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Abstract

The Variance-Gamma model has analytical formulae for the values
of European calls and puts. These formulae have to be computed using
numerical methods. In general, option valuation may require the use of
numerical methods including PDE methods, lattice methods, and Monte

ol

We investigate the use of Monte Carlo methods in the Variance-Gamma
model. We demonstrate how a gamma bridge process can be constructed.
Using the bridge together with stratified sampling we obtain considerable
speed iImprovements over a plain Monte Carlo method.

The method is illustrated by pricing lookback, average rate and barrier
the Variance-Gamma model. We find the method i1s up to
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The variance-gamma model has been investigated by a number of authors
for application to option valuation (Madan and Seneta (90) [16], Madan and
Milne (91) [15], Madan, Carr and Chang (98) [14], Ané (99) [4] and Carr, Ge-
man, Madan and Yor (01) [7]}). Although analytical solutions are available for
European-style options, other options require the use of numerical methods.
These include Monte Carlo methods, Fourier transform (FFT) methods {Carr
and Madan (99) [8]), and PDE approaches {the ‘method of lines’; Albanese,
Jaimungal and Rubisov (01a), (01b) [1], [2]).

This paper investigates the use of Monte Carlo methods with the variance-
gamma model. In particular we show how a gamma bridge may be constructed
and used in conjunction with stratified sampling. We demonstrate that consid-
erable efliciency gains are possible. If improved algorithms for sampling certain
distributions become available these gains may be further improved.

The gamma bridge can be used with, augment and supplement control vari-
ate methods, importance sampling methods and other variance reduction tech-
niques.!

The second section of this paper recaps the variance-gamma process and its
application to option pricing. We review how Monte Carlo methods may be
applied by exploiting the subordinated Brownian motion representation of the
variance-gamma process. In the third section we show how a gamma-bridge can
be constructed and applied. The fourth section presents numerical results and
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We review the variance-gamma process and its application to option pricing. We
describe a ‘plain’ Monte Carlo method related to the subordinated Brownian

A variance-gamma process X; has three parameters: p € R, 0 > 0, v > 0. It is
pure jump with Lévy density kx (z),

(), (1[I R
kx (xz)dr = V] exp(—o- u+02 || |} d (1)

Tndeed a suitable delta control variate for the variance-zamma model of asset returns
is the delta of the option value generated by ordinary geometric Brownian motion. Since
the density function of the variance-gamma process is known, importance sampling can be
applied by using shifted mean and variance parameters to sample more closely the region of
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and characteristic function

E [exp (1uX;)] = (1 - ! - ); . (2)

— ipvu + 5o2vu?

where K, (2) is the modified Bessel function of the third kind,

X can be represented as a subordinated Brownian motion, X; = wpy,
where w; is Brownian motion with drift x and variance 02 and h (t) is a gamma
process hy ~~ G (L,v) ~ G (L). The density f}* (x) of hy conditional on  (0) =

i

e :m AR AT
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The variance gamma process can be used to model stock price returns. Let
S; be the stock price at time £. In this exposition we assume that the stock pays
no dividends. We take the state space {} to be the path space of X; equipped
with the filtration 111duced by the var 1ance-gamma process. Followmg Madan,
and Kel]er ) [12] et cetera, we model a stoc'k price process Sf under the
Fa RET i \’-ﬁf"’l =

where X; is a variance-gamma process, r is the short rate, a constant, and
the presence of the compensator w, defined by e® = E [exp (X1)], ensures that
Sie~"! is a martingale under the measure associated with the accumulator ac-
count numeraire. From (2) we have

The log price relative 2, = In (S;/So) of S; has density f7 (z) = f}'“ (z') where

21n general there is no unique martingale measure for a Lévy process. Since we focus on
numerical solutions for processes of the form (7) we do not pursue this issue further,

=
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Suppose an option has payoff Hp = Hr (w) at time T', where Hy may depend
on the state w € ). Under the martingale measure F associated with the

e e e s

In this section we recall how (9} can be solved using plain Monte Carlo. A
standard reference for applications of Monte Carlo methods in finance is Jickel

¢ =E [Hre_"(T_m] = e (T / Hr (w) dF (). (10)
Q
The integral can be approximated by constructing a set {&™'}, _,  of dis-

crete sample paths randomly selected under a measure F, a discrete approxi-
mation to the measure F. Then the approximation ¢; to ¢; is

Discrete sample paths for a subordinated Brownian motion, X; = wj, (s, can
be constructed by first constructing discrete sample paths for the subordinator
h (t) and then sampling the process w; at times determined by the paths found

for h (t).

We construct discrete sample paths for X; over the period [0, 7] with N time
steps at times 0 =iy <, < ... <y = T. First we construct a discrete sample
path {};n} . for h(t). Set hg = 0. Iteratively, hy1q1 — };n is a random

n=0,...,

increment in A over the interval At, = t,.; —t,. For the variance-gamma
process, Ah, = hyi1 — hy ~ G (A—ﬁﬂ,:/) and is easy to simulate. Given the

path {};n} , and setting @y = 0, we set iteratively A, = Wy — Wy ~

n=0,... N
N

We may assume elsewhere that the time step At = % is a constant. This

assumption is for simplicity only and may be relaxed trivially.



Process

The plain Monte Carlo estimate ¢; converges to ¢; as M and N go to infin-
ity. However, convergence to within an error bound may be very slow.® An
effective Monte Carlo method requires effective speed-ups. When simulating a
Brownian motion, a Brownian bridge is often used in conjunction with stratified
sampling. This technique helps to ensure that the set {ﬁ’:m}m:],,,, B of discrete

sample paths is drawn more evenly under the measure F'. In this section we
review the method of stratified sampling and the use of a bridge for a stochastic
process and its application to a Wiener process. We describe the construction
of the gamma bridge and its application to the variance-gamma process. The
algorithm, ‘bridge’ Monte Carlo, is presented.

3.1 Stratified Sampling

Initially suppose that the payolfl function Hr depends solely on the value Xp
of a state variable at time 7, with distribution function FX (z) and density
function f3 (x). Then

=e (T8 / Hy (x) fX () da (13)
‘1 M
e M(T—1) = v /
¢ 2 2 (X ) (14)
PrTh s and

where X™ is drawn from the distribution FX.

A stratified sample of size M from FiX is one in which the mth draw, )E'm, is
constructed to lie in the mth quantile band, [“";\}1 , %], for 1 <m < M. Given
a 'sample {61"}? _ um =

_y drawn from U [0, 1], the set {'“’"‘}n =1, where 1

T
hﬁnﬂf"ﬁ‘%‘ﬁ?‘“‘* L et

s‘&iﬁs&w‘“
stratification method is to sample U [0, 1] using a low dlacrepan(‘\« sequence. If

the function (FTX ) is known, and given a stratified sample {u "}mzl M
of the uniform distribution U [0, 1], then the set {(F%’)_l (ﬁ”’“)} y isa
m=1,...
stratified sample from the distribution FiX. We use this technique, the inverse
e e
An option value constructed using a stratified sample may have an actual
'standard devlatlon significantly less the size of that of a value found using plain

sesirenesE

We find the actual standard

 H



If Hy depends on an entire sample path, as is the case for an average
rate option, a set of sample paths may be found by first finding a stratified

sample {)? m} v from the terminal time, and then constructing a path
m=1,...

0= ji’é“ < XM« < XY = X, so that ea,ch)i:lT1L has the correct conditional
distribution. This set of paths will sample from F more evenly than a sample

without stratification. We call the path {)}::’} , constructed from )?6"‘

n=0,...,
and X7}, an X-bridge. Intermediate points X' are constructed by sampling
from a bridge distribution, defined and described in the next section. This sam-
pling may also be stratified, leading to improved sampling at the intermediate

omR SR e i

3.2 A Bridge for a Wiener Process

Suppose that z ~ F, and y ~ F, are random variables with distributions F,
and F,, densities f, and f, and joint density function f, ,. Set 2 = x +y with
density f,. We are interested in the conditional distribution of | 2. Write f,,

e e S

21

When x and y represent increments in a Markov stochastic process their
densities will depend on the time increment. For instance, for a Wiener process
w; where & = w;;, — w;, is a random increment between times ¢; and ¢; and
Yy = wy, —wy; is arandom increment between times {; and {, then x ~ N (O, JE.),
Yy~ N (O,J:ﬁ), z e~ N (O,JE) where O'E =t; —t;, 05 =t —t; and O'f =t — ;.

A

where

Hence, given 2z = w¢, — wy;, © = wy; — wy, is normally distributed, x ~



Ep—iti? (te—t:)

N (zﬂ,b2) ~ N (757'—55 (ti—ti)(tk—tiJ): so that

gi; — g, NG(F‘:; =@)!y=9fk_9tj — Yt NG(%!“)'
The conditional density f,. (z) is

=8 : 5 R sesiiEne
. T . Ge; —9¢; . . .
parameters 1; and —*. Given g, and g, £ = ﬁ has a beta distribution
- * i
S50

for 3, ~ B (bl_—f* , f’”—:t-l . This is the bridge distribution for a gamma process.
a
This result is intuitive. A beta variate takes values in the interval [0,1]. The
gamma process is an increasing process. Given the increment 2 over the pe-
riod [t;,t%], the beta distribution samples from the proportion of this increment
achieved by time £;.

3.4 Application of the Gamma Bridge

To apply bridge Monte Carlo we use the subordinator representation of the
variance-gamma process and stratify it at the terminal time. We construct a
bridge to the points we have constructed. The bridge may itself be stratified at
intermediate times.

Suppose X; = wy(y) for a Brownian motion w; ~ N (,ut,crgt) and subordina-
tor hy ~ G (—t v). Time is discretised into N time steps, 0 = {g, #1,... ,txy =T,

[Tl
up to the terminal time T'. For a sample of size M we construct:
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The set of paths @', ¢ = 1,...,M, is a stratified bridge sample from the
path space of the Lévy process X;.

Note that we stratify both h; and wy,() at the terminal time. We found ex-
perimentally that full speed-ups were not achieved unless both the subordinator
and the Brownian motion were stratified. In the sequel we always stratify both
By and Whyt)-

3.5 Stratifying the Variance-Gamma Bridge

Fori; < ty, given g;; and gy, , the value g;; of a gamma process at an intermediate
time ¢; is generated as gi; = g¢, + 5y, (91, — g1,) for 5, ~ B (_,—_r, t'”—* A
stratified sample for ﬁtj yields a stratified sample for g;,. We obtaln such a
sample by inverse transform from a stratified sample %,, n = 1,... , M of the

unit interval. Set ﬁ? = B:.{ta — ({En), where B;}B' is the inverse of the

st e : =
If the gamma p1 ocess is stlatlﬁed at time ¢; then we also stratify w at time

We present in the next section comparisons of bridge Monte Carlo when
stratified at different numbers of times. To stratify at & times, where K = 2
and N = QK for integer P and (), we first compute a stratified sample of
points h%, and %N i =1,...,M, at time . We then stratify successively at
times ltN, 4fN, JfN, TtNn, gth StN, SfN,antlwon until all tlmes Ein, k=

SR e e e e :
are filled in using ordinary random draws from beta and normal distributions.
We stratifly by constructing a stratified sample from a 2K-dimensional unit
hypercube. For K < 2 it may be plausible to use a Monte Carlo stratified
sample. In the numerical section, except where noted, we use low discrepancy

fs




We first benchmark the bridge Monte Carlo method against European call op-
tion values. Then we use the bridge to value average rate, lookback and barrier
options and compare the results to those found with plain Monte Carlo. The
performance of the bridge under various degrees of stratification is investigated.

All the path dependent instruments mature in one year. We investigate reset
frequencies from quarterly to approximately daily. We find that the bridge
method benchmarks very accurately, achieving efficiency gains of a factor of
50 for European calls with one year to maturity. For path dependent options
with daily resets and 16 stratification times we achieve gains of a factor of 130
for lookback options and 380 for average rate options. Gains are also found
for barrier options but these may be significantly less. For our examples one
stratification (at the terminal time) is ten to twenty times faster than plain
Monte Carlo, but further stratification does not always bring further efficiency
gains.

We require algorithms for generating uniform, normal, gamma and beta random
variates.

Uniform variates are generated using a VBA version of ran2 from Numerical
Recipes (92) [18]. All normal variates were generated by inverse transform.
N1, the inverse of the normal distribution function, is computed using Applied
Statistics Algorithm 111 [3] downloadable from lib.stat.cmu.edu/apstat/111.

To generate gamma variates directly we use the Best (83) and Best (78)
algorithms as described in Devroye (86) [10]. To compute the inverse of the
gamma distribution function, G, to use with the inverse transform method
for stratified sampling, we use the algorithm of DiDonato and Morris (87) [11],
downloadable from www.netlib.org/toms/654. It uses an iterative method to

S

method if min (e, 3) < 1, Johnk’s method if max (e, 3) < 1, by Atkinson and
Whittaker’s method if min (v, #) < 1 < max(«, ), and by ratio of gammas
otherwise.® For stratified sampling, the inverse of the beta distribution function,
B!, is computed using an algorithm due to Moshier (00) [17]. This algorithm

uses an iterative method to solve for B-. =y ( ;‘J) — i, = 0. We shall see that

this particular procedure is relatively slow compared, for instance, to computing
N-'. Should faster algorithms emerge to compute B, -, (or indeed G~ )

then the efliciency gains to the algorithm would be even 'gllz‘eater than those we

For low discrepancy sampling we use a Sobol’ sequence based on Bratley and

Bennett (88) [6]. Code is downloadable from www.netlib.org/toms/659. The

5See [9] and [10]. Johnk's method sometimes fails when both o and @ are small. In these
cases we revert to the ratio of gammas method.

[ &



Monte Carlo
Maturity | Explicit Plain Stratified | Gain
) . 3.4548 3.4748 -
0.25 3.4742 (0.035) (0.003) 25
) 6.2414 6.2401 -
0.5 6.2406 (0.056) (0.004) 35
8.6928 8.6955
0.75 8.6909 (0.077) (0.005) 43
N 10.9381 10.9721 -
1 10.9815 (0.099) (0.006) 50
Time: — 0.3 1.4

Table 1: Comparison of Plain and Stratified Monte Carlo: Calls, one time step.

code generates low discrepancy samples from a unit hypercube of dimension at
most 39. Since bridge Monte Carlo uses two low discrepancy coordinates at
each stratified time, we are constrained to have at most 18 stratification times.

with stlatlﬁed Monte Cal 10, taking 10, 000 'sampl&s d11 ectly from the ter mlnal
distribution for each maturity (M = 10,000, N = 1). Explicit values are
computed using the analytical formula of Ma)dan‘ Carr and Chan (98) [14].
btandard de\« 1at10n~. are shcmn 1n brackets * Tables 1 and 2 use ‘ordinary’
ST e T R

For ea,ch opt-ion in table 1 plain Monte Carlo took about 26 seconds for a
hundred replications. Stratified Monte Carlo took about 144 seconds.

The ﬁnal column of table 1 glves the eﬂ:iClency gain of the stlatlﬁed Monte

(20)

5Call values are for options on an asset with initial value Sy = 100, exercise price X = 101
and riskless rate r = 0.1. Parameters of the variance-gamma process are u = —0.1436,

o = 0.12136, v = 0.3 (based upon Madan, Carr and Chan (98) [14]}. Maturities, in years,

"For plain Monte Carlo the standard deviation is approximately equal to the standard
error. For bridge Monte Carlo, in all the tables of this section, the true standard deviation is
found from a hundred replications of the Monte Carlo procedure.

S All programmes were written in Visual Basic £.0 and were run on an 800 Mhz PC.

0



Under the assumption that standard deviation scales inversely with the square
root of the number of sample paths M, and that time taken is proportional to
M, then F4p is the multiple of the time the plain method takes to achieve a
particular standard deviation compared to the alternative method.

We note eﬂ:imency galn's of 50 f01 one year maturity options. The efficiency
R e = :

Table 2 compares stratified Monte Carlo with different mumbers of sample
paths. The M = 10,000 column is repeated from table 1. In each case the
gamma and the normal variates have an equal degree of stratification. For
instance, for M = 10,000, there are a hundred buckets in each dimension of
the stratified 2-dimensional unit hypercube. With only 400 sample paths the
standard deviation of the stratified Monte Carlo method is significantly less
than that of the plain Monte Carlo in table 1 and takes less than a quarter of

SR ST

Now we investigate how using bridge Monte Carlo can increase the efficiency
of valuing options of different maturities simultaneously. We evolve the variance-
gamma process out to 1 year in four time steps of 0.25 years each, and value
simultaneously the benchmark option maturing at the conclusion of each time

Table 3 shows benchmarked call values computed with plain Monte Carlo
and with bridge Monte Carlo stratified at (i) step 4, the terminal time, (ii) steps
2 and 4, (iii) steps 1, 2, 3 and 4, so that K = 1, 2 and 4 for the three cases.
In this table M = 100,000 for each option. Stratification is by low discrepancy
sampling. At the stratification times, stratification is entirely deterministic so
no standard deviation can be reported Table 4 dl'splays the efficiency gains
: s

We see that stratiﬁcatlon gives very significant eﬂ:imency gains for options
of all maturities. Additional stratification may give greater gains for options of

9B fficiency gains decrease as M decreases because of fixed set-up times in the implemen-
tation of the Monte Carlo algorithm.




Bridge MC: Stratified at steps:

Maturity | Explicit | Plain MC | K=1 | K=2 | K=4
‘ . 34756 34879 | 34858 | 3.473%

0.25 34742 (0.03) | (0.011) | (0.009) (-)
, 61712 62410 | 62400 | 6.2409

0.5 6.2406 (0.061) | (0.015) ) (-)
8.6156 86811 | 8.6860 | 8.6907

0.75 8.6909 (0.088) | (0.026) | (0.011) (-)
108766 | 10,9813 | 10.9813 | 10.9813

| 10.9815
©10) | () ) -
Time: - 0.93 0.25 0.10 3

Table 3: Comparison of Plain and Stratified Monte Carlo: Calls, one to four

Efficiency Gains

Maturity | K =1 K=2
0.25 35 33
0.5 61 —
0.75 42 147
1 — —

Table 4: Bridge Monte Carlo: Efficiency Gains over Plain Monte Carlo.

As a further example we compute Black-Scholes implied volatilities for op-
tions maturing at times §; forn =1,... ,N, N = 64. Figure 1 compares Black-
Scholes implied volatilities of variance-gamma calls for bridge Monte Carlo strat-
ified only at the terminal time against stratification every 4 time steps. The
sample size is M = 1,000. Option prices for each maturity are computed to-
gether. With 16 stratification times (and one replication) the programme takes
9.2 seconds to run. When stratifying only at the terminal time the programme
takes 2.0 seconds. Pricing is improved with greater stratification, even taking
the increased run time into account, particularly at longer maturity times.

We conclude that bridge Monte Carlo benchmarks well to European calls,
achieving superior accuracy to plain Monte Carlo. We now value path dependent
options in the variance-gamma framework.

We value one year average rate, lookback and barrier options with various num-
bers of reset times up to final maturity, comparing the results to plain Monte
S L e R R R i i e e e T e e e

e report results f01 plain Monte Carlo with M = 1,000, 000 sample paths
The results for bridge Monte Carlo are for M = 10,000. Actual standard
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Figure 1: Comparison of implied volatilities: 1 and 16 stratification times

deviations, based on 100 replications of the full Monte Carlo procedure, are
shown in round brackets. Times in seconds for a single replication are shown
in square brackets. For the options investigated, the standard error and actual
standard deviation of plain Monte Carlo are very similar, so only the standard
P I g T

Each option is priced under varying numbers of reset times per year, from 4
to 256, corresponding to quarterly up to approximately daily reset frequencies.
The number of times steps is equal to the number of reset times. With NV reset

times, resets are at times % , % .-..,1. Bridge Monte Carlo is implemented with
from 1 to 16 stratification times. With K stratification times, stratifications
are at times % , % ....,1. When the number of stratification times equals the

number of reset times, the method is fully low discrepancy and non-stochastic.
Results in this case are based on a single replication and no standard deviation
is reported. For options with 4, 8 and 16 resets we ‘benchmark’ by pricing using
fully low discrepancy sampling with M = 1,000,000 sample paths. We note
that convergence in M for fully low discrepancy methods is not uniform.

Ty sz
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4.3.1 Average rate options

Table 5 shows results for average rate call options. The payofl at time one is
Hp = max (A — X,0) where A is the arithmetic average of the asset value at



each reset time and X = 101 is the exercise price.

We see that the standard deviation decreases significantly with each addi-
tional level of stratification. Computation times also increase. Doubling the
number of stratification times roughly halves the standard deviation but only
approximately doubles the computation time. This means that each additional
level of stratification is approximately doubling the efficiency gain. These are

Efficiency gains are most pronounced for options with greater numbers of
reset times, but even the quarterly reset option with two stratification times is
7 tlmes fa'stel than p]aln Monte Car]o For the daily reset case (N = 206) usmg

Table 7 shows results for lookback call options. The payofl at time one is
HT = ma};(S'T — ﬂf 0) where ﬂf is the mmlmum of the asset values at each

F01 lookba,ck's we see that increasing the number of 'stratlﬁcatlon times brings
increasing efficiency gains, although less so than for the average rate option. The
gains are most pronounced for the daily reset lookback with an efliciency gain
of 129 with 16 stratification times. Efficiency gains are greater for options with

R e R TR S S R AR

We report results for pricing of up-and-in call options. Pricing for down-and-
out barrier options was also investigated but as we found similar results to the
3 U e e B
Out -type barrier options may be given a zero payoll immediately that an
asset value is generated that has hit the barrier, and no further asset values
along that sample path need be generated. An analogous speed-up is possible
for ‘In’-type barrier options. Once the barrier is hit the bridge Monte Carlo
method requires no further asset values to be generated since the bridge has
already generated the terminal asset value. The plain Monte Carlo method
requires the generation of one further asset value, for the terminal time.
Tables 9 shows results for an up-and-in call option. The payofl at time one
is Hr = max (57 — X,0) where X is the exercise price, and where the payoff
is conditional on the asset value exceeding the barrier level B on at least one
reset time. The table gives results for B = 120. Table 10 gives efficiency gains
for these options. We see that a single stratification, at the terminal time, gives
efficiency gains from around 12 up to 23 for daily reset options. Additional
stratification does not necessarily increase the efliciency, although there are
gains for the daily reset option. On the whole, efficiencies do not decrease by
much, implying that there is likely to be little loss from additional stratification.




Investigation showed that efficiency gains are greater when the barrier level
B is further away from the initial asset value S;. When B is close to Sy the gains
are considerably less. For down-and-out options with B = 100, efficiency gains
of around 2 were obtained for one level of stratification, at the terminal time.
However, further stratifications do not lead to further gains. On the contrary,
for all except the option with 256 reset times, the efficiency gains diminish.

We attribute the pricing behaviour of barrier options to two factors. The
first is that the values of barrier options depend on the path of asset values only
through the hitting, or otherwise, of a barrier level; payolls are not computed
directly from intermediate asset values. In this sense barrier options are ‘less’
path dependent than average rate or lookback options whose payofls depend
directly upon intermediate asset values and whose valuation benefits from a
more sophisticated sampling at intermediate times. The second factor is the
efficiency of the algorithms used to compute the inverse of the beta distribution
functlon In faft from table 5, for instance, we can estimate that (for M =
: -m‘éi?’%&:}”a{‘_‘am@Wr R S R ot e T
about 0.2 seconds the gamma stratification step at the terminal time takes
about 0.6 seconds and a beta stratification step takes about 5 seconds. Were
a beta stratification step to be as fast as the gamma etlatlﬁcatlon step a daily

BT -Er’“"vﬁﬁ’im?t\iﬁﬁﬁﬁiz}m}}??‘t”éﬁ“l
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5 Conclusions

We have shown how a gamma bridge may be used in conjunction with strati-
fied sampling in the variance-gamma model to give much improved Monte Carlo
estimates of option values, both for benchmark calls and for various path depen-
dent options. We find efliciency gains of a factor of around 380 for average rate
options and 130 for lookback options. There are also galn's f01 barrier options

TR e s e e e

The use of the brldge Monte Car 10 teehnlque should be COllSldered whenever

of ba111e1 optlon's 11; appears that the gleatel the effectlve degree of path de—
pendence, the greater are the efliciency gains due to the use of bridge Monte
Carlo.

Bridge Monte Carlo may be used to maximum effect if an efficient algo-
rithm is available to compute the inverse of the bridge distribution function.
Very good algorithms exist to compute the inverse of the normal distribution.
Further efficiency gains would be possible for the gamma bridge if improved
algorithms for the computation of the functions G~! and particularly for B!
were available. We would then expect to see that stratifications at intermediate
times for barrier options with asset values close to the barrier level could lead
to much greater efficiency gains.

In principle the bridge Monte Carlo method is widely applicable, but its ease
of application depends upon the nature of the conditional distribution function



at intermediate times, and on the efficiency of available algorithms to compute
the inverse of that distribution function.

For the variance-gamma process the use of the gamma-bridge is strongly
recommended for appropriate applications.



References

TR

form. Malc‘h 1999 Mimeo.







Table 5: Average Rate Call Options: Comparison of Plain and Bridge Monte

Carlo
Average rate call options: Efficiency gains.
K | 4 resets | B resets | 16 resets | 32 resets | 64 resets | 256 resets
1 1.7 2.7 3.5 3.1 2.4 4.5
2 7.2 8.2 7.5 8.6 11 15
4 - 10 14 18 32 53
8 — — 34 42 60 134
16 — — — 115 136 383

Table 6: Average Rate Call Options: Efficiency Gains for Bridge Monte Carlo

over Plain Monte Carlo




Table 7: Lookback Call Options: Comparison of Plain and Bridge Monte Carlo

Lookback call options: Efficiency gains.
K | 4 resets | B resets | 16 resets | 32 resets | 64 resets | 256 resets
1 5.3 4.4 6.9 5.5 7.2 9.0
3 11 11 13 13 11 20
4 — 9.2 11 20 28 40
8 - - 16 33 42 59
16 - - - 40 45 129

Table 8: Lookback Call Options: Efficiency Gains for Bridge Monte Carlo over

20



Up-and-In barrier call options: Times and standard deviations.

K 4 resets | 8 resets | 16 resets | 32 resets | 64 resets | 256 resets

7.0347 7.2316 7.3727 7.4765 7.5351 7.5851
0 (0.011) (0.011) (0.011) (_0.011) (0.011) (_0.011)
[85.2] [169.0] [315.4] [597.5] [1157 [4507]
7.0094 7.2556 7.4214 7.4392 7.5155 7.5433
1 (0.018) (0.024) (0.028) (0.028) (0.027) (0.027)
[2.1] [2.8] [4.1] [6.6] [11.3] [32.5]
7.0283 7.2211 7.4261 7.4640 7.5607 7.5608
2 (0.014) (0.019) (0.023) (0.026) (0.024) (0.025)
[3.6] [4.4] [5.7] [8.1] [12.8] [34.0]
7.0261 7.2220 7.4015 7.4826 7.5713 7.6147
4 (—) (0.014) (0.017) (0.021) (0.018) (0.017)
[11.8] [12.6] [13.9] [16.3] 21.0] 42.1]
7.2255 7.4021 7.5134 7.5316 7.6206
8 - (—) (0.013) (0.018) (0.014) (0.015)
[28.0] [29.3] [31.8] [36.4] [57.8]
7.3772 7.4905 7.5456 7.5941
16 — — (=) (0.008) (0.011) (0.013)
[58.7] 61.1) [65.8] [87.0]

7.0268 7.2348 7.3857

Bench-
mark (-) (=) (=) - - -
[1180] [2801] [5860]

Table 9: Up-and-In Barrier Call Options: Comparison of Plain and Bridge
Monte Carlo. B = 120

Up-and-In barrier call options: Efficiency gains.
K | 4 resets | B resets | 16 resets | 32 resets | 64 resets | 256 resets
1 15.2 12.7 11.9 14.0 17.0 23.0
2 14.6 12.9 12.7 13.2 19.0 25.7
4 - 8.3 9.5 10.1 20.6 44.8
8 — — 7.7 7.0 19.6 41.9
16 — — — 18.5 17.6 37.1

Tab

le 10: Up-and-In Barrier Call Options: Efficiency Gains for Bridge Monte

= i
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