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1. I n t r o d u c t i o n  

Theoretical physics predicts that  conformal invariance plays a crucial role in the macro- 

scopic behavior of a wide class of two-dimensional models in statistical physics (see, e.g., 

[4], [6]). For instance, by making the assumption that  critical planar percolation behaves 

in a conformally invariant way in the scaling limit, and using ideas involving confor- 

mal field theory, Cardy [7] produced an exact formula for the limit, as N--+oo, of the 

probability that,  in two-dimensional critical percolation, there exists a cluster crossing 

the rectangle [0, aN] x [0, bN]. Also, Duplantier and Saleur [lal predicted the "fraetal 

dimension" of the hull of a very large percolation cluster. These are just two examples 

among many such predictions. 

In 1988, Duplantier and Kwon [12] suggested that  the ideas of conformal field theory 

can also be applied to predict the intersection exponents between random walks in Z 2 

(and Brownian motions in R2). They predicted, for instance, that  if B and B'  are 

independent planar Brownian motions (or simple random walks in Z 2) started from 

distinct points in the upper half-plane H = { ( x ,  y): y>0} = {z E C:  Im(z)>0}, then when 

n-+OO, 

P[B[0, n] A B'[0, n] = O] = ~t -~+~ (1.1) 

and 

where 

P[B[O,n]NB'[O,n] = ~  and B[O,n]UB'[O, nlcH] = n  -~+~ (1.2) 

, w 3 "  
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Very recently, Duplantier [11] gave another physical derivation of these conjectures based 

on "quantum gravity". 

In 1982, Mandelbrot [35] suggested that  the Hausdorff dimension of the Brownian 

frontier (i.e., the boundary of a connected component of the complement of the path) 

is 4 5, based on simulations and the analogy with the conjectured value for the fi'actal 
4 .  dimension of self-avoiding walks predicted by Nienhuis (also 5, see, e.g., [33]). 

To date, none of the physicists' arguments have been made rigorous, and it seems 

very difficult to use their methods to produce proofs. Very recently, Kenyon [16], [17], [18] 

managed to derive the exact values of critical exponents for "loop-erased random walk" 

that  theoretical physicists had predicted (Majumdar [34], Duplantier [10]). Kenyon's 

methods involve the relation of the loop-erased walk to the uniform spanning tree and to 

domino tilings. Kenyon shows that  the equations relating probabilities of some domino 

tiling events are discrete analogues of the Cauchy Riemann equations, and therefore 

the probabilities can be approximated by analytic functions with prescribed boundary 

behavior. These methods do not seem applicable for the goals of the present paper. 

For planar Brownian motions, it is easy to show, using subadditivity arguments and 

the scaling property, that  there exist positive finite numbers ~ and ~ such that  (1.1) and 

(1.2) are true. Up to the present paper, there was not even a mathematical heuristic 

5 and 5 Burdzy Lawler [5] (see also [9], [24]) arguing that  the values of ~ and ~ are g 5" 

showed that  the intersection exponents were indeed the same for simple random walks as 

for Brownian motions; LaMer [21] proved that  the Hausdorff dimension of the set of cut 

points of a Brownian path is 2 -2 ~ .  He also showed (see [22], [23]) that  the dimension 

of the Brownian frontier (and more generally the whole multifractal spectrum of the 

Brownian frontier) can be expressed in terms of exponents defined analogously to (. As 

part of that  work, he showed that  the right-hand side of (1.1) can be replaced with 

n-~g(n) where 9 is bounded away from 0 and infinity; we expect that  the argument can 

be adapted to show that the same is true for (1.2). 

Recently, LaMer and Werner [28] extended the definition of intersection exponents 

in a natural way to "non-integer packets of Brownian motions", and derived certain 

functional relations between these exponents. These relations indicate that  Mandelbrot 's 

4 is indeed compatible with the conjecture that  the dimension of the Brownian frontier is 5 

predictions of Duplantier Kwon. It turned out that intersection exponents in the half- 

plane play an important  role in understanding exponents in the whole plane. Conformal 

invariance of planar Brownian motion is a crucial tool in the derivation of these relations. 

In particular, there is a measure on Brownian excursions in domains that  has some strong 

conformal invariance properties, including a "restriction" (or "locality") property. 

In another paper, Lawler and Werner [29] showed that  intersection exponents as- 
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sociated to any conformally invariant measure on sets with this restriction property are 

very closely related to the Brownian exponents. This provides a rigorous justification to 

the link between the conjectures regarding intersection exponents for planar Brownian 

motions and conjectures for intersection exponents of critical percolation clusters (see 

[13], [8], [3]), because percolation clusters are conjectured to be conformally invariant in 

the scaling l imit--see,  e.g., [19], [2] and they should also have a restriction property 

(because of the independence properties of percolation). The question of how to compute 

these exponents remained open. 

Independently, Schramm [42] defined a new class of conformally invariant stochastic 

processes indexed by a real parameter n~>0, called SLE~ (for stochastic LSwner evolu- 

tion process with parameter ~). The definition of these processes is based on LSwner's 

ordinary differential equation that  encodes in a conformally invariant way a continuous 

family of shrinking domains (see, e.g., [321, [371). More precisely, [42] defines a family of 

conformal maps 9t from subsets Dt of H onto H by the equation 

- 2  
Otgt(z ) -  / ~ t - g t ( z )  ' (1.3) 

where 8 is a standard Brownian motion on the real line. (Actually, in [42], instead 

of (1.3), the corresponding equation for the inverse maps g t  1 is considered.) The do- 

main Dt can be defined as the set of z0EH such that  a solution gs(zo) of this equation 

exists for sE[0, t]. When t increases, the set K t = H \ D t  increases: Loosely speaking, 

(Kt, t>~O) can be viewed as a growing "hull" that  is penetrating the half-plane. By 

applying a conformal homeomorphism f:  H - + D ,  SLE~ can similarly be defined in any 

simply-connected domain D ~ C. 

In [42], the main focus is on the case n=2 ,  which is conjectured there to correspond 

to the scaling limit of loop-erased random walks, but the conjecture that  SLEd corre- 

sponds to the scaling limit of critical percolation cluster boundaries is also mentioned. 

In particular, it is possible to compute explicitly the probability that  an SLE6 crosses a 

rectangle of size a x b. It turns out that  this result is exactly Cardy's formula. This gives 

a mathematical proof for Cardy's formula, assuming the still open conjecture that  SLE6 

is indeed the scaling limit of percolation cluster boundaries. 

The main goal of the present paper is to prove some of the conjectured values of 

intersection exponents of Brownian motion in a half-plane. 

THEOREM 1.1. Let B 1, ..., [~P denote p independent planar Brownian motions (p~>2) 

started from distinct points in the upper half-plane H. Then, when t--+oc, 

P[ViT~jc{1,. . . ,p},  Bi[O,t]NBJ[O,t] = ~  and B~[0, t ] c H ]  = t  -~'+~ 

where 

~p = l p ( 2 p +  1). 
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These values have been predicted by Duplantier and Kwon [12]. In particular, ~= 
5 42 = 5" 

We also establish the exact value (and confirm some of the conjectures stated in 

[28], [11]) of more general intersection exponents between packets of Brownian motions 

in the half-plane; see Theorem 4.1. 

The proof of Theorem 1.1 uses a combination of ideas from the papers [28], [29], [42]. 

However, to make the paper more accessible and self-contained, we a t tempt  to review 

and explain all the necessary background. The reader who wishes to see complete proofs 

for all stated theorems has to be familiar with the basics of stochastic calculus and con- 

formal mapping theory, and read about the excursion measure and the cascade relations 

from [28]. 

Although, at present, a proof of the conjecture that SLE6 is the scaling limit of 

critical percolation cluster boundaries seems out of reach, this conjecture does lead one 

to believe that SLE6 must satisfy a "locality" property; namely, it is not affected by the 

boundary of a domain when it is in the interior. This locality property for SLE6 is stated 

more precisely and proved in w It is worthwhile to note that the locality property does 

not hold for the SLE~-processes when ~6. 

In w we prove that SLE6 satisfies a generalization of Cardy's formula for percola- 

tion crossings probabilities. From this, exponents associated with the SLE6-process are 

computed. 

In w universality ideas from [29] are used to compute the half-plane Brownian 

exponents from the SLE6-exponents, which completes the proof of Theorem 1.1. 

In a final short w the conjectured relationship between SLE6 and critical percolation 

is discussed. It is demonstrated that this conjecture implies a formula from the physics 

literature [13], [8], [3] for the exponents corresponding to the event that there are k 

disjoint percolation crossings of a long rectangle. 

In the subsequent papers [25], [26], [27], we determine the exponents in the full 

plane and the remaining half-plane exponents. In particular, we prove that  4 =  5 , and 

also establish Mandelbrot 's conjecture that  the Hausdorff dimension of the frontier of 

planar Brownian motion is 4 
3" 

It might be worthwhile to explain why the Brownian intersection exponents are 

accessible through SLE6, but are difficult to compute directly. In a way, the SLE6- 

process is simpler, since Kt continuously grows from its outer boundary. This means 

that  when studying its evolution, one can essentially forget its interior, and only keep 

track of the exterior of Kt. By conformal invariance, this reduces problems to finitely 

many dimensions. The situation with planar Brownian motion is completely different, 

since it may enter holes it has surrounded and emerge to the exterior someplace else. 
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Many computations with SLE~ are readily convertible to PDE problems, and in the 

presence of enough symmetry, some variables can often be eliminated, converting the 

PDE to an ODE. 

2. SLE6 a n d  its locality p r o p e r t y  

2.1. T h e  de f in i t i on  o f  c h o r d a l  SLE~ a n d  s o m e  bas ic  p r o p e r t i e s  

Let (/~t, t >/0) be a standard real-valued Brownian motion starting at/30 = 0, let n > 0, and 

let W~=/3~t. Consider the ordinary differential equation 

- 2  
o t g t ( z )  - ( 2 . 1 )  

with go(z)=z. For every zoEH  and every T > 0 ,  either there is a solution of (2.1) for 

tE[0, T] and for all z in a neighborhood of z0, or there is some t0E(0, T] such that 

the solution exists for tE[0, t0) and limt/~togt(z)=Wto. Let DT be the (open) set of 

z E H  such that  the former is true, and let KT be the set of z E H  such that  the latter 

holds. By considering the inverse flow OtGt(z)=2(W~_t-Gt(z)) -1, it is easy to see that  

gt(Dt)=H, and that  gt: Dt--+H is conformal. The process gt, t>/0, will be called the 

chordal stochastic LSwner evolution process with parameter n, or just SLE~; see [42]. 

In [42], a variation of this process, which we now call radial SLE~ was also studied. In 

the current paper, we will not use radial SLE~, and therefore the word "chordal" will 

usually be omitted. (However, radial SLE~ plays a major role in a subsequent paper [25].) 

The set Kt=H\Dt  will be called the hull of the SLE. The process Wt ~ will be called the 

driving process of the SLE. 

It is easy to verify that  each of the maps St satisfies the hydrodynamic normalization 

at infinity: 

lim g(z)--z=O. (2.2) 
Z---+ OO 

Remarks. It will be shown [40] that  for all n r  the hull Kt of SLE~ is a.s. generated 

by a path. More precisely, a.s. the map v(t) :=g~-l(W~) is a well-defined continuous path 

in H,  and for every t>~0 the domain JOt is the unbounded connected component of 

H\7( [0 ,  t]). There, it will also be shown that  when n~<4 a.s. Kt is a simple path for all 

t>0.  This is not the case when n >4  [42]. However, these results will not be needed for 

the current paper or for [25], [26], [27]. 

LSwner [32] considered the equation 

r 
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with go(z)=z, where z is in the unit disk, and ~(t) is a parameter. He used this equation 

in the study of extremal problems for classes of normalized conformal mappings. In 

L5wner's differential equation, the maps gt satisfies gt(0)=0.  The equation (2.1) is an 

analogue of LSwner's equation in the half-plane, where the boundary point cx~ is fixed 

instead of 0, and ~(t) is chosen to be scaled Brownian motion. 

Marshall and Rohde [36] study conditions on ~(t) which imply that  Kt is a simple 

path. 

We now note some basic properties of SLE~. 

PROPOSITION 2.1. (i) [Scaling] SLE~ is scale-invariant in the following sense. Let 

Kt be the hull of SLE~, and let (~>0. Then the process t~-+(~-l/2K~t has the same law 

as t~-~ Kt. 

(ii) [Stationarity] Let gt be an SLE~-process in H, driven by W~, and let v be any 

stopping time. Set ~t (z)=g~+togj l (z+W~)-W~.  Then gt is an SLE~-process in H 

starting at O, which is independent from {gt :tE [0, 7-]}. 

Proof. (i) If Kt is driven by Wt ~, then a-1/eK~t is driven by a-1/2W~t,  which has 

the same law as Wt ~. 

(ii) The process gt is driven by Wt~+~- W~. [] 

We now consider the definition of SLE,~ in domains other than H.  

Let f:D--+H be a conformal homeomorphism from some simply-connected do- 

main D. Let ft be the solution of (2.1) with fo(z)=f(z) .  Then (ft, t>~O) will be called 

the SLE~ in D starting at f .  If gt is the solution of (2.1) with go(z)=z, then we have 

f t=gtof.  If Kt is the hull associated to gt, then the hull associated with ft is just 

f - l (K t ) .  

Suppose that  OD is a Jordan curve in C, and let a, bEOD be distinct. Then we may 

find such an f:  D--+H with f ( a ) = 0  and f (b )=oc .  Let Kit be the SLE~-hull associated 

with the SLE~-process starting at f .  If f*: D - + H  is another such map with f * ( a ) = 0  

and f*(b)=oc,  then f* (z )=af(z )  for some a > 0 .  By Proposition 2.1, the corresponding 

SLE~-hull Kit* has the same law as a linear time change of K[. This makes it natural to 

consider K[ as a process from a to b in D, and to ignore the role of f .  However, when 

D is not a Jordan curve, some care may be needed since the conformal map f does not 

necessarily extend continuously to the boundary. Part ly for that  reason, we have chosen 

to stress the importance of the conformal parameterization f .  
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2.2. T h e  loca l i ty  p r o p e r t y  

The main result of this section can be loosely described as follows: an SLE6 process 

does not feel where the boundary of the domain lies as long as it does not hit it. This is 

consistent with the conjecture [42] that  the SLE6-process is the scaling limit of percolation 

cluster boundaries, which is explained in w This restriction property can therefore be 

viewed as additional evidence in favor of this conjecture. This feature is special to SLE6; 

it is not shared by SLE~ when ~ 5 6 .  

Such properties were studied in [29] and called "complete conformal invariance" 

(when combined with a conformal invariance property). As pointed out there, all pro- 

cesses with complete conformal invariance have closely related intersection exponents. 

Let us first state a general local version of this result. We will say that  the path 

3' is nice if it is a continuous simple path ~,: [0, 1]--+H such that  ~ (0) ,~ (1)ER\{0}  and 

~/(0, 1 ) c H .  We then call the connected component N = N ( 7  ) of H \7 [0 ,  1] such that  

OCON a nice neighborhood of 0 in H.  Note that  N can be bounded or unbounded, 

depending on the sign of 7(0)~(1). When N is a nice neighborhood of 0, one can find 

a conformal homeomorphism r  from N onto H such that  ~(0)=0,  ~ ' (0 )=1  and 

r  is equal to cc if N is unbounded and to 7(1) if N is bounded. 

THEOREM 2.2 (locality). Let f: D--+H be a conformal homeomorphism from a 

domain D c C  onto H. Suppose that N is a nice neighborhood of 0 in H. Define 

D * = f - I ( N )  and let f* be the conformal homeomorphism r  from D* onto H. Let 

K t c D  be the hull of SLE6 starting at f ,  and let T : = s u p { t : K t AOD* ND= ~ } .  Let K~ 

denote SLE6 in D* started at f*, and let T*:=sup{t:K~NOD*ND=O}.  

Then the law of (Kt, t<T)  is that of a time change of (K;,  t<7*) .  

Note that  in this theorem, we have not made any regularity assumption on the 

boundary of the domain D. 

A consequence of this result is that,  modulo time change, one can define the hull of 

SLE6 in a non-simply-connected domain with finitely many boundary components, since 

such a domain looks locally like a simply-connected domain. 

This property implies the following "global" restriction properties. For convenience 

only, we will state them under some assumptions on the boundaries of the domains. 

COROLLARY 2.3 (splitting property). Let D denote a simply-connected domain such 

that OD is a Jordan curve. Let a, b and b' denote three distinct points on OD, and let 

I denote the connected component of OD\{b, b'} that does not contain a. Let (Kt, t>>.O) 

(resp. K~) denote an SLE6 in D from a to b (resp. from a to b'). Let T (resp. T ')  denote 

K '  the first time at "which Kt (resp. K~) intersects I.  Then (Kt, t < T )  and ( t, t < T ' )  have 

the same law up to time change. 
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C O R O L L A R Y  2.4 (restriction property).  Let D * c D  denote two simply-connected 

domains, and assume that OD is a Jordan curve. Suppose that I:=OD*\OD is connected. 

Take two distinct points a and b in ODNOD*\[. 

Let (Kt, t~O) denote SLE6 from a to b in D, and T : = s u p { t : K t N I = O } .  Similarly, 

K* let ( t , t>~O)  be SEE6 from a to b in D*, and T * : = s u p { t : K ; N I = ~ }  Then, (Kt, t<T)  

K* and ( t, t < T * )  have the same law up to time change. 

In the present paper, we will use these results when D is a rectangle. 

Proof of Corollary 2.3 (assuming Theorem 2.2). This is just a consequence of the 

fact that  in Theorem 2.2 with D = H and bounded N, one can replace V by ~(s ) :=  V(1-  s). 

Then we get that  the law of SLE6 in N from 0 to 7(0) is that  of a time change of SLE6 

in N from 0 to 7(1) up to their hitting times of % The result in a general domain follows 

by mapping it conformally onto a nice neighborhood N with a mapped to 0 and {b, b ~ } 

to {V(0), 7(1)}. [] 

Proof of Corollary 2.4 (assuming Theorem 2.2). By approximation, it suffices to 

consider the case where I is a simple path. Let f denote a conformal map from D 

onto H, with f ( a ) = 0  and f (b )= cc .  Define 7 in such a way that V[0, 1 ] = f ( I ) ;  note that  

D * = f - I ( N ( v ) ) .  As bCOD*\I, N(V) is unbounded. Hence, by Theorem 2.2, the law of 

SLE6 in D from a to b stopped when it hits I is (up to time change) the same as that  of 

SLE6 in D* from a to b stopped when its closure hits I. [] 

In order to prove Theorem 2.2, we will establish 

LEMMA 2.5. Under the assumptions of Theorem 2.2, define for any fixed s < l ,  

Ls =7(0,  s] and 

T = sup{t/> 0 : Kt N L~ = ~}. 

For all tKT,  let gs,t denote the conformal homeomorphism taking H \ (K tUL~)  onto H 

with the hydrodynamic normalization. Then, the process (gs,t, t<T)  has the same law 

as a time change of SLE6 in H\L~  starting at g~,0-g~,0(0), up to the time when the 

closure of its hull intersects L~. 

Proof of Theorem 2.2 (assuming Lemma 2.5). In the setting of the lemma, let 

= 

By Lemma 2.5 and Proposition 2.1, t~-~h~,t has the same law as a time change of SLE6 

starting at hs,o. Note that h~,o(0)=0, h's,o(0)=l. Hence, it follows easily that for all 

z e N ( v ) ,  

lira hs,o(z) = ~'N(Z). 
s - + l  
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By continuity, if we let hl,t =lims_~1 hs,t, then t~+hl,t has the same law as a time-changed 

SLE6 (in N)  started from CN. The proof is completed by noting that  the hull of hl,t 

is Kt. [] 

The idea in the proof of Lemma 2.5 is to study how the process gs,t changes as s 

increases. For this, we will need to use some of the properties of solutions to (2.1) where 

W ~ is replaced by other continuous functions, and to study how (deterministic) families 

of conformal maps can be represented in this way with some driving function. 

2.3. Determinist ic  expanding hulls 

2.3.1. Definition and first properties. If (Ut, t E [0, a]) is a continuous real-valued function, 

then the process defined by 
- 2  

~ ' g t ( z ) -  U , - g t ( z )  (2.3) 

and go(z)=z will be called the Lhwner evolution with driving function Ut. Note that  gt 

satisfies the hydrodynamic normalization (2.2). Moreover, 

gt(z) =z+2tz-l+a2(t)z-2+... ,  z-+  oo, (2.4) 

for some functions aj(t) ,  j = 2 ,  3, .... As above, we let D t c H  denote the domain of gt, 

and let Kt := H \ D t .  Kt will be called the expanding hull of the process gt. 

We now address the question of which processes Kt can appear as the expanding 

hull driven by a continuous function Ut- We say that  a bounded set KC H is a hull if 

H \ K  is open and simply-connected. The Riemann mapping theorem tells us that  for 

each hull K, there is a unique conformal homeomorphism gK: H \ K - - + H  which satisfies 

the hydrodynamic normalization (2.2). Let 

A(K) = A(gK) := �89 zlim z(gg(z)--z); 

that  is, g(z)=z+2A(g)z-l+.., near oc. Observe that  A(K) is real, because gK(x) is 

real when x E R  and Ixl is sufficiently large. Moreover, A(K)>~O, because Im(z-gg(z)) 

is a harmonic function which vanishes at infinity and has non-negative boundary values. 

Note that  

d(goh) = m(g)+ d(h) 

if g and h satisfy the hydrodynamic normalization. It follows that  A(K)<~A(L) when 

KC L, since gL ~--gg~:(L\K) ~ 

The quantity A(g) is similar to capacity, and plays an analogous role for the equation 

(2.1) as capacity plays for Lhwner's equation. 
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THEOREM 2.6. Let (Kt, tE[0, a]) be an increasing family of hulls. Then the follow- 

ing are equivalent: 

(1) For all tE[0, a], A(Kt)=t ,  and for each ~>0 there is a 6>0 such that for each 

tE[O,a-5] there is a bounded connected set S c H \ K t  with d iam(S)<c  and such that S 

disconnects Kt+5\Kt from infinity in H \ K t .  

(2) There is some continuous U: [0, a]--+R such that Kt is driven by Ut. 

In [37] a similar theorem is proved for L6wner's differential equation in the disk. 

Note that Kt may change discontinuously, in the Hausdorff metric, as t increases. 

For example, consider ~2t:={exp(is):O<s<~t} when t<Tr, and K=:={zEH:IzI~<I} and 

Kt+~:=K,~U(-1 , - l+i t] ,  t>0,  say, and let Kt:=~[e(t) where 0 is chosen to satisfy 

A(Kr 

LEMMA 2.7, Let r>O and xoER,  and suppose that K is a hull contained in the 

disk { z : I z - x o l < r } .  Then 

g K I ( z  ) - -Z~  t- C r A ( K )  
2A(K) ~< [~ 

z - x o  Iz-xo 

for all z E H  with I z -xo i>Cr,  where C > 0  is an absolute constant. 

Proof of Lemma 2.7. For notational simplicity, we assume that x0=0. Clearly, this 

does not entail any loss of generality. By approximation, we may assume that  K has 

smooth boundary. Let I C R be the smallest interval in R containing {gK (x) : x E OKA H}, 

and let f : = g K  1. Let fI  be the restriction of f to I. Let f* denote the extension of f to 

C \ I ,  by Schwarz reflection. The Cauchy formula gives 

j l  f* ~ f I ( x ) - f I ( x )  
27~if* (w) = (z) dz + dx, 

l= R Z - - W  X - - W  

provided that R>  ]w], R>max{ ix i :xE  I} and wEC \ I .  Since f * ( z ) = z - 2 A ( K ) z  -1 +... 

near oc, 

lira f f*(z) dz= lira f z dz=27riw. 
R - ~  Jlzl=R z--w R-+~ dlzl=R z--w 

Consequently, we have 

f * ( w ) - w  = -7rl ~ Im(fl(X))x_w dx. 

Multiplying by w and taking w--+oc gives 

A(gK) = - A ( f * )  = ~ Im(f1(x)) dx. (2.5) 
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Moreover, /, (1 
f*(w)-w-2A(f*)w-i=-rrl Im(fi(x)) x w + w  dx, 

and therefore 

If*(w)-w-2A(f*)w-l[ <~ -rrl f11m(f~(x))  sup{l(x-w)-l +w-ll : xe I} dx 

{ x  } 
= - 2 A ( f * ) s u p  (x-w)w :xEI  . 

Hence, the proof will be complete once we demonstrate that  there is some constant Co 

such that  IC[-eor, cor]. This is easily done, as follows. Define G(z):=gK(rz)/r for 

Iz[>l ,  and write G(z)=z+alz-l+a2z-2+ .... The Area Theorem (see, e.g., [41]) gives 

l>~j~=ljlayl 2. In particular, lajl~l for j~>l. Consequently, we have IG(z)-zl<.l for 

Iz[~>2. By RouchCs theorem (e.g. [41]), it follows that  G({Izl>~2})D{Izl>3 }. Conse- 

quently, g~e(H\K)D{Izl  >3r} ,  which gives I C  [ -3r ,  3r]. [] 

For convenience, we adopt the notation 

Kt,~, := gK,(Kt+u\Kt). 

Proof of Theorem 2.6. We start  with (1) implies (2). Let R:=sup{Iz  I :zCKa} and 

Q : = { z E H :  Iz l>R+2}.  Let t, (~, r and S be as in the statement of the theorem, and let 

sEOS. Suppose that  r  and rE[c, x/~]. Then there is an arc 3~ of the circle of radius 

r about s such that  3~cH\Kt and KtURtJ3~ separates Kt+5\Kt from Q. It therefore 

follows that  the extremal length of the set of arcs in H\Kt which separate Kt+5\Kt 

from Q in H\Kt is at most const / log(1/r  (For the definition and basic properties of 

extremal length, see [1], [31]. The terms extremal length and extremal distance have the 

same meaning.) Since extremal length is invariant under conformal maps, it follows that  

the extremal length of the set of paths in H that  separate Kt,5 from gKt(Q) is at most 

const / log(1/r  Because the diameter of gKt(H\Q) is bounded by some function of R 

(this follows since gK, has the hydrodynamic normalization), we conclude that  at least one 

of these arcs has length less than const / log(1/r  Consequently, this is a bound on the 

diameter of Kt,a. Observe that  this bound is uniform for all tE [0, a-5]. For each t<a, we 

then define Ut to be the point in the intersection Nu>0 Kt,u. We have an upper bound on 

diam(Kt,5) which tends to zero uniformly as 5--~0, and therefore lima--+ogK,,~(z)--z=O 

uniformly for zEH\Kt,a and t~a-& This implies that  lit is uniformly continuous on 

[0, a) and can be extended continuously to [0, a]. 

Now let zoCH\Ka. Then there is some c>0  such that  Im(gK~(zo)) >c for all tC [0, a]. 

Lemma 2.7 applied with K=Kt,~, z=gK~+,(Zo) and xo=Ut+u gives 

2 
-+0 

U gKt+~(Zo)  --  U t+u  
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as 6-+0. As gKt(zo) and Ut are continuous in t, we may therefore conclude that  

2 
Otg  (zo) - u t '  

which gives (2). 

The proof that  (2) implies (1) is easy. Let c>0. Given O<~t~t+u<a, let p( t ,u) :=  

u+max{U(t ' ) -U( t" ) :  t ' , t"e[t , t+u]}.  Observe that  diam(Kt,u)-+0 if p(t,u)--+0, and 

Q(t, u)--+0 if u-+0. Consequently, the extremal length of the set of paths separating Kt,~ 

from {zCH: ]z[>l } in H goes to zero as Q(t,u)---~0. This implies that  there is a path 

/3 in this set such that  d iam(g~( /~))<c ,  provided that  u is small. We then just take 

[] 

2.3.2. Time-modified expanding hulls and restriction. Let (Kt, tC[O,a]) denote a 

family of hulls, and suppose that  there is a monotone increasing homeomorphism r 

[0, a]--+[0, fi] such that (Kr tE[O,~]) is an expanding hull driven by some function 

t~-+Ut. If additionally r is continuously differentiable in [0, a] and r  for each 

tE [0, a], then we call (Kt, tE [0, a]) a time-modified expanding hull, with driving function 

Ut:=gr Note that, in this case, r  and that  

20tA(Kt) 
OtgK~(z) = gK,(z)-  Ut" (2.6) 

Note that  in our terminology, an expanding hull is always a time-modified expanding 

hull. 

LEMMA 2.8. Let (Kt, t r  [0, a]) be a time-modified expanding hull, with driving func- 

tion (Ut, tE[0, a]). Let D be a relatively open subset of H which contains Ka, and set 

D R : = D A R .  Let G: D--+H be conformal in D \ D R  and continuous in D, and suppose 

that G(DR)CR.  Then (G(Kt), tE[0, a]) is a time-modified expanding hull. Moreover, 

OtA(G(Kt)) =G'(Uo)2cgtA(gt) at t = 0 .  (2.7) 

Proof. We first prove (2.7). The proof will be based on (2.5). Note first that  if 

K ' = a K  then A(K')=a2A(K).  Therefore, we may assume that  G'(U0)=I.  Similarly, 

with no loss of generality, we assume that  Uo=G(Uo)=O. By the reflection principle, 

G is analytic in D. 

Set Kt := G(Kt). Let It C R be the interval corresponding to OKt N H under gK~, and 

let It be the interval corresponding to Ofi[tNH under g ~ .  Let ~>0, and let D~:={zED: 

I1-G'(z)]<~}.  Let /3 be some arc in D~\{0} that  separates 0 fl'om cx~ in H. Consider 

the map 

ht = gk, o Gog~:~. 
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It is well defined in a neighborhood of It provided that  Kt n9=0 (for instance), and this 

holds when t is small. This map may be continued analytically by reflecting in the real 

axis, and therefore the maximum principle implies that  

sup{h~(x) : xe  It} <~ sup{Ihlt(z)l : ze  gK~(9) } 

when KtAg=~.  Note that  gK~(Z)--z--+O and g~:~(z)-z-+O as t"~O, and therefore 

gi~(z) -~ l  and g~ (z)-~l  on 9. Consequently, for small t we have 

sup{h~(x):x E It} < 1 +2e. (2.s) 

Note that  for z close to Uo = 0 we have Im(G(z)) ~ (1 + c) Ira(z). Using (2.5), this inequal- 

ity and (2.8), we get 

1 f / ,  Im(g~: A(G(Kt)) = ~ ~(x)) dx 

1 J~h Im(Gog~: = ~ ~(x))h't(x) dx 

1 jr/ (1+~)Im(g~:~(x))(l+2~) dx 

= (I+~)(I+2~)A(Kt) 

for small t>0.  (Note that  gK~(x) is not defined for every xEIt, but it is defined for almost 

every x E It.) By symmetry, we also have a similar inequality in the other direction. This 

proves (2.7). 

By Theorem 2.6, to show that  G(Kt) is a time-modified expanding hull, it suffices 

to show that  A(G(Kt)) is continuously differentiable in t, with derivative bounded away 

from 0. Let Gt:=gf:oGog~:~. Then Gt is analytic in ggt(D\Kt) and depends continu- 

ously on t. Hence V~(Ut) is continuous in t. Since A(G(Kt+u))=A(G(Kt))+A(Gt(Kt,~)), 

it follows that  OtA(G(Kt))=G~(Ut)2OtA(Kt), which completes the proof. [] 

For future reference, we note that  when gt=gKt satisfies the differential equation 

(2.6), we have the formula 

20tA(gt) (2.9) 
0,logg~(z) = (gt(z)_Ud2, 

which is obtained by differentiating (2.6) with respect to z. 
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2.3.3. Pairs of time-modified expanding hulls. We now discuss the situation where 

there are two disjoint expanding hulls. 

Let (L~, sE [0, So]) and (Kt, tE [0, to]) be a pair of time-modified expanding hulls such 

t h a t  Lsof3Kto=2~. Let gs.t:=gL~uK~, gt:=gKt, ~ ) s : = g L ,  and a(s,t):=A(g~,t). Then for 

each sE[O, sol and rE[o, to] we have 

9s , t  = g g K L ~ ) ~  �9 

Therefore, 

20~a(s,t) 
Osgs,t(z) = gs , t ( z )_Ul(s , t  ) , 

where s ~ U 1 (s, t) is the driving function for the time-modified expanding hulls s ~ gt (Ls). 

Similarly, 

20ta(s, t) 
O~gs,~(z) = g~ ~ ( z ) -  u2(8, t) ' 

where t ~-~ U 2 (8, t) is the driving function for the time-modified expanding hulls t ~-~[~ (Kt). 

Although we do not know that  g~l(U2(O,t)) is well defined, gs,tog~ 1 is analytic in a 

neighborhood of U2(0, t), by the reflection principle. Hence, it is clear that  U2(s, t)= 

g~,togtl(U2(O, t)) (see, for example, the construction of Ut in the proof of Theorem 2.6), 

and therefore 

20~a(s,t) (2.10) 
0 s v  2 (8 , t ) - -  V2(8, t ) _ U  l (8 , t )"  

We will now prove the formula 

-40~a(s,  t) Ota(s, t) 
0s0~a(8, t) = (u2(8, t ) -  u1(8, t)):" (2.11) 

From (2.7) we have 

Oil(O, s) = ~)/(U2 (0, O))20ta(O, 0) ^' rU2'0 = g ~  ~ , 0 ) )  2, 

and using (2.9), we obtain 

-40sA(t)~) -40sa(0,  s) 
0~ log Ota(O, s) = (t~ (U 2 (0, 0 ) ) -  Ul(s,  0)) 2 = (U2(s, 0 ) -  Ul(s, 0)) 2. 

This verifies (2.11) for the case t=0.  The general case is similarly obtained. 
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2.4. P r o o f  o f  L e m m a  2.5 

We will now prove Lemma 2.5; this is the core of the proof of the locality property. 

We assume that  7: [0, s l ] -+H is a continuous simple path with 7(0)E R \{0}  and L s:= 

7(0, Sl] c H .  With no loss of generality, assume that  7 is parameterized so that  A(Ls)=s. 

By Theorem 2.6, (Ls, sC[0, Sl]) is a time-modified expanding hull, and by Lemma 2.8, 

for each s, t~+gLs(Kt) is a time-modified expanding hull, and for each t, s~-+gKt(Ls) is 

a time-modified expanding hull. Let t~+W(s, t) be the process driving t~-+gLs(Kt), let 

U(s, t) be the process driving s~+gKt(Ls), and let Yt=W(0, t) be the process driving Kt. 

As above, let a(s,t)=A(g~,t). For simplicity, W(s,t) will be abbreviated to W, U(s, t) 

to U, a(s, t) to a, etc. 

Our aim is to show that  (W(s~, t), t)O) is a continuous martingale (up to the stop- 

ping time T) ,  and that  its quadratic variation (for background on stochastic calculus, 

see, e.g., [15], [39]) is 

(W(st,')}t = 6(a(sl ,  t ) - -a (s l ,0 ) ) .  

Indeed, if this is true, let r be the inverse of the map t~+a(sl, t)-a(s~, 0), and define 

W(t)=W(Sl, r Then W(~t) is a Brownian motion, so that  t~-+g~,o(Kr 

is an SLE6-process, as required. Note that  this will in fact give a precise expression for 

the time change in Lemma 2.5 and Theorem 2.2. 

Before giving the mathematically rigorous proof, we first present a formal, non- 

rigorous derivation of the fact that  W(s,. ) is a martingale. In this derivation, t~ will be 

kept as a variable, in order to stress where the assumption ~=6  plays a role (it will not 

be so apparent in our proof). 

Non-rigorous argument. The first goal is to show that  the quadratic variation (W)t 

of tF-+W(s, t) satisfies 

Ot <W>t = nora, (2.12) 

for each s, t. It is clear that  this holds when s=0,  since Kt is SLE6. We have 

Consequently, 

o ot(w>t 

=20 (osw, wh 

= 20 (2(O a)(W- u) -1, w>t 

= -4(O~a)(W- U)-2Ot(W>t 

= ( O t a ) - l ( O s O t a ) c g t ( W } t  

(by (2.10)) 

(by It6's formula) 

(by (2.11)). 

(Ota)2Os(Ot<W>tlOta) = OtaOsOt<W>t-Ot (W>tOsOta = O, 
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which means that  Ot(W)t/Ota does not depend on s. Since (2.12) holds when s=0 ,  this 

proves (2.12). 

We now show that  t~-~W(s, t) is a martingale. The dt-term in ItS's formula for the 

0t-derivative of 
20~a 

O~W(s,t)- W - V  

is 
20t Os a Os a Os a 
W - U  t-2 ( W - U ) 3 O t ( W ) t - 4  (W-U)fOta '  

where the first summand comes from differentiating O~a, the second summand is the 

diffusion term in ItS's formula, and the last summand comes from differentiating with 

respect to U and using (2.10) for OtU. Using (2.11) and (2.12), this becomes 

Ot O~ a 

v ,  

which vanishes when a=6 .  Hence t~-~asW(s, t) is a martingale. As 

W(s,t)= Y,+ O~W(s',t)ds', 

it follows that t~-+W(s, t) is a martingale. This completes the informal proof. 

The problem with the above argument is that we do not know that  tw+W(s, t) is a 

semi-martingale, and hence cannot apply stochastic calculus to it. Moreover, we need to 

check that  there is sufficient regularity to justify the equality O, Ot(W)t =OtO~ (W)t. 

To rectify the situation, set 

t t 

v(s,t') := w(s,0)+f0 ~ dye. 

Then t~-~V(s, t) is clearly a martingale. The rest of this subsection will be devoted to 

the proof of the fact that  V=W. Recall that 

T = sup{t >~ 0 : Kt f3L~ = 0}.  

We will need the following fact: 

LEMMA 2.9. There exists a continuous version of V on [0, sl] x [0, T) .  

Proof. In order to keep some quantities bounded, we have to stop the processes 

slightly before T. Let us fix EC(0, 1), and define 

T~ = inf {t > 0: inf I W(s, t ) -  U(s, t)[ ~< r 
8~$1 
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As 

Define for any s<<.st and t0~>0 

rmin( to, T~ ) 

~(s, to) = ~ ( s ,  to):= / ~ d~.  
J0 

sup T~/n = T, 
n) l  

it is sufficient to show existence of a continuous version (on [0, sl] xR+)  of V. 

Let 

= a(s, t) := l{,.<rf} v ~ t a .  

Note that  Ota(O,t)=O~a(s,O)=l. Hence, from (2.11) it follows that  Osa~l and Ota<~l 
for all s<<.sl, t<T. Using (2.11) again, we get 

2 0v/0-tata 0s a ~< 2e -2. 
lasaL = I{,.<T~} ( w -  u)  2 

Hence, for all t~>0, for all s, s' in [0, sl], 

I~(s, t) -a(s',  t)l .< 2~ -2 Is- s'l. 

But 

roe )4] [(/0 l'J E[(V(s, to)-l/(s',tto))n]<<.16E gt(s',t)dYt + 1 6 E  (g(s,t)-gt(s',t))dYt , 
L k J t o  

and using, for instance, the Burkholder-Davis Gundy inequality for p=4  (see, e.g., 

[39, IV.4]), we see that  there exists a constant c l=cl (e)  such that  for all to,t'o>~O and 

s, s'~ [0, sl], 

to 2 

E[(V(s, to)-~'(s',t~o))a]<.clE[(to-ffo)2]+clE[(fo (s-s')2dt) ] 

1 2  2 t 4  <~ cl(to-to) +clto(s-s ) , 

and the existence of a continuous version of V then easily follows from Kolmogorov's 

lemma (see, e.g., [39, I.(1.8)]). [] 

From now on, we will use a version of V that  is continuous on [0, Sl] x [0, T): Define 

T~ := inf{t  >~ 0 : sup hV(s,t)-W(s,t)l >1 1}, 
S~Sl 

7~ := inf{t ~> 0: inf ]V(s,t)-U(s,t)l <.r 
S~-s I 

�9 ~ 6 g T ~ := mm(T{ ,T~ ,T~). 
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Note that  for all s<.sx and t<T, 

Os ~/b~a -- - 2 v ~  a Osa 
(W-U)2 

The process O~v~tta remains bounded before T ~ (uniformly in s~<sx), and it is a measur- 

able function of (s, t). By Fubini's theorem for stochastic integrals ([15, Lemma III.4.1]), 

we have that for all So<<.sl, for all t0>~0, almost surely 

oS~ - 2 v ~ a  O~a ft'o/ f~o ) 

fo 
tO(v/ (2.13) 

= Ota(so, t) - V/Ota(O, t) ) dYt 

= V(so, t'o)-V(O, t;)- (W(so, 0)-w(0, 0)), 
where t~ := min(to, TQ. On the other hand. using It6's formula, we now compute 

20sa(s, t~) 2 f t ;  20~av/O~ta 
U(s,t~o)-V(s,t'o) = U(s,O)-V(s,O) +jo (U-V)  2 

dYt 

f;(O,O~a OsaOtU O~aOt(V)t'~ 
+ 2 J  o \ U - V  ( g - v )  2 F- ~ j dt (2.14) 

j.o~; f ro  =-O~W(s,O)+ 1)ldYt+ (V-W)b2dt,  

where (using Ot(V)t=OtaOt(Y)t=~Ota=6Ota) 

bl(s,t) := 20~av~ta 
( u - v ) ~  ' 

40saOta 5 + 3 ~ - - ~  
b2(~, t):= ( u _ w ) 2 ( u _ v ) 2  

Note that for all s<.sl and t ~T  ~, 

[b2(s,t)l <~ 16c -5. 

By integrating (2.14) with respect to s and subtracting (2.13) from it, we get 

f.~o 20~a(s, Fo) ds 
V(so, t'o)- V(O, t~)+Jo ~ ( ~ ~ t ~ )  

t 

- f~~176 
- -  J O  , I 0  

(2.15) 

foS~ fo t'~ -2v~taOsa ~o t~ ) -[- ( W - -  U )  2 d~ t  ~- DI(S , t) dYt d8 
! ! 

-[s~176176176 
- -  d O  d O  
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where (after some simplifications) 

20sa v~ta 
bl(s,t) := (V_U)2(W_U)2  ( ( U - W ) + ( U - V ) ) .  

Note that  for all sC[0, sl] and t ~ T  ~, 

/bl(s, t)l < 4r -3. 

But we know on the other hand that  

L 
so 208a(s,t,o) ds. 

W(~o, t ; ) -  w(0, t~) = w(~, t~)- u(8, t~) 

Subtracting this equation from (2.15), one gets 

][o 
/ / / / / 

V(so, to) - W(so, to) = b3(s, to)(V(s, to) - W(s, to) ) ds 

255 

(2.16) 

~oLt ~ f~o ft~ 

+ (v-w)b2dt 8+Jo Jo (V-W)bld d8, 

where 
-20sa 

b3(8, t )  :=  (U-W)(U-V) 

Again b3 remains uniformly bounded before T ~. 

We now define 

H(s, t) = V(8, t ) - W ( s ,  t). 

Hence, for all to <T,  

fso fso fto fso fro 
g(s~176 b3(8~t~176 Jo b2gdsdt~-Jo Jo bxgd8dYt 

and [bl 1, [b2[, [b3[ are all bounded by some constant c2 = c2(c) on [0, 81] X [0~ Tr This 

equation and an argument similar to Gronwall's lemma will show that  H =  0. 

Let us fix t l>0.  For any t ) 0 ,  define 

T(t) = rain(t, tl, T~). 

We will use the notation mo=~-(to ). It is easy to see that  there exists a c3=c3(r tl,  sl) 

such that  for all to>~0 and sor Sl], 

8o ~o 8o / fro fso \2 
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The Burkholder-Davis-Gundy inequality for p=2  (see, e.g., [39, IV.4]) shows that  there 

exist constants c4-----c4($,tl, 81) and c5=c5(z, tl,  sl) such that  for all sE[0, sl] and to>~0, 

[ / f r ( u ) f S o  )21 [~0ro(~0so )2 ] 
E | s u p { /  I blHd, <e4E b Hds dt 

Lu<~to \ J O  aO 

fto fso 
~<CSJo ]o E[H(s'r(t))2ldsdt" 

Let us now define 

Then 

h (s0, t0) = E [ sup H(So, (t))2]. 
t<~ to 

so /,to /-so 

We also know that  h(s, t) is bounded by 1 (because IHI ~< 1). Hence, it is straightforward 

to prove by induction that  for all soE[0, slJ, to>>-o and p = l ,  2 .... , 

cg,g(l+to)p 
h( so, to) <~ p! , 

so that  h(s0, to)=0. In particular (using the continuity of V and W), this shows that  

W = V  almost surely on all sets [0, Sl] x [0, min(tl,  Ts)]. As this is true for all g and tl,  

we conclude that  V = W  on [0, sl] x [0, T). Lemma 2.5 follows, and thereby also Theo- 

rem 2.2. [] 

3. Exponents  for SLE6 

3.1. Statement 

In the present section, we are going to compute intersection exponents associated with 

SLE~. 

Suppose that  DC C is a Jordan domain; that  is, OD is a simple closed curve in C. 

Let a, bEOD be two distinct points on the boundary of D. As explained in w the 

SLE6 (Kt, t>~O) from a to b in D is well defined, up to a linear time change. 

Now suppose that  IcOD is an arc with bEI but a~I. Let 

r i  :=sup{t  > / 0 : K t A I = ~ } .  

By Corollary 2.3, up to a time change, the law of the process (Kt, t<r~)  does not change 

if we replace b by another point b'E I. Set 

S=S(a , I ,D):= (J Kt, 
t < ~ l  
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and call this set the hull from a to I in D. It does not depend on b. 

Suppose that  L>0,  and let 7~=7~(L) denote the rectangle with corners 

A1 := 0, A2 := L, A3 := L+i~r, A4 := iTr. (3.1) 

Let S denote the closure of the hull from A4 to [A1, A2] U [A2, A3] in 7~. 

In the following, we will use the terminology 7r-extremal distance instead of "Tr times 

the extremal distance". For instance, the ~r-extremal distance between the vertical sides 

of T~ in T~ is L. 

When S n  [A1, As] = ~ ,  let s be the 7r-extremal distance between [A1, A4] and [As, A3] 

in 7~\8. Otherwise, put s  

In the sequel, we will use the function 

u(A) = 1 ( 6 A + 1 + ~ ) .  (3.2) 

The main goal of this section is to prove the following result. 

THEOREM 3.1. 

E[I{L<o~} exp(-As =exp( -u (A)L+O(1) (A+l ) )  as L---~oc, (3.3) 

for any A~>0 (where O(1) denotes an arbitrary quantity whose absolute value is bounded 

by a constant which does not depend on L or A). 

In particular, when A=O, 

P[$A[A1,A2] = Z] = P[/: < oc] = exp( - �89  as L--~ oo. (3.4) 

3.2. Generalized Cardy's formula 

By conformal invariance, we may work in the half-plane H. Map the rectangle 7~ con- 

formally onto H so that  A1 is mapped to 1, A2 is mapped to oc, A3 is mapped to 0, 

and then the image x=x(L)E(O, 1) of A4 is determined for us. Let Kt be the hull of an 

SLE6-process gt =gK~ in H, with driving process W(t), which is started at W(0)=x (that 

is, Kt is a translation by x of the standard SLE6 starting at 0). In order to emphasize the 

dependence on x, we will use the notation P~ and Ex for probability and expectation. 

Set 

To := sup{t ~> 0: Kt N(-oo,  0] = e},  

T1 := sup{t/> 0: K t n  [1, oc) = e},  

T : =  min{T0, T1 }. 
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As will be demonstrated, T0,Tl<OC a.s. Let 

ft(z) . -  gt(z)-gt(O) 
gt(1) -g t (0)  ' 

for t<T,  which is just gt renormalized to fix 0, 1 and oc. It turns out that  fT := limt/~T ft  

exists a.s. On the event TI>To, fT uniformizes the quadrilateral 

(I-] \KT; 1, cx), min(KT A R),  max(KT N R))  

to the form 

(H; 1, o~, 0, fT (max(KT A It))).  

Therefore, we want to know the distribution of 

1 -  f r (maX(KT NR)) ,  

and how it depends on x (especially when zC(0, 1) is close to 1). In this subsection, 

we will calculate something very closely related: the distribution of f~(1) and how it 

depends on x. 

Set 

A ( 1 - x ,  b) := Ex [l{To < T1} f~(1) b] 

for b~>0 and xE (0, 1). Recall the definition of the hypergeometric function 2F1 (see, e.g., 

[3o]): 
oc (ao)n(al)n n 

2Fl(ao,al,a2;x)= E ~ X , 
.=o (a2)nn. 

where (a)n = I]~=a ( a + j -  1) and (a)o-- 1. Note that 2Fl(ao, al ,  a2; 0) -- 1. 

THEOREM 3.2. For all b~>0, z~(0 ,  1), 

~ / ~ 2 - 2 / ~ F ( 5 - l - D )  x 1/6+~ F [1--[~ I+D, I+2D;x)  
A ( x , b ) =  xt T, , 

where 
^ 1 ~ ,  b---g 

and 2F1 is the hypergeometric function. 

Setting b=0, we obtain Cardy's formula [7]. Thus, this result can be thought of as 

a generalization of Cardy's formula. 

Note that Theorem 3.2 determines completely the law of l{yo<T1}f~(1). In par- 

ticular, the Laplace transform of the conditional law of log 1/f~(1) given {T0<T1} is 

A ( 1 - x ,  b ) /A(1 -x ,  0). 
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Proof. We first observe that  T i < o c  almost surely. Indeed, gt(1)-W(t) is a Bessel 

process with index 5 5, with time linearly scaled, and hence hits 0 almost surely in finite 

time (e.g. [391). Similarly, gt(O)-W(t) hits 0 almost surely. It is clear that  Ti is the time 

t when gt(1)-W(t) hits 0, and To is the time when gt(O)-W(t) hits 0. It follows from 

Theorem 2.6 and x E (0, 1) that  almost surely To C T1. We may also conclude that  

lim Px[T0 < Ti] = 1, lim Px[T0 < Ti] =0 .  (3.5) 
x--+0 x--~l 

The next goal is to prove that 

lira f t(1) > 0 if and only if To < Ti. (3.6) 
t / ~ T  

If To<Ti, then KTA[1, oC]=O. Therefore fT is defined and conformal near 1, and 

f~.(1) >0, by the reflection principle. On the other hand, if T]<T0,  then KTA [1, o c ) r  

We claim that  

1 ~ KTi almost surely; (3.7) 

since Kill A [1, oo)r O, this means that  KTi separates 1 from oc in H. Indeed, let r H 

be the anti-conformal automorphism that  fixes x and exchanges 1 and oc. Tl<OC a.s. 

and suPt<T 1 IW(t)]<oo a.s. imply that  KT1 is bounded a.s., which is the same as saying 

that  r  stays bounded away from 1 as t/~T1. But Corollary 2.3 and invariance under 

reflection imply that  up to time T1 the law of Kt is the same as a time change of the law 

of r  Hence, a.s. Kt stays bounded away from 1 as tZT1, proving (3.7). It follows 

from (3.7) that  limt/~Tlf~(1)=O a.s. on the event Tl<To (observe that ,  given (3.7), the 

extremal length from a neighborhood of 0 to a neighborhood of 1 in H \ K t  tends to oo 

as t/~Ti), and (3.6) is established. 

Define the renormalized version of W(t),  

z(t) := 
g t ( 1 ) - g t ( 0 ) '  

and the new time parameter 

fo 
t dt 

s----- s(t) := (9t(1)_gt(O))2 , t<T.  

Set So:=limt/T s(t). Since T17~To a.s., inf{gt(1)-gt(O): t < T } > 0  a.s., and hence s0<oo 

a.s. Let t(s) denote the inverse to the map t~s(t) .  A direct calculation gives 

- 2  2(1-J ' t (z) )  2f t(z)  
Os(ft(s)(z)) = Z(t)?ft(z)  ~ Z(t) 1 - Z ( t )  
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and 
dWt 

dZ(t) = gt (1) - gt (0) 

We now use the notation 

2dt ( ~ . ~ ) 1 )  
-~ (gt(1)-gt(O)) 2 -~ Z ( t ) - i  " 

2(s) := z ( t ( s ) ) ,  L(z ) :=f , (~) ( z ) .  

Then, 

2(1-22(s))dS=dx~+( 2 2_= "~ds, (3.8) 
d2~=dXs4 -~(s)(l_ZSs)) Z-(s) 1-Z(s) /  

where (X~, s~0)  has the same law as (W(t), t~>0); i.e., it is a Brownian motion with time 

rescaled by a factor of 6. Also, 

-2 2(1 -.L (z)) 2L(z) (3.9) 
as(L(z ) )  - 2 ( s ) - L ( z )  ~ 2(s)  1 - 2 ( s )  

These two equations describe the evolution of /~(z) .  Note that  s(T)=so is the first time 

at which Z(s) hits 0 or 1. 

We now assume that  b>0. Differentiating (3.9) with respect to z gives 

Os(logf'(z))  = - 2  2 2 
(2(s)-L(z))2 2(s) 1-2(s) (3.10) 

(the Cauchy integral formula, for example, shows that we may indeed differentiate, but 

this is also legitimate since 0s and Oz commute in this case). We are particularly inter- 

ested in 

a(s) := log ]~(1) = log f/(8)(1), 

which satisfies 
- 2  2 2 

08a(s) = - . (3.11) 
( Z ( s ) -  1) 2 Z(s) 1 - Z ( s )  

Note that  the equations (3.8) and (3.11) describe the evolution of the Markov process 

(Z(s), a(s)) .  The process stops at so. Define 

y(x, v) := E[exp(ba(s0)) ] 2(0) - x, a(0) = v], 

where the expectation corresponds to the Markov process started from Z ( 0 ) = x  and 

a (0 )=v .  From the definition of y it follows that 

y(x, 0) = A ( 1 - x ,  b), 
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since limt/~Tft=fT in a neighborhood of 1 on the event To<T1 and (3.6) holds. It is 

standard that  such a function y(x, v) is C ~ ,  and the strong Markov property ensures 

that  the process 

is a local martingale. The drift term in It6's formula for dY must vanish, which gives 

As 

we get 

Set 

2(1-2x) ( -2 2 2 ) 
O= x(a-x) a~y+30~xy+ (1-~)~ x l : x  o~v. (3.12) 

~(~) = ~(0) + fo~(0~(~')) d~', 

y(~, v) = exp(bv)y(x, 0). 

h(x) := y ( 1 - x ,  0) --= A(x, b), 

so that  y(x, v)=exp(bv)h(1-x). Hence (3.12) becomes 

-2bh(x)+2z(1-2x)h'(x)+3x ~(1-x) h''(x) =0. (3.13) 

The second statement in (3.5) implies that  

while 

lira h(x) = 0, 
x',~o 

lim h(x) = 1 
x / Z l  

holds, since when x is close to 0, KTo is likely to be small, by scale invariance, for example. 

The differential equation (3.13) can be solved explicitly by looking for solutions of the 

type h(x)=xCz(x): two linearly independent solutions are (i--1, 2) 

hi(x)----x 1/6+b~ 2 Flt~l-II --b ~, ~+bi,1 l+2bi ;  x), 

where 

bl = -52 = i v/1 +24b.  

Recall that  uFl(a0, al ,  a2; 0)=1.  The function h(x) must be a linear combination of hi 

~nd h2. However, l im~0 h(x)=0=l im~o hi(x), but limx,~o h=(x)=~. Hence, h(~)= 
Chl(X) for some constant c. The equality h(1)=1 and knowledge of the value at x = l  of 
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hypergeometric functions (see, e.g., [30]) allows the determination of c, and establishes 

the theorem in the case b>0. The case b=0 follows by taking a limit as b",~0. [] 

Remark. With the same proof, Theorem 3.2 generalizes to SLE~ with n>4,  and 

gives 

A~(x, b) = C(b, 1/2-2/~+b~ 1 ~ 1 n)x 2F1(~ -2/t<+b,~, 6/t~- ~ +/~,,, 1+2/~,~; x), 

where 
/~,~ := V/(~-4)  2+16nb 

2t~ 
C(b, ~):= F(~ -6/~+/~,,)  V(�89 +2 /~+b , , )  

F ( 1 - 4 / ~ )  F(1+2/~,~) 

3.3. Determinat ion  of  the SLE6-exponents  

For every t~>0, set 

Mt := max(Kt A R).  

The following lemma shows that our understanding of the derivative f~(1) gives infor- 

mation on fT(MT) itself. 

LEMMA 3.3. In the above setting, let NT:=fT(MT). For b~/O, set 

O(x, b) :=  EX_~[I{To<T1}(1--NT)b]. 

Then 

(�89 b) <~ O(x, b) <~ xbA(x, b). (3.14) 

Note that O(x, b) is close to the quantity we are after, since - log (1 - -NT)  is approx- 

imately the extremal length of the quadrilateral 

(H \KT;  min(KT A R),  max(KT N R),  1, cx~). 

Proof. It follows easily from (3.10) that f{(z) is non-decreasing in z (viewed as a 

real variable), as long as z>~Mt. Therefore, 

// 1--NT= f~(z)dz<~(1-MT)f~(1)<~xf~(1). 
T 

This gives the right-hand inequality in (3.14). 

To get the other inequality, consider some fixed x*> 1 (x* should be thought of as 

close to 1; we will eventually take x*=l/(1-x)) .  Let Y:*=fT(x*). Then 

X* 

~c*--NT >~ 2"--1 = fa f~.(z) dz >~ ( x * - l ) f ~ ( 1 ) .  
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This gives 

E l - x  [1{To<T1 } (X* - -NT)  b] >/(X* -- 1)bA(x, b). (3.15) 

A simple scaling argument will give an upper bound of the left-hand side of this inequality 

in terms of (9. Let 

T* =inf{ t />  0 : K t n R \ ( 0 ,  x*) #O}.  

Note that  T<<.T*<oo a.s. and that  T=T* if To<T1. For each t<<.T*, let f[ be the 

conformal map from the unbounded component of H \ K t  to H, which fixes the points 

oo, 0, x*. For all t<<.T, 
X* 

It(z)  = f d x .  ) ft(z). 

Note that 

Then, 

Hence, 

-* .< 
1{7o<71} (x - NT) -.~ 1{To<T1} (X* -- f }  (MT) ). 

I{To<T1} (x*-- NT) ~ I{MT.<x*} (a *-- f}*( MT* ) ), (3.16) 

since on the event To<TI, we have T=T* and MT:MT*. However, by scale invariance, 

when W(0): l-m the random variable 

I{MT.<X*}(x*--f~*(MT')) 

has the same law as the random variable 

X*I{MT<I}(1-- fT(MT)) 

does when W(O)=(1-x)/x*. Thus, combining (3.16) and (3.15) gives 

(x*)bo(1- (1-x)/x*, b) > (x*- 1)bA(x, b). 

We take x*=l / (1 -x ) ,  say, and get 

(9(2x, b)/> O ( 2 z - x  2, b) >1 xbA(x, b), 

which gives the left-hand side of (3.14). [] 

Proof of Theorem 3.1. We are now ready to derive Theorem 3.1 by combining The- 

orem 3.2 and Lemma 3.3. 
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In the setting of the theorem, let r  be the conformal homeomorphism 

satisfying r r  and 0(A3)=0. Set x=x(L):=r By conformal in- 

variance, the law of/2 is the same as that  of the rr-extremal distance t:* from (-oc ,  0] 

to (NT, 1) in H (with the notations of Lemma 3.3). Considering the map zF-+log(z--1) 

makes it clear that  

L = - l o g ( 1 - x ) + O ( 1 ) ,  (3.17) 

for L >  1, and similarly 

/ :*= --log(1--NT)+O(1). 

For L > I  (note also that  s 

(3.18) 

E[I{L<~} exp(-k/ : )]  = E[I{~.<~} exp(-AZ:*)] 

=exp(O(1))E[I{NT<I}(1--NT) ~] (by (3.18)) 

= exp(O(1)) O( 1 - x ,  A) 

= e x p ( O ( A + l ) ) ( 1 - x )  u(:~) (by Lemma 3.3 and Theorem 3.2) 

= exp(O(A+l))  exp(-u(A)L) (by (3.17)), 

which completes the proof of Theorem 3.1. [] 

4. T h e  B r o w n i a n  ha l f -p lane  e x p o n e n t s  

We are now ready to combine the results collected so far and a "universality" idea similar 

to that  developed in [29] to compute the exact value of some Brownian intersection 

exponents in the half-plane. 

4.1. Definit ions and background 

In this short subsection, we quickly review some results on intersection exponents between 

independent planar Brownian motions. For details and complete proofs of these results, 

see [28], [29]. 

Suppose that  n+p independent planar Brownian motions/31, ...,/3~ and .yl--., 7p are 

started from points/31(0) . . . . .  /3n(o)=o and "yl(0) . . . . .  "~P(0)=I in the complex plane, 

and consider the probability fn,p (t) that  for all j ~< n and 1 ~<p, the paths of/3J up to time 

t and of .~l up to time t do not intersect; more precisely, 
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It is easy to see that  as t--+oo this probability decays roughly like a power of t. The 

(n, p)-intersection exponent {(n, p) is defined as twice this power, i.e., 

fn,p(t) = (X/~) -~(n'p)+~ t--+OO. 

We call ~(n,p) the intersection exponent between one packet of n Brownian motions 

and one packet of p Brownian motions (for a list of references on Brownian intersection 

exponents, see [28]). Note that  the exponent ~ described in the introduction is �89 1). 

It turns out to be more convenient to use this definition as a power of x/~, i.e., of the space 

parameter. A Brownian motion travels very roughly to distance v/t in time t: recall that  

if r is a planar Brownian motion started from 0, say, and TR denotes its hitting time of 

t h e  circle of radius R about 0, then for all 5>0,  the probability that  T n ~ ( R  2-a, R 2+a) 

decays as R--+cc faster than any negative power of R. This facilitates an easy conversion 

between the time-based definition of intersection exponents and a definition where the 

particles die when they exit a large ball. 

Similarly, one can define corresponding probabilities for intersection exponents in a 

half-plane, 

fn,p(t) :=  P [ V j  ~< n,  Vl ~< p, ;~J [0, t] n ~  ~ [0, t] = o and  r [0, t] U~ ~ [0, t ] c  7-t], 

where 7-/is some half-plane containing the two starting points (]n,p(t) will depend on 7-/). 

In plain words, we are looking at the probability that  all Brownian motions stay in the 

half-plane and that  all ,2's avoid all ~/'s. It is also easy to see that  there exists a ~(n,p) 

(which does not depend on ~ )  such that  

s (vq) -e(n'p)+~ t 

Note that  ~ described in the introduction is �89 1). 

One can also define intersection exponents {(nl,  ..., n v) and ~(nl, ..., np) involving 

more packets of Brownian motions. (For a more detailed discussion of this, see [28]). For 

instance, if B 1, t32, B a, B 4 denote four Brownian motions started from different points, 

the exponent ~(2, 1, 1) is defined by 

P[ the  three sets BI[0, t] UB2[0, t], B3[0, t], B4[0, t] are disjoint] 

= t  -~(2'1'1)/2+~ , t--'+O0. 

One of the results of [28] is that  there is a natural and rigorous way to generalize the def- 

inition of intersection exponents between packets of Brownian motions to the case where 

each packet of Brownian motions is the union of a "non-integer number" of paths; for 
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the half-plane exponents, one can define the exponents ~(u], ..., Up), where ul,  ..., up )0 .  

These generalized exponents satisfy the so-called cascade relations (see [28]): for any 

l<~q~p-1, 

. . . ,  u p )  = . . ,   q-1, . . . ,  ).  ( 4 . 1 )  

Moreover, ~ is invariant under a pernmtation of its arguments. 

There exists (see [28], [29]) a characterization of these exponents in terms of the 

so-called Brownian excursions that  turns out to be useful. For any bounded simply- 

connected open domain D, there exists a Brownian excursion measure PD in D. This is 

an infinite measure on paths (B(t), t<~-) in D such that  B(O,T)CD and B(0), B(T)COD 

(these can be viewed as prime ends if necessary), xs :=B(0)  and x~:=B(v)  are the 

starting point and terminal point of the excursion. One possible definition of #D is 

the following: Suppose first that  D is the unit disc. For any s>0  define the measure 

P~ on Brownian paths (modulo continuous increasing time change) started uniformly 

on the circle of radius exp(-s) ,  and killed when they exit D. Note for any so>s, the 

killed Brownian path defined under the probability measure ps  has a probability S/So to 

intersect the circle of radius exp(-s0).  Then, define 

ttD := lira (27r/s)PS. 
s'-~0 

One can then easily check that  for any M6bius transformation r from D onto D, 

r  . This makes it possible to extend the definition of PD to any simply- 

connected domain D, by conformal invariance. These Brownian excursions also have 

a "restriction" property [29], as the Brownian paths only feel the boundary of D when 

they hit it (and get killed). 

Suppose for a moment that  T~=T~(L) C C is the rectangle with corners given by (3.1), 

and that  B is the trace of the Brownian excursion (B(t), t<.~-) in 7~. Define the event 

E1 = {B(0) �9 [A1, A4] and B(7) �9 [A2, A3]}, 

i.e., B crosses the rectangle from the left to the right. (Although # n  is an infinite 

measure, 1~7~(E1) is finite.) When E1 holds, let T ~  be the component of ~ \ ~  above ~, 

and let T~ B be the component of T~\B below B. Let s (resp. s  denote the ~-extremal 

distance between [A1, xs] and [m2, xe] in T~ B (resp. [xs, A4] and [xe, A3]) in n ~ .  

Then, for any ~ 0  and c~'~>0, the exponent ~(a, 1, ~ ' )=~(1,  ~(c~, cd)) is characterized 

by 

EtL ~ [1E~ exp(--~s -- ~'s = exp(--~(cd, 1, (~)L+o(L)), (4.2) 

when L--+co, where Et, ~ denotes expectation (that is, integration) with respect to the 

measure #n .  Similarly, 

E , ~  [1E~exp(--(~L:~)] = exp(--~(1, e~)n+o(L)), L --~ oc. (4.3) 
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See [29]. It will also be important later that  ~ is continuous in its arguments, and that  

A~+~(1, A) is strictly monotone. 

4.2. S t a t e m e n t  a n d  p r o o f  

For any p~>0, we put 

vp = -~p(p+ 1). 

Let F denote the set of numbers {Vp:pCN}. Note that  the smallest values in ~ are 

0, �89 1,2, ~ , 5 ,  T. 

We are now ready to prove the following result: 

THEOREM 4.1. For any k>~2, al , . . . ,ak_l  in 12, and for all akER+,  

~(OZl'  ' " '  OLk) : 2-~ ( ( ~ + 1  + . . . + ~ + 1  - ( k -  1))2-1).  (4.4) 

It is immediate to verify that  this theorem implies Theorem 1.1. 

Remark. In [26], Theorem 4.1 is extended to all non-negative reals Ot1~ ..., Oz k. 

Theorem 4.1 is a consequence of the cascade relations and the following lemma, 

which is the special case of the theorem with k=2,  a l =  1: 

LEMMA 4.2. For any A>0, 

 here by (a.2). 

Proof of Theorem 4.1 (assuming Lemma 4.2). Define U ( A ) = ~ - I ,  for all 

A~>0. Lemma 4.2 implies immediately that  for all A~>0, 

= 

and (for all integer p) - 1 Vp+l=~(5, vp). The cascade relations then imply that  for all in- 

tegers P l ,  . . . ,Pk-1,  

~(Vpl, ' " ,  Vpk_l,  /~ ) : U--I(2(pl-{"..."~-Pk__ I )-]-U ( )~) ). 

This is (4.4). [] 

Proof of Lemma 4.2. For convenience, we again work in a rectangle rather than in 

the upper half-plane. Let 7~=7~(L), and let S denote the closure of the hull of SLE6 from 

A4 to [A1, A2] U [A2, A3] in T4, as in Theorem 3.1. Let B denote the trace of a Brownian 
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excursion in ~; we will call its starting point xs and its terminal point x~. Consider the 

events 

E1 = {xs �9 [A1, A4] and xr �9 [A2, An]}, 

E2 = {SA [A,, A2] = O}, 

E3 = E I A E 2 n { 8 n B =  0}. 

When E2 holds, let s denote the 7r-extremal distance between the vertical edges of 

in ~ \ S  (that is, in the quadrilateral "below" S). Otherwise, let s 

When E1 holds, let T4~ be the component of 7~\B above B, and let T~  be the 

component of T4\B below B. Let s  (resp. s denote the 7r-extremal distance between 

the vertical edges of T4 in 7~ B (resp. in T~), as before. When E3 holds, let s denote the 

7r-extremal distance between the vertical edges of T4 in 7 ~ \ 8  (that is, in the quadrilateral 

"below 8 and above B"). 

Let A>O. We are interested in the asymptotic behavior of 

f(L) = E[IE3 exp(--As 

when L-+ce. By first taking expectations with respect to B (with the measure #n), and 

using the restriction property (Corollary 2.4) for the domains 7~ and 7~ ,  it follows that 

as L--~ oG~ 

f(L) : EB [Es [exp(--,Xs 

= EB[exp(--u(A)s (by Theorem 3.1 and restriction to 7~)) 

= exp(-~(1, u(A))L+o(L)) (by (4.3)). 

On the other hand, we may first take expectation with respect to S. Given 8, the law 

of s is the same as that of s by complete eonformal invariance of the excursion 

measure (which is the analogue of the restriction property to the excursion measure, 

see [28]). Hence, as L-+oc, 

f(L) = Es[EB[1E3 exp(--As 

: Es[EB[1E3 exp(--As 

= EB [Es[1Ez exp(-As 

: EB [Ps [E31L~] exp(--As 

= EB[exp(--�89163163 ] 

: 1 ,  

=exp(-~(1,~(�89 

(by (3.4)) 

(by (4.2)) 
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by the cascade relations (4.1). 

Finally, 

follows, since A'~+~(1, A') is strictly increasing. 

Comparing with (4.5) gives ~ (1 ,~ ( �89  u(A)). 

[] 

5. Crossing exponents for critical percolation 

It  has been conjectured [42] that  SLE6 corresponds to the scaling limit of critical perco- 

lation clusters. As additional support  for this conjecture, we now show that  it implies 

the conjectured formula for the exponents corresponding to the probabili ty that  a long 

rectangle is crossed by p disjoint paths or clusters of critical percolation ([13], [8], [3]). 

Let us first explain the conjectured relation between SLE6 and critical percolation. 

Let D c C  be a domain whose boundary ODC C is a simple closed curve. Let a, bEaD 

be distinct points. Let 71 be the counterclockwise arc on cOD from a to b, and let 72 be 

the clockwise arc on OD from a to b. Let 5>0,  and consider a fine hexagonal grid H in 

the plane with mesh 5; that  is, each face of the grid is a regular hexagon with edges of 

length 5, and each vertex has degree 3. For simplicity, assume that  OD does not pass 

through a vertex of H,  and that  a and b do not lie on edges of H.  Color each hexagon 

1 Then the union of the black of H independently, black or white, with probabili ty ~. 

hexagons forms one of the s tandard models for critical percolation (see Gr immet t  [14] 

for percolation background and references). 

Given the random coloring, there is a unique pa th /3C  D that  starts  at a and ends 

at b, such that  whenever/3 is not on % it has a black hexagon on its "right", and whenever 

/3 is not on 72 it has a white hexagon on its "left". This pa th  is the boundary between 

the union of the white clusters in D touching 772 and the black clusters in D touching 771. 

Let f :  D--+H be a conformal homeomorphism such that  f(a)=0 and f(b)=oo, and para- 

meterize /3 in such a way that  A(f(/3[O,t]))=t. Let Dt be the component  of D\/3[0, t] 

that  has b on its boundary, and let Kt=D\Dt .  The conjecture from [42] (stated a bit 

differently) is that  as 5--+0 the process (Kt, t>~0) converges to SLE6 from a to b in D. In 

light of this conjecture, the Locality Theorem 2.2 and its corollaries are very natural.  

Now consider an arc ICOD, which contains b but not a. Let bl and b2 be the 

endpoints of I, labeled in such a way that  the triplet a, bl, b2 is in counterclockwise 

order around D. Let 77~C771 be the counterclockwise arc from a to bl, and let ' 772 C 772 

be the clockwise arc from a to b2. Let T be the first t ime such that  /3(t)EI, and set 

S : =  Ut<T Kt. Then the component  a l  of o~SAD joining 3'I to I is a crossing in B from 

771 to I which is "maximal",  in the sense that  any other crossing a C B  from 3'I to I is 

separated by a l  from b2 in D. 
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Let L be large, and recall the definition of the rectangle 7~=T/(L) with corners given 

by (3.1). Let pE N+ and a =  (al ,  ..., ap) E {black, white} v. Consider the event C~ (7~) that  

there are paths c~1,..., ap from [A4, A1] to [A2, A3] in ~ such that  each c~j is contained 

in the union of the hexagons of color aj ,  there is no hexagon which intersects more than 

one of these paths, and a j+l separates aj from [A1, A2] in 7~ when j = 1, 2 , . . . , p -1 .  

Take a l  to be the topmost crossing with color al ,  if such exists, let a2 be the topmost 

crossing with color a2 which is below all the hexagons meeting a l ,  etc. Then C~(7~) 

holds if and only if these specific a l ,  ..., ap exist. Note that  after we condition on a l ,  

the hexagons "below" it are still independent and are black or white with probability �89 

Hence the following formula holds: 

P[C~(~)]  = P [a t  exists] E[P[C~+I(7~I)  [ ax ] t a l  exist@ 

where a+ l=(a2 ,  a3, ..., ap), 7~al is the union of the hexagons below (~1, and C~+I(T~al) is 

the event that there are multiple crossings with colors specified by a+l  from [A4, All to 

[A2, A3] in T~I .  

It is clear that  P[Co(7~)] does not depend on the choice of the sequence a, but only 

its length. Moreover, the conjectured conformal invariance (or the conjecture that  SLE6 

is the scaling limit) implies that lim~-40 P[C~(D)] depends on the quadrilateral 79 only 

through its conformal modulus. Hence define 

fp(L) := lira P [Ca(n(L) ) ] ,  a e  {black, white} p. 
6-40 

We also set fp(OO):=O and fo(L):=l{L<~ }. 

Let S be the SaE6-hull from A4 to I:=[AI,A2]U[A2,A3] in T~=7~(L), as defined 

in w Let 7-4 be the component of T~\S which has A1 on its boundary, and let 

denote the ~-extremal length from [A4,A~] to [A2,A3] in 7~_. Note that  s  if 

SA [A1, A2] ~ .  Then we have 

fp(L) = E[fp_l(s  p = 1, 2, . . . .  

To completely justify this step requires more work, which we omit, since this whole 

discussion depends on a conjecture anyway. The slight difficulty has to do with the fact 

that  having a crossing of a closed rectangle is a closed condition, and the probability of a 

closed event can go up when taking a weak limit of measures. One simple way to deal with 

this is to note that  when the continuous process has a crossing in the rectangle T~(L+r 

every sufficiently close discrete approximation of it has a crossing of the rectangle T4(L). 

Consequently, induction and Theorem 3.1 give 

fp(L) =exp(-(L+O(1))Vp), L--+ oc, (5.1) 
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where 

vp = u~ = ~ p ( p + l ) ,  

as before. Here, the constant  implicit in the O(1)-nota t ion  may  depend on p. 

Note also tha t  if 

(5.2) 

= (white, black, white, black, ..., white) E {black, white} 2k-1, 

then  (in the discrete setting) the event C~ (~ )  is identical to the event t ha t  the rectangle 

T~ is crossed from left to  right by k disjoint white clusters. 

The  exponents  (5.2) are those predicted in [8], [3]. 
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