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There are two major competing procedures for evaluating risky projects where managerial flexibility plays an important role: one is
decision analytic, based on stochastic dynamic programming, and the other is option pricing theory (or contingent claims analysis),
based on the no-arbitrage theory of financial markets. In this paper, we show how these two approaches can be profitably integrated
to evaluate oil properties. We develop and analyze a model of an oil property—either a developed property or a proven but
undeveloped reserve—where production rates and oil prices both vary stochastically over time and, at any time, the decision maker
may terminate production or accelerate production by drilling additional wells. The decision maker is assumed to be risk averse and
can hedge price risks by trading oil futures contracts. We also describe extensions of this model that incorporate additional
uncertainties and options, discuss its use in exploration decisions and in evaluating a portfolio of properties rather than a single
property, and briefly describe other potential applications of this integrated methodology.

Firms routinely make decisions about whether to invest
in risky projects: they must decide whether to invest

some fixed amount today in exchange for an uncertain
stream of future payoffs. For example, oil companies invest
in exploration hoping to find valuable oil reserves. Manu-
facturing firms invest in new facilities and equipment hop-
ing to streamline their future manufacturing operations
and reduce production costs. Pharmaceutical firms invest
in R&D hoping to develop valuable new drugs. These
kinds of investments share three important characteristics:
there is a great deal of uncertainty ex-ante regarding the
value of the project, the firm learns more about the value
of the project as it invests over time and as uncertainties
are resolved, and the firm has a great deal of flexibility to
adapt to this new information. For example, an oil com-
pany may abandon an exploration effort if early results
prove disappointing or if oil prices fall below the levels
required to justify the effort. Similarly, a manufacturing
firm can shift production among facilities in different coun-
tries as exchange rates and demands vary.

Traditional discounted cash flow techniques have trou-
ble evaluating problems with significant managerial flexi-
bility (see, e.g., Myers 1984) and consequently, when
evaluating these kinds of problems, people tend to use
either decision analysis or option pricing (or contingent
claims) methods. In the decision analysis approach, one
values a risky project by constructing a decision tree (or
dynamic program or influence diagram) that describes the
sequence of decisions and uncertainties surrounding the
project. The decision maker’s beliefs about the project are
captured by assessing subjective probabilities for the un-
certainties and preferences for project cash flows are cap-
tured by using some kind of risk-adjusted discount rate or
a utility function. Project values and optimal strategies are

then determined by “rolling back” the tree (i.e., through
stochastic dynamic programming) and calculating expected
values or utilities. This approach has its roots in statistical
decision theory and was developed in the 1960s (see
Howard 1966 and Raiffa 1968 for early discussions, and
see Howard 1988 and Clemen 1996 for recent surveys).

The option pricing approach has its roots in the Black-
Scholes-Merton methods for valuing put and call options
on stock (Black and Scholes 1973, Merton 1973). The ap-
plication of these methods to “real,” as opposed to finan-
cial, projects dates back to Myers (1977) and Ross (1978)
and was popularized by Myers (1984) and Kester (1984)
(see Dixit and Pindyck 1994 for a survey of the current
state-of-the-art). In this approach, rather than determining
project values and optimal strategies using subjective prob-
abilities and utilities, one seeks market-based valuations
and policies that maximize these market values. In partic-
ular, one looks for a portfolio of securities and a trading
strategy that exactly replicates the project’s cash flows in
all future times and all future states. The value of the
project is then given by the current market price of this
replicating portfolio. The fundamental principle underly-
ing this approach is the “no arbitrage” principle or the
so-called “law of one price”: two investments with the
same payoffs at all times and in all states—the project and
the replicating portfolio—must have the same value.

The two approaches have complementary strengths and
weaknesses. The strength of the decision analysis approach
is its generality. The decision analysis paradigm provides a
systematic and logical framework for making all kinds of
decisions—medical treatment decisions, decisions involv-
ing environmental risks, as well as investment decisions of
the kind considered here. Because of the difficulties in
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formulating, assessing and solving complex models, by ne-
cessity, the decision analysis models considered in practice
tend to be narrowly focused on the project at hand without
considering all related decisions and uncertainties. In in-
vestment contexts, the decision analysis models rarely take
into account market opportunities to hedge project risks
by trading securities even though these opportunities may
have an impact on the project values and, more impor-
tantly, on the optimal investment strategies.

In contrast, the option pricing approach pays careful
attention to market opportunities related to the project.
By explicitly constructing a portfolio of securities and a
trading strategy that perfectly replicates the project cash
flows, one determines project values based entirely on ob-
jective market information: all decision makers who are
risk-averse (and have access to the relevant securities mar-
kets) will agree on project values and strategies regardless
of their subjective beliefs and preferences. The weakness
of the option pricing approach is its lack of generality. In
order to determine a unique project value, one must be
able to find a portfolio and trading strategy that perfectly
replicates the project’s cash flows. This “completeness” as-
sumption is quite reasonable when valuing put or call op-
tions on a stock (or other derivative securities) as one can
replicate the payoff of the put or call option by trading the
underlying stock and a risk-free bond, but seems unrealis-
tic for most real projects. For example, when valuing an oil
property, it is reasonable to assume that price risks can be
hedged by trading oil futures contracts, but it seems unrea-
sonable to assume that reservoir-specific uncertainties, like
production rate risks, can be hedged by trading securities.

Provided certain market and preference conditions are
satisfied, the option pricing and decision analysis ap-
proaches can be profitably integrated. The theory underly-
ing this integrated valuation procedure is developed in
Smith and Nau (1995) and Smith (1996). Like the decision
analysis approach, it is applicable in situations where
some, none, or all project risks can be hedged by trading
securities. Like the option pricing approach, it reduces the
number of assessments required: one need not assess
probabilities for market uncertainties (like oil price risks)
and need not assess a full utility function. While Smith and
Nau (1995) and Smith (1996) demonstrate this integrated
procedure using simple examples, our primary goal in this
paper is to apply this integrated procedure on a real and
complex problem involving the valuation and management
of oil properties. A secondary goal is to demonstrate the
use of this integrated procedure in continuous-time mod-
els like those typically considered in the real options
literature.

The problem of evaluating oil and gas investments is a
natural place to first apply the technique. Historically, it is
one of the areas where decision analysis methods were first
applied (see Grayson 1960) and remains an area where
decision analysis methods are heavily used (see Newen-
dorp 1975 for an early survey and Keefer 1991 for a recent
study). It is also one of the areas where option pricing

methods were first applied in nonfinancial applications
(see Brennan and Schwartz 1985, Paddock et al. 1988,
Lehman 1989 for early applications; see Lohrenz and
Dickens 1993 and Kemna 1993 for recent reviews). In
these applications, the decision analysis evaluations have
typically neglected market opportunities for hedging price
risks, and the option pricing evaluations have typically ne-
glected nonfinancial risks, such as production rate uncer-
tainty. In practice both of these risks are important and
management has a great deal of flexibility to adapt as these
uncertainties are resolved.

The paper is organized as follows. In Section 1, we re-
view the assumptions and rationale underlying this inte-
grated valuation procedure as well as the mechanics of the
procedure. In Section 2, we consider a model, based on
that of Olsen and Stensland (1988) and Clarke and Reed
(1990), where the production capacity is fixed in that there
are a fixed number of wells at the site. Production rates
and oil prices vary continuously and stochastically over
time and the property may be abandoned at any time. The
decision maker is risk averse and can hedge price risks by
trading oil futures contracts but cannot hedge production-
rate risks. We use the integrated procedure to determine
the value of the property (as a function of the current
production rate and oil price) and the optimal policy for
abandonment. We then use it to evaluate an actual prop-
erty located in the Permian Basin in west Texas.

In Section 3, we extend this model and give the decision
maker the option to drill additional wells to accelerate
production from the reservoir, again applying the model to
the Permian Basin property. As this model includes the
case where no wells are currently producing, it can be used
to evaluate the decision to develop a proven reserve. In
Section 4, we show how the model can be extended to
incorporate additional uncertainties (production costs and
basis risks) and additional options (the option to tempo-
rarily suspend production), and describe how this model
might be used in exploration and portfolio contexts. In
Section 5, we conclude by comparing our results with more
conventional procedures and discussing other potential ap-
plications of this integrated valuation procedure.

1. THE INTEGRATED VALUATION PROCEDURE

The basic idea of the integrated valuation procedure is to
use option pricing methods to value risks that can be
hedged by trading existing securities and decision analysis
procedures to value risks that cannot be hedged by trading.
In this section, we briefly describe this valuation proce-
dure, referring the reader to Smith and Nau (1995) and
Smith (1996) for more detailed and formal discussions,
including proofs of the results summarized in this section.

1.1. Basic Framework

Our analysis focuses on modeling the beliefs, preferences,
and decisions of a single agent, which we will refer to as
the decision maker; this decision maker may represent an
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individual or, as is standard in the decision analysis litera-
ture, a firm or corporation. The valuation procedure has
been developed in a discrete-time, finite-horizon frame-
work where uncertainties are resolved and trading takes
place at times t 5 0, 1, . . . , T. The decision maker’s state
of information at each time t is denoted by ^t, formally
modeled as elements of a filtration on a suitably defined
probability space. The decision maker’s beliefs are cap-
tured by subjective probabilities on this space and his goal
is to maximize his expected utility for consumption.

The decision maker has access to two kinds of invest-
ments: projects and securities. What distinguishes projects
and securities is that projects, unlike securities, are lumpy,
all-or-nothing type investments that are not traded. We
imagine these projects as resulting from unique patents,
land or resource rights, technical knowledge, reputation,
market position, etc. that are owned (or potentially
owned) by the decision maker. In contrast, we will assume
that the decision maker may buy or sell as many shares of
securities as desired at market prices without incurring any
transactions costs. Similarly, we will assume that the deci-
sion maker may borrow and lend in any desired amount at
a risk-free interest rate equal to r (r . 0). This is formally
modeled by assuming the existence of a risk-free security
whose time t price is given by (1 1 r)t.

The decision maker’s problem is to choose (and man-
age) projects and trade securities so as to maximize his
expected utility of consumption. Provided certain prefer-
ence and market restrictions are satisfied, we can separate
this grand problem into simpler investment and financing
problems, that focus exclusively on the project at hand and
exclusively on securities, respectively. We can illustrate this
separation result by previewing the model developed in
detail later in this paper. The grand problem is illustrated

in Figure 1. In each period, the decision maker decides
how to manage the oil property (in Section 2, whether to
abandon it; in Section 3, whether to drill additional wells
or abandon) and how to invest in securities; specifically
how many oil futures contracts and shares of the risk-free
security to buy. The net cash flows to the decision maker
are the sum of the cash flows generated by the oil property
and those generated by trading. The oil cash flows depend
on the market price for oil and the production rate at the
site, both of which vary stochastically over time, as well as
the production decisions. The trading cash flows depend
only on the oil prices and the trading decisions.

We solve this problem by decomposing it into two parts.
In the investment problem, we focus exclusively on the oil
property and decisions and uncertainties related to the
property (i.e., the top half of Figure 1) and use the inte-
grated valuation procedure to determine the value of the
property and the optimal project management strategy. In
the financing problem, we ignore the project and focus
exclusively on investments in securities (i.e., the bottom
half of the Figure 1). The solution to the grand problem is
given by composing the solution to these two subproblems:
one manages the project according to the solution to the
investment problem and invests in securities according to
the solution to the financing problem. After describing the
necessary market and preference restrictions in Section
1.2, we describe the integrated valuation procedure in Sec-
tion 1.3.

1.2. Market and Preference Restrictions

In order to apply this integrated valuation procedure, we
must place some restrictions on the form of the decision
maker’s utility function and on the structure of the securi-
ties market. In particular, we assume that the decision

Figure 1. The grand model.
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maker’s preferences for consumption x(t) can be repre-
sented by a utility function that is a weighted sum of expo-
nential utilities for individual period cash flows,

U~ x~0!, x~1!, . . . , x~T !! 5 2O
t50

T

k~t! exp~2 x~t!/r~t!! ,

(1)

where r(t) . 0 denotes the decision maker’s period-t risk
tolerance and k(t) describes the decision maker’s time
preference. The exponential form is often used in practice
(see Howard 1988), and, though restrictive, it is necessary
in order to be able to separate project and securities in-
vestment decisions. Moreover, this form of utility function
may be seen as an approximation to a more complex
“true” utility function (see Smith 1996).

We make three assumptions about the securities market.
First, we assume that the securities market is arbitrage-free
in that the decision maker cannot make profits without
investing some money or taking some risks: there is no
“easy money” to be made in securities trading.

Second, we assume that the securities market is partially
complete in that the uncertainties in the model can be
categorized as either market or private uncertainties. The
market uncertainties are risks that can be perfectly hedged
by trading securities. For example in our oil property
model, future oil prices are market uncertainties: if oil
prices were the only uncertainty, we could exactly replicate
the property’s cash flows by buying and selling oil futures
contracts and shares of the risk-free security. Private un-
certainties, on the other hand, are risks that cannot be
perfectly hedged by trading. In the example, production
rates are a private uncertainty as there are no securities
whose payoffs are tied to the production rate at this partic-
ular site. We can formalize these market assumptions by
defining a market state of information (or filtration) ^t

m,
(^t

m # ^t,) that represents the market risks resolved by
time t. We assume that the decision maker can perfectly
hedge these market risks.

Finally, we must assume that the market is efficient in
that, given the current security prices, the decision maker
believes that future security prices are independent of the
current private information. While in our example we as-
sume that production rates and oil prices are independent,
in general contemporaneous market and private uncertain-
ties may be dependent. For example, in agriculture or tim-
ber applications, the production rates (yields) on a farm or
in a forest may be correlated with market prices as the
weather may affect both simultaneously.

These market assumptions are sufficient to ensure the
existence of a “risk-neutral” distribution such that the cur-
rent market price s(0) of a security generating a (random)
dividend stream (c(0), c(1), . . . , c(T)) is given by

s~0! 5 O
t50

T E*@c~t!#

~1 1 r! t
, (2)

where E* denotes expectations calculated using this risk-
neutral distribution and r is the risk-free rate (see Harrison
and Kreps 1979). These risk-neutral probabilities will be
unique if and only if the market is complete in that every
project risk can be perfectly hedged by trading existing
securities. If the market is complete, we can infer these
risk-neutral probabilities from market prices of existing
securities and then use Equation (2) to determine the mar-
ket value of any project—this is the so-called “risk-neutral
procedure” for solving option pricing problems. In our
case, we do not assume completeness and thus cannot
determine project values using this risk-neutral procedure.
We can, however, determine unique risk-neutral probabil-
ities for market events (e.g., events in ^t

m), and we will use
these risk-neutral probabilities in the integrated valuation
procedure.

1.3. Integrated Valuation Procedure

The basic idea of the integrated valuation procedure is to
use subjective beliefs and preferences to determine project
values conditioned on the occurrence of a particular mar-
ket state and then use the risk-neutral valuation procedure
(e.g., Equation (2)) to evaluate these market-state contin-
gent cash flows. The procedure can be described using the
following modification of the standard dynamic program-
ming “rollback” procedure. Given a project with cash flows
(c(0), c(1), . . . , c(T)), the terminal value of the project is
just the time T cash flows, e.g., v(T) 5 c(T). At earlier
times t (given state of information ^t), the value of the
project v(t) is given by

v~t! 5 c~t!

1
1

~1 1 r!
E*[ECEt11 @v~t 1 1! u^ t11

m , ^ t # u^ t ]. (3)

This recursion can be broken into three steps:

STEP 1. First, calculate the effective certainty equivalent,
ECEt11[—], by taking expectations over period-t’s private
uncertainties, conditioned on the outcome of that period’s
market uncertainties. These effective certainty equivalents
are calculated using an exponential utility function with an
effective risk tolerance equal to the sum of the decision
maker’s discounted future risk tolerances:

ECEt11 @v~t 1 1! u^ t11
m , ^ t #

; 2R t11 ln~E@exp ~2v~t 1 1!/R t11 ! u^ t11
m , ^ t #!

and

R t ; O
t5t

T r t

~1 1 r! t2t
.

STEP 2. Take expectations over the period-t market un-
certainties, E*[—], using risk-neutral probabilities condi-
tioned on the time-t state of information.

STEP 3. Discount at the risk-free rate and add in the
period cash flows.
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Intuitively, the first step of the procedure reduces a prob-
lem with incomplete markets to an equivalent one with
complete markets; the summing of future risk tolerances
reflects the decision maker’s ability to spread a risk taken
in one period across all future periods. The second and
third steps implement the standard risk-neutral valuation
procedure (e.g., Equation (2)) for complete markets. One
can incorporate decision variables in this recursion in the
same way as the standard dynamic programming proce-
dure: in each period t, the decision maker selects alterna-
tives to maximize v(t). While this integrated valuation
procedure has been developed in discrete time with a finite
horizon, we consider its limiting behavior in Section 2 in
order to evaluate the continuous-time infinite-horizon
model developed there.

In evaluating projects using this integrated valuation
procedure, we do not need the decision maker’s probabil-
ities for the market uncertainties or his time preferences
k(t). This independence is a reflection of the borrowing,
lending and trading decisions lurking in the background:
the decision maker borrows and lends and places bets in
the securities markets so as to bring his preferences for
incremental market-state-contingent cash flows into align-
ment with market prices. We would need these probabili-
ties and time preferences to solve the financing problem
and determine the optimal securities investments.

The justification for the values generated by this inte-
grated valuation procedure is provided by the previously
mentioned Separation Theorem: the projects and project
management strategies that are optimal for the grand
problem (e.g., Figure 1) are precisely those that maximize
this definition of value. Since the investor is indifferent
between two strategies with the same value, we can also
interpret these project values as the project’s present
certainty-equivalent value: the investor is indifferent be-
tween undertaking the project and receiving v(0) as a
lump-sum for certain at time 0.

2. A FIXED PRODUCTION CAPACITY MODEL

To illustrate the use of the integrated valuation procedure
in a real and complex example, we now turn to specific
models of oil producing properties. We begin by consider-
ing a model where the number of wells producing at the
site is fixed and the decision maker has the option to
abandon the site at any time; production rates and oil
prices are both uncertain. The problem is to determine the
value of the property and the optimal policy for abandon-
ing the property. This model is based on Olsen and Stens-
land (1988) and Clarke and Reed (1990), who analyzed
this model using standard dynamic programming tech-
niques without taking into account the decision maker’s
opportunities to hedge oil price risks or the decision mak-
er’s attitude towards risk. The model is formulated in con-
tinuous time with an infinite horizon.

2.1. The Reservoir Model

The structure of our model is illustrated in the influence
diagram of Figure 1. We consider a property that consists
of a single reservoir that is actively being produced, where
the oil is sold at spot market prices. Though the current
production rates and prices are known, the future produc-
tion rates and prices are uncertain. At any time, the deci-
sion maker may continue production or may pay a one-
time shutdown cost to permanently and irreversibly
abandon the property. To formalize this model, we define:

p(t) [ the oil price per barrel at time t,
q(t) [ the production rate at time t,

co [ fixed operating cost rate (assumed constant
over time),

ca [ one-time cost of abandoning the property,
and

1 2 g [ royalties, taxes and variable costs as a
proportion of revenues generated.

The instantaneous net cash flow generated at time t is then
given by

c~t! ; gp~t!q~t! 2 c o . (5)

We will assume that the operating costs (co) are nonnega-
tive, but will allow both positive or negative abandonment
costs. A negative abandonment cost might arise if the
scrap value for equipment at the site exceeds the other
costs associated with abandonment.

Production rates and oil prices both vary stochastically
over time following a random walk. Specifically, we assume
that oil prices p(t) and production rates q(t) follow geo-
metric Brownian motion processes, with parameters (mp,
sp) and (mq, sq) representing the expected rate of change
and volatility of the two processes:

dp~t! 5 m p p~t! dt 1 s p p~t! dz p ~t!, (6a)

dq~t! 5 2m q q~t! dt 1 s q q~t! dz q ~t!, (6b)

where dzq and dzp represent independent increments of
standard Brownian motion processes. The current values,
p(0) and q(0), are assumed to be known. The geometric
Brownian motion model of spot prices is standard in the
real options literature (see, for example Brennan and
Schwartz 1985 or Dixit and Pindyck 1994). Given p(0),
(6a) implies that ln( p(t)/p(0)) is normally distributed with
mean (mp 2 sp

2/2)t and variance sp
2t. As a log-normal

random variable, p(t) has mean p(0) exp(mpt) and variance
p(0)2 exp(2mpt)(exp(sp

2t) 2 1).
The marginal distributions for production rates are sim-

ilar, and in particular, the expected production at time t is
given by q(0) exp(2mqt); thus the stochastic process (6b)
generalizes the exponential decline curve that is commonly
used in petroleum engineering (see, e.g., Garb and Smith
1987). The exponential decline curve is an exact model of
production rates when the production rates are propor-
tional to the difference between reservoir and surface pres-
sures and the reservoir pressure decreases in proportion to
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the amount of oil (or gas) produced. The stochastic pro-
cess (6b) generalizes this exponential model by allowing
unpredictable deviations in these constants of proportion-
ality. We will assume that mq . 0, so production rates
decline in mean over time.

Since prices and production rates enter into the cash
flow Equation (5) as a revenue rate, we can greatly sim-
plify our model by combining the stochastic processes for
prices and production rates into a single process for reve-
nue. Let x(t) [ p(t)q(t) denote the revenue rate. Then
x(t) follows a stochastic process described by

dx~t! 5 m x x~t! dt 1 s x x~t! dz x ~t! ,

where mx [ (mp 2 mq), sx
2 [ sp

2 1 sq
2, and dzx(t) denotes

increments of a standard Brownian motion process. We
can then write the cash flows (Equation (5)) as a function
of revenue rate as c(x) [ gx 2 co, and, as we will see, we
can describe the value of the property and the abandon-
ment policy as a univariate function of the revenue rate,
rather than a bivariate function of the production rate and
oil price.

2.2. Securities

We will assume that there are two securities available, a
risk-free security and an oil futures contract. The risk-free
security is assumed to have a time-t price of e2rt where r is
the risk-free rate. The oil futures contract guarantees de-
livery of one barrel of oil at time t for a specified “futures
price” that is paid at delivery. To value these futures con-
tracts, we need to make some assumptions concerning the
“convenience yield” associated with oil. This convenience
yield represents the value of the benefits (net of storage
costs) to actually holding oil in inventory as opposed to
holding a futures contract and can be thought of as being
analogous to dividends paid on a stock. As is common in
the real-options literature (see Brennan and Schwartz 1985
and Dixit and Pindyck 1994), we will assume that the con-
venience yield is proportional to the spot price of oil and
given by kp(t). Arbitrage arguments then imply that the
time-t futures price is given by p(t)e(r2k)(t2t), independent
of the stochastic process of the spot price (see Ross 1978).
In practice, the convenience yield k is estimated from cur-
rent futures and spot prices.

These two securities are sufficient to give partially com-
plete markets: any project whose payoffs are a determinis-
tic function of oil prices can be replicated by trading oil
futures contracts and the risk-free security. This implies
the existence of a unique risk-neutral oil price process,
p*(t):

dp*~t! 5 m*p p*~t! dt 1 s p p*~t! dz p ~t! ,

where m*p [ r 2 k and p*(0) [ p(0) (see Harrison and
Kreps 1979), and a combined revenue process that inte-
grates the risk-neutral price process and subjective produc-
tion rate process given by:

dx*~t! 5 m*x x*~t! dt 1 s x x*~t! dz x ~t! , (7)

where m*x [ (m*p 2 mq) and x*(0) [ p(0)q(0).

2.3. Preferences

Finally, we will assume that the decision maker’s prefer-
ences for a net cash flow stream c(t), the sum of produc-
tion and trading cash flows, is given by a utility function of
the form of (1), generalized to continuous time and an
infinite-horizon:

U~c~t!! 5 2#
t50

`

k~t! exp~2c~t!/r~t!! dt .

The decision maker’s preferences are thus additive over
time and exhibit constant absolute risk aversion in each
period with instantaneous risk tolerance r(t). We will as-
sume that r(t) is a constant r over time.

2.4. Valuation

Having described our model, we now use the integrated
valuation procedure to determine the value of the property
and the optimal policy for abandonment. Our model is
formulated in continuous time with an infinite horizon, but
since the valuation procedure is developed in discrete time
with a finite horizon, we will evaluate the model by taking
the limit of discrete-time finite-horizon approximations of
the continuous-time model. Specifically, we will approxi-
mate the continuous-time price and production rate pro-
cesses with discrete binomial processes and take the limit
as the time interval and step size are reduced to zero.
These “binomial tree” approximations are standard in the
option pricing literature and were introduced by Cox et al.
(1979) (see also the discussion in Dixit and Pindyck 1994).

Let h represent the length of a discrete time step, let T
(5 Nh for some integer N) denote the horizon, and let
vT,h(t, x) denote the approximate value of the property at
time t given revenue rate x [ x(t) 5 p(t)q(t). We construct
our approximate model by assuming that prices, produc-
tion rates, and policies remain fixed over finite time inter-
vals of length h. We assume that the property must be
abandoned at the end of the horizon (time T) and take
vT,h(T, x) 5 2ca, for all x. In earlier times (t 5 0, h, 2h,
. . . , T 2 h), the decision maker chooses whether to aban-
don the property or continue production. Abandonment
results in an immediate and final receipt of 2ca and con-
tinuation results in a value equal to the sum of this peri-
od’s cash flow and the discounted “expected certainty
equivalent” of next period’s value. The value at time t is
then given by Equation (3) as

v T,h ~t, x!

5 max $2c a , c~ x!h 1 e 2rh E*

@ECEt1h @

vT,h ~t 1 h, x~t 1 h!!up~t 1 h!, q~t!#up~t!, q~t!#%. (8)
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Here the effective certainty equivalent, ECEt1h[—], is
taken with respect to the subjective production rate pro-
cess, given next period’s prices and this period’s produc-
tion rates, and the expected value, E*[—], is taken with
respect to the risk-neutral price process, given current
prices and production rates. As in Equation (3), the effec-
tive certainty equivalents in (8) are computed using an
exponential utility function with an effective risk tolerance
Rt 5 ¥t5t

T e2r(t2t)rh.
The exact solution to our problem is given by taking the

limit as the horizon T recedes to infinity and the step size h
is reduced to zero. In this limit, the ECEt1h[—] operator
approaches a limiting stationary form, ECE[—], where the
effective certainty equivalents are calculated using an ef-
fective risk tolerance R 5 *t50

` re2rt dt 5 r/r. The policies
and value functions also approach limiting stationary
forms that can be characterized as follows.

Proposition 1. (a) As T 3 ` and h 3 0, vT,h(0, x) con-
verges ( pointwise) to a function v(x) that is continuous,
nondecreasing, and satisfies

rv~ x! 5 max $ 2 rc a , c~ x! 1
1
dt E*[ECE@dv~ x!##% , (9)

where (1/dt) E*[ECE[dv(x)]] 5 limh30 (1/h) E*[ECE[
v(x(t 1 h)) 2 v(x(t))up(t 1 h), q(t)]up(t), q(t)].

(b) If it is cheaper to operate indefinitely than it is to
abandon (i.e., if co/r ¶ ca), then it is never optimal to
abandon the property and we have v(0) 5 2co/r. Otherwise,
the optimal policy is to abandon the property the first time the
revenue rate drops below some threshold x*a . 0 and, at this
threshold, we have v(x*a) 5 2ca and v9(x*a) 5 0.

In the risk-neutral case (r 5 `), the results of the propo-
sition follow from standard dynamic programming results
for the “optimal stopping problem.” In the risk-averse
case, the recursion in (8) is not the standard dynamic pro-
gramming recursion, but we can adapt the standard dy-
namic programming arguments to cover this case as well.
A proof of this proposition is given in the appendix.

The recursion of part (a) of the proposition is a contin-
uous time analog of Bellman’s equation that reflects the
definition of v(x) as the present certainty equivalent value
of the property. On the left side, we have the return the
decision maker would earn if he received the lump-sum
value of the property and invested it in risk-free bonds. On
the right side, the first term in the maximization is the
return from immediately abandoning the property, as if
this money were borrowed at the risk-free rate. The sec-
ond term is the expected total return from holding the
property and is given by the sum of the return generated
by producing at the site and the rate of change in the value
of the property. The decision maker chooses a production
plan to maximize return, taking into account the conse-
quences for future values, as well as the current cash flow
rates. The condition on the derivative of the value function
at the abandonment is commonly referred to as the
“smooth pasting” condition and can be interpreted as a

first order condition for optimality that equates the mar-
ginal values on either side of the abandonment threshold
(see Dixit and Pindyck 1994 for a nice discussion of these
conditions).

We can further characterize the solution by developing a
differential equation that describes the value of the prop-
erty when it is producing. Since the sample paths for p(t)
and q(t) are continuous, for a small time interval h, the
gamble in going from q(t) to q(t 1 h) is small and, follow-
ing Pratt (1964), we can write the effective certainty equiv-
alent as

ECE@v~ x~t 1 h!! up~t 1 h!, q~t!#

5 E@v~ x~t 1 h!! up~t 1 h!, q~t!#

2
1

2 R Var@v~ x~t 1 h!! up~t 1 h!, q~t!# 1 o~h! ,

where R 5 r/r denotes the effective risk-tolerance and
o(h) denotes an error of order smaller than h. Then, ap-
plying standard techniques from stochastic calculus (spe-
cifically Ito’s Lemma; see the appendix), we can show that
the value function satisfies a differential equation of the
form:

c~ x! 5 rv~ x! 2 m*x xv9~ x! 2
1
2 s x

2x 2v0~ x!

1
1

2 R s q
2x 2v9~ x! 2. (10)

In the case where the investor is risk-neutral (i.e., r 5 R 5
`), this differential equation is linear and we can write an
explicit formula for the solution as

v~ x! 5 a 1 ~ x! u1 1 a 2 ~ x! u2 1
gx

r 2 m*x
2

c o

r , (11)

where

u i 5
2 ~2m*x 2 s x

2! 6 Î~2m*x 2 s x
2! 2 1 8rs x

2

2s x
2 ,

u 1 , 0 , u 2 ,

and the parameters a1 and a2 are chosen to satisfy the
boundary conditions described below. In the risk-averse
case (r, R . 0), the differential Equation (10) is nonlinear,
and we cannot write an explicit formula for the solution.

To completely determine the value function, we need to
specify boundary conditions that depend on the policy for
abandoning the property. If abandonment is not feasible
or never attractive (i.e., if co/r ¶ ca), then in the risk-
neutral case, the value function can be expressed analyti-
cally as

v~ x! 5 E*F #
t50

`

e 2rtc~ x~t!! dtG
5 #

t50

`

E*@e 2rtc~ x~t!!# dt 5
gx

r 2 m*s
2

c o

r . (12)

So, in this case, a1 5 a2 5 0 in Equation (11). If abandon-
ment is feasible and at some point attractive (i.e., if co/r .
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ca), as the revenue rate increases, abandonment gets
pushed further and further into the future and the value
with the abandonment option approaches the value with-
out the abandonment option. In the risk-neutral case, this
then implies that a2 5 0 in Equation (11); using the
boundary conditions from part (b) of Proposition 1, we
then have

x*a 5 ~c o /r 2 c a !S r 2 m*x
g

D S u 1

u 1 2 1D , and (13a)

a 1 5 S 2g
r 2 m*x

D S x*a ~12u1 !

u 1
D . (13b)

In the risk-averse case, we cannot write an explicit formula
for the value function even in the no-abandonment case
and must appeal to asymptotic results to provide the final
boundary conditions. Here we find that asymptotically the
value function grows in proportion to =x (this may be
verified by substituting into Equation (10)). With the
smooth pasting conditions, this leads to the following three
boundary conditions for (10) in the risk-averse case with
abandonment,

v~ x*a ! 5 2c a , (14a)

v9~ x*a ! 5 0, and (14b)

lim
x3`

v9~ x! 5 0. (14c)

Using these conditions, along with the differential Equa-
tion (10), we may solve for x*a and v(x). If abandonment is
not feasible or never desirable, we substitute v(0) 5 2co/r
for (14a) and (14b) and solve for v(x). Numerical methods
for solving these kinds of “two point boundary value prob-
lems” are described in Press et al. (1986).

2.5. Numerical Results

To demonstrate the model, we apply it on an actual prop-
erty located in the Permian basin in west Texas. The prop-
erty consists of a single reservoir and was developed about
five years ago. It is currently operating with 35 wells, pro-
ducing a total of 600 barrels per day. Production is ex-
pected to decline (mq) at approximately 10 percent a year;
the volatility in decline (sq) is assumed to be 3 percent per
year. The operating costs are $20 per day per well. The
royalty rate is a standard one-eighth of revenues; sever-
ance and ad valorem taxes represent a total of 7.5 percent
of revenues. Because of differences in the quality of crude
produced, oil produced at this site sells for less than the
standard West Texas Intermediate (WTI) price; this differ-
ence is currently $1.50 per barrel with WTI at $18.00 per
barrel. Assuming this quality differential remains a con-
stant fraction of the WTI price and taking into account
royalties, severance and ad valorem taxes, we have g 5
7/8 3 (1 2 .075) 3 (18.00 2 1.50)/18.00 5 74.192 percent.
The abandonment costs are estimated at $10,000 per well.
These values are summarized in Table I.

Our oil price assumptions are based on Gibson and
Schwartz (1991), which estimates volatility (sp 5 33 per-

cent per year) and convenience yield (k 5 7.7 percent per
year) from spot, futures, and options prices over the 1986–
1988 timeframe. We do not need to make any assumptions
about the mean price growth rate (mp) for this analysis.
We take the risk-free rate to be 0.5 percent per year; this
represents the average real (inflation-adjusted) return on
U.S. Treasury Bills from 1925–1993 as given by Ibbotson
Associates (1993). In this analysis, we use the real risk-free
rate as all of the operating and abandonment costs are
assumed to grow with inflation and are stated in constant
1995 dollars.

Figure 2 shows results for a risk-neutral decision maker
(R 5 `) and for a risk-averse decision maker with an
effective risk-tolerance R 5 $1.0M. Here we see, for exam-
ple, that given current conditions (prices at $18 per barrel
and production at 600 barrels a day), we have an annual
revenue rate of $3.942M per year and the property would
be worth $12.211M to a risk-neutral decision maker and
$11.508M to the risk-averse decision maker. In both cases,
the value function, v(x), starts as a constant 2ca and re-
mains constant until we reach the critical revenue rate x*a.
After x*a, v increases, starting as a convex function of the
revenue rate and then, in the risk-averse case, switches to a
concave function. In the risk-neutral case, v remains con-
vex and approaches linearity. The risk-averse values are
less than the risk-neutral values; the risk premium, given
by the difference between the risk-neutral and risk-averse
values, increases with the revenue rate.

The critical revenue rate (x*a) is approximately $260,000
per year in both the risk-neutral and risk-averse cases with
the risk-neutral threshold being slightly lower than the
risk-averse threshold ($259,699 vs. $260,037). Thus, the
optimal policy calls for continuous monitoring of the reve-
nue rate and abandoning the property the first time this
rate drops below $260,000. For example, given a WTI
price of $18 per barrel, the decision maker would not
abandon the property until production fell to 39.5 barrels
per day. Or, given production of 600 barrels a day, the
decision maker would continue production as long as WTI
prices exceed $1.19 per barrel. In both the risk-neutral and
risk-averse cases, the after-tax and royalty revenue rate at

Table I
Parameter Values for Example

Parameter Symbol Value

Costs
Royalty and Tax Rate (1 2 g) 25.807%
Fixed Operating Costs co $255,500/year
Cost to Abandon ca $350,000

Production Rates
Mean Decline Rate mq 10.0% per year
Std. Dev. of Decline sq 2.0% per year

Oil Prices
Mean Growth Rate mq —
Std. Dev. of Oil Price sp 33.0% per year

Markets
Risk-Free Rate r 0.5% per year
Convenience Yield k 7.7% per year

205SMITH AND MCCARDLE /



the threshold, gx*a (5 $192,677 per year in the risk-neutral
case) is less than the fixed operating costs (co 5 $255,500
per year). Thus, it is optimal to operate at a loss, up to a
point, in order to capture the potential upside associated
with higher future revenue rates.

To illustrate the value of flexibility in the abandonment
decision, we compare the results given by using the opti-
mal policy to those given by two nonoptimal policies. First,
we consider a policy where the abandonment time is fixed
in advance. Though this kind of policy is rarely used in
making the actual abandonment decision, this form is of-
ten implicitly assumed in studies that use fixed production
forecasts (see, e.g., Lehman 1989). In this case, if we as-
sume risk neutrality, we can write an explicit formula for
the value of the property given a fixed time T of abandon-
ment as in Equation (12):

E*F #
t50

T

e 2rtc~ x~t!! dtG
5

gx
r 2 m*x

~1 2 e 2~r2m*x !T! 2
c o

r ~1 2 e 2rT! .

One might select the abandonment time T to maximize
this value, given a particular current revenue rate. For
example using the parameters of Table I and a current
revenue rate of $3.942M per year, we find an optimal fixed
abandonment time of 14.17 years. In this case, this fixed
policy leads to a current value (for a risk-neutral decision
maker) of $11.683M as compared to a value of $12.211M
given by using the optimal policy. Here, and in general, the
common approach of using a fixed abandonment time un-
derestimates the value of a property by failing to take into
account the uncertainty in future prices and production
rates and the flexibility embedded in the abandonment
decisions.

Another simple, nonoptimal policy that is commonly
used in practice is to abandon the property when marginal
revenues fall below the marginal costs of continued opera-

tion; such a policy is “myopic” in that it does not look
ahead and consider the value associated with continued
operation and, in particular, the option value associated
with the possibility of future price increases. Examining
Equation (9), the myopic policy is given by abandoning
when the (after royalty and tax) marginal revenue rate, gx,
is less than the marginal costs of continued operation, co 2
rca; the second term reflects interest earned by deferring
the abandonment decision. We can solve for the values
associated with this policy by replacing the optimal aban-
donment threshold x*a in Equations (13) and (14) with the
myopic threshold (co 2 rca)/g. Using the assumptions of
Table I, we find that in the risk-neutral case the myopic
policy calls for shutdown at a revenue rate of $346,742 per
year as compared to an optimal threshold of $259,699 per
year. Though there are substantial differences in optimal
policies, the differences in values are minimal. At the cur-
rent revenue rate of $3.942M per year, the myopic policy
leads to a value of $12.162M as compared to $12.211M for
the optimal policy (again assuming risk-neutrality). As we
vary the revenue rates, the values given by the myopic
policy are always less than those of the optimal policy, but
these differences never exceed $52,000. Although these er-
rors will increase with greater uncertainty in the problem
(i.e., increases in either sq or sp), in general, these myopic
policies lead to substantially different thresholds but ap-
proximate the optimal values quite well.1

2.6. Sensitivity Analysis

The impacts of changes in parameter values is summarized
in Table II. The table entries denote whether an increase
in the indicated parameter has a positive (1) or negative
(2) impact or no impact (0) on the value of the property
or the abandonment threshold; the 1/2 entries indicate
that changes in the parameter values can have either a
positive or negative impact. The impacts are to be inter-
preted in a weak sense: a positive impact for a parameter

Figure 2. Value of the property as a function of current revenue rate.
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on, say, the abandonment threshold means that an in-
crease in that parameter value will not decrease the
threshold; it may increase the threshold or leave it un-
changed. The impacts on the value function are global in
that we say a parameter has a positive impact on v(x) if
and only if it has a positive impact on v(x) for all x.

Many of the impacts are easily understood. For exam-
ple, increases in the costs (ca, co, or 1 2 g) certainly
decrease cash flows and, thus, decrease the value of the
property. An increase in the mean decline rate (mq) de-
creases the expected production at the site and, hence,
decreases the value of the property. Similarly, an increase
in convenience yield (k) increases the value of oil in hand
as compared to future oil production and decreases the
value of the property. An increase in the risk tolerance (r)
will decrease the risk premiums in the model and increase
the value. In general, those parameters that have negative
impacts on the value of the property increase the abandon-
ment threshold, as one will more readily abandon a prop-
erty that is worth less. Conversely those parameters with
positive impacts on value will generally decrease the aban-
donment threshold. The one exception to this general rule
is the cost to abandon (ca): increasing ca makes the deci-
sion maker want to delay abandonment and decreases the
value of the property.

A few of the sensitivity results are perhaps surprising.
The insensitivity of the value and policies with respect to
changes in the growth rate in oil prices (mp) and the deci-
sion maker’s time preferences (k(t)) is a reflection of the
decision maker’s background trading opportunities as de-
scribed in the previous section. Increases in the uncertainty
about future oil prices (sp) or production rate uncertainty
(sq) may have either positive or negative impacts on the
value of the property. On one hand, increases in uncer-
tainty may increase the “option value” associated with the

property—it increases the “upside” associated with contin-
ued operation without affecting the “downside” risks asso-
ciated with abandonment. On the other hand, if the
decision maker is risk-averse, it will also increase the risk
premiums associated with continued operation. For large
revenue rates, the risk premium effect dominates and the
values will decrease with increases in sp or sq. For rates
near the threshold, the option effect dominates and values
will tend to increase. At the threshold, the option effect
strictly dominates and we can unambiguously conclude
that the abandonment threshold decreases with increases
in sp or sq.

The risk-free rate (r) has many effects in the model. It
affects the mean of the risk-neutral price process (m*p [
r 2 k) and also serves as a discount rate, both in the
recursive valuation formula and in the calculation of the
effective risk tolerance. Increases in the risk-free rate may
have either positive or negative impacts on the value of the
property. On one hand, an increase in r will further dis-
count future revenues and increase risk premiums through
its impact on the effective risk tolerance; both effects lead
to a decrease in value. On the other hand, the increased
discounting of future operating costs may increase the
present value of the property; this is certainly the case for
very small revenue rates when it is never optimal to aban-
don the property (i.e., co/r , ca). The impact on the aban-
donment threshold is similarly ambiguous.

3. INCORPORATING PRODUCTION FLEXIBILITY

While the model of the previous sections indicates how we
can apply the integrated procedure to evaluate oil and gas
properties, to make the model more complete and address
related theoretical and methodological issues, we consider
several extensions. In this section we extend the model to
consider the possibility of drilling additional wells to accel-
erate production at the site. For example, if oil prices
increase or production rates decline slower than expected,
the decision maker may find it optimal to drill additional
wells. We also allow the possibility of zero wells currently
producing, so the model can be used to evaluate the deci-
sion to begin development at a proven reserve.

3.1. The Reservoir Model

The basic structure of this model is the same as that of the
previous section, but we must now consider the cost func-
tions and production rates as a function of the number of
wells producing and consider the possibility of drilling ad-
ditional wells. To do this, we define:

w [ the number of wells currently producing,
w# [ the maximum number of wells allowed at the

site,
q(w, t) [ the production rate given w wells producing,

co(w) [ fixed cost rate for operating w wells (assumed
constant over time),

ca(w) [ cost of abandoning w wells, and

Table II
Sensitivity Results for Fixed Capacity Model

Parameter Symbol

Effect of Increase
in Parameter

Value

on v(x) on x*a
Costs

Cost to Abandon ca 2 2
Fixed Operating Costs co 2 1
Royalty and Tax Rate (1 2 g) 2 1

Production Rates
Mean Decline Rate mq 2 1
Std. Dev. of Decline sq 1/2 2

Oil Prices
Mean Growth Rate mp 0 0
Std. Dev. of Oil Price sp 1/2 2

Markets
Risk-Free Rate r 1/2 1/2
Convenience Yield k 2 1

Preferences
Risk Tolerance r 1 2
Time Preference k(t) 0 0
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cd(w) [ cost of drilling one additional well given w wells
in place.

We will assume the oil prices p(t) and royalty and tax rate
(1 2 g) do not depend on the number of wells producing.
The instantaneous cash flow generated at time t with w
wells is then given by

c~w, t! ; gp~t!q~w, t! 2 c o ~w! . (15)

At any time, the decision maker may choose to: con-
tinue production; pay a one-time, lump-sum cost of ca(w)
and permanently and irreversibly abandon the property; or
pay a one-time, lump-sum cost of cd(w) and drill an addi-
tional well, up to the maximum number of wells allowed at
the site (w# ). We will assume that drilling is an instanta-
neous activity in that no time passes (and oil prices and
base production rates do not change) between beginning
and completing drilling. We also assume that the abandon-
ment decision is an all-or-nothing decision in that the de-
cision maker cannot abandon wells sequentially. These
assumptions are for modeling convenience; if there are
considerable delays in the drilling process or significant
differences between the wells, one may want to consider a
more refined model. The restriction to some maximum
number of wells (w# ) is also a modeling convenience that
may hold in some situations (say in an offshore platform),
but, if there is no obvious upper limit on the number of
wells at the site, one may examine the values and policies
with w# set to some arbitrarily large number.

In our model, the effect of drilling additional wells is to
accelerate production at the site. We model this formally
by introducing a base production rate qb(w, t) that repre-
sents the average per well production rate at the site; the
total production is then given by q(w, t) 5 wqb(w, t). The
base production rate then follows a geometric Brownian
motion process with parameters (2wmq, =wsq):

dq b ~t! 5 2wm q q b ~t! dt 1 Îws q q b ~t! dz q ~t! , (16)

where dzq(t) represents increments of a standard Brownian
motion process. In this model, drilling additional wells ac-
celerates production without affecting the total amount of
oil produced: assuming production proceeds with a fixed
number of wells, the production rate for w wells at time t
has the same distribution as the production rate of a single
well at time wt. The deterministic version of this model
(sq 5 0) is an exact model of production rates when (a)
pressures are constant across the reservoir, (b) the produc-
tion rate at each well is proportional to the difference
between reservoir and surface pressures, and (c) reservoir
pressures decline in proportion to the amount of oil (or
gas) produced. Assumptions (b) and (c) are the same as
those underlying the standard exponential decline
model and, like (6b), the stochastic process (16) gener-
alizes the exponential decline model by allowing unpre-
dictable deviations in these constants of proportionality.
Reservoir models with property (a) are referred to as
“tank-type” models in the petroleum engineering litera-

ture and are commonly used in practice, particularly
with gas or solution-gas-drive oil reservoirs (see, e.g.,
Steffensen 1987).

As in the fixed production capacity model, we can sim-
plify our model by combining the stochastic processes for
prices and production rates into a single process for reve-
nue. Let x(w, t) [ p(t)qb(w, t) denote the base revenue
rate with w wells producing. Then x(w, t) follows a sto-
chastic process described by

dx~w, t! 5 m x x~w, t! dt 1 s x x~w, t! dz x ~t!,

where mx [ (mp 2 wmq), sx
2 [ sp

2 1 wsq
2, and dzx(t)

denotes increments of a standard Brownian motion pro-
cess. The cash flows (Equation (15)) can then be written as
a function of the number of wells producing (w) and the
base revenue rate (x) as c(w, x) [ gwx 2 co(w).

3.2. Valuation

Provided we maintain the same preference and market
assumptions, the analysis of this model proceeds in the
same way as the fixed-capacity model of the previous sec-
tion. Assuming that we are producing with w wells, we find
that the value function v(w, x) describing the value of the
property as a function of the number of wells operating
(w) and the base revenue rate (x) satisfies a differential
equation similar to (10):

c~w, x! 5 rv~w, x! 2 m*x xv9~w, x! 2
1
2 s x

2x 2v0~w, x!

1
1

2 R ws q
2x 2v9~w, x! 2, (17)

where m*x [ (m*p 2 wmq) denotes the mean rate of the
combined diffusion process (as in Equation (7)). In the
risk-neutral case (r 5 R 5 `), this is a linear differential
equation and we can write a closed-form solution similar
to Equation (10). In the general case, (17) is a nonlinear
differential equation that must be solved numerically.

As before, to completely determine the value function
we must specify boundary conditions that depend on the
policy for managing the well. In the case where we have
already drilled the maximum number of wells allowed at
the site (w 5 w# ), the boundary conditions for v(w# , x) are
exactly analogous to the conditions for a fixed number of
wells, summarized in Equations (14a)–(14c). If we have
fewer than the maximum number of wells, the optimal
policy is to abandon the site when the base revenue rate
drops below some critical threshold x*a(w) and drill an
additional well if the base revenue rate exceeds some other
threshold x*d(w). At the abandonment threshold x*a(w), we
have boundary conditions

v~w, x*a ~w!! 5 2c a ~w!, and (18a)

v9~w, x*a ~w!! 5 0, (18b)

where the first condition holds for all abandonment
thresholds and the latter “smooth pasting” condition holds
only if the abandonment threshold is optimal. Similarly, at
the drilling threshold x*d(w), the decision maker spends
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cd(w) and instantaneously gets one more well. This leads
to boundary conditions of the form

v~w, x*d ~w!! 5 v~w 1 1, x*d ~w!! 2 c d ~w! , and (19a)

v9~w, x*d ~w!! 5 v9~w 1 1, x*d ~w!! , (19b)

where the first holds for all thresholds and the latter holds
only for optimal thresholds. The value function v(w, x)
between the thresholds x*a(w) and x*d(w) is thus deter-
mined by Equations (17)–(19). For x , x*a(w), we have
v(w, x) 5 2ca(w). For x . x*d(w), we have a recursive
formula v(w, x) 5 v(w 1 1, x) 2 cd(w). To solve this
system of equations, we begin with the maximal number of
wells (w 5 w# ), and solve for v(w# , x) and x*a(w# ). We then

proceed iteratively to the cases with fewer wells, using
numerical methods to find v(w, x), x*a(w) and x*d(w) satis-
fying Equations (17)–(19).

3.3. Numerical Results

To illustrate the results of this extended model, we revisit
the Permian Basin property and consider the original de-
velopment decision where the decision maker chooses
when to develop the property and how many wells to drill.
We assume that each well costs $300,000 to drill and com-
plete, with the exception of the first well which costs $1.8M
to drill and complete; the extra $1.5M here represents the
cost of building the necessary infrastructure at the site. We
take the maximum number of wells (w# ) to be 75; this is far
more than is optimal given current prices and production
rates, and the results in this region do not vary significantly
with increases in w# . The other values are the same as
discussed in Section 2.5 and are summarized in Table III.
The production assumptions are calculated from those as-
sumed in the previous section where the number of wells is
fixed at 35 wells. This gives parameters for the base pro-
duction rate (qb) of mq 5 10/35 5 .286 percent per year
and sq 5 3/=35 5 0.507 percent per year. As in the
previous section, we present results for a risk-neutral deci-
sion maker and a risk-averse decision maker with effective
risk tolerance R 5 $1M.

The results for the example are summarized in Figure 3.
The two curves represent the value functions when there
are no wells producing (v(0, x)) in the risk-neutral and
risk-averse cases. As in the previous section, we see that
the two curves are close for low base revenue rates and
with the difference between the two curves (representing
the risk premium), increasing as the base revenue rate
increases. The crosses on the curve indicate selected
changes in the optimal policy. Here we find the optimal

Table III
Parameter Values for Flexible Capacity Example

Parameter Symbol Value

Wells
Max. Number of Wells w# 75

Costs
Cost to Abandon ca(w) $10,000 w
Cost to Drill cd(w) $1,800,000 for w 5 0;

$300,000 otherwise.
Fixed Operating Costs co(w) $7,300 w per year
Royalty and Tax Rate (1 2 g) 74.192%

Base Production Rates
Mean Decline Rate mq 0.286% per year
Std. Dev. of Decline sq 0.507% per year

Oil Prices
Mean Growth Rate mp —
Std. Dev. of Oil Price sp 33.0% per year

Markets
Risk-Free Rate r 0.5% per year
Convenience Yield k 7.7% per year

Figure 3. Value of an undeveloped property as a function of revenue rate.
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policy calls for drilling no wells until the base revenue rate
reaches approximately $169,000 (5 x*d(0)), in the risk-
neutral case, or $167,000, in the risk-averse case. Thus a
property with initial production of 20 barrels per day per
well (or 7,300 barrels per year) should not be developed
until prices reach $23.18 per barrel (5 $169,000 per well
per year 1 7,300 barrels per year); when prices reach this
level, the property should be developed and 15 wells
drilled.2 At current prices of $18.00 per barrel, even
though it is not optimal to develop yet, the rights to de-
velop the property still have substantial value: in the risk-
neutral case, it is worth $4.92M and, in the risk-averse
case, it is worth $4.45M. If initial production rates were 45
barrels per day per well and prices were $18.00 barrel (for
an annual base revenue rate of $295,650 per year per well),
the optimal strategy would be to develop the property and
drill 35 wells in the risk-neutral case, and 33 wells in the
risk-averse case.

It is interesting to note that the risk-averse decision
maker would develop the property before the risk-neutral
decision maker. The risk-neutral decision maker is more
willing to sit on a profitable reserve, waiting for the possi-
bility of higher oil prices, whereas the risk-averse decision
maker will go ahead and develop, thus opting to receive a
more certain value rather than waiting and betting on
higher future prices. At higher revenue rates, the risk-
averse decision maker drills fewer wells as risk-aversion
decreases the overall value of the property and, hence,
reduces the number of wells that can be economically jus-
tified. In both cases, the rights to the undeveloped prop-
erty would never be abandoned as they may be costlessly
held forever. Once developed, the thresholds for abandon-
ing the property are slightly lower in this model than in the
earlier case where there was no possibility of drilling addi-
tional wells; this difference in abandonment thresholds re-
flects the increased value due to the option of drilling
additional wells.

To illustrate the value of the option to develop the prop-
erty, Figure 3 also shows the value of the property if the
decision maker had to develop it immediately. In our
model, this value is given as the value with one well in
place, v(1, x), less the cost of drilling that first well, cd(0).
For base revenue rates less than about $80,000 per well
per year, the value with immediate development is nega-
tive, whereas the value associated with waiting and pursu-
ing the optimal development strategy is positive. Thus,
though the two values converge at higher revenue rates
(where immediate development is optimal), we see that
properties that might be unattractive if developed immedi-
ately may have positive value if the decision maker is will-
ing to wait and pursue the optimal development strategy.
There is also a significant region (from base revenue rates
ranging from $80,000 to about $168,000) where the opti-
mal strategy calls for waiting even though immediate de-
velopment would be profitable.

4. EXTENSIONS

In this section, we consider a number of straightforward
extensions to the model developed in the previous two
sections. First, we show how we can incorporate basis risks
and production cost uncertainties into this model. Second,
we describe how we can incorporate the ability to tempo-
rarily suspend production. We then describe how we can
use the model in an exploration rather than a development
context and how the model can be used to evaluate a
portfolio of properties rather than a single property. We
conclude with a brief discussion of some other desirable
extensions that do not appear to be straightforward to
incorporate into the framework of this model.

4.1. Basis Risks and Production Cost Uncertainty

Basis risks are a result of differences in quality and loca-
tion between the spot market prices for the oil underlying
the futures contracts and the actual oil produced at the
site. For example, one might hedge price risks for a foreign
crude using futures contracts assuring delivery of West
Texas Intermediate in Cushing, Oklahoma. While the
prices for the foreign crude will generally track prices for
WTI (since they may typically be substituted for each
other, albeit with transportation costs and changes in the
yields of refined products), there may be random fluctua-
tions in the relationship between the two sets of prices.

We can incorporate this kind of uncertainty into our
model in a straightforward manner. Let p(t) denote the
spot market price of the oil underlying the futures con-
tracts and let pa(t) denote the “actual” spot market price
for the oil produced at the site. We can model the random
fluctuations between the two prices by introducing a mul-
tiplicative basis factor, b(t) 5 pa(t)/p(t). The cash flows
would then be given by

c~w, t! ; gb~t! p~t!q~w, t! 2 c o ~w!,

rather than Equation (15). If we assume that these basis
risks are an unhedgable, private risk and assume b(t) fol-
lows a geometric Brownian motion with parameters (mb,
sb), we can incorporate this additional uncertainty into the
revenue rate process by taking mx [ (mp 1 mb 2 wmq),
sx

2 [ sp
2 1 sb

2 1 wsq
2 1 2rpbspsb, where rpb represents the

correlation between the price and basis risk processes. The
valuation would proceed as before, leading to a differential
equation of the form of Equation (17) with m*x (the mean
rate of the combined revenue process) replaced by (m*p 1
mb 2 wmq) and wsq

2 (the total variance of the private risks)
replaced by (sb

2 1 wsq
2). Thus, basis risks can be incorpo-

rated by changing the model parameters and affect the
values and policies in the same way as production rate
uncertainty.

Another possible source of uncertainty is in the variable
costs of production. These costs of production may change
over time, perhaps due to technical advancements in the
production technology or changes in the production mix
(water, oil, and various gases) at the site. This uncertainty
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can be modeled in the same way as basis risks. If we intro-
duce another stochastic multiplicative factor into the cash
flow Equation (15) and make similar assumptions about
the stochastic process governing these costs, we would get
similar modifications to the valuation Equation (17).

4.2. Temporary Production Stoppages

In the models of Sections 2 and 3, we have given the
decision maker the option to abandon a property but have
not incorporated the option to temporarily halt production
at the site. While this option may not always be available
(perhaps due to contractual or regulatory requirements), it
might be quite attractive when available, particularly in
low price environments.

It is straightforward to incorporate a temporary shut-
down option into the model of Section 3. The effect of
temporarily shutting down is to stop production (and de-
cline); prices would continue to fluctuate. If we let s de-
note a discrete state variable with s 5 1 indicating the
property is currently producing and operating at full ca-
pacity and s 5 0 indicating the property is temporarily
closed, the new cost function c(w, x, x) and value function
v(w, x, s) satisfy equations of the form of (15) and (17)
except one replaces w, representing the number of wells at
the site, with sw, representing the number of wells cur-
rently operating. There may be lump-sum costs associated
with halting and subsequently resuming production as well
as a change (likely a reduction) in fixed operating costs
(co) when the site is closed.

The optimal policy would then consist of specifying, for
each w, thresholds at which new wells should be drilled
(xd(w, 1)) and at which the property should be closed or
abandoned (xa(w, 1)), given that the site is producing. We
would also need to specify (for each w) thresholds for
reopening and abandonment (xd(w, 0) and xa(w, 0)),
given that the property is closed. To determine these
thresholds and the value function, we impose boundary
conditions that are analogous to those of Equations (18)
and (19).

4.3. Exploration Decisions

In our model, we have consistently assumed that the deci-
sion maker knows the current production rates and oil
prices at the time he makes his production decisions.
While this assumption makes sense when evaluating a pro-
ducing property or a proven reserve, as we move further
upstream and consider exploration as well as development
activities, this assumption may no longer be reasonable.
Before a reserve has been proven, there may be significant
uncertainty about the production rates at the site, and the
prices prevailing at the time when the exploration is com-
pleted (and the reservoir proven). In this context, our
model can be used as an “endpoint” model as illustrated in
the tree of Figure 4. Here the decision maker would spec-
ify probabilities describing the uncertainty about the initial
production rate and use risk-neutral probabilities for
prices at the time exploration is completed. We would then

use our model to determine the value of the well (and
policy for managing the well) in each of these initial pro-
duction rate/price scenarios. In this extension, we need not
make specific assumptions about the distribution of initial
production rates: one could, for example, assign a signifi-
cant probability to the reserve proving to be “dry hole”
with no oil and then assign, say, a normal distribution to
the initial production rate given that the site is not dry.

In evaluating this extended model, we would again use
the integrated valuation procedure. We would discount the
future values of the reservoir back to present values using
the risk-free discount rate, and when “rolling back” the
tree, at the oil price node, compute expected values using
the risk-neutral distribution for oil prices. At the nodes
representing geologic uncertainties, we would use expo-
nential utilities and subjective probabilities to calculate ef-
fective certainty equivalents. The result is a value for the
exploration program that takes into account market oppor-
tunities to hedge oil price risks, during exploration as well
as development, and the decision maker’s flexibility in
managing the reserve once proven.

One could incorporate uncertainty about other parame-
ters of the “endpoint model” in a similar fashion. For
example, we could include uncertainty about the mean
decline rate (mq) or the fixed costs of operation (co) by
including additional nodes in the tree. In doing this, we
would be assuming that all uncertainty about these param-
eters is resolved at the time exploration is completed. One
might also include exploration decisions in the tree (e.g.,
should they do 3D seismic studies? should they do ex-
tended well testing?) and consider a sequential process
where later exploration decisions are made knowing the
outcome of earlier exploration activities.

4.4. Portfolio Valuation

Finally, we consider how this model might be used to value
a portfolio of properties rather than a single property. If
the decision maker is risk neutral, we can use our model to
value the individual properties in the portfolio and then
sum to find the value of the portfolio. If the decision
maker is risk averse, we need to not only value the individ-
ual properties but must also take into account the correla-
tions among the properties. The properties are naturally

Figure 4. Exploration tree.
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correlated through their common dependence on oil
prices. If we do not take into account market opportunities
for hedging price risks, this correlation would lead to sub-
stantial risk premiums in the portfolio evaluation and the
value of the portfolio would be less than the sum of the
values calculated for the individual properties. But if we
take into account market opportunities for hedging, be-
cause this common price risk may be perfectly hedged, the
portfolio value would be equal to the sum of the individual
properties’ values, provided there are no common nonmar-
ket (private) risks. (This is proven in Smith 1996.)

In practice, there may be common private risks as well
as common market risks. For example, prospects that lie in
the same geographic region (e.g., in the same field), par-
ticularly in undeveloped regions, may have correlated pro-
duction or cost uncertainties. This correlation could affect
values at the portfolio level and may affect optimal devel-
opment strategies. For example, the information from one
reservoir may provide valuable information about the pro-
duction possibilities at nearby prospects and sequential de-
velopment strategies may be preferred to parallel
development strategies.

4.5. Other Extensions

There are, of course, a number of other directions in
which one might want to extend the models developed in
this paper. One might consider alternative stochastic pro-
cesses for prices (for example, various “mean-reverting”
models, see e.g., Dixit and Pindyck 1994), more complex
production models (for example, models that incorporate
periods of flat production or more complex drive mecha-
nisms), more complicated financial terms (for example,
more complicated royalty and tax structures), or models
that incorporate “learning” about parameters of the pro-
duction process or costs over time. In the models we have
developed and analyzed in this paper, the production and
price uncertainties combine to give a single state variable
corresponding to the revenue rate and the parameters of
the model are assumed to be stationary; these features
greatly simplify the description and computation of values
and policies. Unfortunately, most of these other extensions
would seem to require a significant expansion of the state
space and the introduction of nonstationary parameters.
While the basic valuation procedure (as described in Equa-
tion (3)) would remain the same, these extended models
would be significantly more difficult to formulate and solve.

5. CONCLUSIONS

In this paper, we have demonstrated how option pricing
and decision analysis techniques can be integrated to solve
practical problems where the decision maker has signifi-
cant managerial flexibility and may hedge some, but not
all, of the risks associated with the project. Our particular
example is a model for evaluating oil producing properties
that takes into account price and production rate uncer-
tainties, management’s ability to accelerate or terminate

production, the decision maker’s attitude toward risk, and
opportunities for hedging price risks. This model could be
used, for example, to value existing properties, to deter-
mine strategies for developing properties that are already
owned, or to help determine bids for offshore oil and gas
leases. We conclude by comparing our results with those
generated by more conventional methods and describing
some other potential applications of the methodology.

5.1. Comparison with Conventional Techniques

To illustrate the benefits of the valuation methodology
used in this paper, it useful to compare our results to the
results given by using conventional methods with our mod-
els. While Smith and Nau (1995) provide a more general
comparison, we will focus on the results given in our par-
ticular application. We will consider two different conven-
tional “decision analysis” approaches; in the first, we
attempt to determine appropriate risk premiums by adjust-
ing the discount rate and, in the second, we use a utility
function to capture time and risk preferences. We also
consider the conventional option pricing approach.

Risk-adjusted Discount Rate Approach. A common ap-
proach for solving valuation problems is to select a risk-
adjusted discount rate that represents the market-required
rate of return for a given project. One might, for example,
attempt to estimate the correlation between the project
cash flows and the market as a whole (or the “beta” for the
project) and estimate an appropriate risk-adjusted dis-
count rate using, for example, the Capital Asset Pricing
Model. Because of the difficulty of estimating betas for a
particular project, firms often look for traded securities
that are “similar in risk” to the project and use their his-
torical returns or betas, or, alternatively use a single dis-
count rate for all projects in their portfolio, perhaps
corresponding to the firm’s weighted average cost of capi-
tal (see, e.g., Brealey and Myers 1984, Ch. 9).

To illustrate the results given by this approach, we re-
consider the example of Section 2 using conventional dy-
namic programming methods. In solving the model, we use
the parameters of Table I and arrive at a solution of the
form of Equations (11) and (13) except, in accordance
with the conventional dynamic programming procedure,
we use the true price process (with mean growth rate mp)
rather than the risk-neutral price process (with mean
growth rate m*p 5 r 2 k) and use the risk-adjusted discount
rate rather than the risk-free rate. We take the true mean
of the price process to be equal to the historical estimate
(based on annual data from 1900–1995) of 0 percent, rep-
resenting an expectation of zero real price growth, and
consider values and policies for three different discount
rates: 7, 11, and 15 percent. The original valuations of the
property were performed using a corporate-wide discount
rate of 11 percent, corresponding to a 15 percent nominal
rate with an assumed 4 percent inflation rate.

The results are shown in Figure 5. If the current revenue
rate is $3.942M per year (as it is currently), then the value
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of the property with a 15-percent discount rate is $10.1M;
with an 11-percent rate, $11.8M; and with a 7-percent rate,
$14.3M. If we compare these results to the “correct” re-
sults given by the integrated procedure, assuming risk neu-
trality, we find a value of $12.2M at the current revenue
rate, and, assuming an effective risk tolerance of $1M, a
value of $11.5M. In general, we see that the 11-percent
rate originally used by the company underestimates the
value of the property at high revenue rates (when the time
horizons are long) and overestimates the values at lower
revenue rates (when the time horizons are short). There is
also disagreement about the optimal policy. If we discount
at 7 percent, the property should be abandoned when rev-
enue rates drop below $197,000 per year; at 11 percent the
threshold is $207,000 per year; and at 15 percent the
threshold is $215,000 per year. The correct abandonment
threshold, approximately $260,000 per year, is significantly
higher than that given by any of these discount rates.
While we can always find a discount rate that gives the
correct value for any particular revenue rate or the correct
abandonment threshold, there is no single discount rate
that we could use in the conventional dynamic program-
ming approach that would generate correct values and pol-
icies for all revenue rates—one cannot take into account
risk aversion and market opportunities to trade by simply
adjusting the discount rate.

Utility Approach. In the decision analysis literature, it is
often suggested (see, e.g., McNamee and Celona 1990)
that rather than using a risk-adjusted discount rate, one
should capture the time value of money using the risk-free
discount rate and capture risk preferences using a utility
function. In this approach, one would use the true proba-
bilities for all uncertainties (e.g., a mean price growth rate
of mp 5 0 percent rather than the risk-neutral rate m*p 5
r 2 k 5 27.2 percent) and would assign risk premiums to
all uncertainties. By failing to recognize that price risks can
be managed by buying and selling futures contracts, this
procedure would overstate the risks that the decision

maker would actually bear and consequently would overes-
timate the risk premiums for a risk-averse decision maker.
In this example, the price risks are substantial and, as
shown in Figure 5, the values given by the utility approach
are much lower than the correct values. We can, of course,
correct the problems of the utility approach by expanding
the model to explicitly include market opportunities to
trade, as in the “grand model” of Figure 1. Unfortunately,
these grand models are quite complex and difficult to for-
mulate and solve.

Option Pricing Approach. Finally, we could also simplify
our model and apply standard option pricing methods. To
use the standard option pricing methods, we must assume
that we can hedge all project risks by trading marketed
securities which, in this model, is equivalent to assuming
that there is no uncertainty in production rates (i.e., sq. 5
0), basis risks, or costs. If we make this assumption, we
could then use risk-neutral pricing techniques and find values
and policies that are independent of the decision maker’s
preferences. But in neglecting these unhedgable risks, we un-
derstate the uncertainty in the problem and, consequently,
understate the “option value” generated by the unhedgable
production rate uncertainty and, in the risk-averse case, ne-
glect the risk premiums associated with these risks.

The integrated approach allows some of the simplifica-
tions provided by the option pricing approach without
making such strong assumptions about the completeness
of financial markets. Like the option pricing approach, we
are able to work with small models that focus exclusively
on the project at hand (i.e., we work with the models of
Sections 2 and 3 rather than the grand model of Figure 1).
In using risk-neutral distributions for the market uncer-
tainties and discounting cash flows using the market’s risk-
free rate, this integrated approach implicitly takes into
market opportunities for trading and borrowing and, pro-
vided the necessary preference and market assumptions
are satisfied, produces results identical those that would be

Figure 5. Property values for different discount rates.
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found if we were to formulate and solve the grand model
of Figure 1.

5.2. Other Applications

Firms in the oil and gas industry are obviously interested
in techniques for valuing oil and gas investments as these
problems are at the heart of the “upstream” (the explora-
tion and development) side of their business. This method-
ology also has many potential applications outside the oil
and gas industry. The basic methodology is applicable
whenever a firm (or individual) is contemplating invest-
ments with uncertain outcomes and there are market op-
portunities to hedge some of the risks associated with the
investments. To get a sense of the range of potential appli-
cations, we briefly describe three other areas where the
integrated valuation procedure could be applied.

Commodity Related Businesses. Given the detailed exam-
ple of valuing an oil property, the applicability of this
methodology to other commodity related businesses
should be apparent. For example, one could model other
natural resource assets—for example, copper mines (as in
Brennan and Schwartz 1984) or forests (as in Morck et al.
1989)—and use the integrated procedure to determine the
values and optimal policies for managing these assets. Sim-
ilarly, one could consider the consumers of these commod-
ities—for example, an electric utility or steel plant—and
use the integrated procedure to determine, say, optimal
policies for flexible generation and production systems.
The integrated methodology would allow us to treat both
market and nonmarket uncertainties. In these applications
as in our oil property model, we can use commodity fu-
tures, swaps, and options markets to help evaluate the
commodity price risks and use internal information to de-
scribe the nonmarket risks (e.g., production or demand
uncertainties).

Multinational Production and Distribution. Another area
of potential applications concerns balancing production
and distribution among plants and markets in different
countries. Prices, demands, and costs will vary over time
and by country and management has the ability to adjust
production levels between products and plants from period
to period in response to changes in prices, demand or
costs. These kinds of problems have been studied recently
by Huchzermeier and Cohen (1992) and Kogut and Kula-
tilaka (1994). While these two models differ substantially
in their details, they both assume that all uncertainty in the
problem is generated by exchange rate fluctuations; given
exchange rates, local costs, demands, and prices are all
assumed to be known. The integrated methodology would
allow the treatment of a richer set of uncertainties (e.g.,
cost, demand and price uncertainty), while taking into ac-
count risk preferences and opportunities for hedging ex-
change rate risks.

Research and Development. To examine a more difficult
application, let us consider the problem of evaluating an

R&D project, for example, a pharmaceutical firm investing
in research with hopes of finding a new drug. In these
problems, there is a great deal of uncertainty regarding the
value of the project and management has a great deal of
flexibility in managing the R&D process; perhaps one in
10,000 compounds tried will eventually be a commercial
success. Though many have talked about an R&D as being
analogous to a call option on a stock (see, e.g., Myers
1984), we know of no serious applications of option pricing
methods in this area. One reason for this lack of rigorous
applications is the difficulty of finding replicating portfolios
given the technical nature of the uncertainties associated
with an R&D project. In contrast, decision analysis meth-
ods are commonly used to evaluate R&D projects (see,
e.g., the articles in Howard and Matheson 1984).

Since the integrated procedure does not require the ex-
istence of a perfect replicating portfolio, it may allow one
to use option pricing methods in evaluating R&D projects,
even though in many of these applications the link be-
tween the R&D project and existing securities markets
may not be immediately obvious. How can we hedge the
risks associated with a pharmaceutical research project? If
there are no relevant market uncertainties, then the inte-
grated procedure essentially reduces to the standard deci-
sion analysis procedure: we would evaluate the project
using private information only and discount at the risk-free
rate. But in actual evaluations, practitioners often assume
a positive correlation between the value of the project and
the market portfolio (e.g., a positive beta) and use dis-
count rates that are much higher than the risk-free rate.
For example, Myers and Shyam-Sunder (1991) assume
that the value of a new drug has a positive correlation with
the market portfolio (a beta of 0.75 in their example) and
study the amplification of this correlation in a sequential
development process.

To capture this kind of market risk in the integrated
framework, we would have to include the value of the
market portfolio as a variable in the model and explicitly
model the dependence between the project and the market
portfolio. When considering a sequential R&D process, we
would need to model the evolution of the uncertainty
about the value of the market portfolio. We could then use
market information (for example, prices for futures and
options on stock portfolios) to determine risk-neutral
probabilities for the market uncertainty and use the inte-
grated valuation procedure to determine optimal invest-
ment policies. As in the exploration and development
model of Section 4.3, even though these market uncertain-
ties will not affect the project cash flows until after the
research is complete, as we “roll back the tree,” we may
find that the market uncertainty impacts the values and
policies even for early stage R&D projects. Just as we
might terminate an oil exploration effort if oil prices were
to fall, if we take the correlation between the value of a
new drug and the market portfolio seriously, we might also
terminate a pharmaceutical research project if the stock
market were to drop unexpectedly.
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5.3. Summary

In summary, we have shown how option pricing and deci-
sion analysis techniques can be integrated in evaluating oil
properties and indicated how and why this integrated val-
uation methodology might be applied more broadly. The
basic methodology is applicable whenever a firm (or indi-
vidual) is contemplating investments with uncertain out-
comes and there are market opportunities to hedge some
of the risks associated with the investments. The method-
ology allows one to efficiently take into account informa-
tion provided by the securities markets when valuing these
kinds of projects and produces results that are consistent
with those that would be produced given a detailed model
of the securities markets.

APPENDIX

Proof of Proposition 1. Our proof proceeds in three steps.
First we show that the discrete-time, finite-horizon approx-
imate model, as defined in Equation (8), satisfies the fol-
lowing conditions:

(a) vT,h(t, x) is continuous and nondecreasing in x for
each t.

(b) There exist thresholds x*T,h(t) such that at time t it is
optimal to abandon the property if and only if x ,
x*T,h(t).

In this first step we explicitly construct and analyze the
“binomial tree” approximation of the price and production
rate processes. In the second step we take the limit as the
horizon (T) recedes to infinity and show that, for fixed h,
the values and policies approach stationary limits that sat-
isfy conditions (a) and (b) and the limiting form of the
recursion of equation (8). Finally, we take the limit as the
discrete time step (h) approaches 0. The proof mimics
standard proofs of dynamic programming, the unusual fea-
ture being the expected-effective-certainty-equivalent op-
erator (E*[ECE[—]]) used in the recursion (8).

Analysis of the Discrete-Time, Finite-Horizon Model. Let
x(t) [ p(t)q(t), where p(t) is the price of oil and q(t) is the
production rate at time t. Following Cox et al. (1979), we
approximate p(t) and q(t) by binomial processes whose
mean and variance have been matched to underlying con-
tinuous time stochastic process. If p(t) is the time-t price,
then at time t 1 h,

p~t 1 h!

5 5 p~t!~1 1 s p
Îh!

p~t!~1 2 s p
Îh!

with probability 1
2S 1 1

m*p
s p

ÎhD ,

with probability 1
2S 1 2

m*p
s p

ÎhD .

The approximation for the production rate process q(t) is
similar. As h 3 0, these binomial processes converge to
the continuous time limits specified by Equations (6a) and
(6b).

Let x [ x(t) and let f(x) be any function of x. Substitut-
ing into Equation (8), and noting that p(t)q(t) 5 x, we
have

Mt,h ~ f ! ; E*[ECEt1h @ f~x~t 1 h!!up~t 1 h!, q~t!#up~t!, q~t!]

5 2Rt1h ln Hexp ~2 f~x~1 1 sp
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It is now straightforward to check that if f is a continuous
nondecreasing function of x, then so is Mt,h( f ). Define the
mapping Lt,h( f ) via

L t,h ~ f !~ x! ; max$2c a , c~ x!h 1 e 2rhM t,h ~ f !% .

Because 2ca and 2c(x) are continuous nondecreasing
functions, it follows that Lt,h maps continuous nondecreas-
ing functions into continuous nondecreasing functions.
Then, because vT,h(T, x) is continuous and nondecreasing
in x, vT,h(t, x) 5 Lt,h(vT,h(t 1 h, x)) is also continuous and
nondecreasing in x, thus establishing condition (a). Condi-
tion (b) then follows from the fact that vT,h(t, x) is nonde-
creasing in x.

Limit as T 3 `. The next step is to let vh(x) 5
limT3`vT,h(0, x), and show that vh(x) is a continuous, non-
decreasing function of x satisfying the recursion

vh ~ x!

5 max$2c a , c~ x!h 1 e 2rh E*

[ECE@

v h ~ x~t 1 h!! up~t 1 h!,q~t!# up~t!, q~t!#}.

Define the mapping Lh( f ) via

L h ~ f !~ x!

; max$2ca , 2c~x!h 1 e2rh E*[ECE@

f~x~t 1 h!!up~t 1 h!,q~t!#up~t!, q~t!#}.

By the “D-property” of the exponential utility function
used to calculate effective certainty equivalents, for any
constant D, ECE[ f(x(t 1 h)) 1 Dup(t 1 h), q(t)] 5
ECE[ f(x(t 1 h))up(t 1 h), q(t)] 1 D. Substituting into the
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definition of Lh yields Lh( f 1 D) 5 Lh( f ) 1 e2rh D; so Lh

is a contraction mapping. It then follows (see Stokey and
Lucas 1989, p. 270–272 or Lippman 1975) that there is a
unique continuous, nondecreasing function vh(x) satisfying
vh(x) 5 Lh(vh(x)), and, furthermore, vh(x) 5
limT3`vT,h(0, x). Because L is monotone (Lh( f ) Ä Lh( g)
for f Ä g), it follows that vT,h(0, x) is nondecreasing in T
for each x. This then implies that x*T,h(0) is nonincreasing
in T and converges to x*h, the abandonment threshold for
the infinite horizon case.

Limit as h 3 0. Let v(x) [ limh30 vh(x). Because each
vh(x) is nondecreasing in x, it follows that v(x) is also
nondecreasing. Furthermore, because each vh(x) is contin-
uous and the slope of each vh(x) is bounded above by
g/(r 2 m*x), the slope of the risk-neutral solution without
abandonment, it follows that vh(x) converges to a continu-
ous, nondecreasing function v(x). Thus there is a threshold
x* such that it is optimal to abandon if x , x* and to
continue production otherwise. At this threshold, we have
v(x*) 5 2ca, or if x* ¶ 0, v(0) 5 2co/r. The smooth
pasting condition, v9(x*) 5 0 (for x* . 0), then follows as
in Dixit and Pindyck (1994, p. 130–132).

To derive Equation (9), multiply both sides of the recur-
sion

vh ~ x!

5 max$2c a , c~ x!h 1 e 2rh E*[ECE@

vh ~ x~t 1 h!! up~t 1 h! , q~t!# up~t! , q~t!#},

by erh and rearrange terms using the D-property (vh(x) 5
vh(x(t)) is a constant given the current prices and produc-
tion rates) to yield

~e rh 2 1!vh ~ x!

5 max$2e rhc a 2 vh ~ x! , e rhc~ x!h 1 E*[ECE@

vh ~x~ t 1 h!! 2 vh ~x!u p~t 1 h!, q~t!]u p~t!, q~t!]}.

Divide both sides by h and take the limit as limit as h 3 0.
If x . x*, then when divided by h the first term in the
maximization goes to 2` as h goes to 0, and the second
term goes to c(x) 1 (1/dt) E*[ECE [dv(x)]]. If x , x*,
then when divided by h, the first term goes to 2rca. This
completes the proof of Proposition 1. □

Derivation of Equation (10). Taking t 5 0 and writing x
for x(0) and substituting Pratt’s (1964) approximation for
the effective certainty equivalent into Equation (8), we
have

v~ x!

5 hc~ x! 1 e 2rh~E*@v~ x~h!! ux~0!#

2
1

2 R E*[Var@v~ x~h!! up~h! , q~0!##! 1 o~h! . (A1)

Following Karlin and Taylor (1981, p. 203–204) (essential-
ly applying Ito’s Lemma), we have

E*@v~ x~h!! ux~0!#

5 v~ x! 1 hm*x xv9~ x! 1 h
s x

2

2 x 2v0~ x! 1 o~h!,

and similarly,

Var@v~ x~h!! up~h!, q~0!#

5 E@v 2~ x~h!! up~h!, q~0!#

2 ~E@v~ x~h!! up~h!, q~0!#! 2

5 ~v 2~ x! 1 2hm q xv~ x!v9~ x! 1 hs q
2x 2~v~ x!v0~ x!

1 v9~ x! 2!! 2 ~v 2~ x! 1 2hm q xv~ x!v9~ x!

1 hs q
2x 2v~ x!v0~ x!! 1 o~h! 5 hs q

2x 2v9~ x! 2 1 o~h! .

Substituting back into Equation (A1), this becomes

v~ x!

5 hc~ x! 1 e 2rh~v~ x! 1 hm*x xv9~ x! 1
h
2 s x

2x 2v0~ x!

2
h

2 R s q
2x 2v9~ x! 2! 1 o~h!.

Rearranging, dividing through by h, and taking the limit as
h goes to 0, we get Equation (10) in the text.///

ENDNOTES

1. This may be viewed as a consequence of the smooth
pasting condition of Proposition 1, which says that the
value function is flat at the threshold corresponding to
the optimal policy. Since the myopic value function lies
between the optimal value function and 2ca, the differ-
ences between the two value functions will be small.

2. The optimal policy calls for drilling 15 wells because the
optimal drilling threshold given 0 wells producing
(xd(0)) exceeds the drilling thresholds given 1–14 wells
producing, but is less than the threshold given 15 wells
producing. Also note that Figure 3 shows only every
fifth change in optimal policy; there are four changes in
policy between each of the crosses shown in the figure.
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