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Abstract

Storm surge and sea level rise (SLR) are affecting coastal communities, properties, and
ecosystems. While coastal ecosystems, such as wetlands and marshes, have the capacity
to reduce the impacts of storm surge and coastal flooding, the increasing rate of SLR can
induce the transformation and migration of these natural habitats. In this study, we com-
bined coastal storm surge modeling and economic analysis to evaluate the role of natural
habitats in coastal flood protection. We focused on a selected cross-section of three coastal
counties in New Jersey adjacent to the Jacques Cousteau National Estuarine Research
Reserve (JCNERR) that is protected by wetlands and marshes. The coupled coastal hydro-
dynamic and wave models, ADCIRC+SWAN, were applied to simulate flooding from histori-
cal and synthetic storms in the Mid-Atlantic US for current and future SLR scenarios. The
Sea Level Affecting Marshes Model (SLAMM) was used to project the potential migration
and habitat transformation in coastal marshes due to SLR in the year 2050. Furthermore, a
counterfactual land cover approach, in which marshes are converted to open water in the
model, was implemented for each storm scenario in the present and the future to estimate
the amount of flooding that is avoided due to the presence of natural habitats and the subse-
quent reduction in residential property damage. The results indicate that this salt marshes
can reduce up to 14% of both the flood depth and property damage during relatively low
intensity storm events, demonstrating the efficacy of natural flood protection for recurrent
storm events. Monetarily, this translates to the avoidance of up to $13.1 and $32.1 million in
residential property damage in the selected coastal counties during the ‘50-year storm’ sim-
ulation and hurricane Sandy under current sea level conditions, and in the year 2050 SLR
scenario’, respectively. This research suggests that protecting and preserving natural habi-
tats can contribute to enhance coastal resilience.
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Introduction

Coastal flooding from storm surge is a major concern for coastal communities worldwide, and
is expected to increase with potential changes in storm climatology [1] and projected sea level
rise (SLR) [2-7]. The combined impacts of storm surge and SLR are expected to exacerbate the
existing flood protection [8] and amplify property damages in the coastal areas [9]. SLR is also
likely to affect natural habitats in coastal areas, such as wetlands and marshes, through changes
in tidal range, salinity, and sediment supply [10-12]. The global loss in coastal wetlands may
reach 44% by 2080 due to one meter of SLR and human interventions for residential purpose
[13], or as high as 78% by 2100, with 1.1 meters of SLR and maximum coastal dike construc-
tion [14]. The loss in coastal wetlands may worsen the issue of coastal flooding, as these natural
habitats can reduce the impacts of flooding by attenuating storm surge [15-18], mitigating
wave energy [19-21], and stabilizing shorelines [22]. However, the capacity to reduce flooding
impacts varies with the coastal landscape [15], vegetation characteristics [23,24], and soil prop-
erties [25].

The flood protection services are considered to have indirect use values [26], or benefits
derived from ecosystems through supporting and protecting activities [27]. These values
depend on several factors, including flood reduction capacities of the habitats [28], the sur-
rounding population [29], and property values [23]. Several methods can be used to estimate
flood protection service values, including choice experiments [30], replacement cost [31], and
avoided cost [23,28,32]. When assessing these protective services, it is important to address the
complex interactions between storm surges and natural habitats [23], and incorporate the
non-linear nature of the services [33,34]. For example, Barbier et al [23] captured the spatial
variability of coastal landscape and storm surge flooding using a coastal hydrodynamic model
to estimate the marginal value of wetlands flood protection services. Although the study were
conducted on a single coastal transect using only hypothetical storms, the findings showed
that 1% increase in coastal wetlands in Louisiana could reduce property damages by $99 to
$133 for each sub-planning unit (consists of 1,780 households per sub-planning units). A
recent study by Narayan et al. [35] also used high-resolution flood and loss models for 2,000
synthetic storm events to quantify the impacts of coastal wetlands on local annual flood losses
in Barnegat Bay in Ocean County, New Jersey. The results of the study suggest that marsh can
reduce property flood losses by an average of 16% annually. However, one limitation of their
study is that all properties were assumed to be uniformly distributed and identically valued
throughout the study area.

The goal of our study was to estimate the value of flood protection services provided by pro-
tected coastal wetlands and marshes adjacent to the Jacques Cousteau National Estuarine
Research Reserve (JCNERR) to a cross-section of three coastal counties in New Jersey. Addi-
tionally, the study aims to integrate the natural variability of coastal storm surge and impacts
of SLR on the natural habitats into the economic valuation of the flood protection services.
The coupled version of the Advanced Circulation model (ADCIRC) and Simulating Waves
Nearshore model (SWAN) was applied to compute the storm surge flooding for historical and
synthetic storms. The Sea Level Affecting Marshes Model (SLAMM) was used to simulate the
potential changes in the natural habitats, especially coastal wetlands and marshes, due to SLR.
The simulated flood depths were combined with publicly available parcel-level property data
to compute flood damages for the selected storms in both current and future conditions. In
order to quantify the flood protection services, the reduction in damages due to the presence
of the natural habitats are estimated based on the value of protected residential properties.

Coastal flooding from storm surge and SLR are already affecting coastal communities and
ecosystems. Therefore, it is important to develop ecosystem-based flood protection approaches
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that will not only protect these communities, but also the ecosystems that can reduce the
impacts of coastal flooding. In order to implement these approaches, it is essential to quantify
the capacity and value of these natural habitats to protect communities from recurrent coastal
flooding. In addition, it is essential to work closely with the coastal planners and natural
resources area managers to integrate scientific solutions into effective ecosystem management
plans for the reservation and conservation of the natural habitats [36]. This study improves
upon the existing literature in three ways. First, it uses parcel-level property values when esti-
mating avoided damages, which allowed for more spatially explicit results. Additionally, it
accounted for storm wind-driven wave effects, as wave setup can significantly contribute to
the increase in water levels due to hurricanes [37-39]. A recent study [39] suggested that wave
setup contributed to 17% of the peak water level during most of the hurricane events during
1988-2015 in the US coast. Second, this study incorporated SLR and its impacts on coastal
wetlands and marshes to provide a more realistic evaluation of the flood protection service in
future scenarios. Finally, in this study, an interdisciplinary team of coastal engineers, marine
and social scientists collaborated with natural resources managers of the JC NERR to provide
further insights on valuing natural habitats for coastal resilience and support natural habitats
restoration initiatives.

Materials and methods
Study area and Jacques Cousteau National Estuarine Research Reserve

The study area (Fig 1) includes the JCNERR and portions of three surrounding counties:
Ocean County, Burlington County, and Atlantic County. The JCNERR is a protected area with
more than 45,000 hectares of terrestrial and estuarine ecosystems [40]. It is located along the
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Fig 1. Study area, including locations of developed lands and natural habitats. (Base map source: ESRI [42-44]).
https://doi.org/10.1371/journal.pone.0226275.g001
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southeastern coast of New Jersey, encompassing the lower Barnegat Bay, Little Egg Harbor,
Great Bay, and inland back-bays extending up to nine kilometers downstream along the adja-
cent continental shelf of the Atlantic Ocean. Coastal marshes cover more than 28% of the
reserve area [41], where the dominant vegetation types are smooth cordgrass (Spartina alterni-
flora) and salt-meadow cordgrass (S. patens). Although less than 2% of the total area is cur-
rently developed, the adjacent counties are experiencing high development rates and have a
densely populated urban corridor [41]. More than 50% of the JCNERR is bounded by open
water habitats, making the study area vulnerable to coastal flood hazards from storm surge and
SLR.

Coupled storm surge and waves model

The coupled version of the coastal hydrodynamic model, ADCIRC, and the nearshore waves
model, SWAN, was applied to the study area to simulate coastal flooding from storm surge
and waves. ADCIRC is a widely used storm surge model [45-53] that solves shallow water
equations to compute water surface elevation and vertically-integrated momentum equations
to calculate current velocity [54,55]. The wind velocity and atmospheric pressure from hurri-
canes are calculated using the asymmetric hurricane vortex formulation embedded in
ADCIRC to optimize computation of hurricane intensity in the model [56,57]. SWAN is a
third generation wave model that uses the wave action balance equation to compute the full
wave spectrum in the nearshore and offshore regions. In addition to allowing wave propaga-
tion from deep to shallow water areas, SWAN solves important nearshore wave processes,
such as wave breaking, shoaling, refraction, and wind induced wave generation, in space and
time [58]. In the coupled version, both models use the same computational mesh, model
domain, and boundary. When coupled, ADCIRC computes water levels, currents, and wind
information at each computational node to pass to SWAN, which calculates wave radiation
stress and passes it back [59] to ADCIRC as a forcing function for the calculation in the next
time step [38]. To estimate the flood depth, the validated Federal Emergency Management
Agency (FEMA) Region II mesh [60,61] was used in the study area (Fig 2C). The unstructured
mesh focuses on the Mid-Atlantic coastal counties of New Jersey and New York, and contains
more than 0.6 million computational nodes with 30 to 500 meters of inland resolution [62].
Multiple national and regional topographic, shoreline, and bathymetry data sources were used
to create a seamless digital elevation model (DEM) of ten meter resolution for developing the
model elevation. The model domain, which extends from 60°W in the Atlantic Ocean and up
to a 7.6 m inland contour are shown in Fig 2A. Further details about the mesh and terrain
development are provided in the FEMA reports [61-63].

The current land use and land cover (LULC) information is collected from the Coastal
Change Analysis Program (C-CAP) database [64] which represents the wetlands and marshes
as estuarine and palustrine where both types are classified into three sub-categories such as for-
ested, shrub and emergent wetlands. The land cover and land use, and their dissipation mecha-
nism are represented in the model through frictional drag coefficients on the sea bottom and
ocean surface. Manning’s roughness coefficient, or Manning’s N values are used to address
shear stress by different LULC in the sea bottom while the free-surface shear stress is repre-
sented through Surface Canopy Coefficient and Surface Directional Effective Roughness
Length. Based on the previous studies ([37,65-67] that used ADCIRC for storm surge simula-
tion in similar coastal settings, the frictional coefficients are selected for this study. S1 Table
shows the set of frictional parameters used in this study based on the LULC classification by
C-CAP database which categorizes the wetlands and marshes as palustrine or estuarine types.
Additionally, reduction in wind shear stress on the sea surface from vegetated canopies and
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Fig 2. (A) Storm surge and waves model domain; (B) Selected storm tracks, (C) Mesh resolution in the study area (basemap source: ESRI [43,44]).
https:/doi.org/10.1371/journal.pone.0226275.9g002

other land cover is addressed using the Garret’s drag law [68]. More details on the dissipation
mechanisms by LULC can be found in Westerink et al. [69], Ferreira et al. [65] and Atkinson
etal. [66]. Although the representation of vegetated canopies through these frictional parame-
ters, especially Manning’s #, is considered as a suitable practice for modeling storm surge in
coastal landscape [15,35,69,70], they do not explicitly account for vegetation heights, density
or diameter. It is also essential to include wave dissipation and attenuation by vegetation in the
modeling approach [20,21] for better representation of the interactions between storm waves
and wetlands. However, improvement of model parameters and processes is beyond the scope
of our study. Further details about the model forcing and parameters are provided in S1 File.
The historical and synthetic storms were selected based on the recommendations by the
protected area managers to capture variations in coastal flooding in the study area. Hurricane
Sandy (2012), a 400-year storm event, was selected as the historical storm as it is currently the
most catastrophic storm event in the Mid-Atlantic [71]. Two synthetic storms were selected
from the US Army Corps of Engineers (USACE) North Atlantic Coast Comprehensive Study
(NACCS) storm database. The NACCS developed an extensive database of synthetic storms
based on observed records of storm surge and meteorological data for historical storms events
along the US east coast from 1938 to 2013 [72]. Based on the storm surge and wave characteris-
tics within the study area, these synthetic storms have a 4% (“25-year storm”) and 2%
(“50-year storm”) respective probability of occurrence in any given year [72]. In relation to the
study area, both Hurricane Sandy and the selected 25-year storm passed through the study
area, whereas the selected 50-year storm traveled parallel to the shoreline (Fig 2B). The charac-
teristics of the three storm events when passing the study area are summarized in Table 1.

Sea level rise and modeling marsh migration

SLAMM was applied to the study area to project potential changes in natural habitats due to
SLR in the year 2050. The mid-century projection is selected based on the recommendations
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Table 1. Characteristics and intensity of selected storms near the study area.

Storm Event Min Central Max Wind Max Sustained Radius of
Pressure (mb) Speed (kt) Wind Speed (kt) Max Wind (nm)
Sandy 940 100 70 80
50-year storm 970 84 83 22
25-year storm 986 64 63 26

https://doi.org/10.1371/journal.pone.0226275.t001

by the JCNERR managers for the restoration decisions. SLAMM uses coastal elevation, LULC,
tidal and shoreline information, wave action, accretion rate, and the rate of SLR to model local
changes in coastal ecosystems, such as wetland conversions and shoreline modification, from
long term SLR [73-76]. It applies different threshold values for tidal range, salinity, accretion
and proximity to shoreline from previous literature [75] to determine whether coastal marshes
can sustain their elevation relative to sea level or if they will migrate inland, convert into other
land cover, or submerge under the sea.

For the SLAMM model, the LULC data is collected from the United States Fish and Wildlife
Service (USFWS) National Wetlands Inventory (NWI) [77]. For consistency in representing
the projected LULC in ADCIRC+SWAN, the habitats classification from NWI was converted
to C-CAP types using a database description report [75,78,79] and previous literature [80]. A
10 meter resolution DEM was prepared using the US Geological Survey (USGS) National Ele-
vation Dataset [81], and tidal information was collected from the National Oceanic Atmo-
spheric Administration (NOAA) tidal data for New Jersey [82] using the average high tides
from two tidal stations for use in SLAMM. Due to the recommendations by the natural
resources managers of the JC NERR for their habitat restoration initiatives, a 1.7 millimeters
per year of SLR is used based on the International Panel on Climate Change (IPCC)’s Special
Report on Emissions Scenarios A1F1 scenario [83-85]. Kopp et al. [86] also suggested a similar
rate (1.3 + 0.2 mm/yr) of SLR for the coastal region of New Jersey. Additionally, rate of accre-
tion can vary with wetland types, sediment characteristics, tidal range etc.[87]. To the best of
our knowledge, we have not found any literature that suggested specific rates of accretion for
different types of wetlands, and sediment characteristics in our area of interest. Considering
the inadequacy of previous literature on rates of accretion or subsidence in the study area, an
average of 4 millimeters per year of accretion is applied in the model as it is the best accretion
value given for the study area based on previous work done by NOAA’s Coastal Services Cen-
ter [88]. Using the given SLR rate, emission scenario, land elevation, tidal range and accretion,
SLAMM estimated a total 0.1332m of SLR in the year 2050 for our study area. The start date
for the DEM and NWI in the SLAMM model is set to the year 2010. Thus, the study utilized
avaijlable data and recommendations by natural resources managers of the JC NERR based on
their natural habitats restoration initiatives to develop the future scenario. However, it should
be noted that there are uncertainties and limitations in projecting both future SLR and coastal
landscape or salt marshes response to the projected SLR. While SLAMM has been widely
applied to estimate the potential impacts of SLR on coastal wetlands in the US [74,76,89,90], it
is not the most robust modeling tool to predict marsh changes due to SLR. However, there are
trade-offs between collecting long term place-based organic and morphodynamic data, and
simulating marshes responses due to SLR [91]. Therefore, for this study, SLAMM is applied as
it simulates the key processes related to wetlands conversion due to different rates of SLR in a
large region using nominal computational time. Further details about the SLAMM model pro-
cesses can be found in the technical documentation [75].
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Ecosystem service valuation

The damages avoided method [23,35,92] was applied to value the ecosystem service of shore-
line protection to residential properties from natural habitats, specifically coastal wetlands and
marshes. The method considers value of the protected properties as a measure of the flood pro-
tection services provided by the natural habitats. For each storm event and for both current
and future LULC conditions, flood elevations for “habitat present” and “habitat absent” sce-
narios were simulated. In the “habitat absent” scenario, natural habitats were artificially
replaced with open water in the ADCIRC+SWAN model. The estimated difference in residen-
tial flood damages between these two scenarios was used as the value of reduced, or avoided,
damages provided by the natural habitats.

Flood damages were estimated using depth-damage functions from the USACE [93], parcel
level property data from the New Jersey Department of Treasury [94], and mean flood depth
from ADCIRC+SWAN. The simulated maximum flood elevation due to each storm is incor-
porated into ArcGIS using the ArcStormSurge [95] tool to create flood elevation raster for the
study area. The flood depth is then calculated by subtracting the land elevation values (from a
10m resolution DEM for our area of interest) from the flood elevation raster. The damage-
depth functions estimate the expected percentage of property damage for varying levels of
flood depth and property characteristics, such as the property elevation, number of stories,
and whether or not the property was split level. Properties were only included in the damage
estimation if the parcel centroid intersected the flood depth raster [96,97].

This analysis focused on residential parcels and their associated “improvement” value,
which was used as the parcel value [96] for calculating monetary damages. Improvement value
refers to the value of “improvements” made to the land which is usually the building value. Of
the 111,866 residential parcels, 92 were removed from the analysis because they had no infor-
mation on assessed value. An additional 7,847 parcels were removed because they had no
information on the number of stories or whether the building was split-level (inputs required
for the depth-damage functions). This resulted in a total residential parcel population of
103,927 with the information required for analysis. The assessed building values of the parcel
population ranged from $15 to $5, 690,000, with a mean of $151,898, and 80% of the buildings
are valued at $200,000 or less. This wide range of values is expected given that the study area
includes rural inland watershed homes as well as oceanfront homes on barrier islands.

Two additional assumptions were made for analysis: 1) if a parcel had a non-integer num-
ber of stories, then that number was rounded up, 2) the parcel data did not include informa-
tion on the presence or absence of basements, so the more conservative depth-damage
functions for properties without basements were used based on anecdotal evidence concerning
the lack of basements in the study area provided by local partners (Phil Reed, pers. comm.,
2017; Mike Fromosky, pers. comm., 2017).

Results
Potential changes in natural habitats from SLAMM

Results from SLAMM suggest the total marsh area, which includes transitional, regularly, and
irregularly flooded salt marshes, would reduce by about 5.4% in the study area due to SLR and
marsh migration (Table 2). For example, transitional salt marshes and irregularly flooded
marshes are predicted to decrease by around 38% and 36%, respectively, and become regularly
flooded salt marshes, which increase considerably in the future. Additionally, low tidal open
spaces, such as tidal flats, are predicted to increase substantially, which suggests SLR would
cause the wetlands and marshes to migrate inland and convert into tidal flat [12].
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Table 2. SLAMM simulated land cover change within the study area.

Land Cover Type Tidal Current Future Change (%)
(SLAMM) Category Scenario (km?) Scenario (km?)
Developed Dry Land Non-Tidal 1,030.95 1,029.92 -0.10%
Swamp Freshwater 375.56 375.50 -0.02%
Non-Tidal
Cypress Swamp Freshwater 0.01 0.01 0.00%
Non-Tidal
Inland Fresh Marsh Freshwater 15.37 15.34 -0.23%
Non-Tidal
Tidal Fresh Marsh Freshwater Tidal 0.82 0.78 -4.80%
Transitional Salt Marsh Transitional 3.20 2.00 -37.67%
Regularly-flooded Marsh Saltmarsh 23.54 88.18 274.65%
Mangrove Transitional 0.02 0.02 -0.59%
Estuarine Beach Low Tidal 2.65 2.69 1.28%
Tidal Flat Low Tidal 0.53 13.71 2,506.14%
Ocean Beach Low Tidal 4.93 5.00 1.31%
Inland Open Water Open Water 21.17 18.96 -10.46%
Riverine Tidal Open Water 2.73 1.19 -56.36%
Estuarine Open Water Open Water 290.91 294.66 1.29%
Open Ocean Open Water 135.90 135.90 0.00%
Irregularly Flooded Marsh Transitional 212.54 137.10 -35.49%
Inland Shore Freshwater Non-Tidal 0.72 0.72 0.00%
Tidal Swamp Freshwater Tidal 16.56 16.43 -0.76%

https://doi.org/10.1371/journal.pone.0226275.t1002

Reduction in flooding by natural habitats

According to the results from ADCIRC+SWAN, when natural habitats are present, up to
23.1% fewer residential parcels would be inundated under current conditions and up to 3.7%
fewer under future conditions (Table 3). The presence of the natural habitats are also expected
to reduce the mean parcel-level flood depths by a maximum of 4.8% and 13.9% under current
and future conditions respectively. Additionally, the mean proportional property damages can
decrease up to 4.4% under current conditions and up to 4.0% under future conditions due to
the presence of the natural habitats. All of these rate of changes (percent change) are greatest

Table 3. Estimated flood depth and property damage changes from each storm event under current and future scenarios.

25-year storm 50-year storm Sandy
Habitat Habitat % Habitat Habitat % Change Habitat Habitat % Change
Present Absent Change Present Absent Present Absent
Current Scenario
Number of Flooded 3,592 4,423 23.13% 3,932 4,723* 20.12% 46,598 46,820 0.48%
Parcels
Mean Parcel Level flood depth (m) 0.021 0.022 4.76% 0.029 0.03 3.40% 1.055 1.065" 0.95%
Percent of property damage (Mean) 11.4% 11.9%* 4.39% 11.6% 11.7%" 0.86% 32.3% 32.5% 0.62%
2050 SLR Scenario
Number of Flooded Parcels 5,895 5,973 1.32% 15,903 16,490* 3.69% 46,577 47,017* 0.94%
Mean Parcel Level flood depth (m) 0.031 0.033 6.45% 0.202 0.230* 13.86% 1.226 1.246* 1.63%
Percent of property damage (Mean) 11.9% 12.0% 0.84% 15.0% 15.6%" 4.00% 35.3% 35.7%" 1.13%
*Statistically significant increase compared to habitat present scenario at the 95% confidence level
https://doi.org/10.1371/journal.pone.0226275.t003
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Fig 3. Reduction in flooding during Hurricane Sandy due to the presence of natural habitats (basemap source:
ESRI [42,43]).

https://doi.org/10.1371/journal.pone.0226275.9003

under the 25-year storm event under current conditions and under the 50-year storm under
future conditions.

Our results also suggest that the presence of natural habitats can reduce the flood elevation
in the shoreline areas. Fig 3 is an example output from the ADCIRC+SWAN model showing
simulated flooding with and without habitat present under current conditions and a Hurricane
Sandy storm event. Depending on the storm event and sea level rise conditions, presence
coastal wetlands and marshes in the JCNERR can lower the flood elevation by a maximum of
0.2 to 0.4 meters. However, the averaged reduction in flood elevation and depth (elevation is
the height above sea surface and depth is height of the inundation) are relatively low and varies
from 0.03 to 0.06m.

Flood protection value of coastal marshes

Results from the ecosystem service valuation suggest that presence of the natural habitats can
reduce total property damage in the study area up to 13.8% under current conditions and up
to 6.1% in future conditions considering the selected storm events (Table 4). The overall
avoided damage by natural habitats during a single storm event can range from $8,500,000 to
$13,000,000 under current conditions, while the value varies from $1,500,000 to $32,000,000
under 2050 conditions. The percentage changes are highest under the 50-year storm event for
both temporal conditions. However, the flood protection value is highest in terms of absolute
value for the 50-year storm and Hurricane Sandy under current conditions and 2050 condi-
tions, respectively.

Additionally, when comparing per-area benefits, the predicted reduction in property dam-
age due to the presence of natural habitats under future conditions is the highest during the
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Table 4. Estimated parcel level property damages and avoided damages due to the presence of natural habitats.

Property Damage Property Damage Avoided Damage Percent Change
(Habitat Present) (Habitat Absent) (Flood Protection Value) (From Habitat Present)
Current Scenario
25-year storm $82,062,657 $91,894,099 $9,831,442 11.98%
50-year storm $94,888,388 $107,972,822 $13,084,434 13.79%
Sandy $2,322,731,031 $2,331,067,963 $8,336,932 0.36%
2050 SLR Scenario
25-year storm $125,436,468 $126,980,226 $1,543,758 1.23%
50-year storm $329,190,819 $349,122,514 $19,931,695 6.05%
Sandy $2,562,559,835 $2,594,648,892 $32,089,057 1.25%

https://doi.org/10.1371/journal.pone.0226275.1004

Hurricane Sandy event (Fig 4). Results suggest that one square kilometer of natural habitats
can reduce residential property damages in the study area from $34,000 to $53,000 per square
kilometer under current conditions and from $7,000 to $138,000 per square kilometer under
future conditions for the selected storm events. While the per-area value of protective services
for both Sandy and the 50-year storm increased in the SLR scenario, the value decreased for
the 25-year storm.

Discussion

The goal of this study was to estimate the value of flood protection services provided by natural
habitats and provide insights on how these services may alter with SLR. The place based analy-
sis focused on the flood protection services by the coastal wetlands and marshes within and
adjacent to the JCNERR to a cross-section of three coastal counties in New Jersey. The results
show that the natural habitats can protect up to $13.1 and $32.1 million of residential property
damage during the selected storm events in the study area in the current condition and the
future scenario respectively, which suggests that the per square kilometer value of their flood
protection services vary from a maximum of $53,000 to $138,000 under current and future

Per Km?Value of Coastal Marshes Flood Protection Service

5140,000
$120,000

5100,000

$80,000
$60,000
540,000
$20,000
=

50
25 year Storm 25 year storm 2050 50 year S5torm 50 year storm 2050 Sandy Sandy 2050

Fig 4. Estimated unit (km2) value of the flood protection services provided by natural habitats.
https://doi.org/10.1371/journal.pone.0226275.g004
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conditions respectively. In all cases, our results indicate that the presence of wetlands and
marshes reduces the property damage, though the total value varies largely by the storm and
SLR conditions. These results could be due, in part, to the fact that each storm has unique
characteristics from specific track, location, and intensity, and the variation in flood protection
by natural habitats depends on storms track, forward speed and strength [15,69]. Moreover,
the study area includes a range of residential types, from rural inland homes to oceanfront
homes on the Barrier Island, where the building values vary substantially. This indicates that a
parcel-scale analysis is necessary to capture the spatial variation of property values when
assessing the flood protection services of coastal wetlands and marshes.

Our results suggests that the natural habitats can reduce total property damage from storm
surge flooding by 6.1% to 13.8% (Table 4) within the study area, which are highest under the
50-year storm event for both temporal conditions. Although a maximum of 0.2 to 0.4m reduc-
tion in flood depth is found due to the presence of the natural habitats in the JCNERR, the
mean reduction in parcel level flood depth show insignificant changes. Thus, the reduction in
water level due to the presence of natural habitats largely vary with location, local elevation
and geomorphologic features [16,17]. In terms of percent reduction in flood depth and prop-
erty damage, however, the marsh showed higher potential in the 25-year and 50-year storms
than it did in Hurricane Sandy. This indicates higher efficacy of natural flood protection dur-
ing relatively frequent, low intensity storms. These results also support past literature [98] that
demonstrated that there is a threshold effect where wetlands and marsh are predicted to be
more protective under relatively more frequent and less intense storm events. Thus, natural
habitats in coastal areas may provide substantial flood protection during recurrent flooding
events and act as the first line of defense in more extreme storm events like Sandy. As global
warming has the potential to increase storm intensity [99,100], and sea level rise can decrease
total marsh area, the marginal value of natural habitats’ flood protection services may increase
in future.

Additional results suggest that marsh migration and transition will occur due to SLR by
2050, leading to a loss of 5.4% of the total marsh area in the study area. For example, about
one-third of the existing irregularly flooded and transitional marshes in the study area are pre-
dicted to decrease, whereas regularly flooded marsh is predicted to increase almost four-fold.
This indicates the transition and migration of salt marshes, which can be hindered by anthro-
pogenic interventions and socio-economic incentives, such as conversion of wetlands areas
into developed lands, agriculture and aquaculture etc. [12,101]. Additionally, the area of tidal
flats are predicted to increase nearly twenty-six-fold, which can affect the morphology of the
natural habitat areas, as these tidal mud-flats are erosive during storm events [102]. This may
impact the sustainability of the natural habitats since vegetation in the salt marshes can main-
tain their relative elevation to SLR through accumulating organic substance, trapping sedi-
ments [12], and reducing erosion [103]. Moreover, SLAMM model addresses eco-geomorphic
feedbacks in the coastal marshes (which counteracts the impacts of SLR; [101] in a simplified
manner which may overestimate their vulnerability to SLR [104].

One potential limitation of this study is the representation of wave energy dissipation by
vegetation in modeling the interaction between storm surges and natural habitats. While the
coupled version of the hydrodynamic and wave model addresses the loss in energy and
momentum of combined surge and waves by vegetation features, the model does not account
for different plant characteristics and their wave dissipation mechanisms. Although improve-
ments in representing wave dissipation by vegetation can provide a more accurate quantifica-
tion of reduction in surge and waves by vegetation in natural habitats, the implementation of
more advanced wave reduction formulation in this or similar studies will require extensive
field experimentation in different natural habitats under wide range of wave conditions and
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respective model validation. Furthermore, this study used the relative difference between two
scenarios using the same model formulation to estimate the potential of natural habitats to rel-
atively reduce flood depth. Thus, in our study, specific changes in model parameterization will
not affect the analysis of reduction in water level due to the presence of natural habitats. A sec-
ond limitation is that only three storm events were considered, and additional storm simula-
tions would provide more robust and more generalizable results. The results also found large
difference between maximum and average reduction in flood elevation due to presence of the
natural habitats. Thus, our findings emphasize on primary data collection in coastal wetlands
and marshes during storm events for improved quantification of their flood reduction capac-
ity. Finally, the natural habitats provide several ecosystem services beyond flood protection.
This study analyzed only the protection to residential structures, which suggests that these eco-
system service values are conservative estimates.

Conclusion

The results of this study suggest that natural habitats can reduce both storm surge flood depth
and property damage under current and future marsh conditions and under sea level rise. In
particular, the natural habitats may offer better protection from relatively frequent, low inten-
sity storms. These findings suggest that natural habitats can increase resilience in areas that are
vulnerable to storm surge and sea level rise. In addition, the multidisciplinary framework pre-
sented in this study can assist natural resource managers and coastal landscape designers in
the development of sustainable strategies to protect coastal communities, properties, and eco-
systems from storm surge and sea level rise. As coastal flooding from storm surge has become
a rising concern to coastal communities, it is important to develop ecosystem-based flood pro-
tection approaches that will protect both these communities and protective ecosystems. There
is also need for improved understanding about the biophysical interactions between natural
habitats, extreme flooding events, sea level rise, and the sustainability of these natural ecosys-
tems in the future. This study advances the current understanding of coastal ecosystem service
valuation by analyzing the role of natural habitats for flood protection and enhancing coastal
resilience.
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