
Value vs� Deadline Scheduling

in Overload Conditions

Giorgio Buttazzo� Marco Spuri� Fabrizio Sensini

Scuola Superiore S� Anna

via Carducci� �� � ��	�� Pisa � Italy

giorgio�sssup��sssup�it� spuri�sssup��sssup�it

Abstract

In this paper we present a comparative study among
scheduling algorithms which use di�erent priority as�
signments and di�erent guarantee mechanisms to im�
prove the performance of a real�time system during
overload conditions� In order to enhance the quality
of service� we assume that tasks are characterized not
only by a deadline� but also by an importance value�
The performance of the scheduling algorithm is then
evaluated by computing the cumulative value gained
on a task set� i�e� the sum of the values of those tasks
that completed by their deadline�

The purpose of this simulation study was twofold�
Firstly� we wanted to discover which priority assign�
ment is able to achieve the best performance in over�
load conditions� Secondly� we were interested in un�
derstanding how the pessimistic assumptions made
in the guarantee test a�ect the performance of the
scheduling algorithms� and how much a reclaiming
mechanism can compensate this degradation�

Simulation results show that� without any admis�
sion control� value�density scheduling performs best�
Simple admission control based on worst case esti�
mates of the load worsen the performance of all value
based algorithms� EDF scheduling performs best if ad�
mission control is used along with a reclaiming mech�
anism that takes advantage of early completions� Fi�
nally� scheduling by deadline before overload and by
value during overload works best in most practical con�
ditions�

� Introduction

In a real�time system� a task is usually character�
ized by a deadline� i�e�� the latest time by which the
task must complete to produce useful results� In such

a system� the objective of the scheduling algorithm is
to execute a set of tasks so that all deadlines are met�
In this case� the schedule is said to be feasible�

In the literature� we �nd a number of optimal
scheduling algorithms that guarantee the feasibility of
the schedule under speci�c assumptions� A schedul�
ing algorithm is said to be optimal if it fails to meet
a deadline only if no other scheduling algorithms can
produce a feasible schedule� For example� the Earliest
Deadline First �EDF� algorithm �	
 is optimal in the
sense that if a task set cannot be feasibly scheduled
by EDF� then it cannot be feasibly scheduled by any
other priority assignment ��
�

When a real�time system is overloaded� however�
not all tasks can be completed by their deadlines�
Therefore the objective of the scheduling algorithm
should be to feasibly schedule at least the most im�
portant ones� In order to specify the importance of
each task we can add an importance value to the pa�
rameters that characterize it� The performance of the
scheduling algorithm is then evaluated by computing
the cumulative value gained on a task set� i�e� the
sum of the values of those tasks that completed by
their deadline�

Unfortunately� in overload conditions there are not
optimal on�line algorithms that can maximize the cu�
mulative value of a generic task set� hence scheduling
decisions must be made using best�e�ort algorithms�
whose objective is to complete the most important
tasks by their deadline� avoiding negative phenom�
ena� such as the so called domino e�ect� This happens
when the �rst task that misses its deadline may cause
all subsequent tasks to miss their deadlines�

For example� experiments carried out by Locke �


have shown that EDF is prone to the domino e�ect and
it rapidly degrades its performance during overload
intervals� This is due to the fact that EDF gives the
highest priority to those processes that are close to

giorgio
Casella di testo
Proceedings of the 16th Real-Time Systems Symposium (RTSS 95), Pisa, Italy, pp. 90-99, December 1995. 



missing their deadlines�
In such a situation� EDF does not provide any type

of guarantee on which tasks will meet their timing
constraints� This is a very undesirable behavior in
practical systems� since in real�world applications in�
termittent overloads may occur due to exceptional sit�
uations� such as modi�cations in the environment� ar�
rival of a burst of tasks� or cascades of system failures�

A number of heuristic algorithms has been pro�
posed to deal with overloads ��� �� �� �� �� ��� ��� ���
��
� They all improve the performance of EDF� how�
ever� very few simulation studies have been done to
evaluate the importance of the scheduling policy with
respect to the guarantee mechanism used to deal with
the overload�

Baruah et al� ��
 have shown that there exists
an upper bound on the performance of any on�line
�preemptive� algorithm working in overload condi�
tions� The �goodness� of an on�line algorithm is mea�
sured with respect to a clairvoyant scheduler �one that
knows the future�� by means of the competitive factor�
which is the ratio r of the cumulative value guaran�
teed by the on�line algorithm to the cumulative value
achieved by the clairvoyant schedule� The value as�
sociated to each task is equal to the task�s execution
time if the task request is successfully scheduled to
completion� a value of zero is given to tasks that do
not terminate within their deadline� According to this
metric� they proved the following theorem�

Theorem � There does not exist an on�line schedul�
ing algorithm with a competitive factor greater than
�����

What the theorem says is that no on�line schedul�
ing algorithm can guarantee a cumulative value
greater than ���th the value obtainable by a clair�
voyant scheduler�

It is worth pointing out� however� that the above
bound is achieved under very restrictive assumptions�
such as all tasks in the set have zero laxity� the over�
load can have an arbitrary �but �nite� duration� task�s
execution time can be arbitrarily small� and task value
is equal to computation time� Since in most real world
applications tasks characteristics are much less restric�
tive� the ���th bound has only a theoretical validity
and more work is needed to derive other bounds based
on more knowledge of the task set ���
�

In this paper we present a comparative study
among scheduling algorithms which use di�erent pri�
ority assignments to keep the cumulative value high
and adopt di�erent guarantee mechanisms to avoid
the domino e�ect and achieve graceful degradation

during transient overloads� A robust version of these
algorithms is also proposed and simulated to see how
these algorithms perform in real situations in which
tasks execute less than their worst case computation
time�

The purpose of this simulation study was twofold�
First� we wanted to discover which priority assignment
is able to achieve the best performance in overload
conditions� e�g�� whether it is convenient to schedule
the tasks based on pure values� pure deadlines� or on
a suited mixture of both� The second aspect we were
interested in was to understand how and how much
the guarantee algorithm in�uences the performance of
the system during transient overloads�

To answer these questions� in our study we have
considered four classical priority assignments� that
we have tested using three di�erent guarantee mech�
anisms� thus comparing a total number of twelve
scheduling algorithms�

� Terminology and Assumptions

Before we describe the scheduling algorithms we
have considered in our performance study� we de�ne
the following notation to refer the parameters of task
Ji�

ai denotes the arrival time� i�e�� the time at which the
task is activated and becomes ready to execute�

Ci denotes the maximum computation time� i�e�� the
worst case execution time needed for the proces�
sor to execute the task without interruption�

ci denotes the dynamic computation time� i�e�� the
remaining worst case execution time needed� at
the current time� to complete the task without
interruption�

di denotes the absolute deadline� i�e�� the time by
which the task should complete its execution to
produce a valuable result�

Di denotes the relative deadline� i�e�� the time interval
between the arrival time and the absolute dead�
line�

Vi denotes the task value� i�e�� the relative importance
of task Ji with respect to the other tasks in the
set�

fi denotes the �nishing time� i�e�� the time at which
the task completes its execution and leaves the
system�



We assume that at its arrival� each task is character�
ized by the following parameters�

Ji�Ci� Di� Vi��

Moreover� we assume that tasks are preemptable and
their arrival times are not known in advance�

To evaluate the performance of a scheduling algo�
rithm in underload and in overload conditions� we as�
sociate to each task Ji a worth value vi de�ned as
follows�

vi �

�
Vi if fi � di
� otherwise

This means that� if task Ji is completed within its
deadline di� the algorithm gains a value equal to Vi�
otherwise it gains a value equal to zero�

Finally� the performance of a scheduling algorithm
A on the task set J is evaluated by computing the Cu�
mulative Value ��A�� de�ned as the sum of all worth
values vi gained during the task set execution�

�A �

nX
i��

vi

� Algorithms Description

The four priority assignments we have considered
in our performance study are the following�

EDF �Earliest Deadline First� Task priority is as�
signed as pi � ��di� Hence� the highest priority
task is that one with the earliest absolute dead�
line�

HVF �Highest Value First� Task priority is assigned
as pi � Vi� Hence� the highest priority task is
that one with the highest importance value�

HDF �Highest Density First� Task priority is as�
signed as pi � Vi�ci� Hence� the highest prior�
ity task is that one with the highest value density
Vi�ci�

MIX �Mixed rule� Importance value and deadline are
both considered in assigning the task priority�
which is computed as a weighted sum of the value
and the deadline� pi � �Vi � �� � ��di� Notice
that� although this priority assignment depends
on the absolute deadline� the ready queue order�
ing is time independent�

The four scheduling algorithms described above
�EDF� HVF� HDF� MIX� will be referred in the follow�
ing as plain algorithms� since they do not provide any
form of guarantee� The lack of load awareness makes
them prone to domino e�ect in overload conditions�

To handle overload situations in a more predictable
way� the four plain algorithms have been extended
in two additional classes� a class of guaranteed al�
gorithms� characterized by an acceptance test� and a
class of robust algorithms� characterized by a more so�
phisticated rejection strategy and a reclaiming mech�
anism�

Within the guaranteed class� each algorithm per�
forms an acceptance test at each task activation� so
that if an overload is detected the newly arrived task
is rejected� The acceptance test allows to avoid the
domino e�ect by keeping the actual workload always
less than one� However� it does not consider impor�
tance values since it always removes the newly arrived
task� even though it is the most important one� An�
other problem with this guarantee mechanism is that
the system does not take advantage of early comple�
tions� once a task is rejected �based on a pessimistic
evaluation of the load� it cannot be recovered when
some tasks terminate earlier than their worst case �n�
ishing time�

To solve these problems� the algorithms in the ro�
bust class perform a rejection based on importance
values and include a reclaiming mechanism which al�
lows to apply a recovery strategy to the rejected tasks�
In particular� each algorithm in the robust class also
performs a guarantee test at each task activation�
However� if an overload is detected the least value
task that can remove the overload is rejected� Robust
algorithms also include a resource reclaiming mecha�
nism which takes advantage of the unused processor
time deriving from early terminations� To realize this
reclaiming� rejected tasks are not removed� but tem�
porarily parked in a reject queue� from which they can
be possibly recovered later on� At each early comple�
tion� hence� the system executes the guarantee test
again to attempt a recovery of rejected tasks with the
highest values� An example of robust algorithm hav�
ing these features has been described by Buttazzo and
Stankovic in ��
�

A summary of the twelve algorithms described
above� is shown in Table �� which also provides a useful
scheme for understanding the simulation experiments
presented in the following section�



Plain Guaranteed Robust
EDF GEDF REDF
HVF GHVF RHVF
HDF GHDF RHDF
MIX GMIX RMIX

Table �� Scheme of the tested algorithms� priority
assignments vs� guarantee mechanisms�

� Performance evaluation

In this section we present the performance results
obtained by simulating the scheduling algorithms de�
scribed in Table �� Our �rst aim was to compare the
behaviour of the four priority assignments at di�erent
load conditions� In order to do so� we performed three
sets of simulation experiments� each one dedicated to
a particular scheduling class �plain� guaranteed� and
robust�� In a second set of experiments� we tested
the e�ectiveness of the guarantee mechanism and the
robust recovery strategy over the plain priority�based
scheduling scheme�

In summary� the simulation experiments we have
conducted are well synthesized in Table �� Each row of
the table represents a performance study which com�
pares di�erent scheduling classes using the same prior�
ity assignment� whereas each column describes a simu�
lation experiment conducted within the same schedul�
ing class on di�erent priority assignments�

Each plot on the graphs shown in this section rep�
resents the average of a set of ��� independent simu�
lations� the duration of each was chosen to be �������
time units long� All algorithms have been executed
on task sets consisting of ��� aperiodic tasks� whose
parameters were generated as follows�

� The worst�case execution time Ci was chosen as
a random variable with uniform distribution be�
tween �� and ��� time units�

� The average interarrival time Ti of each task was
computed to produce a given workload �� In par�
ticular� it was modeled as a Poisson distribution
with average value equal to

Ti �
N � Ci
�

being N the total number of tasks in the set� The
load � was computed based on task parameters
�arrival time� deadline� and worst case execution
time�� as described in ��
�

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 1 1.5 2 2.5 3 3.5

H
it 

va
lu

e 
ra

tio

Nominal load

Critical task set

0.0
0.125

0.25
0.5
0.7
1.0

Figure �� Performance of the MIX priority assignment
as a function of ��

� The laxity of a task was computed as a ran�
dom value with uniform distribution from ��� and
�	�� time units �i�e�� with an average of ���� time
units��

� The relative deadline of a task was computed as
the sum of its worst�case execution time and its
laxity�

� Unless otherwise stated� the actual execution
time of a task was computed as a random vari�
able with uniform distribution between zero and
its worst�case execution time� In this way� the av�
erage execution time of a task was equal to a half
of the worst�case execution time�

To reduce the number of simulations� we �rst mea�
sured the performance of MIX as a function of �� As
shown in �gure �� the priority assignment which pro�
vides the best cumulative value for almost any load
condition is the one obtained with � � ���� As a
consequence� all simulation experiments involving the
MIX priority assignment have been done with this
value of ��

��� Column Experiments

The priority assignments belonging to each schedul�
ing class have been tested under two di�erent task set
situations� identi�ed as random set and linear set re�
spectively� In the random set� the importance value of
each task is independent from any other task param�
eter� In particular� the task value was generated as a
random variable ranging from ��� to �	�� �being ����



the average value�� This range is the same as that one
chosen for the deadlines� In the linear set� the impor�
tance value of each task is proportional to its relative
deadline� Notice that this situation is critical for all
algorithms� since the important tasks have a higher
probability to miss their deadline� The motivation of
using two di�erent task sets is that we wanted to see
how sensitive an algorithm is with respect to the task
parameters and how rapidly it degrades�

In all graphs� the independent variable on the X�
axis is the nominal load� i�e�� the workload estimated
based on the worst�case execution times� The nominal
load ranges from ��� to ���� The result reported on the
Y�axis is the Hit Value Ratio 	HVR
� i�e�� the ratio be�
tween the cumulative value obtained by an algorithm
A and the total value of the task set�

HV R �
�AP
n

i��
Vi

For each simulation� the standard deviations of the
hit value ratios were computed and they were never
greater than ���

����� Plain class

Figures �a and �b show the results of a simulation
conducted on the plain scheduling class� The graphs
of �gure �a concern the case of a random task set�
with independent importance values� It can be noticed
that� for low load conditions� EDF shows its optimal�
ity� whereas the other three algorithms have about the
same performance� achieving a resulting Hit Value Ra�
tio greater than 
� percent of the total value� As soon
as the nominal load approaches the value of two �which
corresponds to an actual load of one�� EDF perfor�
mance falls down� while the other algorithms degrade
more gracefully� It is worth to notice that� although
MIX is de�ned as a linear combination of EDF and
HVF� in overload conditions� its behaviour is not an
average of their performance� On the contrary� MIX
performs better than both for any load�

The best behaviour for high overloads is achieved by
HDF� which however has the disadvantage of a heavier
overhead� due to the dynamic priorities� which depend
on the remaining execution time�

The graphs in �gure �b show the situation for a
linear task set� where importance values are propor�
tional to deadlines� In particular� the least sensitive
algorithms with respect to task set variations are EDF
and HDF� whereas HVF and MIX are more in�uenced
by the task parameters� We can summarize the results
of this experiment in the following observation�

Observation � Without any guarantee mechanism�
the most e�ective priority assignment in overload con�
ditions is the one based on value density� namely HDF�
It exhibits a very graceful degradation during overloads
and it is not much sensitive to task set parameters�

����� Guaranteed class

This experiment illustrates the performance of the
same four priority assignments� which now include a
guarantee mechanism consisting in the execution of
an acceptance test at each task activation� Whenever
a new task is activated� the guarantee routine esti�
mates the schedule based on the current scheduling
algorithm and on the nominal task parameters� and
veri�es whether some tasks could miss their deadline�
If a time�over�ow is predicted� the newly arrived task
is rejected� otherwise it is accepted and inserted into
the ready queue�

We refer to these new versions of the algorithms as
GEDF� GHVF� GHDF� and GMIX� Figure �a shows
the case of a random task set with independent im�
portance values� whereas �gure �b is relative to the
case of a linear task set with values proportional to
deadlines� Notice that for both task sets and for any
load conditions� GEDF is the most e�ective schedul�
ing strategy� On the contrary� the density�based pri�
ority assignment� which was the most e�ective among
the plain algorithms� degrades its performance if used
with a guarantee mechanism�

The relevant result of this experiment can be synthe�
sized in the following observation�

Observation � If the system workload is controlled
at each task activation by an acceptance test which un�
der overload conditions rejects the newly arrived task�
then the most e�ective priority assignment is EDF�

One problem with this form of guarantee is that
it is too pessimistic� In fact� since the workload is
estimated based on pessimistic parameters �such as
the worst case execution times of the tasks�� a task
could be rejected even though it would have completed
in time� Another problem is that a task is rejected
regardless of its importance value� For example� a
better policy is to reject the least value task that can
remove the overload condition�

These aspects are treated in the robust class of
scheduling algorithms� whose performance is illus�
trated next�



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 1 1.5 2 2.5 3 3.5

H
it 

va
lu

e 
ra

tio

Nominal load

Random task set

EDF
HDF
HVF
MIX

�a�

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 1 1.5 2 2.5 3 3.5

H
it 

va
lu

e 
ra

tio

Nominal load

Linear task set

EDF
HDF
HVF
MIX

�b�

Figure �� Performance of the plain algorithms under
a random set �a� and a linear set �b�

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 1 1.5 2 2.5 3 3.5

H
it 

va
lu

e 
ra

tio
Nominal load

Random task set

GEDF
GHDF
GHVF
GMIX

�a�

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 1 1.5 2 2.5 3 3.5

H
it 

va
lu

e 
ra

tio

Nominal load

Linear task set

GEDF
GHDF
GHVF
GMIX

�b�

Figure �� Performance of the guaranteed algorithms
under a random set �a� and a linear set �b�



����� Robust class

The results concerning the performance of the robust
algorithms are shown in �gures �a� for the case of a
random task set� and in �gure �b� for the case of a
linear task set� As a �rst remark� we can observe that
all robust algorithms show a graceful degradation as
the load increases and achieve a similar behaviour in
the range of overload conditions we have simulated�
This result suggests that the performance of the robust
algorithms is close to the best one achievable by a
on�line algorithm� The improvement obtained by the
robust algorithms with respect to the other versions
has been evaluated by a speci�c set of experiments
illustrated in the following section�

In both graphs� REDF shows the best performance
for almost any load� However� it is worth to notice
that for high overloads �nominal load greater than
�� RHDF performs slightly better than REDF� This
means that� when the processing demand is much
greater than the available processing time and a high
percentage of tasks must be rejected� value density or�
dering intrinsically tries to save the highest cumulative
value of the current requests�

The following observation summarizes the main re�
sult of this experiment�

Observation � Among the robust strategies� no al�
gorithm is able to perform better than the others for
any load� However� REDF is the most e�ective al�
gorithm in most practical situations� whereas for very
high overloads RHDF seems to be the strategy which
gains the highest Cumulative Value�

��� Rows Experiments

A second set of experiments was conducted along
the rows of Table � to test the e�ectiveness of the
guaranteed and the robust algorithms with respect to
the plain algorithms� In particular� we wanted to see
how the pessimistic assumptions made in the guar�
antee test a�ect the performance of the algorithms�
and how much the reclaiming mechanism introduced
in the robust class can compensate this degradation�
In order to test these e�ects� we monitored the Hit
Value Ratio obtained by the algorithms as the tasks
�nish earlier and earlier with respect to their worst
case �nishing time� The speci�c parameter we varied
in our simulations was the average Unused Computa�
tion Time Ratio �� de�ned as follows�

� � ��
Actual Computation T ime

Worst Case Computation T ime

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 1 1.5 2 2.5 3 3.5

H
it 

va
lu

e 
ra

tio
Nominal load

Random task set

REDF
RHDF
RHVF
RMIX

�a�

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 1 1.5 2 2.5 3 3.5

H
it 

va
lu

e 
ra

tio

Nominal load

Linear task set

REDF
RHDF
RHVF
RMIX

�b�

Figure �� Performance of the robust algorithms under
a random set �a� and a linear set �b�



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
it 

va
lu

e 
ra

tio

Average unused computation time ratio (beta)

Random task set

EDF
GEDF
REDF

Figure �� Performance of the EDF priority assignment
with a random set

In all graphs� the tasks set was generated with a con�
stant nominal load of �� while the Average Unused
Computation Time Ratio was varied from ����� to
��	��� Notice that� as a consequence� the actual mean
load changes from a value of ����� to a value of ������
thus ranging over very di�erent actual load conditions�

As in the previous experiments� each algorithm was
tested with the random task set and the linear task
set� However� only the results with the random task
set are shown� since the experiments with the linear
set did not exhibit signi�cant di�erence�

Figure � shows the results obtained with the dead�
line priority assignment� Under high load conditions�
that is� when tasks execute for almost their maximum
computation time� GEDF and REDF are able to ob�
tain a signi�cant improvement compared to the plain
EDF scheduling� Increasing the unused computation
time� however� the actual load falls down and the plain
EDF performs better and better� reaching the opti�
mality in underload conditions� Notice that� as the
system becomes underloaded �� � ����� GEDF be�
comes less e�ective than EDF� This is due to the fact
that GEDF performs a worst�case analysis� thus re�
jecting tasks which still have some chance to execute
within their deadline� This phenomenon does not ap�
pear on REDF� because the reclaiming mechanism im�
plemented in the robust algorithm is able to recover
the rejected tasks that can complete in time�

In �gure � the performance of the density�based
priority assignments was compared� The most rel�
evant observation we can make from these plots is
that the guarantee mechanism worsens the perfor�
mance of the plain HDF algorithm for any load� This

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
it 

va
lu

e 
ra

tio

Average unused computation time ratio (beta)

Random task set

HDF
GHDF
RHDF

Figure �� Performance of the HDF priority assignment
with a random set

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
it 

va
lu

e 
ra

tio

Average unused computation time ratio (beta)

Random task set

HVF
GHVF
RHVF

Figure �� Performance of the HVF priority assignment
with a random set



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
it 

va
lu

e 
ra

tio

Average unused computation time ratio (beta)

Random task set

MIX
GMIX
RMIX

Figure 	� Performance of the MIX priority assignment
with a random set

happens because� when the guarantee test fails� the
newly arrived task is rejected regardless of its value�
Plain scheduling� instead� automatically rejects tasks
with very low values� as a consequence of the priority
scheme adopted� Notice that the reclaiming mecha�
nism used in the robust algorithm �RHDF� is able to
compensate the performance degradation caused by
the rejection policy� reaching the same performance of
the plain scheduling scheme�

The experiments relative to the MIX and HVF
based schedulers are shown in �gures � and 	� The per�
formance shown by these algorithms is quite similar to
that obtained by HDF� as far as the guarantee scheme
is concerned� Similarly to the case of the HDF�based
scheduler ��gure ��� the acceptance test executed at
each arrival time worsens the performance achieved
by the plain class algorithms� The robust scheduling
schemes� instead� are able to enhance the performance
of their plain versions for small values of � �i�e�� for
high load values��

The main results of these experiments can be sum�
marized in the following observation�

Observation � The acceptance test executed at each
arrival time by the guarantee mechanism worsens the
performance of all priority assignments that consider
importance values in their ordering discipline� On
the contrary� the robust scheduling schemes perform
very well both in overload and in underload conditions�
proving that the reclaiming strategy is e�ective for in�
creasing the Cumulative Value in all practical situa�
tions�

� Conclusions

In this paper we have presented a comparative
study among four priority assignments which use val�
ues and deadlines to achieve graceful degradation and
improve the performance in overload conditions� The
four algorithms have been simulated in three versions�
which di�er from the guarantee mechanism used to
detect the overload and select a rejection� Simulation
experiments proved that the robust version of these al�
gorithms is the most �exible one� due to the resource
reclaiming strategy� which is able to take advantage of
early completions� when tasks execute less than their
worst case computation time�

One important result derived from this simulation
study� is that scheduling by deadlines and rejecting by
value �as done by the REDF algorithm� proved to be
the most e�ective strategy for a wide range of overload
conditions� However� it is worth pointing out that the
REDF strategy is not the best one for all load situa�
tions� When the system is underload� in fact� EDF is
optimal� whereas for very high overloads RHDF per�
forms slightly better than REDF� This fact suggests
that a further improvement on the Cumulative Value
could be obtained if the system were able to change
its scheduling strategy depending on the current work�
load� using� for instance� EDF in underload condition�
REDF for normal overloads� and RHDF for high over�
loads�

References

��
 S� Baruah� G� Koren� D� Mao� B� Mishra� A�
Raghunathan� L� Rosier� D� Shasha� and F�
Wang� �On the Competitiveness of On�Line Real�
Time Task Scheduling�� Proceedings of IEEE
Real�Time Systems Symposium� December �

��

��
 S� Biyabani� J� Stankovic� and K� Ramamritham�
�The Integration of Deadline and Criticalness in
Hard Real�Time Scheduling�� Proceedings of the
IEEE Real�Time Systems Symposium� December
�
		�

��
 G� Buttazzo and J� Stankovic� �RED� A Ro�
bust Earliest Deadline Scheduling Algorithm��
Proc� of �rd International Workshop on Respon�
sive Computing Systems� Austin� �

��

��
 S� Cheng� J� Stankovic� and K� Ramamritham�
�Dynamic Scheduling of Groups of Tasks with
Precedence Constraints in Distributed Hard



Real�Time Systems�� Real�Time Systems Sympo�
sium� December �
	��

��
 M�L� Dertouzos� �Control Robotics� the Procedu�
ral Control of Physical Processes�� Information
Processing �
� North�Holland Publishing Com�
pany� �
���

��
 J� R� Haritsa� M� Livny� and M� J� Carey� �Earli�
est Deadline Scheduling for Real�Time Database
Systems�� Proceedings of Real�Time Systems
Symposium� December �

��

��
 G� Koren and D� Shasha� �D�over� An Optimal
On�Line Scheduling Algorithm for Overloaded
Real�Time Systems�� Proceedings of the IEEE
Real�Time Systems Symposium� December �

��

�	
 C�L� Liu and J�W� Layland� �Scheduling Algo�
rithms for Multiprogramming in a Hard Real�
Time Environment�� Journal of the ACM ������
������ �
���

�

 C� D� Locke� �Best�e�ort Decision Making for
Real�Time Scheduling�� PhD thesis� Computer
Science Department� Carnegie�Mellon University�
�
	��

���
 R� McNaughton� �Scheduling With Deadlines
and Loss Functions��Management Science� �� pp�
����� �
�
�

���
 J� Stankovic and K� Ramamritham� �The Spring
Kernel� A New Paradigm for Real�Time Sys�
tems�� IEEE Software� Vol� 	� No� �� pp� ������
May �

��

���
 J� Stankovic� M� Spuri� M� Di Natale and G� But�
tazzo� �Implications of Classical Scheduling Re�
sults for Real�Time Systems�� IEEE Computer�
to appear�

���
 P� Thambidurai and K� S� Trivedi� �Transient
Overloads in Fault�Tolerant Real�Time Systems��
Proceedings of Real�Time Systems Symposium�
December �
	
�

���
 T��S� Tia� J� W��S� Liu and M� Shankar� �Algo�
rithms and Optimality of Scheduling Aperiodic
Requests in Fixed�Priority Preemptive Systems��
The Journal of Real�Time Systems� �

��

���
 G� Zlokapa� J� A� Stankovic� and K� Ramam�
ritham� �Well�Timed Scheduling� A Framework
for Dynamic Real�Time Scheduling�� submitted
to IEEE Transactions on Parallel and Distributed
Systems� �

��


