

g − 1

)
+N(r, g(qz))

+N(r, g)− 2N(r, g)−N

(
r,

1

∆qg

)
+ S1(r, g).

(3.1)

Since 1 is a Picard exceptional value of g(z), by combining (2.2) and (3.1), it
follows that

(3.2) T (r, g) ≤ N(r, g) +N

(
r,
1

g

)
−N

(
r,

1

∆qg

)
+ S1(r, g).

Since g(z) and g(qz) share 0, ∞ CM, we get

(3.3) N(r, g) +N

(
r,
1

g

)
≤ N

(
r,

1

∆qg

)
.

From (3.2) and (3.3), we conclude that

T (r, g) = S1(r, g),

which is impossible. Hence, we conclude that f(z) = f(qz).
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It remains to consider the case that one of aj(j = 1, 2, 3) is infinite. Without
loss of generality, we suppose that a1 = ∞, while a2, a3 ∈ C. Take d ∈ C \
{a2, a3} and denote h(z) = 1

f(z)−d , b2 = 1
a2−d and b3 = 1

a3−d . Then b2, b3 ∈
C \ {0} are two distinct values. Hence h(z) and h(qz) share 0, b2 CM and b3
IM. By the above argument, we get h(z) = h(qz), and therefore f(z) = f(qz).

4. Proof of Theorem 1.2

From the fact that a non-constant meromorphic function of zero-order can
have at most one Picard exceptional value (see, e.g., [2, p. 114]), we obtain
that N(r, 1

f−a1
) ̸= 0 and N(r, 1

f−a2
) ̸= 0. Let

(4.1) F (z) =
f(z)− a1
a2 − a1

and F (qz) =
f(qz)− a1
a2 − a1

.

Then F (z) and F (qz) share 0 and 1 IM. Clearly, neither 0 nor 1 is a Picard
exceptional value of F (z). From Lemma 2.3, we obtain that

(4.2) T (r, F (qz)) = T (r, F (z)) + S1(r, F ).

Denote

(4.3) V (z) =
F ′(z)(F (qz)− F (z))

F (z)(F (z)− 1)
.

Lemma 2.1 and the lemma on logarithmic derivative yield that m(r, V ) =
S1(r, F ). From (4.3), we know the poles of V (z) are at the zeros and 1-points
of F (z). Since F (z) and F (z + c) share 0 and 1, we get N(r, V ) = S(r, F ).
Therefore, T (r, V ) = S1(r, F ).

Case 1. If V ̸= 0, then F (z) ̸= F (qz). From (4.3) and Lemma 2.1, we have

N

(
r,

1

F (z)

)
+N

(
r,

1

F (z)− 1

)
= N

(
r,

F ′(z)

F (z)(F (z)− 1)

)
+ S(r, F )

= N

(
r,

V

F (qz)− F (z)

)
+ S(r, F )

≤ T (r, F (qz)− F (z)) + S1(r, F ) = m(r, F (qz)− F (z)) + S1(r, F )

≤ m

(
r,
F (qz)− F (z)

F (z)

)
+m(r, F (z)) + S1(r, F )

≤ T (r, F ) + S1(r, F ).

According to second main theorem and above inequality, we get

(4.4) T (r, F ) = N

(
r,

1

F

)
+N

(
r,

1

F − 1

)
+ S1(r, F ).
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Now we define

(4.5) U(z) =
F ′(qz)(F (qz)− F (z))

F (qz)(F (qz)− 1)
.

Using the same argument as above, we know that T (r, U) = S1(r, F (qz)) =
S1(r, F (z)).

In what follows, we denote Sf∼g(m,n)(a) for the set of those points z ∈ C
such that z is an a-point of f with multiplicity m and an a-point of g with mul-
tiplicity n. Let N(m,n)(r,

1
f−a ) and N (m,n)(r,

1
f−a ) denote the counting function

and reduced counting function of f with respect to the set Sf∼g(m,n)(a), re-
spectively.

For any point z0 ∈ SF (z)∼F (qz)(m,n)(0), we have mn ̸= 0, since 0 is not a
Picard exceptional value of F (z) as we discuss above. From (4.3), (4.5) and
the Taylor expansion of F (z) and F (qz) at z0, by calculating carefully, we get
that

(4.6) −V (z0) = m

(
F ′(qz0)

n
− F ′(z0)

m

)
and

(4.7) −U(z0) = n

(
F ′(qz0)

n
− F ′(z0)

m

)
.

From (4.6) and (4.7), we know nV (z0) = mU(z0).

If nV = mU , then we deduce that

n

(
F ′(z)

F (z)− 1
− F ′(z)

F (z)

)
= m

(
F ′(qz)

F (qz)− 1
− F ′(qz)

F (qz)

)
,

which implies that (
F − 1

F

)n

= b

(
F (qz)− 1

F (qz)

)m

,

where b is a non-zero constant. If m ̸= n, then we get from above equality and
(4.2) that

nT (r, F (z)) = mT (r, F (qz)) + S1(r, F ) = mT (r, F (z)) + S1(r, F ),

which is a contradiction. If m = n, then we get(
F ′(z)

F (z)− 1
− F ′(z)

F (z)

)
=

(
F ′(qz)

F (qz)− 1
− F ′(qz)

F (qz)

)
.

Hence

(4.8)
F (z)− 1

F (z)
= d

F (qz)− 1

F (qz)
,

where d is a non-zero constant. If d = 1, then we obtain F (z) = F (qz), which
contradicts the assumption of Case 1. It remains to consider the case that
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d ̸= 1. It follows from (4.8) that

d− 1

d

F (z) + 1
d−1

F (z)
=

1

F (qz)
.

Since N(r, F (z)) = N(r, F (qz)) = 0, we get N(r, 1
F (z)− 1

1−d

) = 0. Clearly,

1
1−d ̸= 0 and 1

1−d ̸= 1, then apply the second main theorem, resulting in

2T (r, F ) ≤ N

(
r,

1

F

)
+N

(
r,

1

F − 1

)
+ S(r, F ),

which contradicts (4.4).
Hence nV ̸= mU . By the above argument, we know any point z0 ∈

SF (z)∼F (qz)(m,n)(0) satisfies that nV (z0) = mU(z0). Therefore,

N (m,n)

(
r,

1

F

)
≤ N

(
r,

1

nU −mV

)
= S1(r, F ).

Using the same reason, we get

N (m,n)

(
r,

1

F − 1

)
≤ N

(
r,

1

nU −mV

)
= S1(r, F ).

It follows that

(4.9) N (m,n)

(
r,

1

F

)
+N (m,n)

(
r,

1

F − 1

)
= S1(r, F ).

From Lemma 2.3, (4.4) and (4.9), we obtain that

T (r, F ) = N(r,
1

F
) +N(r,

1

F − 1
) + S1(r, F )

=
∑
m,n

(N (m,n)(r,
1

F
) +N (m,n)(r,

1

F − 1
)) + S1(r, F )

=
∑

m+n≥5

(N (m,n)(r,
1

F
) +N (m,n)(r,

1

F − 1
)) + S1(r, F )

≤ 1

5

∑
m+n≥5

(N(m,n)(r,
1

F
) +N(m,n)(r,

1

F − 1
)

+N(m,n)(r,
1

F (qz)
) +N(m,n)(r,

1

F (qz)− 1
)) + S1(r, F )

≤ 2

5
T (r, F ) +

2

5
T (r, F (qz)) + S1(r, F )

=
4

5
T (r, F ) + S1(r, F ),

which is a contradiction.

Case 2. If V = 0, then F (z) = F (qz). Clearly, f(z) = f(qz). This completes
the proof of Theorem 1.2.
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5. Proof of Theorem 1.3

Let G(z) = F (z)
a , then we know G(z) and G(qz) share 1 and ∞ CM, and

since the order of f is zero, it follows that

G(qz)− 1

G(z)− 1
= τ,

where τ is a non-zero constant. Rewriting the above equation, gives

(5.1) G(z) +
1

τ
− 1 =

G(qz)

τ
.

Assume that τ ̸= 1. Noting (2.2) and (5.1), the second main theorem yields

nT (r, f(z)) = T (r,G(z)) ≤ N(r,G(z)) +N

(
r,

1

G(z)

)
+N

(
r,

1

G(z)− 1 + 1
τ

)
+ S(r, f)

≤ N(r, f(z)) +N

(
r,

1

f(z)

)
+N

(
r,

1

f(qz)

)
+ S(r, f)

≤ N(r, f(z)) + 2N

(
r,

1

f(z)

)
+ S1(r, f)

≤ 3T (r, f(z)) + S1(r, f),

(5.2)

which contradicts the assumption that n ≥ 4. Hence, we get τ = 1, which
implies that G(z) = G(qz), that is, fn(z) = fn(qz). So we have f(z) = tf(qz)
for a constant t with tn = 1.
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