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VALUES OF GAUSSIAN HYPERGEOMETRIC SERIES

KEN ONO

Abstract. Let p be prime and let GF (p) be the finite field with p elements.
In this note we investigate the arithmetic properties of the Gaussian hyperge-
ometric functions

2F1(x) =2 F1

(
φ, φ

ε
| x
)

and 3F2(x) =3 F2

(
φ, φ, φ

ε, ε
| x
)
,

where φ and ε respectively are the quadratic and trivial characters of GF (p).
For all but finitely many rational numbers x = λ, there exist two elliptic curves

2E1(λ) and 3E2(λ) for which these values are expressed in terms of the trace of
the Frobenius endomorphism. We obtain bounds and congruence properties
for these values. We also show, using a theorem of Elkies, that there are
infinitely many primes p for which 2F1(λ) is zero; however if λ 6= −1, 0, 1

2
or

2, then the set of such primes has density zero. In contrast, if λ 6= 0 or 1,
then there are only finitely many primes p for which 3F2(λ) = 0. Greene and
Stanton proved a conjecture of Evans on the value of a certain character sum
which from this point of view follows from the fact that 3E2(8) is an elliptic
curve with complex multiplication. We completely classify all such CM curves
and give their corresponding character sums in the sense of Evans using special
Jacobsthal sums. As a consequence of this classification, we obtain new proofs
of congruences for generalized Apéry numbers, as well as a few new ones, and
we answer a question of Koike by evaluating 3F2(4) over every GF (p).

1. Introduction

In [12] Greene initiated a study of Gaussian hypergeometric series over finite
fields. He found that these series possess many properties that are analogous to
their ordinary counterparts. In this paper we investigate the values of certain special
Gaussian hypergeometric series and explore their number theoretic consequences.

Throughout this paper p is an odd prime. If n is an integer, then ordp(n) is
the power of p dividing n, and if α = a

b ∈ Q, then ordp(α) := ordp(a) − ordp(b).
As usual, we let GF (p) denote the finite field with p elements, and we extend all
characters χ of GF (p)× to GF (p) by setting χ(0) := 0. Following Greene we let
the appropriate analog of the binomial coefficient be a Jacobi sum. Specifically, if
A and B are two characters of GF (p), then

(
A
B

)
is defined by(

A
B

)
:=

B(−1)

p
J(A, B̄) =

B(−1)

p

∑
x∈GF (p)

A(x)B̄(1− x).(1)
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1206 KEN ONO

If A and B are characters of GF (p), then the following identity is known:(
A
B

)
=

(
BĀ
B

)
B(−1).(2)

In this notation, we recall Greene’s definition of a ‘so-called’ Gaussian hypergeo-
metric series.

Definition 1. If A0, A1, . . . An, and B1, B2, . . . Bn are characters of GF (p), then

the Gaussian hypergeometric series n+1Fn
(A0, A1, ...An

B1, ...Bn
| x) over GF (p) is defined

by

n+1Fn

(
A0, A1, . . . An

B1, . . . Bn
| x
)

:=
p

p− 1

∑
χ

(
A0χ
χ

)(
A1χ
B1χ

)
· · ·
(
Anχ
Bnχ

)
χ(x).

Throughout this paper the prime p will always be clear from context, and we let∑
χ denote a summation over all characters χ of GF (p).

We restrict our attention to the functions 2F1

(
φ, φ

ε | λ) and 3F2

(
φ, φ, φ

ε, ε | λ
)
, where

φ is the quadratic character and ε is the trivial one. For convenience we shall denote
these values by 2F1(λ) and 3F2(λ).

In [13], [17], [18] these special values were investigated in connection with con-
gruence properties of generalized Apéry numbers, the arithmetic of certain special
elliptic curves, and conjectured character sums. If I(t; p) denotes the character sum

I(t; p) :=
∑

x,y∈GF (p)

φ(1 + x)φ(1 + y)φ(x+ ty)φ(x)φ(y),

then Evans, Pulham and Sheehan (see [11]) conjectured that

I(1; p) = φ(2)(3x2 − 2y2) = φ(2)(4x2 − p)

when p ≡ 1, 3 mod 8 and x and y are integers for which p = x2 + 2y2. In [13]
Greene and Stanton proved this conjecture by evaluating 3F2(−1) for every prime
p.

In section 3 we investigate the arithmetic properties of 2F1(λ). Most of our
results are deduced by expressing this value in terms of the trace of the Frobenius
endomorphism on an elliptic curve in Legendre normal form. In section 4 we explore
the arithmetic of 3F2(λ), which we express in terms of the trace of the Frobenius
endomorphism of another explicit elliptic curve. By finding all λ for which this
curve has complex multiplication, we obtain analogous character sum evaluations

for I
(

4
λ−4 ; p

)
. In the case where λ = 8, we obtain the character sum in the Evans,

Pulham, and Sheehan conjecture. These sums are given in section 5, where we also
obtain congruences for generalized Apéry numbers.

2. Preliminaries

Let E = E/Q be the set of Q−rational points (x, y) satisfying the Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ Q. The discriminant ∆(E) of the curve E is defined by the auxiliary
constants

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6
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GAUSSIAN HYPERGEOMETRIC SERIES 1207

and

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

Using this notation, the discriminant ∆(E) and the j−invariant j(E) of E are given
by

∆(E) := −b22b8 − 8b34 − 27b26 + 9b2b4b6,(3)

and

j(E) :=
(b22 − 24b4)

3

∆(E)
.(4)

If ∆(E) 6= 0, then E is an elliptic curve. Throughout E will denote an elliptic curve
over Q.

By Mordell’s theorem, the points of E, including the point at infinity, form a
finitely generated abelian group. Specifically, E is isomorphic to a group of the
form E =̃ Tor(E)×Zr , where Tor(E), the torsion subgroup of E, is a finite abelian
group and r is a non-negative integer.

The Hasse-Weil L−function of E, denoted by L(E, s), is defined by examining
the reductions Ē of E. If p is a prime of good reduction (i.e. p - ∆(E)), then define
the integer a(p) by

a(p) = 1 + p−Np,(5)

where Np is the number of points of Ē rational over GF (p) (including the point at
∞). If E is given by y2 = x3 +Ax2 +Bx+ C, where A,B,C ∈ Z, then for such p
the integer a(p) is given by the character sum

a(p) = −
∑

x∈GF (p)

φ(x3 +Ax2 +Bx+ C).(6)

If p|∆(E), then p is a prime of bad reduction, and a(p) = 0,±1 depending on
the nature of the singularity. The Hasse-Weil L−function for the elliptic curve is
defined by

L(E, s) =

∞∑
n=1

a(n)

ns
:=

∏
p|∆(E)

1

1− a(p)p−s
∏

p-∆(E)

1

1− a(p)p−s + p1−2s
.

If p is a prime for which E has good reduction, then the integer a(p) can be
interpreted as the trace of the Frobenius endomorphism on E (see [15], [22]). For
our purposes, we will be interested in the arithmetic nature of these integers a(p),
since it turns out that 2F1(λ) and 3F2(λ) are functions in a(p). Hasse proved that
for every prime p

| a(p) |< 2
√
p.(7)

This is the ‘so-called’ Riemann hypothesis for elliptic curves.
These integers possess some interesting congruence properties. Since the reduc-

tion map (x, y) → (x mod p, y mod p) is an injective map on Tor(E) when p is a
prime of good reduction [22, p. 176], it follows that if | Tor(E) |= M, then M | Np.
Therefore by (5) it is easy to see that

a(p) ≡ p+ 1 mod M.(8)
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1208 KEN ONO

The curves with complex multiplication are the only such E for which there are
simple formulas for the integers a(p). Moreover, the only values of j(E) for which
E has complex multiplication are [6, p. 83]

j(E) ∈ {1728, 663, 203, 0, 2 · 303,−3 · 1603,−153, 2553,

− 323,−963,−9603,−52803,−6403203}.(9)

We shall also be interested in those primes p for which a(p) = 0. These primes
are the supersingular primes, and if E has complex multiplication, then the set of
primes p for which a(p) = 0 has density 1

2 . In fact, if E has complex multiplication

by the imaginary quadratic field Q(
√−d) and p is a prime of good reduction, then

a(p) = 0 for every prime p where
(
−d
p

)
= −1. However for an elliptic curve without

complex multiplication, Elkies [7] proved that there are infinitely many such primes

but the number of such primes < x is � x
3
4 . Hence the set of supersingular primes

for an elliptic curve over Q without complex multiplication has density zero.
One last idea we need regarding elliptic curves is the notion of a quadratic twist.

Let E be an elliptic curve given by

E : y2 = x3 + ax2 + bx+ c,

where a, b, c ∈ Q. If D is a square-free integer, then the D−quadratic twist of E,
denoted ED, is given by the equation

ED : y2 = x3 + aDx2 + bD2x+ cD3.(10)

If L(E, s) =

∞∑
n=1

a(n)

ns
and L(ED, s) =

∞∑
n=1

aD(n)

ns
, then it turns out that if p is a

prime for which both E and ED have good reduction and gcd(p, 6) = 1, then

a(p) =

(
D

p

)
aD(p).(11)

In particular, for all but finitely many primes p, a(p) and aD(p) are equal up to a
choice of sign.

Proposition 1. Let E be the elliptic curve with complex multiplication by Q(i)
defined by

E : y2 = x3 − x.

If L(E, s) =

∞∑
n=1

a(n)

ns
, then for odd primes p

a(p) =

{
0 if p ≡ 3 mod 4,

(−1)
x+y−1

2 2x if p ≡ 1 mod 4, x2 + y2 = p, and x odd.

Moreover, the q−series of the Mellin transform of L(E, s) is given by
∞∑
n=1

a(n)qn = q

∞∏
n=1

(1 − q4n)2(1− q8n)2.

Proof. If φ2(−1) is the Jacobsthal sum defined by

φ2(−1) :=

p−1∑
x=0

φ(x3 − x),
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GAUSSIAN HYPERGEOMETRIC SERIES 1209

then the formula for a(p) follows by (6) from the well known formula [2, Ch. 6]

φ2(−1) =

{
0 if p ≡ 3 (mod 4),

(−1)
x+y+1

2 · 2x if p ≡ 1 (mod 4), x2 + y2 = p. and x odd.

The fact that
∑∞

n=1 a(n)qn = q
∏∞

n=1(1− q4n)2(1− q8n)2 is well known and can be
found in [16], [19].

Remark 1. The elliptic curve y2 = x3 − x and its quadratic twists are the elliptic
curves which arise in Tunnell’s analysis of the congruent number problem [16].

Proposition 2. Let E be the elliptic curve with complex multiplication by Q(
√−3)

defined by

E : y2 = x3 + 1.

If L(E, s) =

∞∑
n=1

a(n)

ns
, then for primes p 6= 2, 3

a(p) =

{
0 if p ≡ 2 mod 3,

(−1)x+y−1
(
x
3

) · 2x if p ≡ 1 mod 3, and x2 + 3y2 = p.

Moreover, the q−series of the Mellin transform of L(E, s) is given by
∞∑
n=1

a(n)qn = q

∞∏
n=1

(1− q6n)4.

Proof. If ψ3(1) is the Jacobsthal sum defined by

ψ3(1) :=

p−1∑
x=0

φ(x3 + 1),

then the formula for a(p) follows by (6) from the well known result [2, Ch.6]

ψ3(1) =

{
0 if p ≡ 2 (mod 3),

(−1)x+y
(
x
3

) · 2x if p ≡ 1 (mod 3), and x3 + 3y2 = p.

The fact that
∑∞

n=0 a(n)qn = q
∏∞

n=1(1 − q6n)4 is well known (see [19]).

3. Special values of 2F1

(
φ φ

ε
| x
)

Before we discuss the general case, we first give the evaluation of 2F1(1) over
every GF (p).

Proposition 3. If p is an odd prime, then the value of 2F1(1) over GF (p) is

2F1(1) = −φ(−1)

p
.

Proof. By [12, Th. 4.9], it is known that 2F1(1) = φ(−1)

(
φ
φ

)
. However by (1)

this may be rewritten as 2F1(1) =
J(φ, φ)

p
which is well known [14, p. 93] to equal

2F1(1) = −φ(−1)

p
.
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1210 KEN ONO

Now we investigate the values of 2F1(λ) when λ 6= 1. For a rational number λ,
let 2E1(λ) denote the curve over Q defined by

2E1(λ) : y2 = x(x− 1)(x− λ).(12)

If λ 6= 0 or 1, then by (3) and (4) 2E1(λ) is an elliptic curve in Legendre normal
form, where

∆(2E1(λ)) := 16λ2(λ− 1)2

and

j(2E1(λ)) =
256(λ2 − λ+ 1)3

λ2(λ− 1)2
.

Let L(2E1(λ), s) =

∞∑
n=1

2a1(n;λ)

ns
be the Hasse-Weil L−function for 2E1(λ).

With this notation we recall the following fact which was proved in [18].

Theorem 1. If λ ∈ Q−{0, 1} and p is an odd prime for which ordp(λ(λ−1)) = 0,
then

2F1(λ) = −φ(−1)2a1(p;λ)

p
.

Proof. By [13, Th. 3.5], 2F1(λ) may be rewritten as the character sum

2F1(λ) =
φ(−1)

p

∑
x∈GF (p)

φ(x)φ(1 − x)φ(1 − λx).

By replacing x by x
λ we obtain

2F1(λ) =
φ(−1)

p

∑
x∈GF (p)

φ
(x
λ

)
φ
(x
λ
− 1
)
φ(x− 1).

Since φ(λ2) = 1, it is easy to see that

2F1(λ) =
φ(−1)

p

∑
x∈GF (p)

φ(x(x − 1)(x− λ)).

Since p is a prime with good reduction if ordp(λ(λ− 1)) = 0, the observation in (6)
completes the proof.

The first corollary follows from Hasse’s theorem and appears in [18].

Corollary 1. If λ ∈ Q−{0, 1} and p is an odd prime for which ordp(λ(λ−1)) = 0,
then

| 2F1(λ) | < 2√
p
.

Corollary 2. Let λ ∈ Q− {0, 1} and p an odd prime with ordp(λ(λ − 1)) = 0.
(i) If 1− λ is a perfect rational square, then

2F1(λ) ≡ −φ(−1)(1 + p) mod 8.

(ii) If both λ and λ− 1 are perfect rational squares, then

2F1(λ) ≡ −φ(−1)(1 + p) mod 8.
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GAUSSIAN HYPERGEOMETRIC SERIES 1211

(iii) In the remaining cases

2F1(λ) ≡ −φ(−1)− 1 mod 4.

Proof. The torsion subgroups of E(M,N) : y2 = x(x+M)(x+N) where M 6= N ∈
Q are [20]:
• The torsion subgroup of E(M,N) contains Z2 × Z4 if M and N are both

squares, or −M and N −M are both squares, or −N and M −N are both squares.
• The torsion subgroup of E(M,N) is Z2 × Z8 if there exists a non-zero integer

d such that M = d2u4 and N = d2v4, or M = −d2v4 and N = d2(u4 − v4), or
M = d2(u4 − v4) and N = −d2v4 where (u, v, w) forms a Pythagorean triple (i.e.
u2 + v2 = w2).
• The torsion subgroup of E(M,N) is Z2×Z6 if there exist integers a and b such

that a
b 6∈ {−2,−1,− 1

2 , 0, 1} and M = a4 + 2a3b and N = 2ab3 + b4.
• In all other cases, the torsion subgroup of E(M,N) is Z2 × Z2.
If λ = α

β , then by multiplying the equation for 2E1(λ) by β6 and replacing

(β2x, β3y) by (x, y), we obtain an isomorphic curve

y2 = x(x − β2)(x− αβ).

Now by letting M = −β2 and N = −αβ, we find that in cases (i) and (ii) Z2 ×Z4

is contained in the torsion subgroup of EQ(M,N).
It is not hard to show that in these cases Z2 ×Z8 is not the torsion subgroup of

EQ(M,N). Therefore in (i) and (ii) the torsion subgroup of EQ(M,N) has order 8.
Moreover, then in (iii) it is clear that the torsion subgroup of 2E1(λ) is Z2×Z2,

a group of order 4.
Since the reduction map is injective on the torsion subgroup, it follows that 8

divides the order of 2E1(λ) in cases (i) and (ii), and that 4 divides the order of

2E1(λ) in case (iii).
Therefore by (8) we find in cases (i) and (ii) that

2F1(λ) ≡ −φ(−1)

p
(p+ 1) mod 8,

and in case (iii) that

2F1(λ) ≡ −φ(−1)

p
(p+ 1) mod 4.

The congruences now follow easily from the facts that p−1 ≡ p mod 8 and φ(−1)p ≡
1 mod 4 for all odd primes p.

Remark 2. By Corollary 2 it is easy to see that if λ ∈ Q − {0, 1} and p is an odd
prime for which ordp(λ(λ − 1)) = 0, then 2F1(λ) ≡ 0 mod 2.

Now we evaluate the 2F1(λ) when 2E1(λ) has complex multiplication. Since
there are only 13 j−invariants for elliptic curves with complex multiplication (9), it
is easy to verify that λ = −1, 1

2 , and 2 are the only such values; moreover in these

cases 2E1(λ) is isomorphic to the congruent number elliptic curve y2 = x3 − x.

Theorem 2. Let λ ∈ {−1, 1
2 , 2}. If p is an odd prime, then

2F1(λ) =

0 if p ≡ 3 mod 4,

2x(−1)
x+y+1

2

p if p ≡ 1 mod 4, x2 + y2 = p, and x odd.
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1212 KEN ONO

Proof. By (12) we find that the elliptic curves 2E1(−1), 2E1

(
1
2

)
, and 2E1(2) are

isomorphic to y2 = x3 − x. To see this simply replace x by x + 1 in 2E1(2), and
also x by x = x+ 1

2 in 2E1

(
1
2

)
. Therefore the theorem follows from Proposition 1

and Theorem 1.

From the proof of this theorem we obtain the following immediate corollary. Let
ce(n) (resp. co(n)) denote the number of four colored partitions of n into an even
(resp. odd) number of distinct parts where the parts of the latter two colors are
even. Note that two parts with the same numerical value are distinct if they have
different colors. Then let c(n) be the partition function defined by

c(n) := ce(n)− co(n).(13)

Corollary 3. If λ ∈ {−1, 1
2 , 2} and p ≡ 1 mod 4 is prime, then

2F1(λ) = −c
(
p−1
4

)
p

.

Proof. From the proof of the previous theorem we know that 2E1(λ) is isomorphic
to the elliptic curve: y2 = x3−x. The result now follows by Proposition 1, Theorem
2, and the fact that the generating function for c(n) is

∞∑
n=0

c(n)qn =

∞∏
n=1

(1− qn)2(1− q2n)2.

In Theorem 2 it was shown that if λ ∈ {−1, 1
2 , 2}, then 2F1(λ) = 0 for all primes

p ≡ 3 mod 4. More generally, it is of interest to examine the zeros of 2F1(λ).

Theorem 3. If λ 6∈ {−1, 0, 1
2 , 1, 2}, then 2F1(λ) = 0 for infinitely many primes.

However, the set of such primes has density 0.

Proof. For these λ, the elliptic curve 2E1(λ) does not have complex multiplication.
In [7] Elkies proved that every elliptic curve over Q without complex multiplication
has infinitely many supersingular primes. Moreover, the number of supersingular

primes ≤ x is � x
3
4 . However, a prime p of good reduction is supersingular if and

only if 2a1(p;λ) = 0. Therefore the result now follows from Theorem 1.

4. Special values of 3F2

(
φ φ φ

ε ε
| x
)

Before we prove the main theorem regarding the values of 3F2(λ) for an arbitrary
rational λ, we first evaluate 3F2(1), which is a special case of a result of Evans [10].

Theorem 4. If p is an odd prime, then 3F2(1) is given by

3F2(1) =

{
0 if p ≡ 3 mod 4,
4x2−2p

p2 if p ≡ 1 mod 4, p = x2 + y2, and x ≡ 1 mod 2.

Proof. By [12, 4.37] it follows that

3F2(1) =


0 if φ 6= �,(√

φ

φ

)(
φ
√
φ√
φ

)
+

(
φ
√
φ

φ

)( √
φ

φ
√
φ

)
if φ = �.
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By (2) and the fact that φ is a square if and only if p ≡ 1 mod 4, we obtain

3F2(1) =


0 if p ≡ 3 mod 4,(√

φ

φ

)(
φ
√
φ

φ

)
+

(
φ
√
φ

φ

)(√
φ

φ

)
if p ≡ 1 mod 4.

(14)

Hence we may assume that p ≡ 1 mod 4. Note that the two summands for 3F2(1)
in (14) are complex conjugates. So it suffices to compute the first summand, which
we denote by S. By definition we obtain

S =

(√
φ
φ

)(
φ
√
φ

φ

)
=
J(
√
φ, φ)J(φ

√
φ, φ)

p2
.(15)

It is known [14, p. 305] that, for an arbitrary character A,

J(A, φ) = A(4)J(A,A).

Therefore we find that

J(
√
φ, φ) =

√
φ(4)J(

√
φ,
√
φ),

and

J(φ
√
φ, φ) = φ

√
φ(4)J(φ

√
φ, φ

√
φ) = φ

√
φJ(

√
φ,
√
φ).

The last simplification follows from the fact that φ
√
φ =

√
φ.

By combining these facts we find that

S =
J2(

√
φ,
√
φ)

p2
.

By [14, 9.9.4] we find that

−
√
φ(−1)J(

√
φ,
√
φ) = x+ iy,

x2 + y2 = p, and x+ iy ≡ 1 mod (2 + 2i). In particular note that this implies that
x is odd. Hence we find that

S =
φ(−1)(x2 − y2 + 2xyi)

p2
.

Since 3F2(1) = S + S̄, we obtain

3F2(1) =
2x2 − 2y2

p2
=

4x2 − 2p

p2
.

Now we evaluate the remaining 3F2(λ). For a rational number λ let 3E2(λ)
denote the curve over Q defined by

3E2(λ) : y2 = x3 − λ2x2 + (4λ3 − λ4)x + λ6 − 4λ5.(16)

If λ 6= 0 or 4, then by (3) and (4) 3E2(λ) is an elliptic curve over Q with discriminant

∆(3E2(λ)) := 1024λ9(λ− 4)

and j−invariant

j(3E2(λ)) =
256(λ− 3)3

λ− 4
.
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1214 KEN ONO

Let L(3E2(λ), s) =

∞∑
n=1

3a2(n;λ)

ns
be the Hasse-Weil L−function for 3E2(λ). Before

we evaluate these Gaussian hypergeometric series, we first present a lemma.

Lemma 1. Let λ ∈ Q and let p be an odd prime for which ordp(λ) = 0. Then

p

p− 1

∑
χ

(
φχ2

χ

)(
φχ
χ

)
χ̄(λ)

=
φ(2)

p

∑
x∈GF (p)

x 6=−λ2

φ(x3 − λ2x2 + (4λ3 − λ4)x+ λ6 − 4λ5).

Proof. Using identity (2), the sum in the lemma may be reduced to

p

p− 1

∑
χ

(
φχ̄
χ

)(
φχ
χ

)
χ̄(λ)χ(−1).

However by (1) this reduces to

1

p− 1

∑
χ

(
φχ
χ

)
χ̄(λ)

∑
x∈GF (p)

φχ̄(x)χ̄(1− x),

which after switching the order of summation becomes

=
1

p− 1

∑
x∈GF (p)

φ(x)
∑
χ

(
φχ
χ

)
χ̄(λ)χ̄(x)χ̄(1 − x)

=
1

p− 1

∑
x∈GF (p)

x 6=1

φ(x)
∑
χ

(
φχ
χ

)
χ

(
1

λx(1 − x)

)
.

Now by applying (2) again we find that the sum in the lemma is

=
1

p− 1

∑
x∈GF (p)

x 6=1

φ(x)
∑
χ

(
φ
χ

)
χ

( −1

λx(1 − x)

)
.(17)

Now recall that the binomial theorem (see [12]) for a character A over GF (p) says
that

A(1 + x) = δ(x) +
p

p− 1

∑
χ

(
A
χ

)
χ(x),(18)

where δ(x) = 1 (resp. 0) if x = 0 (resp. x 6= 0). Since 1
λx(1−x) 6= 0, this implies

that

1

p− 1

∑
χ

(
φ
χ

)
χ

( −1

λx(1 − x)

)
=

1

p
φ

(
1− 1

λx(1 − x)

)
.

Therefore we may rewrite (17) as

=
1

p

∑
x∈GF (p)

x 6=1

φ(x)φ

(
1− 1

λx(1 − x)

)

=
1

p

∑
x∈GF (p)

φ(x)φ(λx(1 − x) − 1)φ(λx(1 − x)).
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Note that the latter sum includes x = 1 without loss of generality since φ(0) = 0.
Replacing x by x+1

2 , we see that the sum becomes

=
φ(2)

p

∑
x∈GF (p)

φ(x + 1)φ(λ(1 − x2)− 4)φ(λ(1 − x2))

=
φ(2)

p

∑
x∈GF (p)
x 6=−1

φ(λ(1 − x2)− 4))φ(λ(1 − x))

=
φ(2)

p

∑
x∈GF (p)

x 6=−λ2

φ(x3 − λ2x2 + (4λ3 − λ4)x+ λ6 − 4λ5).

The last simplification is made by multiplying through the cubic polynomial in x
by λ6, a perfect square, and then replacing x by x

λ2 .

Theorem 5. If λ ∈ Q−{0, 4} and p is an odd prime for which ordp(λ(λ−4)) = 0,
then

3F2

(
4

4− λ

)
=
φ(λ2 − 4λ)(3a2(p;λ)

2 − p)

p2
.

Proof. Following Greene and Stanton [13, 3.5], we define the function f(x) by

f(x) :=
p

p− 1

∑
χ

(
φχ2

χ

)(
φχ
χ

)
χ
(x

4

)
.

If p is an odd prime and ordp(λ) = 0, then

f

(
4

λ

)
=

p

p− 1

∑
χ

(
φχ2

χ

)(
φχ
χ

)
χ

(
1

λ

)
=

p

p− 1

∑
χ

(
φχ2

χ

)(
φχ
χ

)
χ̄(λ).

Therefore by Lemma 1 we find that

f

(
4

λ

)
=
φ(2)

p

∑
x∈GF (p)

x 6=−λ2

φ(x3 − λ2x2 + (4λ3 − λ4)x+ λ6 − 4λ5).

However, it is now easy to see by (6) that

f

(
4

λ

)
=
φ(2)

p
(−3a2(p;λ)− φ(−2λ)) .(19)

The key identity [12, 4.5] is

φ

(
1− u

u

)
3F2

(
u

u− 1

)
= φ(u)f2(u) +

2φ(−1)

p
f(u)− p− 1

p2
φ(u) +

(p− 1)

p2
δ(1− u).

By setting u = 4
λ (when λ 6= 0, 4), we obtain

3F2

(
4

4− λ

)
= φ(λ− 4)

(
φ(λ)f2

(
4

λ

)
+

2φ(−1)

p
f

(
4

λ

)
− (p− 1)

p2
φ(λ)

)
.

By making the substitution for f
(

4
λ

)
as in (19), we obtain the result.

By Hasse’s theorem we obtain
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Corollary 4. If λ ∈ Q−{0, 4} and p is an odd prime for which ordp(λ(λ−4)) = 0,
then

| 3F2

(
4

4− λ

)
| < 3

p
.

Corollary 5. If λ ∈ Q− {0, 4}, then let M be the order of the torsion subgroup of

3E2(λ). If p is an odd prime for which ordp(λ(λ− 4)) = 0 and gcd(p,M) = 1, then

3F2

(
4

4− λ

)
≡ φ(λ2 − 4λ)(1 + p−1 + p−2) mod M.

Moreover, for all odd primes p for which ordp(λ(λ − 4)) = 0

3F2

(
4

4− λ

)
≡ 1 mod 2.

Proof. By (8), if p is an odd prime for which 3E2(λ) has good reduction and
gcd(p,M) = 1, then 3a2(p;λ) ≡ 1 + p mod M. Therefore by Theorem 5 it fol-
lows that

3F2

(
4

4− λ

)
≡ φ(λ2 − 4λ)(p2 + p+ 1)

p2
mod M.

This completes the proof of the first assertion. To obtain the second claim we
simply need to show that M is even. This is easy to see since the point (λ2, 0) is a
point of order 2 on 3E2(λ).

For these Gaussian hypergeometric functions, we find that 3F2(λ) = 0 for at
most a finite number of primes. In particular, if p is an odd prime for which

ordp(λ(λ − 4)) = 0, then 3F2

(
4

4−λ
)

= 0 implies that 3a2(p;λ)
2 = p, which is

absurd since 3a2(p;λ) is an integer.

Corollary 6. If λ ∈ Q−{0, 4} and p is an odd prime for which ordp(λ(λ−4)) = 0,
then

3F2

(
4

4− λ

)
6= 0.

Now we give all the explicit evaluations for those cases where 3E2(λ) has complex

multiplication. Since the j−invariant for 3E2(λ) is j(3E2(λ)) =
256(λ− 3)3

λ− 4
, and

the only j−invariants for elliptic curves over Q with complex multiplication are
given in (9), it is easy to verify that the only λ for which 3E2(λ) has complex
multiplication are λ = 9

2 , 36, 8, 3,−12, 63
16 , and −252.

Theorem 6. (Complex multiplication evaluations) If

λ ∈ {9

2
, 36, 8, 3,−12,

63

16
,−252},

then for every odd prime p for which ordp(λ(λ − 4)) = 0 the value 3F2

(
4

4−λ
)

is

given by:

(i) 3F2(−8) =

{
− 1

p if p ≡ 3 mod 4,
4x2−p
p2 if p ≡ 1 mod 4, x2 + y2 = p, and x odd.

(ii) 3F2

(−1
8

)
=

{
−φ(2)

p if p ≡ 3 mod 4,
φ(2)(4x2−p)

p2 if p ≡ 1 mod 4, x2 + y2 = p, and x odd.
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(iii) 3F2(−1) =

{
−φ(2)

p if p ≡ 5, 7 mod 8,
φ(2)(4x2−p)

p2 if p ≡ 1, 3 mod 8, and x2 + 2y2 = p.

(iv) 3F2(4) =

{
−φ(−3)

p if p ≡ 2 mod 3,
φ(−3)(4x2−p)

p2 if p ≡ 1 mod 3, and x2 + 3y2 = p.

(v) 3F2

(
1
4

)
=

{
−φ(3)

p if p ≡ 2 mod 3,
φ(3)(4x2−p)

p2 if p ≡ 1 mod 3, and x2 + 3y2 = p.

(vi) 3F2(64) =

{
−φ(−7)

p if p ≡ 3, 5, 6 mod 7,
φ(−7)(4x2−p)

p2 if p ≡ 1, 2, 4 mod 7, and x2 + 7y2 = p.

(vii) 3F2

(
1
64

)
=

{
−φ(7)

p if p ≡ 3, 5, 6 mod 7,
φ(7)(4x2−p)

p2 if p ≡ 1, 2, 4 mod 7, and x2 + 7y2 = p.

Proof. To prove this theorem it suffices to determine the explicit values of 3a2(p;λ).
From these values the formulas in the theorem are easily deduced from Theorem 5.

(i) In this case λ = 9
2 and j

(
3E2

(
9
2

))
= 1728. The equation for 3E2

(
9
2

)
is

y2 = x3 − 81x2 − 729x+ 59049

which after replacing x by x+ 27 becomes

y2 = x3 − 36x.

Hence 3E2(λ) by (10) is the 6−quadratic twist of y2 = x3 − x. In particular, for
every prime for which gcd(p, 6) = 1 we find by (11) that

3a2

(
p;

9

2

)
=

(
6

p

)
a(p).

Therefore by Proposition 1 we obtain

a(p) =

{
0 if p ≡ 3 mod 4,

(−1)
x+y−1

2 2x if p ≡ 1 mod 4, x2 + y2 = p, and x ≡ 1 mod 2.

(ii) By [12, Th. 4.2], it is well known that

3F2

(
1

t

)
= φ(−t)3F2(t).(20)

Therefore by (i) we find that

3F2

(
−1

8

)
= φ(2)3F2(−8).

(iii) In this case λ = 8, j(3E2(8)) = 203, and so 3E2(8) has complex multipli-
cation by Q(

√−2). This case was evaluated by Greene and Stanton in [13, 4.13]
using the evaluation of a certain Brewer sum given by Berndt and Evans [1, 5.17].

(iv) In this case λ = 3, j(3E2(3)) = 0, and so 3E2(3) is an elliptic curve with
complex multiplication by Q(

√−3). The equation for 3E2(3) is

y2 = x3 − 9x2 + 27x− 243,

which after replacing x by x+ 3 becomes

y2 = x3 − 63,
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which by (10) is the −6-quadratic twist of y2 = x3 + 1. Therefore from Proposition
2 and (11) it follows that

3a2(p; 3) =

{
0 if p ≡ 2 mod 3,

(−1)x+y−1
(
x
3

) (−6
p

)
· 2x if p ≡ 1 mod 3 and x2 + 3y2 = p.

(v) Using (20), we find that 3F2

(
1
4

)
= φ(−1)3F2(4), and so the result now follows

from the proof of (iv).
(vi) In this case λ = 63

16 , j
(
3E2

(
63
16

))
= −153, and so 3E2

(
63
16

)
has complex

multiplication by Q(
√−7). In this case the equation for 3E2

(
63
16

)
is

y2 = x3 − 3969x2 + 250047x− 992436543.

By (10) this is the 42-quadratic twist of an elliptic curve with conductor 49, and
by the work of Rajwade [21] we find that

3a2

(
p;

63

16

)
=

{
0 if p ≡ 3, 4, 5 mod 7,

(−1)
p2−1

8

(
x
7

)(
21
p

)
· 2x if p ≡ 1, 2, 4 mod 7.

(vii) As in proving (ii) and (v), we find using (20) that 3F2

(
1
64

)
= φ(−1)3F2(64),

and so the result follows from the proof of (vi).

Remark 3. In [18] Koike asks for an explicit evaluation of 3F2(4). Part (iv) of
Theorem 6 provides the complete solution to this question.

Remark 4. In the proof of Theorem 6 we did not have to explicitly compute the
various 3a2(p;λ); it was only necessary to compute 3a2(p;λ) up to a choice of sign.
However, since determining the explicit value was not too difficult, we chose to do
so.

It turns out that some of these special values also have a combinatorial interpre-
tation in terms of colored partition functions. If we let de(n) (resp. do(n)) denote
the number of four colored partitions of n into an even (resp. odd) number of
distinct parts, then the partition function d(n) := de(n)− do(n) has the generating
function

∞∑
n=0

d(n)qn =

∞∏
n=1

(1− qn)4.

Corollary 7. If p ≡ 1 mod 4 is prime, then

3F2

(
−1

8

)
=
φ(2)(c

(
p−1
4

)2 − p)

p2
and 3F2(−8) =

(c
(
p−1
4

)2 − p)

p2
.

If p ≡ 1 mod 6 is prime, then

3F2

(
1

4

)
=
φ(3)(d

(
p−1
6

)2 − p)

p2
and 3F2(4) =

φ(−3)(d
(
p−1
6

)2 − p)

p2
.

D. Stanton has pointed out, in unpublished notes, that some of the evaluations

in Theorem 6 have nice classical analogs. For instance 3F2

(
1
2 ,

1
2 ,

1
2

1, 1
;x

)
, a

reasonable analog of the Gaussian 3F2(x), can for special x be explicitly evaluated
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using the following special case of Clausen’s theorem [12, 4.2] and known evaluations
which are listed in [8]. As examples, we list

3F2

(
1
2 ,

1
2 ,

1
2

1, 1
;x

)
=

1√
1− x

· 2F1

(
1
4 ,

3
4
1
;

x

x− 1

)2

and known values of 2F1

(
1
4 ,

3
4
1
;

x

x− 1

)2

. In this way it turns out that

3F2

(
1
2 ,

1
2 ,

1
2

1, 1
;−1

)
=

1√
2

(
Γ(1)Γ(1/2)

Γ(5/8)Γ(7/8)

)2

,

3F2

(
1
2 ,

1
2 ,

1
2

1, 1
;
1

4

)
=

3

4
√

3

(
Γ(4/3)Γ(1)

Γ(3/2)Γ(5/6)

)2

.

It is interesting to note that
√

2 and
√

3 occur in these evaluations, which nicely
corresponds to the fact that the associated Gaussian evaluations follow from the
ideal structure in Q(

√−2) and Q(
√−3). If x = − 1

8 or 1
64 , then obvious explicit

analogs are unknown to the author, although D. Stanton has suggested methods
for deriving them, again using Clausen’s theorem. However, it is prudent to note
that it is not truly clear what the proper notion of an analog should be. In general
there will be problems with convergence, and perhaps some care must be taken
when associating characters with rational numbers.

5. Number theoretic applications

First we investigate the character sums I(t; p) defined in the introduction. In
[13] Greene and Stanton proved a conjecture of Evans, Pulham, and Sheehan by
evaluating I(1; p) for every prime p. We solve the analogous problem for all t for
which 3E2

(
4+4t
t

)
is an elliptic curve with complex multiplication. It seems ex-

tremely unlikely that there are any other values of t for which I(t; p) will be easily
evaluated for all primes p.

Corollary 8. If t ∈ {−1, 8, 1
8 , 1,−4,− 1

4 ,−64,− 1
64}, then for every odd prime p for

which ordp
(

4+4t
t

)
= 0, the character sum I(t; p) is given by:

(i) I(−1, p) =

{
0 if p ≡ 3 mod 4,

4x2 − 2p if p ≡ 1 mod 4, x2 + y2 = p, and x odd.

(ii) I(8; p) =

{
−p if p ≡ 3 mod 4,

4x2 − p if p ≡ 1 mod 4, x2 + y2 = p, and x odd.

(iii) I
(

1
8 ; p
)

=

{
−φ(2)p if p ≡ 3 mod 4,

φ(2)(4x2 − p) if p ≡ 1 mod 4, x2 + y2 = p, and x odd.

(iv) I(1; p) =

{
−φ(2)p if p ≡ 5, 7 mod 8,

φ(2)(4x2 − p) if p ≡ 1, 3 mod 8, and x2 + 2y2 = p.

(v) I(−4; p) =

{
−φ(−3)p if p ≡ 2 mod 3,

φ(−3)(4x2 − p) if p ≡ 1 mod 3, and x2 + 3y2 = p.

(vi) I
(−1

4 ; p
)

=

{
−φ(3)p if p ≡ 2 mod 3,

φ(3)(4x2 − p) if p ≡ 1 mod 3, and x2 + 3y2 = p.
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(vii) I(−64; p) =

{
−φ(−7)p if p ≡ 3, 5, 6 mod 7,

φ(−7)(4x2 − p) if p ≡ 1, 2, 4 mod 7, and x2 + 7y2 = p.

(viii) I
(− 1

64 ; p
)

=

{
−φ(7)p if p ≡ 3, 4, 5 mod 7,

φ(7)(4x2 − p) if p ≡ 1, 2, 4 mod 7, and x2 + 7y2 = p.

Proof. By [13, 2.10], it is known that

I(t; p) = p2
3F2(−t).

The result now follows as an immediate corollary to Theorem 4 and Theorem 6.

Now we show how some of these evaluations imply congruences for generalized
Apéry numbers.

Definition 2. Given a pair of non-negative integersm and `, the generalized Apéry
number A(n;m, `) is defined by

A(n;m, `) :=

n∑
k=0

(
n+ k
k

)m(
n
k

)`
.

The generalized Apéry numbers C(n) are defined by

C(n) =

n∑
k=0

(
n
k

)2(
2k
k

)
.

We first recall a proposition proved by Koike [17]:

Proposition 4. If p = 2f + 1 is prime and w = m+ `, then

A(f ;m, `) ≡
(

p

p− 1

)w−1

wFw−1

(
φ, φ, . . . , φ

ε, . . . , ε
| (−1)`

)
mod p.

Using the evaluations in this paper, we obtain the following congruences for
generalized Apéry numbers. These congruences were first proved by Beukers and
Stienstra [3], [4], [5]. Koike proved these in [17], and the only difference in our
proofs is that here we have all the explicit evaluations of the relevant hypergeometric
functions.

Corollary 9. In the above notation:
(i) The generalized Apéry numbers A(n; 1, 1) satisfy the congruence

A(f ; 1, 1) ≡
{

0 mod p if p ≡ 3 mod 4,

2x(−1)
x+y−1

2 mod p if p ≡ 1 mod 4, x2 + y2 = p, and x odd.

(ii) The generalized Apéry numbers A(n; 1, 2) satisfy the congruence

A(f ; 1, 2) ≡
{

0 mod p if p ≡ 3 mod 4,

4x2 mod p if p ≡ 1 mod 4, x2 + y2 = p, and x odd.

(iii) The generalized Apéry numbers A(n; 2, 1) satisfy the congruence

A(f ; 2, 1) ≡
{

0 mod p if p ≡ 5, 7 mod 8,

φ(2)4x2 mod p if p ≡ 1, 3 mod 8, and x2 + 2y2 = p.

Proof. These congruences follow immediately from Proposition 4, Theorems 2, 4,
and 6(iii).
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Following Koike [17], if p = 2f + 1 is prime, then

C(f) ≡
(

p

p− 1

)2

3F2(4) mod p.

Beukers and Stienstra proved congruences for these C(f) which follow immediately
from Theorem 6 (iv).

Corollary 10. Using the notation above, the generalized Apéry numbers C(n) sat-
isfy

C(f) ≡
{

0 mod p if p ≡ 2 mod 3,

φ(−3)4x2 mod p if p ≡ 1 mod 3.

Now we give some variations of such congruences which follow from the explicit
evaluations given in Theorem 6. First we define another type of generalized Apéry
number.

Definition 3. Given a pair of non-negative integersm and l, and a rational number
r, the generalized Apéry number D(n;m, l, r) is defined by

D(n;m, l, r) :=

n∑
k=0

(
n+ k
k

)m(
n
k

)l
rlk.

Proposition 5. If p = 2f + 1 is prime and w = m+ l, then

D(f ;m, l, r) ≡
(

p

p− 1

)w−1

wFw−1

(
φ, φ, . . . , φ

ε, . . . , ε
| (−r)l

)
mod p.

Proof. Let ω denote the Teichmüller character which is defined by ω(x) := x
mod p, for integers x. By [17, Lemma 1] we find that

D(f ;m, l, r) =

f∑
k=0

(
f + k
k

)m(
f
k

)l
rkl

≡
(

p

p− 1

)w f∑
k=0

(
φωk

ωk

)m(
φ
ωk

)l
ωk
(
rl
)

mod p

≡
(

p

p− 1

)w∑
χ

(
φχ
χ

)m(
φ
χ

)l
χ
(
rl
)

mod p.

However, since (
φχ
χ

)
= χ(−1)

(
φ
χ

)
,

it follows that

D(f ;m, l, r) ≡
(

p

p− 1

)w∑
χ

(
φχ
χ

)m(
φχ
χ

)l
χ
(−rl) mod p

=

(
p

p− 1

)w−1

wFw−1

(
φ, φ, . . . φ

ε, . . . ε
| (−r)l

)
mod p.

Therefore by Theorem 6, we obtain the following immediate corollary:
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Corollary 11. Using the notation above, if r is a rational number and p is an
odd prime for which ordp(r((−r)l − 1)) = 0, then the generalized Apéry numbers
D(f ;m, l, r) satisfy:

D(f ; 2, 1, 8) ≡D(f, 0, 3, 2)(i)

≡
{

0 mod p if φ(−1) = −1,

4x2 mod p if φ(−1) = 1, x2 + y2 = p, x odd.

D

(
f ; 2, 1,

1

8

)
≡D

(
f, 0, 3,

1

2

)
(ii)

≡
{

0 mod p if φ(−1) = −1,

φ(2)4x2 mod p if φ(−1) = 1, x2 + y2 = p, x odd.

D(f ; 2, 1, 1) ≡ D(f, 0, 3, 1)(iii)

≡
{

0 mod p if φ(−2) = −1,

φ(2)4x2 mod p if φ(−2) = 1, x2 + 2y2 = p.

D(f ; 1, 2,±2) ≡ D(f, 2, 1,−4)(iv)

≡
{

0 mod p if φ(−3) = −1,

φ(−3)4x2 mod p if φ(−3) = 1, x2 + 3y2 = p.

D

(
f ; 1, 2,±1

2

)
≡ D

(
f, 2, 1,−1

4

)
(v)

≡
{

0 mod p if φ(−3) = −1,

φ(3)4x2 mod p if φ(−3) = 1, x2 + 3y2 = p.

D(f, 1, 2,±8) ≡ D(f, 0, 3,−4) ≡ D(f, 2, 1,−64)(vi)

≡
{

0 mod p if φ(−7) = −1,

φ(−7)4x2 mod p if φ(−7) = 1, x2 + 7y2 = p.

D

(
f ; 1, 2,±1

8

)
≡ D

(
f, 0, 3,−1

4

)
≡ D

(
f, 2, 1,− 1

64

)
(vii)

≡
{

0 mod p if φ(−7) = −1,

φ(7)4x2 mod p if φ(−7) = 1, x2 + 7y2 = p.
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