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Abstract

We develop a dynamic valuation model of private equity (PE) investments by solv-
ing the portfolio-choice problem for a risk-averse investor (LP), who invests in a PE
fund, managed by a general partner (GP). Key features are illiquidity, leverage, GP
value-adding skills (alpha), and compensation, including management fees and carried
interest. We find that the costs of management fees, carried interest, and illiquidity are
high, and the GP needs to generate substantial value to cover these costs. Leverage
substantially reduces these costs. Finally, we find that conventional interpretations of
PE performance measures are optimistic. On average, LPs may just break even.
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Institutional investors allocate substantial fractions of their portfolios to alternative in-

vestments. Yale University’s endowment targets a 63% allocation, with 34% to private

equity, 20% to real estate, and 9% to natural resources. The California Public Employees’

Retirement System (CalPERS) allocates 14% of its $240B pension fund to private equity

and 10% to real assets. More generally, allocations by public pension funds range from 0%

for Georgia’s Municipal Retirement System, which is prohibited by law from making alterna-

tive investments, to 46% for the Pennsylvania State Employees’ Retirement System. At the

sovereign level, China’s $482B sovereign wealth fund (CIC) recently reduced its allocation

to public equity to 25%, which now falls below its 31% allocation to alternative (“long-

term”) investments.1 Given the magnitude and diversity of these allocations, it is important

to understand the economic value and performance of alternative investments compared to

traditional publicly-traded stocks and bonds. This study focuses on private equity (PE) in-

vestments, specifically investments by a limited partner (LP) in a buyout (BO) fund. Similar

issues arise for investments in venture capital (VC) funds, real estate, infrastructure, natural

resources, and other long-term illiquid assets.

To value PE investments and evaluate their performance, we develop a model of the LP’s

portfolio-choice problem that captures four key institutional features of PE investments:2

First, PE investments are illiquid and long term. PE funds have ten-year maturities and the

secondary market for PE positions is opaque, making it difficult for LPs to rebalance their

PE investments. Second, PE investments are risky. Part of this risk is spanned by publicly-

traded liquid assets and hence commands the standard risk premium for systematic risk. The

remaining part of this risk, however, is not spanned by the market, due to illiquidity, and

the LP requires an additional premium for holding this risk. Third, the management of the

PE fund is delegated to a general partner (GP), who receives both an annual management

fee, typically 1.5%–2% of the committed capital, and a performance-based incentive fee

(carried interest), typically 20% of profits. Intuitively, management fees resemble a fixed-

income stream and the carried interest resembles a call option on the fund’s underlying

1For Yale, see http://news.yale.edu/2011/09/28/investment-return-219-brings-yale-endowment-value-
194-billion. For CalPERS, see http://www.calpers.ca.gov/index.jsp?bc=/investments/assets/assetallocation.xml.
For Georgia’s Municipal Retirement System and Pennsylvania State Employees’ Retirement System, see
“After Riskier Bets, Pension Funds Struggle to Keep Up” by Julie Creswell in The New York Times, April
1, 2012. For CIC, see the 2010 and 2011 Annual Reports at http://www.china-inv.cn.

2See Gompers and Lerner (2002) and Metrick and Yasuda (2010, 2011) for detailed discussions of the
institutional features of these investments.
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portfolio companies. Fourth, to compensate the LP for bearing the unspanned risk as well

as management and performance fees, the GP must generate sufficient risk-adjusted excess

return (alpha) by effectively managing the fund’s assets.

We first consider the full-spanning case. In this case, the risk of the PE investment is fully

spanned by publicly-traded assets, and there is no cost of illiquidity. This full-spanning case

provides a powerful and tractable framework for valuing the GP’s compensation, including

management and incentive fees (carried interest). Even with full spanning, our pricing

formula differs from the standard Black-Scholes option pricing formula, because our model

must allows for the GP’s value-adding skill (alpha), while the Black-Scholes formula has

no room for risk-adjusted excess returns for any security. Quantitatively, in present value

terms, we find that both management fees and carried interest contribute importantly to the

GP’s total compensation. For the LP, the cost of management fees is between one-half and

two-thirds of the total cost of fees, which is in line with previous findings by Metrick and

Yasuda (2010).

More generally, when the PE investment has non-spanned risk, our model allows us to

quantify the cost of illiquidity. We derive a non-linear differential equation for the LP’s

certainty-equivalent valuation, and obtain analytical solutions for the optimal hedging port-

folio and consumption rules. Intuitively, when markets are incomplete and the risk of the

PE investment is not fully spanned by the market, the standard law-of-one-price does not

hold. Unlike the standard Black-Scholes (1973) formula, our framework incorporates alpha,

management fees, carried interest, illiquidity, and the non-linear pricing of unspanned risk.

After calibrating the model, we calculate the discount in the LP’s valuation of the PE

investment that is due to illiquidity and the break-even alpha, which we define as the alpha

that the GP must generate to compensate the LP for the costs of illiquidity and the GP’s

compensation. Using both measures, we find that the cost of illiquidity is large. As a

benchmark, the total magnitude of the cost of illiquidity is comparable to the total cost of

the GP’s compensation, including both management fees and carried interest.

The break-even alpha is the LP’s additional cost of capital of the PE investment, due to

illiquidity and the GP’s compensation, beyond the standard CAPM-implied cost of capital.

Interestingly, this cost does not increase monotonically with the investment horizon. Instead,

it follows a U-shaped pattern. For shorter horizons, the cost increases due to an optionality
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effect of the GP’s carried interest. At intermediate horizons, the cost is lower. At longer

horizons, the cost increases again due to the long-term cost of illiquidity.

Without leverage, the break-even alpha is 3.08% annually with the typical 2/20 compen-

sation contract. Interestingly, leverage reduces this alpha. To illustrate, Axelson, Jenkinson,

Stromberg, and Weisbach (2011) report a historical average debt to equity (D/E) ratio of 3.0

for BO transactions. In our baseline calibration, increasing the D/E ratio to 3.0 reduces the

break-even alpha from 3.08% to 2.06% per year. The benefits of leverage are twofold: First,

for a given size of the LP’s investment, leverage increases the total size of PE assets for which

the GP generates alpha, effectively reducing the fees per dollar of unlevered assets. Second,

leverage allows diversified creditors to bear some of the risks of the PE investment. This

may provide an answer to the “PE leverage puzzle” from Axelson, Jenkinson, Stromberg,

and Weisbach (2011). They find that the credit market is the primary predictor of leverage

used in PE transactions, and that PE funds appear to use as much leverage as tolerated by

the market.3 This behavior is inconsistent with standard theories of capital structure (see

also Axelson, Stromberg, and Weisbach 2009). In our model it is optimal.

To summarize, of the LP’s total costs of the PE investment, approximately 50% are due

to illiquidity, 25% are due to management fees, and the remaining 25% are due to carried

interest. In present value terms, when the LP has a total committed capital of $125, resulting

in an initial investment of $100, the LP’s cost of the GP’s compensation is 50.97, and the

LP’s cost of illiquidity is 40.48. Hence, GPs need to create substantial value to cover these

costs.

Our model produces tractable expressions for the performance measures used in practice.

Given the difficulties of estimating traditional risk and return measures such as CAPM alphas

and betas, some alternative performance measures have been adopted in practice, such as

the Internal Rate of Return (IRR) and the Public Market Equivalent (PME). While these

alternative measures are easier to compute, they are more difficult to interpret. Harris,

Jenkinson, and Kaplan (2011) report a value-weighted average PME of 1.27 and conclude

3In their conclusion, Axelson, Jenkinson, Stromberg, and Weisbach (2011) state that “the factors that
predict capital structure in public companies have no explanatory power for buyouts. Instead, the main
factors that do affect the capital structure of buyouts are the price and availability of debt; when credit is
abundant and cheap, buyouts become more leveraged [...] Private equity practitioners often state that they
use as much leverage as they can to maximize the expected returns on each deal. The main constraint they
face, of course, is the capital market, which limits at any particular time how much private equity sponsors
can borrow for any particular deal.”
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that “buyout funds have outperformed public markets in the 1980s, 1990s, and 2000s.”4

Whether or not this outperformance is sufficient to compensate LPs for the illiquidity and

other frictions can be evaluated within our model. Given the break-even alpha, we calculate

the corresponding break-even values of the IRR and PME measures. We find that these

break-even values are close to their empirical counterparts. Our baseline calibration gives a

break-even PME of 1.30, suggesting that the empirical average of 1.27 is just sufficient for

LPs to break even on average.5 While the exact break-even values depend on the specific

calibration, a more general message is that the traditional interpretation of these performance

measures may be misleading.

Several other studies evaluate different aspects of PE performance. Ljungqvist and

Richardson (2003) use detailed cash flow information to document the timing of these cash

flows and calculate their excess return. Kaplan and Schoar (2005) analyze the persistence

of PE performance and returns, assuming a beta of one. Cochrane (2005) and Korteweg

and Sorensen (2011) estimate the risk and return of VC investments in a CAPM model

after adjusting for sample selection. Gompers, Kovner, Lerner, and Scharfstein (2008) in-

vestigate the cyclicality of VC investments and public markets. Phalippou and Gottschalg

(2009) evaluate reporting and accounting biases in PE performance estimates. Metrick and

Yasuda (2010) calculate present values of the different parts of the GP’s compensation, in-

cluding management fees, carried interest, and the hurdle rate. Jegadeesh, Kraussl, and

Pollet (2010) evaluate the performance of publicly traded PE firms. Franzoni, Nowak, and

Phalippou (2012) estimate a factor model with a liquidity factor for buyout investments.

Robinson and Sensoy (2012) investigate the correlation between PE investments and the

public market, and the effect of this correlation on the PME measure. None of these studies,

however, evaluate PE performance in the context of the LP’s portfolio-choice problem, and

hence they do not assess the costs of illiquidity and unspanned risk of these investments.

4As explained in the text, the PME is calculated by dividing the present value (PV) of the cash flows
distributed to the LP by the PV of the cash flows paid by the LP, where the PV is calculated using the
realized market return as the discount rate. A PME exceeding one is typically interpreted as outperformance
relative to the market.

5Kaplan and Schoar (2005) find substantial persistence in the performance of subsequent PE funds man-
aged by the same PE firm, indicating that PE firms differ in their quality and ability to generate returns.
Lerner, Schoar, and Wongsunwai (2007) find systematic variation in PE performance across LP types, sug-
gesting that LPs differ in their ability to identify and access high-quality PE firms. Hence, some specific LPs
may consistently outperform (or underperform) the average.
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Our analysis also relates to the literature about valuation and portfolio choice with illiquid

assets, such as restricted stocks, executive compensation, non-traded labor income, illiquid

entrepreneurial businesses, and hedge fund lock-ups. For example, Svensson and Werner

(1993), Duffie, Fleming, Soner, and Zariphopoulou (1997), Koo (1998), and Viceira (2001)

study consumption and portfolio choices with non-tradable labor income. Kahl, Liu, and

Longstaff (2003) analyze a continuous-time portfolio choice model with restricted stocks.

Chen, Miao, and Wang (2010) and Wang, Wang, and Yang (2012) study entrepreneurial

firms under incomplete markets. For hedge funds, Goetzmann, Ingersoll, and Ross (2003),

Panageas and Westerfield (2009), and Lan, Wang, and Yang (2013) analyze the impact of

management fees and high-water mark based incentive fees on leverage and valuation. Ang,

Papanikolaou, and Westerfield (2012) analyze a model with an illiquid asset that can be

traded and rebalanced at Poisson arrival times. We are unaware, though, of any existing

model that captures the illiquidity, managerial skill (alpha) and compensation of PE in-

vestments. Capturing these institutional features in a model that is sufficiently tractable to

evaluate actual PE performance is a main contribution of this study.

1 Model

An institutional investor with an infinite horizon invests in three assets: a risk-free asset,

public equity, and private equity. The risk-free asset and public equity represent the standard

investment opportunities as in the classic Merton (1971) model. The risk-free asset pays a

constant interest rate r. Public equity can be interpreted as the public market portfolio, and

its value, St, follows the geometric Brownian motion (GBM):

dSt
St

= µSdt+ σSdB
S
t , (1)

where BS
t is a standard Brownian motion, and µS and σS are the constant drift and volatility

parameters. The Sharpe ratio for the public equity is:

η =
µS − r
σS

. (2)

1.1 Private Equity

The private-equity investment is structured as follows. At time 0, the investor, acting

as a limited partner (LP), commits X0 (the committed capital) to a PE fund. This PE
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fund is managed by a PE firm, which acts as the general partner (GP) of the fund. Of this

committed capital, only I0 is invested immediately. The remaining X0−I0 is retained by the

LP to cover subsequent management fees over the life of the fund. We provide expressions

for X0 − I0 and I0 below, when we discuss management fees.

At time 0, the PE fund receives the initial investment of I0 from the LP. The fund

leverages this initial investment with D0 of debt to acquire at total of A0 = I0 + D0 worth

of underlying portfolio companies. In reality, a typical PE fund gradually acquires 10-

20 portfolio companies, but for tractability we do not model these individual acquisitions.

Instead, we refer to the entire portfolio of the fund’s companies collectively as the PE asset,

and we assume that the entire portfolio is acquired at time 0. In practice, the leverage is

obtained at the portfolio company level, not by the fund. Hence, D0 represents the total

debt of the portfolio companies after they have been acquired by the PE fund, and the

initial value of the PE asset, A0, is the total unlevered value of these portfolio companies.

Let l = D0/I0 denote the initial D/E ratio. For example, with invested capital of I0 = $100

and leverage of l = 3, the fund acquires A0 = $400 worth of companies and finances part of

this acquisition by imposing D0 = $300 of debt on these companies.

The PE fund has maturity T . In practice, PE funds have ten-year horizons, which can

sometimes be extended by a few additional years. When the fund matures, the fund and the

PE asset are liquidated and the proceeds are distributed between the creditors, the LP, and

the GP. After the PE fund matures, the LP will not invest in another one. After maturity,

the LP will only invest in the risk-free asset and public equity, reducing the LP’s problem

to the standard Merton (1971) portfolio problem.

It is important to distinguish the LP’s partnership interest from the underlying PE asset.

The LP’s partnership interest is the LP’s claim on the PE fund, including the obligation to

pay the remaining management fees and the right to the eventual proceeds from the sale

of the PE asset, net of the GP’s carried interest.6 In contrast, the PE asset represents the

total unlevered value of the corporate assets of the underlying portfolio companies, owned

by the fund. To consistently evaluate the effects of illiquidity, risk, leverage, and GP’s value-

6In practice, PE funds have several LPs, which typically share the value of the fund pro rata. We interpret
X0 to be the LP’s share of the total fund. If the total committed capital to the PE fund is X0, and a given
LP owns the share s of the fund, then X0 = sX0. Alternatively, we can interpret the LP in the model as
representing the aggregate collection of LPs.
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adding activities (alpha), we specify the value process of the underlying PE asset. Given

this value process, we can then value the LP’s partnership interest as an illiquid claim on

the underlying PE asset.

Risk of PE asset. The PE asset is illiquid, and the PE fund must hold it to maturity,

T . As a starting point, we assume that the maturity equals the life of the PE fund. Below,

we also consider shorter maturities, corresponding to the holding periods of the individual

portfolio companies. The value of the PE asset is the total unlevered value of the portfolio

companies. Between times 0 and T , the value of the PE asset, At, follows the GBM:

dAt
At

= µAdt+ σAdB
A
t , (3)

where BA
t is a standard Brownian motion, µA is the drift, and σA is the volatility. At time T ,

the PE asset is liquidated for total proceeds of AT , and these proceeds are divided between

the creditors, LP, and GP according to the “waterfall” structure specified below.

To capture its systematic risk, the return on the PE asset is correlated with the return

on the public market, and the correlation between the BS
t and BA

t processes is denoted ρ.

When |ρ| < 1, the two processes are not perfectly correlated; the risk of the PE asset is not

fully spanned by the market, and the LP cannot fully hedge the risk of the PE investment

by dynamically trading the public equity and risk-free asset.

The unlevered beta (or asset beta) of the PE asset is given as:

β =
ρσA
σS

. (4)

This is the unlevered beta of the return on the entire PE asset relative to the return on

the public market. In contrast, the levered beta (or equity beta) of the levered return on

the LP’s partnership interest may be several times greater than the unlevered beta, β. It

is useful, though, to define the systematic risk in terms of the asset beta of the underlying

PE asset, because this asset beta can be assumed constant, and it enables us to consistently

evaluate the effects of changes in compensation structure and leverage, while accounting for

the implied changes in the risks of the LP’s partnership interest.

The total volatility of the PE asset is σA. The fraction of this volatility that is spanned

by the public market is ρσA. The remaining unspanned volatility is denoted ε:

ε =
√
σ2
A − ρ2σ2

A =
√
σ2
A − β2σ2

S . (5)
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The unspanned volatility introduces an additional risk into the LP’s overall portfolio. The

spanned and unspanned volatilities play distinct roles in the valuation of the LP’s partnership

interest, and the LP requires different risk premia for bearing these two risks.7

Return of PE asset. An important feature of our model is that it allows the value

of the underlying PE asset to appreciate faster than the overall market and earn an excess

risk-adjusted return, called alpha.8 Formally, alpha is defined as:

α = µA − r − β(µS − r) . (6)

Intuitively, the alpha is the CAPM-model-based risk-adjusted excess return of the portfolio

companies owned and managed by the PE fund. This value may arise from improved gov-

ernance or from the GP being a skillful manager (e.g., Jensen, 1989) or from the additional

illiquidity risk exposure as we show later.

Discussion. We define the alpha and beta relative to the public market portfolio and not

relative to the LP’s entire portfolio, which also contains the partnership interest in the PE

fund. With appropriate data, the alpha and beta can be estimated by regressing the return

earned on PE transactions on the return of the public market portfolio. Empirical studies of

PE performance also measure PE performance relative to the public market portfolio, and

our definitions allow us to use the existing estimates to calibrate our model. Defining alphas

and betas relative to the LP’s entire portfolio, containing both public and private equity,

is impractical because the value of the LP’s partnership interest is difficult to estimate and

may require a different valuation framework, as indicated by our analysis.

Second, the alpha and beta are defined in terms of the performance of the underlying

unlevered PE asset, not in terms of the levered performance of the LP’s partnership interest,

which is obviously the only performance the LP cares about. Defining the alpha and beta for

the PE asset, however, is useful for a number of reasons: (1) It provides a way to assess the

value that GPs must create for the portfolio companies that they manage, independently of

7We assume that X0 > 0, and that the GP cannot short the investment in the PE fund. Further, we
assume that the LP cannot trade the debt used to leverage the PE asset. The LP would want a short position
in this debt to partially hedge the non-spanned risk.

8Our model can also accommodate value created by levering PE asset with “cheap” debt. In this paper,
however, we only consider debt priced in equilibrium. Ivashina and Kovner (2010) provide empirical evidence
of the use of cheap debt financing in PE transactions.
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the leverage of these companies; (2) it allows us to fix the underlying real value-generating

process of the PE asset, and evaluate the effects of changes in management compensation,

leverage, risk aversion, and illiquidity; and (3) it makes the model easier to calibrate, because

we can use estimates for the performance of individual portfolio companies.

1.2 Capital Structure and Waterfall

The GP’s compensation consists of management fees and incentive fees, which are also

known as “carried interest” (we use the terms “incentive fees,” “performance fees,” and

“carried interest” interchangeably). The management fee is an ongoing payment by the LP

to the GP, specified as a fraction m (typically 1.5% or 2%) of the committed capital, X0.

The committed capital is the sum of the initial investment, I0, and the total management

fees paid over the life of the fund:

X0 = I0 +mTX0 . (7)

For example, an LP that commits X0 = $125 to a fund with a management fee of m = 2%,

will pay an annual management fee of $2.5. Over ten years, management fees add up to

$25, leaving the remaining $100 of the initially committed capital for the initial investment,

and I0 = $100. With leverage of l = 3, this initial investment enables the GP to acquire

A0 = $400 worth of PE assets. Hence, leverage enables the GP to charge lower management

fees per dollar of PE assets under management. Without leverage, the GP would charge an

annual fee of 2.5% = $2.5/$100 of assets under management. With l = 3, this fee per dollar

of PE assets declines to 0.625% = $2.5/$400, only a quarter of 2.5%. Note that the simple

accounting relation (7) ignores the time value of money, but when we conduct our valuation

exercises, obviously, we account for the various effects of both time and risk.

When the fund matures, the final proceeds, AT , are divided between the creditors, the

LP, and the GP according to the “waterfall” schedule. For the creditors, let y denote the

(continuously-compounded) yield on the debt. Assuming balloon debt, the payment due to

the creditors, at maturity T , is:

Z0 = D0e
yT , (8)

which includes both principal D0 and interest payments. Any remaining proceeds after

repaying the creditors, Z0, and returning the LP’s committed capital, X0, constitute the
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Figure 1: The “waterfall structure” illustrates the LP’s total payoff, LP (AT , T ), as a function
of the proceeds, AT , across the four regions of the waterfall.

fund’s profits, given as:

AT −X0 − Z0 . (9)

These profits are divided between the GP and LP, and the GP’s share is the carried interest.

The LP’s total payoff is illustrated in Figure 1. This figure shows the four regions of the

waterfall structure, depending on the amount of final proceeds, AT . These four regions are

described next.

Region 0: Debt Repayment (AT ≤ Z0). Our model applies to general forms of debt,

but for simplicity we consider balloon debt with no intermediate payments. The principal

and accrued interest are due at maturity T . Let y denote the yield for the debt, which

we derive below to ensure creditors break even. The debt is risky, and at maturity T , the

payment to the creditors is:

D(AT , T ) = min {AT , Z0} . (10)

The upper boundary of the debt-repayment region is Z0 = D0e
yT . The debt is senior, though,

and when the final proceed, AT , falls below this boundary, the LP and GP receive nothing.
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Region 1: Preferred Return (Z0 ≤ AT ≤ Z1). After the debt is repaid, the LP

receives the entire proceeds until the point where the LP’s committed capital has been

returned, possibly with a preferred (“hurdle”) return, denoted h (typically, 8%). This hurdle

is defined such that the LP has received the preferred return when the IRR of the LP’s

cash flows, including both the initial investment and subsequent management fees, equals

the hurdle rate. Formally, let F denote the amount that the LP requires to meet the hurdle,

and this amount is given as:

F = I0e
hT +

∫ T

0

mX0e
hsds = I0e

hT +
mX0

h
(ehT − 1) . (11)

Intuitively, the hurdle amount F is the future value, at maturity T , of the cash flows that

the LP has paid to the fund, including management fees and the initial investment, where

the future value is calculated using a compounded rate of h. Without a hurdle (i.e., when

h = 0%), the LP requires just the committed capital to meet the hurdle, and F = I0 +

mTX0 = X0. With a positive hurdle rate, the LP requires the committed capital plus some

of the fund’s initial profits to meet the hurdle. In either case, the upper boundary for the

preferred-return region is:

Z1 = F + Z0 . (12)

The LP’s payoff in this region, at maturity T , is:

LP1(AT , T ) = max {AT − Z0, 0} −max {AT − Z1, 0} . (13)

This payoff is the difference between the payoffs of two call options with strike prices of Z0

and Z1. Therefore, the LP’s payoff in (13) resembles “mezzanine debt,” where the LP is

senior to the GP but junior to the creditors.

Region 2: Catch-Up (Z1 ≤ AT ≤ Z2). With a positive hurdle rate, the LP requires

some of the fund’s initial profits to meet the hurdle. The catch-up region then awards a

large fraction, denoted n (typically, 100%), of the subsequent profits to the GP to “catch

up” to the prescribed profit share, denoted k (typically, 20%). The upper boundary of this

region, Z2, is the amount of final proceeds that is required for the GP to fully catch up, and

it solves:

k (Z2 − (X0 + Z0)) = n(Z2 − Z1). (14)
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When AT = Z2, the left side of (14) gives the GP’s prescribed profit share, and the right side

is the GP’s actual carried interest received. Mathematically, (14) has a unique solution Z2

if and only if n > k, because Z1 > X0 + Z0. When n < 100%, the LP receives the residual

payoff, resembling a (1− n) share of another mezzanine debt claim,9 given as:

LP2(AT , T ) = (1− n) [max {AT − Z1, 0} −max {AT − Z2, 0}] . (15)

With no hurdle (i.e., when h = 0), the LP only receives the committed capital in the

preferred-return region. There is nothing for the GP to catch up on, and the catch-up region

disappears.

Region 3: Profit Sharing (AT > Z2). After the GP catches up with the prescribed

profit share, k, the waterfall simply divides any remaining proceeds pro rata, with the GP

receiving the fraction k. The LP’s payoff in this profit-sharing region resembles a junior

equity claim with equity stake (1− k), and this payoff is given as:

LP3(AT , T ) = (1− k) max {AT − Z2, 0} . (16)

Discussion. As illustrated in Figure 2, we can interpret the fund’s capital structure as

consisting of four tranches, corresponding to the four regions of the waterfall. The LP’s

partnership interest consists of claims on three of these tranches (the LP does not receive

anything in region 0, the debt-repayment region): (1) the LP’s claim in the preferred-return

region is a mezzanine-type claim that is senior to the GP but junior to the creditors; (2) the

LP’s claim in the catch-up region corresponds to a (1−n) fraction of another mezzanine-type

claim that is junior to the previous one; and (3) the LP’s claim in the profit-sharing region

corresponds to a (1− k) fraction of a junior equity claim.

At maturity T , the value of the LP’s partnership interest is the sum of the values of the

LP’s individual payoffs in the three regions:

LP (AT , T ) = LP1(AT , T ) + LP2(AT , T ) + LP3(AT , T ) . (17)

9PE funds usually have catch-up rates of n = 100%, leaving nothing for the LP in the catch-up region.
For generality, we allow for n < 100%, even if it is rare in PE partnerships. Real estate partnerships often
use a catch-up rate of n = 80%.
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Figure 2: Illustration of the capital structure and seniority of the four tranches, corresponding
to four regions of the waterfall structure.

With non-spanned volatility and illiquidity, as considered in Section 4, the law-of-one-

price no longer holds, and the LP’s partnership interest, before maturity T , must be valued

as a single combined claim using the LP’s certainty-equivalent valuation.

1.3 LP’s problem

Preferences. The LP has standard time-separable preferences, represented by:

E
[∫ ∞

0

e−ζtU (Ct) dt

]
, (18)

where ζ > 0 is the LP’s subjective discount rate and U(C) is a concave function. For

tractability, we choose U(C) = −e−γC/γ, where γ > 0 is the coefficient of absolute risk

aversion (CARA). Institutional PE investors, such as endowments and pension funds, may

have different objectives than individual investors, but we do not model these differences. It

is intuitive, though, that even institutional PE investors are averse to fluctuations in their

income and expenditures.
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Liquid wealth dynamics. Let Wt denote the LP’s liquid wealth process, which excludes

the value of the LP’s partnership interest. The LP allocates Πt to public equity and the

remaining Wt − Πt to the risk-free asset. Over the life of the PE investment, the liquid

wealth evolves as:

dWt = (rWt −mX0 − Ct) dt+ Πt

(
(µS − r)dt+ σSdB

S
t

)
, t < T . (19)

The first term is the wealth accumulation when the LP is fully invested in the risk-free asset,

net of management fees, mX0, and the LP’s consumption/expenditure, Ct. The second term

is the excess return from the LP’s investment in public equity.

At time T , when the fund is liquidated and the proceeds are distributed, the LP’s liquid

wealth jumps from WT− to:

WT = WT− + LP (AT , T ) , (20)

where LP (AT , T ) is the LP’s payoff at maturity, given in (17). After the fund is liquidated,

the LP only invests in public equity and the risk-free asset, and the liquid wealth process

simplifies to:

dWt = (rWt − Ct) dt+ Πt

(
(µS − r)dt+ σSdB

S
t

)
, t ≥ T . (21)

2 Solution

After the PE investment matures, the problem reduces to the Merton (1971) problem,

and the solution to this problem is summarized in Proposition 1.

Proposition 1 After maturity T , the LP’s value function is:

J∗ (W ) = − 1

γr
e−γr(W+b), (22)

where b is a constant,

b =
η2

2γr2
+
ζ − r
γr2

. (23)

Optimal consumption, C, is

C = r (W + b) , (24)

and the optimal allocation to public equity, Π, is

Π =
η

γrσS
. (25)
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Certainty-equivalent valuation. Let J(W,A, t) be the LP’s value function before the

PE investment matures. Given J∗(W ) from Proposition 1, this value function is:

J(W0, A0, 0) = max
C,Π

E
[∫ T

0

e−ζtU (Ct) dt+ e−ζTJ∗(WT )

]
. (26)

The LP’s optimal consumption choice and optimal allocation to public equity solve the

Hamilton-Jacobi-Bellman (HJB) equation:

ζJ(W,A, t) = max
Π, C

U(C) + Jt + (rW + Π(µS − r)−mX0 − C)JW

+
1

2
Π2σ2

SJWW + µAAJA +
1

2
σ2
AA

2JAA + ρσSσAΠAJWA . (27)

In Appendix B, we verify that the value function takes the exponential form:

J(W,A, t) = − 1

γr
exp [−γr (W + b+ V (A, t))] . (28)

In this expression, V (A, t) is the LP’s certainty-equivalent valuation of the partnership in-

terest, and b is the constant given by (23).

Consumption and portfolio rules. The LP’s optimal consumption is:

C(W,A, t) = r (W + V (A, t) + b) , (29)

which is a version of the permanent-income/precautionary-saving model.10 Comparing this

consumption rule to the rule in equation (24), we see that the LP’s total wealth is simply

the sum of the liquid wealth, W , and the certainty-equivalent value of the LP’s partnership

interest, V (A, t).

The LP’s optimal allocation to public equity is:

Π(A, t) =
η

γrσS
− βAVA(A, t) . (30)

The first term is the standard mean-variance term from equation (25). The second term is

the intertemporal hedging demand, and β is the unlevered beta of the PE asset, given by

(4). In option-pricing terminology, we can interpret VA(A, t) as the “delta” of the value of

the LP’s partnership interest with respect to the value of the underlying PE asset. Greater

values of β and VA(A, t) create a larger hedging demand for the LP.

10Caballero (1991) and Wang (2006) derive explicitly solved optimal consumption rules under incomplete
markets with CARA utility. Miao and Wang (2007) derive the optimal American-style growth option exer-
cising problems under incomplete markets. Chen, Miao, and Wang (2010) integrate the incomplete-markets
real options framework of Miao and Wang (2007) into Leland (1994) to analyze entrepreneurial default,
cash-out, and credit risk implications.
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Certainty-equivalent valuation PDE. The certainty-equivalent valuation of the LP’s

partnership interest V (A, t), given in (28), solves the partial differential equation (PDE):

rV (A, t) = −mX0 + Vt + (r + α)AVA +
1

2
σ2
AA

2VAA −
γr

2
ε2A2V 2

A , (31)

subject to two boundary conditions. First, at maturity T , the value of the LP’s claim equals

the LP’s payoff:

V (AT , T ) = LP (AT , T ) , (32)

where LP (AT , T ) is given in (17). This payoff is net of fees, and the GP’s carried interest

is captured by this boundary condition. Second, when the value of the underlying PE asset

converges to zero, the value of the LP’s partnership interest converges to the (negative)

present value of the remaining management fees:

V (0, t) = −
∫ T

t

e−r(T−s)(mX0)ds = −mX0

r

(
1− e−r(T−t)

)
. (33)

Regardless of the performance of the PE asset owned by the PE fund, the LP must honor

the remaining management fees, and the resulting liability is effectively a risk-free annuity.

Discussion. The PDE in (31) that values the LP’s partnership interest is different from

the standard Black-Scholes-Merton PDE in several ways: First, the term −mX0 captures the

LP’s payment of ongoing management fees. Like Metrick and Yasuda (2010), we find that

the cost of these management fees is large. Second, the risk-adjusted growth rate is r + α,

where α is the GP’s alpha given in (6). In the standard Black-Scholes-Merton PDE, this

risk-adjusted growth rate is r, and the difference arises because our pricing formula values a

derivative claim on an underlying asset with a positive alpha. Third, the last term in (31)

captures the cost of non-spanned risk and illiquidity. Unlike the standard Black-Scholes-

Merton PDE, our PDE is non-linear, because the last term involves V 2
A , and the ε in this

term is the amount of unspanned risk, given in (5). This non-linear term means that the LP’s

valuation violates the law-of-one-price. Hence, an LP with certainty-equivalent valuations

of two individual PE investments of V1 and V2, as valued independently, does not value the

portfolio with both investments as V1 + V2. Both the non-linear term and the underlying

asset with alpha are important departures from the Black-Scholes-Merton pricing formula.

Note that the standard Black-Scholes option-pricing formula is still a linear PDE and it

implies the law-of-one-price, despite the non-linear payoffs of the derivatives that it prices.
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Break-even alpha. Following the initial investment, I0, the LP assumes the liability

of the ongoing management fees and receives a claim on the proceeds at maturity, net of

the debt repayment and carried interest. The valuation of the LP’s partnership interest,

V (A0, 0), values this claim. The LP benefits economically from the PE investment when

V (A0, 0) > I0, and the LP breaks even, net of fees and accounting for both systematic and

unspanned illiquidity risks, when:

V (A0, 0) = I0 . (34)

The valuation V (A0, 0) is strictly increasing in alpha, and we define the break-even alpha as

the alpha that solves (34). This break-even alpha specifies the risk-adjusted excess return

that the GP must generate on the underlying portfolio companies, relative to the performance

of the public market, to compensate the LP for the GP’s compensation and the illiquidity

and non-spanned risk of the PE investment. Intuitively, the break-even alpha is the LP’s

additional cost of capital of the PE investment, in addition to the standard CAPM rate.

Hypothetically, if an LP were to evaluate a project proposed by the GP, by discounting

the project’s future expected free cash flows, the LP should use a discount rate equal to the

standard CAPM rate plus the break-even alpha. When the project has a positive NPV using

this discount rate, it is in the LP’s interest that the GP undertakes the project. When the

GP’s actual alpha exceeds the break-even value, the PE investment has a positive economic

value for the LP.

3 Full Spanning

An important benchmark is the case of full spanning. In this case, the risks of the PE

asset and the LP’s partnership interest are fully spanned by the public equity, and the risks

can be perfectly hedged by the LP by dynamically trading in the public equity and the

risk-free asset. The PE investment does not involve any remaining non-spanned risk, and

hence there is no cost of illiquidity associated with the PE investment.

Under full spanning, we generalize the Black-Scholes formula to value contingent claims

on an underlying asset that earns a positive alpha. Using the new formula, we provide

closed-form expressions for the present values of the LP’s partnership interest and the GP’s

management and incentive fees.
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Our assumption of full spanning is different from the usual assumption of complete mar-

kets. Under full spanning, the risk of the PE assets is traded in the market, but the PE

asset can still earn a positive alpha. In contrast, under complete markets this alpha would

be arbitraged away. In our model this arbitrage does not happen because the GP generates

the alpha, and the LP can only earn it by investing in the PE fund along with the associated

costs. While the LP can dynamically hedge the risks associated with the PE asset, the LP

cannot invest in the PE asset directly, and the market is formally incomplete. Depending

on the relative bargaining power, a skilled GP may capture some or all of the excess return

through the compensation contract, as long as the LP remains willing to invest.

3.1 Valuation formulas under full spanning

We first value the PE asset under the GP’s management. Recall that At grows at the

expected rate of µA, and it should be discounted at the CAPM rate of r+β(µS−r), because

the excess return is deterministic and does not covary with the market. Let EV (At, t) denote

the present value (or economic value) of the PE asset at time t. Using (6), this value is:

EV (At, t) = Et
[
e−(r+β(µS−r))(T−t)AT

]
= eα(T−t)At , 0 ≤ t ≤ T . (35)

The present value of the PE asset, EV (At, t), strictly exceeds At when α > 0 . Informally, we

can interpret At as the PE asset’s “mark-to-market” value in an accounting sense. This value

is defined as the hypothetical value of the portfolio companies if they were publicly-traded

companies instead of owned by the PE fund, and this mark-to-market value does not include

the value of future excess returns earned under GP management. In contrast, the economic

value, EV (At, t), also includes this future value of the GP’s management of the PE asset. In

practice, PE funds mark their companies to market by comparing them to publicly-traded

comparables, and the “mark-to-market” interpretation of At reflects this practice.

Call options on the PE asset. Under full spanning, we can value a contingent claim

on the underlying PE asset, with terminal payoff G(AT , T ), as follows:

G(At, t) = Ẽt
[
e−r(T−t)G(AT , T )

]
, t ≤ T . (36)

Here, G(At, t) is the time-t value of the claim, and Ẽt[ · ] denotes the expectation under

a new measure P̃ , as defined in Appendix A, which allows us to use the risk-free rate r
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to discount the claim’s ultimate payoffs. Specifically, let Call(At, t;α) denote the time-

t value of a plain-vanilla European call option with strike price K and terminal payoff

G(AT , T ) = max {AT −K, 0} at maturity T . Using (36), we have

Call(At, t;α,K) = Ẽt
[
e−r(T−t) max {AT −K, 0}

]
. (37)

In Appendix A, we derive the following explicit solution:

Call(At, t;α,K) = Ate
α(T−t)N(d1)−Ke−r(T−t)N(d2) , (38)

where N( · ) is the cumulative standard normal distribution and

d1 = d2 + σA
√
T − t , (39)

d2 =
ln
(
At

K

)
+
(
r + α− σ2

A

2

)
(T − t)

σA
√
T − t

. (40)

These expressions differ from the standard “risk-neutral” Black-Scholes pricing formula,

because the risk-adjusted drift for the underlying asset is r+α instead of r. We can interpret

this valuation as the Black-Scholes formula for a call option on an underlying asset with a

negative dividend yield of −α. With a negative dividend yield, the ex-dividend return after

the risk adjustment exceeds the risk-free rate by α. Therefore, a positive alpha makes the

call option more valuable. As in standard option pricing, the value of the call option (and

any other derivative claim) does not depend on the systematic risk, β, of the underlying

asset.

Valuation formulas for GP compensation. The value of the GP’s compensation,

GP (At, t), is the sum of management and incentive fees:

GP (At, t) = MF (At, t) + IF (At, t) . (41)

Management fees are senior and resemble a risk-free annuity with an annual payment of

mX0. Thus, MF is given by the standard annuity formula:

MF (At, t) =

∫ T

t

e−r(s−t)mX0ds =
mX0

r

(
1− e−r(T−t)

)
. (42)

The GP’s incentive fees are a claim on the underlying PE asset, with two parts: the catch-up

part, corresponding to region 2 in Figure 2, and the profit-sharing part, corresponding to
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region 3. In these two regions, the GP’s payoffs at maturity T are:

GP2(AT , T ) = n [max {AT − Z1, 0} −max {AT − Z2, 0}] , (43)

GP3(AT , T ) = kmax {AT − Z2, 0} , (44)

where Z1 is the boundary between the preferred-return and catch-up regions, given by (12),

and Z2 is the boundary between the catch-up and profit-sharing regions, given by (14). The

values of the GP’s claims are then given by our pricing formula as:

GP2(At, t) = n [Call(At, t;α,Z1)− Call(At, t;α,Z2)] , (45)

GP3(At, t) = k Call(At, t;α,Z2) . (46)

Hence, the total value of the GP’s incentive fees is:

IF (A, t) = GP2(At, t) +GP3(At, t) . (47)

Valuation formulas for LP’s partnership interest. The value of the LP’s partnership

interest under full spanning is denoted LP (At, t), and it has three parts:

LP (At, t) = LP1(At, t) + LP2(At, t) + LP3(At, t)−MF (At, t) , (48)

where LP1(At, t), LP2(At, t), and LP3(At, t) are the values of the LP’s claims in regions

1, 2, and 3, corresponding to the preferred-return, catch-up, and profit-sharing regions,

respectively. The cost of management fees, MF (At, t), is given by (42). Using our formula,

the valuations are:

LP1(At, t) = Call(At, t;α,Z0)− Call(At, t;α,Z1) , (49)

LP2(At, t) = (1− n) [Call(At, t;α,Z1)− Call(At, t;α,Z2)] , (50)

LP3(At, t) = (1− k) Call(At, t;α,Z2) . (51)

Debt pricing. The debt is also a claim on the PE asset. Recall that D0 is the initial

amount borrowed, and y denotes the yield, so the total amount due at maturity is Z0 =

D0e
yT . This debt payment is risky, though, and the creditor’s actual payment is D(AT , T ) =

max(AT , Z0). The value of this claim is:

D(At, t) = Ate
α(T−t) − Call(At, t;α,Z0) . (52)
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Using the put-call parity (which continues to hold when the underlying asset has alpha), we

define Put analogously as the value of a put option on an underlying asset with alpha. The

debt valuation equation can then be restated in the more familiar form:

D(At, t) = e−r(T−t)Z0 − Put(At, α, t;Z0). (53)

The value of the risky debt is a combination of a risk-free asset with time-T payoff Z0 = D0e
yT

and a short position in the default put option, which is valued as Put(At, α, t;Z0).

Assuming that lenders break even at time 0, we can determine the equilibrium yield y∗

by solving for the yield that makes the initial amount borrowed, D0, equal to the initial

valuation of the debt, D(A0, 0). For a given choice of D0, and substituting D0e
yT for Z0, the

equilibrium yield is defined by the equation:

D0 = A0e
αT − Call(A0, α, 0;D0e

y∗T ) . (54)

Given the equilibrium yield, y∗, the credit spread, cs, is the difference between the yield and

the risk-free rate, given as:

cs = y∗ − r =
1

T
ln

(
1 +
Put(A0, α, 0;D0e

y∗T )

D0

)
. (55)

The debt is exposed to the same non-spanned risk as the underlying PE asset. However, we

assume that the debt is held by diversified creditors who do not require any compensation

for this risk. Hence, the pricing of the debt is identical under both full-spanning and non-

spanned risk, and we use the debt pricing formula from the full-spanning case in both cases.

Value additivity. Under full spanning, valuations are additive. The sum of the valua-

tions of the LP, GP, and creditors equals the economic value of the PE asset, EV (At, t):

GP (At, t) + LP (At, t) +D(At, t) = EV (At, t) = Ate
α(T−t) . (56)

3.2 Results under full spanning

Parameter choice. Where possible, we use parameters from Metrick and Yasuda (2010)

for our calibration. Metrick and Yasuda find an annual volatility of 60% per individual BO

investment, with a pairwise correlation of 20% between any two investments, capturing the

diversification in a portfolio of such investments. They report that the average BO fund
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invests in around 15 BOs (with a median of 12). Using these values we calculate an annual

volatility of σA = 25% for the PE asset. We use an annual risk-free rate of r = 5%.

For leverage, Axelson, Jenkinson, Stromberg, and Weisbach (2011) consider 153 BOs

during 1985–2006, and report that, on average, equity accounted for 25% of the purchase

price, corresponding to l = 3. For the compensation contract, we focus on the 2/20 contract,

which has a m = 2% management fee, k = 20% of carried interest, and h = 8% in hurdle

rate. This contract is widely adopted by PE funds. We also consider typical variations in

these contract terms.

For the public market, we use an annual volatility of σS = 20%, with an expected return

of µS = 11%, implying a risk premium of µS − r = 6%, and a Sharpe ratio of η = 30%.

Shall we move the preceding paragraph to the later part involving illiquidity? Note

T = 10? Also the break-even condition LP = I0. Also we may consider advocating “implied

alpha.” Note that here the only input parameter values are σA, r, T , and compensation

contract/leverage which imply the strike price for the formula.

Effects of GP skill. Table 1 reports the effects of the GP’s alpha on the valuations

and the equilibrium credit spread. The reported numbers are for an initial investment of

I0 = 100, corresponding to a committed capital of X0 = 125. Management fees are m = 2%,

carried interest is k = 20%, and the hurdle rate is h = 8%. Panel A of Table 1 reports

unlevered results, and Panel B reports results with l = 3. In bold are the baseline cases

where the value of the LP’s partnership interest equals the initial investment of 100, and the

LP just breaks even.

With leverage, the value of LP’s partnership interest, LP , is highly sensitive to the GP’s

alpha. When the GP is unskilled and α = 0, the present value of the LP’s claim is just

64.42, and the LP loses almost 35% of the initial investment of I0 = 100. When the GP’s

skill increases to 1.0% annually, the value of the LP’s claim improves by 35% to 100, because

α = 1.0% is the break-even alpha. As the GP’s alpha increases, the value of the LP’s

partnership interest continues to improve. For example, when α = 2.0% then LP = 138.09,

and when α = 3.0% then LP = 180.46.

Effects of leverage. Panel B of Table 1 shows valuations with leverage of l = 3. With

leverage, the break-even alpha declines substantially, from 2.6% annually without leverage
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Table 1: This table presents values of the different parts of the waterfall structure under full
spanning for various levels of alpha. The columns refer to: incentive fees (IF ), management
fees (MF ), total GP compensation (GP ), the LP’s partnership interest (LP ). Moreover,
the table reports the equilibrium credit spread (cs) and the economic value of the PE asset
(EV ). Parameter values are: I0 = 100, m = 2%, k = 20%, h = 8%, n = 1, T = 10, and
β = 0.5. The baseline break-even cases are in bold.

α IF MF GP LP GP + LP cs EV

Panel A. Without leverage (l = 0)

−1.0% 4.52 19.67 24.19 66.29 90.48 NA 90.48
0.0% 5.73 19.67 25.40 74.60 100.00 NA 100.00
1.0% 7.19 19.67 26.86 83.65 110.51 NA 110.51
2.0% 8.93 19.67 28.60 93.54 122.14 NA 122.14
2.6% 10.14 19.67 29.81 100.00 129.81 NA 129.81
3.0% 10.98 19.67 30.65 104.33 134.99 NA 134.99

Panel B. With leverage (l = 3)

−1.0% 9.81 19.67 29.48 32.46 61.93 6.27% 361.94
0.0% 15.91 19.67 35.59 64.42 100.00 4.59% 400.00
1.0% 22.97 19.67 42.64 100.00 142.64 3.46% 442.63
2.0% 30.80 19.67 50.47 138.09 188.56 2.67% 488.56
2.6% 36.17 19.67 55.84 163.45 219.29 2.29% 519.29
3.0% 39.82 19.67 59.49 180.46 239.94 2.07% 539.94

to 1.0% with leverage of l = 3. For a given size of the LP’s initial investment, I0, the main

advantage of leverage is that it increases the amount of PE assets, A0, managed by the GP.

This increase enables the GP to earn the alpha on a larger asset base, and it effectively

reduces the management fees paid per dollar of assets under management. Hence, a lower

alpha, albeit earned on a larger amount of assets, is required for the LP to break even.

Even with a lower break-even alpha, the larger PE asset means that the GP generates

more total value. With α = 1.0% annually, the GP increases the value of the PE asset from

400 to 442.64. Since the creditors break even, the value of the LP and GP’s claims increases

from 100 to 142.64, and the value of the GP’s incentive fees, IF , more than doubles from
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10.14 to 22.97, compared to the baseline case without leverage. This increase in the value

of the incentive fees arises because the size of the managed PE asset is four times bigger

due to leverage of l = 3, and leverage increase the volatility of the GP’s carried interest and

hence increases its value for the standard optionality reasons. The management fees, MF ,

remain unchanged despite the increase in the underlying PE assets, because these fees are

senior and the LP’s committed capital remains constant at X0 = 125. Hence, the annual

management fees also remain constant at 2.5 and their value equals the value of a 10-year

annuity discounted at 5%, which is valued at 19.67. Assuming that the GP can hold the

alpha constant when leverage increases, the effect of leverage becomes even greater. For an

alpha of 2.6% annually, which is the break-even alpha without leverage, the value of the

GP’s incentives fees more than triples from 10.14 to 36.17 when leverage increases to l = 3.

Debt pricing and credit spreads. The debt pricing and credit spreads also depends

on the GP’s alpha. Panel B of Table 1 reports the equilibrium credit spread, cs, defined as

the difference between the equilibrium yield and the risk-free rate. Although the creditors

are senior to both the GP and the LP, the credit spread is sensitive to the GP’s alpha. A

higher alpha leads to a higher expected value of the underlying PE asset and reduces the

risk of the fund defaulting on the debt.

To investigate the implications of “cheap” debt, Panel A of Table 2 reports valuations

with mispriced debt. The table shows the effects of changes in the yield on the value of the

debt D, incentive fees IF , management fees MF , the LP’s partnership interest LP , and

the combined value GP + LP . For all rows in Panel A, the GP borrows D0 = 300 and

makes an initial investment of I0 = 100 at time 0. The table shows that debt pricing has a

substantial effect on the value of the LP’s partnership interests LP and the incentive fees,

IF . For example, if debt is priced with cs = 2%, which is below the equilibrium spread of

cs = 3.46%, the promised total payment to the creditors at maturity T is 300× e0.7 = 602.7

at yield y = 7%, which is significantly lower than 300 × e0.846 = 699.1 (corresponding to

cs = 3.46%). Using the pricing equation (52) and Z0 = 602.7, the time-0 value of the debt

with cs = 2% is only D(300, 0) = 276.85. The value of LP’s partnership interest LP increases

about 20% from 100 to 119.61, and the value of the GP’s incentive fees, IF increases from

22.97 to 26.51. Intuitively, a lower yield transfers wealth from the creditors to both the LP

and GP, which are junior to the creditors in the fund’s capital structure, as defined by the
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Table 2: This table presents values of the different parts of the waterfall structure under full
spanning for various levels of the credit spread. The columns refer: the “economic” value of
debt (D), incentive fees (IF ), management fees (MF ), total GP compensation (GP ), the
LP’s partnership interest (LP ), and the economic value of the underlying PE asset (EV ),
and the book leverage l = D0/I0. Parameter values are: I0 = 100, m = 2%, k = 20%,
h = 8%, n = 1, T = 10, β = 0.5, α = 1.01%. For all rows in Panel A, debt amount
is D0 = 300, and column D gives the true “market” value of debt as debt D0 = 300 is
mispriced.

cs D IF MF GP LP GP + LP EV l

Panel A. The case with debt mis-pricing

0.00% 244.53 31.43 19.67 51.11 147.00 198.10 442.63 3.00
0.50% 252.62 30.20 19.67 49.88 140.14 190.02 442.63 3.00
1.00% 260.72 28.97 19.67 48.64 133.28 181.92 442.63 3.00
1.50% 268.80 27.74 19.67 47.41 126.43 173.84 442.63 3.00
2.00% 276.85 26.51 19.67 46.18 119.61 165.79 442.63 3.00
2.50% 284.84 25.29 19.67 44.96 112.84 157.80 442.63 3.00
3.00% 292.76 24.08 19.67 43.75 106.13 149.88 442.63 3.00
3.46% 300.00 22.97 19.67 42.64 100.00 142.64 442.63 3.00
4.59% 317.22 20.31 19.67 39.99 85.43 125.41 442.63 3.00

Panel B. The case with competitive debt pricing

0.00% 0.00 7.21 19.67 26.88 83.78 110.66 110.66 0.00
0.50% 54.19 11.63 19.67 31.31 85.13 116.44 170.64 0.54
1.00% 84.99 13.70 19.67 33.37 86.35 119.72 204.72 0.85
1.50% 117.49 15.58 19.67 35.25 87.94 123.19 240.69 1.18
2.00% 153.89 17.39 19.67 37.07 90.01 127.07 280.97 1.54
2.50% 195.89 19.22 19.67 38.89 92.66 131.55 327.44 1.96
3.00% 245.39 21.11 19.67 40.78 96.05 136.83 382.21 2.45
3.46% 300.00 22.97 19.67 42.64 100.00 142.64 442.63 3.00
4.59% 488.19 28.40 19.67 48.08 114.63 162.71 650.90 4.88

waterfall.

Another way to evaluate the role of “cheap” debt is to compare the break-even yield to the

yield that would be required if the GP were unskilled and the alpha were zero, corresponding
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to the required yield for comparable publicly-traded companies, which have zero alpha by

definition. Without alpha, the equilibrium credit spread increases to 4.59% annually, due

to the high level of leverage and the zero alpha, as shown in the bottom row of Panel A.

Fixing the credit spread at 4.59%, but increasing the GP’s alpha from zero to 1.01%, the

value of the debt increases to 317.22, and the 17.22 difference represents the creditors’ value

of the GP’s alpha. Assuming that the creditors just break even, however, the credit spread

declines from 4.59% to the new break-even spread of 3.46%, corresponding to the “cheaper”

debt that is available for buyout transactions, due to the GP’s alpha, relative to the yield

charged to publicly-traded comparable companies.

Panel B of Table 2 shows the effect of changes in the credit spread on the amount of

leverage that is available to finance the transaction under the assumption that the debt

pricing is competitive and rational. For a given spread cs, the amount of debt D0 provided

by rational creditors is given by (54). The top row in Panel B shows that the creditors will

not lend anything with a zero credit spread. As the credit spread cs increases, the amount of

debt that the creditors will provide increases as well. Given this amount of debt, we calculate

the value of the incentive fees, IF , management fees, MF , etc. The value of both incentive

fees and the LP’s partnership interest increases with the amount of leverage, and the LP

loses money if the credit spread is too low and the leverage is too conservative, holding alpha

fixed. Indeed, in our model, it is optimal for both the GP and the LP to borrow as much as

the creditors will lend, because leverage allows the GP to increase the amount of PE assets,

A0 = (1 + l)I0, and earn a positive alpha on the larger A0. Note though, that in this model

there is no cost of leverage (e.g. deadweight, distress, or any other inefficiency).

3.3 The Value of GP Compensation

Tables 3 and 4 reports valuations of the GP’s compensation depending on the fee struc-

ture. Table 3 presents valuations without leverage, and Table 4 contains valuations with

leverage of l = 3. In both tables, Panel A show the case with the full waterfall structure,

including both a hurdle return and the subsequent catch-up. Panel B shows a simpler com-

pensation structure without the hurdle return (h = 0%) and hence without a catch-up region.

With this simpler structure, the profits are simply shared pro rata between the GP and LP,

with the GP’s share given by the carried interest rate, k. In the baseline case, in Panel A
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of Table 3, the value of the GP’s incentive fees (carried interest), IF , is 10.14. The value of

the management fees, MF , is 19.67, and the total value of the GP’s compensation is 29.81.

Hence, in this case, management fees constitute two-thirds of the GP’s total compensation,

consistent with the simulation results in Metrick and Yasuda (2010).

When the level of management fees, m, changes, Tables 3 and 4 show that the present

value of the management fees, MF , value is linear in m. This is natural, because the

management fee is simply valued as an annuity by (42), which is proportional to m. In

contrast, the value of the GP’s incentive fees (carried interest), IF , is almost, but not

exactly, linear in the carried-interest rate, k. We consider three levels of carried interest,

of k = 10%, k = 20%, and k = 30%. For example, in Table 4, with leverage l = 3 and

under the 2/20 compensation contract, the value of the GP’s incentive fees is IF = 22.97.

This value is almost exactly twice the value of incentive fees with a carried-interest rate of

k = 10%, of IF = 11.51. Moreover, when k = 30% the value is almost exactly 1.5 times that

of k = 20% and triple the value when k = 10%. Intuitively, the “strike” price for the carried

interest, a call on the underlying PE asset, increases with m, because the time-T cumulative

value of management fees F , given in (11), contributes to the strike price for the carried

interest. However, quantitatively, the effect of management fees m on the present value of

the incentive fees, IF , is small. The GP’s total compensation consists of management fees

and carried interest, and it is valued as GP = IF+MF . In the baseline case in Table 4, with

leverage, the carried interest and the management fees contribute largely similar amounts to

the GP’s total compensation and are valued at 22.97 and 19.67, respectively.

Effects of Hurdle and Catch-Up. In Tables 3 and 4, Panels A and B compare the

effects of changing the contract to the simpler contract without an 8% hurdle rate and

subsequent catch-up region. The hurdle and catch up protect the LP by pushing the GP’s

claim further down in the capital structure. In contrast, in the simpler contract, the LP is

worse off and the GP is better off. With the simpler structure, the value of the GP’s claim in

the catch-up region, GP2, vanishes, but the value of the GP’s claim in the profit region, GP3,

increases, leaving the GP slightly better off overall. In Table 3, without leverage, the effects

are larger, because the final payoff is more likely to end up in the preferred and catch-up

regions. In the baseline case, the value of the GP’s incentive fees, IF , increases by about

30%, from 10.14 to 13.02, when moving to the simpler contract. However, since the value
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Table 3: This table presents values of the different parts of the waterfall structure under
full spanning without leverage for various compensation contracts. The columns refer to:
management fees (m), incentive fees (k), GP catch-up (GP2), GP profit-sharing region (GP3),
GP incentive fees (IF ), management fees (MF ), total GP compensation (GP ), and the value
of the LP’s partnership interest (LP ). Parameter values are: α = 2.6%, I0 = 100, l = 0,
T = 10, and β = 0.5. The baseline break-even cases are in bold.

m k GP2 GP3 IF MF GP LP

Panel A: Hurdle (h = 8%) and catch-up (n = 100%)

1.5% 10% 2.36 3.08 5.45 13.89 19.33 110.48
1.5% 20% 5.04 5.63 10.67 13.89 24.56 105.26
1.5% 30% 8.07 7.54 15.61 13.89 29.50 100.32

2.0% 10% 2.27 2.91 5.18 19.67 24.85 104.96
2.0% 20% 4.83 5.31 10.14 19.67 29.81 100.00
2.0% 30% 7.74 7.09 14.83 19.67 34.50 95.31

2.5% 10% 2.17 2.73 4.89 26.23 31.13 98.69
2.5% 20% 4.61 4.96 9.58 26.23 35.81 94.01
2.5% 30% 7.38 6.62 13.99 26.23 40.22 89.59

Panel B: No hurdle and catch-up

1.5% 10% 0 6.79 6.79 13.89 20.68 109.14
1.5% 20% 0 13.58 13.58 13.89 27.46 102.35
1.5% 30% 0 20.37 20.37 13.89 34.25 95.56

2.0% 10% 0 6.51 6.51 19.67 26.18 103.63
2.0% 20% 0 13.02 13.02 19.67 32.69 97.12
2.0% 30% 0 19.53 19.53 19.67 39.20 90.61

2.5% 10% 0 6.21 6.21 26.23 32.44 97.37
2.5% 20% 0 12.42 12.42 26.23 38.65 91.17
2.5% 30% 0 18.62 18.62 26.23 44.85 84.96

of the incentive fees is relatively smaller than the value of management fees, the GP’s total

compensation only increases by about 10%, from 29.81 to 32.69. Conversely, the value of

the LP’s partnership interest declines from 100 to 97.12 without the hurdle and catch-up.
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Table 4: This table presents values of the different parts of the waterfall structure under full
spanning with leverage for various compensation contracts. The columns refer to: manage-
ment fees (m), incentive fees (k), GP catch-up (GP2), GP profit-sharing region (GP3), GP
incentive fees (IF ), management fees (MF ), total GP compensation (GP ), and the value
of the LP’s partnership interest (LP ). Parameter values are: α = 1.01%, I0 = 100, l = 3,
T = 10, and β = 0.5. The equilibrium credit spread is constant and cs = 2.63%, because
creditors are senior to the GP and LP. The baseline break-even cases are in bold.

m k GP2 GP3 IF MF GP LP

Panel A: Hurdle (h = 8%) and catch-up (n = 100%)

1.5% 10% 2.05 9.60 11.65 13.89 25.54 117.10
1.5% 20% 4.54 18.71 23.25 13.89 37.14 105.50
1.5% 30% 7.63 27.14 34.76 13.89 48.65 93.99

2.0% 10% 2.07 9.44 11.51 19.67 31.19 111.45
2.0% 20% 4.58 18.39 22.97 19.67 42.64 100.00
2.0% 30% 7.69 26.64 34.33 19.67 54.01 88.63

2.5% 10% 2.09 9.27 11.36 26.23 37.59 105.05
2.5% 20% 4.62 18.03 22.65 26.23 48.88 93.76
2.5% 30% 7.76 26.10 33.86 26.23 60.09 82.55

Panel B: No hurdle and catch-up

1.5% 10% 0 11.91 11.91 13.89 25.81 116.84
1.5% 20% 0 23.82 23.82 13.89 37.71 104.93
1.5% 30% 0 35.74 35.74 13.89 49.63 93.01

2.0% 10% 0 11.78 11.78 19.67 31.46 111.18
2.0% 20% 0 23.57 23.56 19.67 43.24 99.40
2.0% 30% 0 35.35 35.35 19.67 55.02 87.62

2.5% 10% 0 11.64 11.64 26.23 37.87 104.77
2.5% 20% 0 23.27 23.27 26.23 49.50 93.14
2.5% 30% 0 34.91 34.91 26.23 61.14 81.50

In the case with leverage, in Table 4, it is less likely that the final payoff will end up in the

preferred or catch-up regions, and the effects of eliminating these parts of the compensation
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contract and changing to the simpler structure are even smaller in present-value terms.

4 General Case with Non-Spanned Risk

With non-spanned risks, the risk of the PE asset is not fully spanned by the public

market, and the illiquidity of the PE investment is costly for the LP. In this case, the law-

of-one-price no longer holds, valuations are no longer additive, and “present value” is not

well defined. The LP’s certainty-equivalent valuation can still be calculated by numerically

solving the PDE from (31). We can then evaluate the LP’s costs of illiquidity and various

compensation arrangements both in terms of this certainty-equivalent valuation and also by

the implied break-even alpha, which is the LP’s cost of capital in addition to the cost implied

by the standard CAPM.

With non-spanned risks, the LP’s valuation now depends on the beta of the underlying

PE asset, the LP’s preferences and risk aversion, and the LP’s allocation to the PE invest-

ment. To calibrate these parameters, we use an unlevered beta of the PE asset of 0.5. This

is consistent with evidence from Ljungqvist and Richardson (2003) who match companies

involved in PE transactions to publicly-traded companies. They report that the average (lev-

ered) beta of the publicly-traded comparable companies is 1.04, suggesting that PE funds

invest in companies with average systematic risk exposures. Since publicly-traded companies

are typically financed with approximately one-third debt, the unlevered asset beta is around

0.66, and we round it down to an unlevered beta of 0.5. With this beta the correlation

between the PE asset and the public market is ρ = βσS/σA = 0.4.

To determine the LP’s risk aversion, γ, and initial investment, I0, we derive the following

invariance result:

Proposition 2 Define a = A/I0, x0 = X0/I0, z0 = Z0/I0, z1 = Z1/I0, and z2 = Z2/I0. It

is straightforward to verify that V (A, t) = v(a, t)× I0, where v(a, t) solves the ODE,

rv(a, t) = −mx0 + vt + (r + α) ava(a, t) +
1

2
σ2
Aa

2vaa(a, t)−
γI0

2
rε2a2va(a, t)

2 , (57)

subject to the boundary conditions,

v(a, T ) = max{a− z0, 0} − nmax{a− z1, 0}+ (n− k) max{a− z2, 0} , (58)

v(0, t) = −mx0

r

(
1− e−r(T−t)

)
. (59)
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This invariance proposition shows that the LP’s certainty-equivalent valuation, V (A, t),

can be normalized with the amount initially invested, I0. We can then solve for the result-

ing v(a, t), which gives the LP’s certainty-equivalent valuation per dollar initially invested.

Proposition 2 shows that v(a, t) depends only on the product γI0, not on γ and I0 individ-

ually. Hence, the LP’s certainty-equivalent valuation V (A, t) is proportional to the invested

capital I0, holding γI0 constant.

Next, we calibrate the value of the product γI0. Let γR denote the LP’s relative risk

aversion. In terms of the value function J(W,A, t), the relative risk aversion is defined as:

γR = −JWW (W,A, t)

JW (W,A, t)
W . (60)

For a given level of relative risk aversion, we approximate the implied absolute risk aversion,

given as −JWW/JW , by adjusting with the initial level of liquid wealth W0. Using the FOC

with respect to consumption, U ′(Ct) = JW (W,A, t) and JWW (W,A, t) = −γrJW (W,A, t),

we can write γR as:

γR =
γrU ′(Ct)

U ′(Ct)
Wt = γrWt . (61)

Evaluating γR at time 0, we obtain:

γI0 =
γR
r

(
I0

W0

)
. (62)

With this approximation, γI0 can be determined from the LP’s initial relative allocation

to PE (in parentheses) and the relative risk aversion, γR. Informally, the resulting CARA

preferences are a local approximation to the CRRA preferences implied by γR. We interpret

γI0 as the LP’s effective risk aversion, and an LP with a larger relative risk aversion or greater

PE allocation has greater effective risk aversion. When the PE allocation tends to zero or

the preferences tend to risk neutral, the effective risk aversion becomes zero. With r = 5%,

γR = 1, and an initial PE allocation as a fraction of liquid wealth W0 of I0/W0 = 10%, we

obtain γI0 = 2. With a relative risk aversion of γR = 2.5, we have γI0 = 5. Correspondingly,

we consider three levels of effective risk aversion: γI0 → 0+ for an effectively risk-neutral

LP,11 a “moderate” effective risk aversion of γI0 = 2, and a “high” effective risk aversion of

γI0 = 5.

11Formally, our model does not allow the LP to be risk neutral (γ = 0). Since public equity yields a
higher expected rate of return than the risk-free rate, a risk-neutral investor would hold an infinite position

31



4.1 Cost of Illiquidity

Table 5 shows break-even alphas for various levels of effective risk aversion and leverage.

As above, the break-even alpha can be interpreted the LP’s incremental cost of capital of the

PE investments, so a higher break-even alpha means a higher cost of capital. The first row of

Table 5 shows break-even alphas for an LP with γI0 = 0+. Because this LP is effectively risk

neutral, there is no additional cost of illiquidity and non-spanned risks, and the break-even

alphas of 2.61% annually without leverage and 1.01% with l = 3 are identical to those in

the full-spanning case. These alphas reflect just the costs of management fees and carried

interest.

Table 5 shows that higher leverage reduces the break-even alpha. As in the full-spanning

case, the benefit of leverage is that it increases the total amount of PE assets, A0, and enables

the GP to earn the alpha on this larger asset base, effectively reducing the management fees

paid per dollar of PE assets under management by the GP. A secondary benefit of leverage,

with non-spanned risks and holding the total amount of PE assets constant, is that it transfers

risk to the creditors, who are better diversified, demand no illiquidity risk, and hence have

a lower cost of capital, even after adjusting for the higher beta.

Effects of risk aversion. Table 5 shows that the break-even alpha increases with the

LP’s effective risk aversion, γI0. This increase does not arise in the full spanning case

where there is no cost of illiquidity and the valuation is independent of the LP’s preferences.

Intuitively, a more risk-averse LP has a higher cost of illiquidity and non-spanned risks and

requires greater compensation, as measured by the break-even alpha. Without leverage, the

LP’s cost is modest, though, and the break-even alpha just increases from 2.61% to 3.08%

and 3.74% annually when γI0 increases from 0+ to 2 and 5, respectively. With leverage, the

LP’s cost of illiquidity is more substantial, because the size of the PE asset is quadrupled,

and the break-even alpha more than triples from 1.01% to 2.06% and 3.33% annually.

With leverage, the break-even alpha of 1.01% annually represents just the cost of the

GP’s management and incentive fees for an effectively risk neutral LP. The increase in the

in the public market portfolio. In the limit, as γ → 0+, the solution for V (At, t) remains valid, though,
and it converges to the valuation formula for the full-spanning case. We use γI0 = 0+ (with subscript “+”)
to denote the corresponding limit solution. In this limit, the LP is effectively risk neutral and the cost of
illiquidity disappears. Formally, for γ = 0+, the PDE (31) is linear, and the solution is identical to the one
from the full-spanning case, given in Section 3.
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Table 5: Annual break-even alphas for different levels of effective risk aversion γI0 and
leverage l. Other parameter values are β = 0.5, m = 2%, k = 0.2, and h = 8%. The baseline
case is in bold.

l = 0 l = 3

γI0 = 0+ 2.61% 1.01%
γI0 = 2 3.08% 2.06%
γI0 = 5 3.74% 3.33%

break-even alpha from 1.01% to 2.06% represents the LP’s cost of illiquidity and non-spanned

risks, with a moderate effective risk aversion (γI0 = 2). Hence, the LP’s cost of the GP’s total

compensation (the break-even alpha of 1.01%) is comparable to the LP’s cost of illiquidity

and non-spanned risks, represented by the 1.05% increase in the break-even alpha. For a

high level of effective risk aversion (γI0 = 5), the LP’s cost of illiquidity is more than twice

the cost of the GP’s compensation, using this measure.

Illiquidity Discount. While the break-even alpha provides one measure of the LP’s costs,

it is also useful to evaluate these costs in terms of the LP’s certainty-equivalent valuation.

In Table 6, column V is the LP’s certainty-equivalent valuation, including the costs of non-

spanned risks and illiquidity. For comparison, column LP gives the present value of the LP’s

partnership interest with full-spanning and no cost of illiquidity. The difference between

these two valuations is the illiquidity discount, denoted as ID,

ID = LP (A0, 0)− V (A0, 0) . (63)

The illiquidity discount is the amount that an LP would be willing to give up in return for

being able to make the PE investment under full spanning instead of making it with non-

spanned risks. In Table 6, column GP values the GP’s compensation under full-spanning,

and the numbers are identical to those in Table 1, by construction. The equilibrium credit

spread is reported in column cs (for the case of leverage), and the total economic value (EV)

of the PE asset is in column EV .

The two baseline cases are in bold. In Panel A of Table 6 without leverage, the break-even

alpha is 3.08%, and the cost of illiquidity is small. Since the LP breaks even, the value of
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Table 6: This table presents values of the different parts of the waterfall structure with
non-spanned risks for various levels of alpha. The columns refer to: total GP compensation
(GP ), the LP’s partnership interest (LP ), the LP’s certainty-equivalent valuation (V ), the
illiquidity discount (ID), the equilibrium credit spread (cs), and the economic value of the
PE asset (EV ). Parameter values are γI0 = 2, I0 = 100, m = 2%, k = 20%, T = 10,
β = 0.5, and h = 8%. The baseline break-even cases are in bold.

α GP LP V ID cs EV

Panel A. Without leverage (l = 0)

−1.00% 24.19 66.29 63.68 2.61 NA 90.48
0.00% 25.40 74.60 71.50 3.09 NA 100.00
1.00% 26.86 83.65 79.98 3.67 NA 110.51
2.06% 28.71 94.15 89.74 4.41 NA 122.86
3.08% 30.84 105.26 100.00 5.26 NA 136.10
4.00% 33.05 116.13 109.94 6.19 NA 149.18

Panel B. With leverage (l = 3)

−1.00% 29.48 32.46 18.56 13.89 6.27% 361.94
0.00% 35.59 64.42 42.85 21.57 4.59% 400.00
1.00% 42.64 100.00 69.72 30.28 3.46% 442.63
2.06% 50.97 140.48 100.00 40.48 2.63% 491.45
3.08% 60.29 184.11 132.21 51.91 2.03% 544.39
4.00% 69.71 227.03 163.43 63.60 1.61% 596.73

the LP’s partnership interest, V , equals the initial investment of I0 = 100. Without the cost

of illiquidity, the LP would value the investment at 105.26, and the LP’s illiquidity discount

is 5.26, which is 5.26% of the initial invested capital I0. Without leverage, however, this cost

of illiquidity is swamped by the cost of the GP’s compensation of 30.84.

With leverage, the cost of illiquidity increases substantially. Panel B of Table 6 shows

that the cost of illiquidity now reduces the value of the LP’s partnership interest from 140.48

to 100, and the illiquidity discount is 40.48, which is almost as large as the total cost of the

GP’s compensation of 50.97. Leverage increases the cost of illiquidity, because it increases

the size of the PE asset and the LP’s illiquidity discount.
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Table 6 also shows that the illiquidity discount increases as the alpha increases, because

it increases the value of the PE asset and hence it increase the cost of illiquidity, although

this increase in ID is modest without leverage. Finally, for a given level of alpha, even with

illiquidity and non-spanned risks, the credit spreads remain the same as in the full-spanning

case. Creditors are diversified and are senior to both the GP and LP, and the creditors’

valuations of their claims remain unchanged with illiquidity.

4.2 GP Compensation and Illiquidity

Table 7 shows how changes in the GP’s compensation contract affects the illiquidity

discount, ID. As above, column m is management fees, k is carried interest, GP is the value

of the GP’s compensation. Column V contains the LP’s certainty-equivalent valuation with

illiquidity costs. For comparison, column LP gives the LP’s value under full spanning (i.e.

without costs of illiquidity). The difference between V and LP is the illiquidity discount in

column ID. The baseline 2/20 contract, reported in bold, is identical to the baseline case in

Panel B of Table 6. In this case, the combined value of the GP’s management fees and carried

interest, GP , is 50.97. The value of the LP’s partnership interest, without accounting for

illiquidity, is 140.48. In contrast, the LP’s certainty-equivalent valuation is just 100, and the

illiquidity discount is ID = 40.48. Hence, ignoring the cost of illiquidity, the compounding

effect of the GP’s alpha means that the GP creates 91.45 of value, on top of the initial

investment of 100. Of the resulting proceeds of 191.45, the GP receives 50.97 and the LP

receives the remaining 140.48. Due to the cost of illiquidity, however, the LP’s valuation

of these proceeds is only 100, which again shows that the illiquidity cost is substantial and

comparable to the total costs of management compensation.

As in the full spanning case, when the level of management fees m changes, the value of

the GP’s management fees MF changes proportionally. The illiquidity discount, however,

remains largely constant, because management fees are risk free, and changes in these fees do

not affect the risk of the LP’s payoff.12 When the rate of carried interest k increases, the cost

of the GP’s incentive fees IF increases almost proportionally. An increase in the incentive

fee k from 20% to 30% increases the cost of the GP’s compensation from 50.97 to 66.49,

and consequently both LP and V decline. This increase in k from 20% to 30%, reduces the

12To some extent, the constant illiquidity discount is also a property of CARA utility, because it lacks
wealth effects and hence an absolute reduction of wealth does not change the certainty-equivalent valuation.
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Table 7: This table presents values of the different parts of the waterfall structure with
non-spanned risks for various levels of management and incentive fees. The columns refer
to: total GP compensation (GP ), the LP’s partnership interest (LP ), the LP’s certainty-
equivalent valuation (V ), the illiquidity discount (ID). Parameter values are: γI0 = 2,
I0 = 100, l = 3, β = 0.5, and h = 8%. We also use α = 2.06%, and cs = 2.63%, which are
the break-even values in the baseline case with a 2/20 compensation contract.

m k GP LP V ID

0.0% 0% 0.00 191.45 134.20 57.26

1.5% 10% 29.75 161.70 113.11 48.58
1.5% 20% 45.55 145.90 105.50 40.40
1.5% 30% 61.25 130.20 97.45 32.75

2.0% 10% 35.36 156.09 107.46 48.63
2.0% 20% 50.97 140.48 100.00 40.48
2.0% 30% 66.49 124.96 92.10 32.86

2.5% 10% 41.72 149.73 101.05 48.68
2.5% 20% 57.13 134.32 93.75 40.57
2.5% 30% 72.43 119.02 86.03 32.99

illiquidity discount ID from 40.48 to 32.86, because a greater carried interest transfers both

rewards and risks from the LP to the GP, which reduces both the LP’s certainty equivalent

V and the illiquidity discount ID.

GP Compensation and break-even alphas. Table 8 reports break-even alphas for

three levels of effective risk aversion γI0 = 0, 2, 5 and for different compensation contracts

(m, k), holding fixed β = 0.5, h = 8%, and l = 3. The break-even alphas in Table 8 allow

us to evaluate the trade-offs among management fees, carried interest, and the illiquidity

premium.

Consider the case with no fees, m = k = 0%. In this case, an effectively risk-neutral LP

requires no alpha, because the LP is risk neutral and requires no premium for the additional

risk arising from the illiquidity, and there are no fees either. For γI0 = 2, the break-even
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alpha increases to 1.01%, reflecting the required compensation for illiquidity for an LP with

a moderate effective risk aversion. Not surprisingly, increasing either m or k induces the

break-even alpha to increase for a given level of risk aversion γI0. Similarly, given m and k,

increasing the effective risk aversion γI0 increases the break-even alpha. For example, in the

baseline case with both risk aversion and fees, we have γI0 = 2, m = 2%, k = 20%, and the

break-even alpha increases by 1.05% to 2.06% per year, relative to the case without any GP

compensation. Measured in terms of break-even alphas, these results show that the cost of

illiquidity, of 1.01%, is comparable to the total cost of the GP’s compensation of 1.05%.

Finally, the numbers in Table 8 also allows us to compare typical compensation structures.

Increasing the rate of carried interest, k, by 10% leads to an increase in the break-even

alpha of 0.18%–0.35%, depending on risk aversion. Increasing m by 0.5 percentage-point

increases the break-even alpha by 0.15%–0.25%. Hence, the cost of a 50-basis point increase

in the management fee, m, is largely similar to the cost of a 10 percentage-point increase

in the carried interest, k. To illustrate, a common choice is between a 2/20 and a 1.5/30

compensation contract. Table 8 shows that an LP with low to moderate risk aversion (e.g.

γI0 = 0+, 2) would slightly prefer the 2/20 contract. In contrast, an LP with higher risk

aversion (γI0 = 5) is indifferent between these two contracts (the break-even alphas are

3.36% and 3.37%), because for this LP the cost of the safer management fees is relatively

higher than that of the more risky carried interest. This comparison, however, assumes that

the GP’s alpha is given and does not depend on the contract. If a higher carried interest

can screen for better GPs or incentivize the GPs to produce greater alpha, the trade-off may

change.

4.3 Horizon Effects, Illiquidity, Fees, and Leverage

Table 9 shows how the break-even alpha varies with the PE investment horizon T . A

natural intuition is that an LP with a longer PE investment requires a higher break-even

alpha. We find, however, that this simple intuition holds only without leverage and without

GP compensation, i.e., in the case with l = 0 and m = k = 0, as reported in the first row

in Table 9. In this simple case, the LP effectively holds the illiquid PE asset. With full-

spanning, the LP’s valuation is simply the economic value of the PE asset, i.e., V0 = A0e
αT ,

which implies that V0 is linear in A0. In contrast, with unspanned risk, the cost of illiquidity
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Table 8: Break-even alphas for different levels of effective risk aversion, γI0, carried interest
k, and management fees, m. Other parameters are β = 0.5, h = 8%, and l = 3. The baseline
case is in bold.

m k γI0 = 0+ γI0 = 2 γI0 = 5

0.0% 0% 0.00% 1.01% 2.24%

1.5% 10% 0.57% 1.65% 2.96%
1.5% 20% 0.85% 1.87% 3.14%
1.5% 30% 1.19% 2.15% 3.36%

2.0% 10% 0.72% 1.83% 3.19%
2.0% 20% 1.01% 2.06% 3.37%
2.0% 30% 1.34% 2.34% 3.59%

2.5% 10% 0.88% 2.03% 3.44%
2.5% 20% 1.17% 2.26% 3.62%
2.5% 30% 1.52% 2.54% 3.85%

implies that V0 < LP0, and LP is concave in At. The break-even value of α increases with the

horizon to ensure that the LP is willing to hold the illiquid PE asset with a longer duration.

More generally, when k > 0, or m > 0, or l > 0, the relation between the break-even

alpha and the investment horizon becomes more complex, depending on the structure of the

GP’s compensation and leverage. Changes in the horizon, T , induce several different effects.

Short horizons. First consider short horizons. In Table 9, column T = 0.0001 shows

that the break-even alpha does not converge to zero as the horizon shrinks, and the limit

behavior of the break-even alpha depends on whether the GP charges carried interest or not.

For the case without carried interest, k = 0, the PDE in (31) implies that the limit value,

when k = 0 and T → 0, of the break-even alpha is:

lim
T→0

α =
m

1 + l
+
γrI0

2
ε2(1 + l) . (64)

Intuitively, the first term in (64) is the management fee per unit of the unlevered PE asset

and the second term captures the illiquidity discount. The intuition for the management

fee term is straightforward. By leveraging the LP’s invested capital, the alpha is earned

38



on a larger asset base, and the required break-even alpha is reduced from m to m/(1 + l).

Therefore, without leverage and with m = 2%, the contribution of management fees to the

break-even alpha is simply 2% per year. With leverage of l = 3, however, the contribution

of m = 2% is only 2%/4=0.50%.

The second term in (64) is the break-even alpha required to compensate the LP for the

unspanned risk and illiquidity. This term does not go to zero as T goes to zero, because

the terms reflects the “flow” cost of illiquidity, which is positive for any finite maturity T ,

even short ones. In the baseline case, without leverage, the contribution of illiquidity to the

break-even alpha is 0.26% annually. With leverage of l = 3, the contribution of illiquidity

quadruples to 1.05% annually, because leverage quadruples the size and risk of the unlevered

PE asset.

To summarize, reading down column T = 0.0001 of Table 9, in the limit when the horizon

goes to zero, the limit of the break-even alpha depends on the fees as follows: With m = 0

and without leverage, the break-even alpha is 0.26% annually, due to the cost of illiquidity.

With m = 2% and l = 0, the break-even alpha increases by 2% to 2.26% annually. With

l = 3 and m = 0, the break-even alpha is 1.05% annually, which reflects the higher cost of

illiquidity with leverage. Finally, with l = 3 and m = 2%, the break-even alpha increases

to 1.55% annually, reflecting a cost of 1.05% of illiquidity and a cost of 0.50% (= 2%/4) of

management fees.13 All these results are without carried interest.

With carried interest, the break-even alpha tends to infinity as the horizon T shrinks to

zero. At shorter horizons, the carried interest becomes more important than management

fees per unit of time. The cost of management fees is proportional to the horizon, T , but

the cost of carried interest is proportional to
√
T , because the incentive fee is effectively an

option, and its value depends mainly on the underlying PE asset’s volatility, which grows

at the rate
√
T . For example, with T = 0.0001, the value of the carried interest is about

two orders of magnitude greater than the value of management fees, as T−1/2 = 102. The

value of the GP’s alpha, however, only grows at the rate T . Hence, as T → 0, the
√
T term

dominates and the break-even alpha grows to infinity to compensate the LP for the increasing

cost of the optionality of the carried interest. To illustrate, without management fees and

leverage, when T = 0.0001, the break-even alpha is 201.25% annually! Adding management

13We confirm that our numerical solution of the break-even alphas using PDE (31) yields the same result
as implied by (64).
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fees of m = 2%, the break-even alpha just increases by 2.06% to 203.31% annually, where

the increase mostly reflects m = 2%, and the remaining 0.06% percentage-point increase is

due to a small nonlinear interaction effect. With leverage of l = 3, the break-even alpha is

222.14% annually without management fees, and it increases by 0.50% to 222.64% annually

with m = 2. This increase is just the management fees per levered amount of PE assets,

given as 2%/4=0.5% like above, and in this case the nonlinear interaction term is effectively

zero.

Long horizons. With increasing horizons, the break-even alpha eventually starts to

increase due to the increasing illiquidity of the PE investment. In the simple case, without

management fees, carried interest, or leverage, the break-even alpha increases monotonically

with T , as the only effect of increasing T is the increasing cost of illiquidity. Intuitively, the

longer the investment horizon, the more distorted is the portfolio allocation and hence the

higher is α needed for the LP to break even. In the case with l = m = k = 0, the break-even

alpha is simply the implied (flow) cost of illiquidity per unit of time.

With management fees, however, the GP must also return these fees to the LP in the

preferred return region, which effectively increases the leverage of the LP’s claim. In the case

with m = 2%, k = 0, and l = 0, as the horizon T increases, the optionality (the VAA term

in the PDE (31)) becomes more important. As a result, the break-even alpha first declines,

albeit only marginally, from 2.26% to 2.24%, as T increases from 0.0001 to 2. As the horizon

T increases, the illiquidity effect dominates, and the break-even alpha eventually increases.

Table 9 shows that the U-shaped pattern for the break-even alpha holds generally when

either m > 0 or k > 0. With carried interest, the break-even alpha declines more quickly as

the option effect induced by carry quickly weakens as T increases beyond one. With both

leverage and fees the U-shaped pattern becomes more pronounced. Interestingly, in Table 9,

the most realistic case is the last one in Panel B, which includes both leverage, management

fees, and carried interest. In this case, the lowest break-even alpha arises with a horizon of

ten years. Hence, holding the GP’s alpha fixed, a ten-year horizon may be close to optimal.
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Table 9: Break-even alphas at different maturities, T . Other parameters are γI0 = 2, β = 0.5,
and h = 8%.

m k T = 0.0001 T = 0.1 T = 2 T = 5 T = 10 T = 20

Panel A: l = 0

0% 0% 0.26% 0.26% 0.29% 0.34% 0.46% 0.77%
2% 0% 2.26% 2.26% 2.24% 2.25% 2.34% 2.79%
0% 20% 201.25% 6.12% 2.19% 1.51% 1.20% 1.16%
2% 20% 203.31% 9.80% 4.11% 3.42% 3.08% 3.17%

Panel B: l = 3

0% 0% 1.05% 1.05% 0.86% 0.86% 1.01% 1.42%
2% 0% 1.55% 1.55% 1.38% 1.41% 1.63% 2.23%
0% 20% 222.14% 8.10% 2.24% 1.59% 1.44% 1.60%
2% 20% 222.64% 8.60% 2.77% 2.16% 2.06% 2.43%

5 Empirical Performance Measures

In reality, the alphas generated by actual GPs are difficult to assess, and more readily

available performance measures are used in practice, such as the Public Market Equivalent

(PME) and the Internal Rate of Return (IRR). To define these measures, divide the cash

flows between the LP and GP into capital calls and distributions: Callt denotes cash flows

paid by the LP to the GP, including the LP’s payment of ongoing management fees, and

Distt are the cash flows returned to the LP from the GP. The IRR is defined as the solution to

1 =
∑

Distt
(1+IRR)t

/
∑

Callt
(1+IRR)t

and PME =
∑

Distt
1+Rt

/
∑

Callt
1+Rt

, where Rt is the cumulative realized

return on the market portfolio up to time t. Informally, the PME is the present value of the

returned (distributed) capital relative to the present value of the invested (called) capital,

where the present values are calculated using the realized market returns as the discount

rate. Empirical studies typically interpret PME > 1 as PE investments outperforming the

market, implicitly assuming a (levered) beta of one, as noted by Kaplan and Schoar (2004).

There are several issues with the PME measure. First, the denominator blends two

cash flows: the investment, I0, and the management fees, mX0, as noted by Ljungqvist

41



and Richardson (2003). Intuitively, management fees are a risk-free claim and should be

discounted at the risk-free rate. Second, the LP only receives the proceeds after debt is fully

repaid and shares the profits with the GP, both of which imply that the LP’s payoffs has a

risk profile that is different from the one for the underlying PE asset, although it is still more

risky than the management fees. Hence, the LP’s payoff should be discounted at a rate that

is different from the rate for the underlying PE asset. Third, the PME does not account for

the cost of illiquidity. Finally, the (levered) beta of PE investments may not equal one as

assumed for the PME measure.

Due to these issues, it is unclear how to interpret the conventional PME measure. Specif-

ically, it is not true that a PME that exceeds one necessarily implies that the LP is better

off, economically. This threshold may be greater (or smaller) than one, and it may change

with the leverage and the LP’s effective risk aversion. Using our model, we can evaluate the

PME levels that are required for LPs to break even.

Analytical performance measures. In the model, it is straightforward to solve for the

analytical counterparts to the empirical performance measures. Given an alpha, the implied

PME is:

PME =
E
[
e−µSTLP (AT , T )

]
I0 + E

[∫ T
0
e−µStmX0dt

]
=

e(µA−µS)T [EC(A0;Z0)− nEC(A0;Z1) + (n− k)EC(A0;Z2)]

I0 + mX0

µS
(1− e−µST )

. (65)

Here, EC(A;K) is the expected payoff, not the price, of a call option with strike price K under

the physical measure P , not the risk-adjusted measure P̃ , as given in (C.3) in Appendix C.

Figure 3 plots the relation between the GP’s alpha and the expected PME, with a 2/20

compensation contract and leverage of l = 3.

Similarly, let φ denote the IRR, which is defined as the solution to:

I0 +

∫ T

0

mX0e
−φtdt = e−φTE [LP (AT , T )] , (66)

which simplifies to:

I0 +
mX0

φ

(
1− e−φT

)
= e−(φ−µA)T [EC(A0;Z0)− nEC(A0;Z1) + (n− k)EC(A0;Z2)] . (67)
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Break-even performance. Given a GP’s alpha, we can calculate the expected values

of the IRR and PME for the GP’s funds, using (65) and (66). Note that the alpha is the

gross-of-fees performance of the underlying PE asset, but the PME and IRR are based on

the LP’s cash flows, net of management fees and carried interest, and the expressions for the

implied PME and IRR in (65) and (66) adjust for these fees to make the resulting PME and

IRR comparable to their empirical counterparts.

In Table 10 we report the break-even alphas for different levels of effective risk aversion

and leverage, and the table also reports the values of the PME and IRR implied by these

break-even alphas. As noted previously, this table shows that break-even alphas decrease

with leverage. However, the implied break-even values of the IRR and PME increase with

leverage. In Panel B, the break-even alpha declines from 3.08% to 1.77% as leverage increases

from l = 0 to l = 9. Yet, the break-even IRR increases from 8.4% annually to 19.1%, and

the break-even PME increases from 0.78 to 2.17. In the baseline case, with l = 3, the LP’s

break-even IRR is 13.8% annually, and the break-even PME is 1.30. This break-even PME

can also be found in Figure 3. The figure shows that a fund’s expected PME increases almost

linearly with the GP’s α. With an alpha of 2.06% annually, the corresponding PME is 1.30,

as indicated by a circle.

It is interesting to compare these theoretical break-even values to their empirical coun-

terparts. Harris, Jenkinson, and Kaplan (2011) summarize estimates of the empirical per-

formance measures across datasets and studies.14 They report value-weighted average IRRs

of 12.3%-16.9%, which is close to the break-even IRR of 13.8% in our baseline case in Table

10. The IRR, however, is an absolute performance measures, which does not adjust for

the market performance. For this reason, Harris, Jenkinson and Kaplan (2011) prefer the

PME measure, which is a relative performance measure. They report average value-weighted

PMEs of 1.20–1.27, which are close to our theoretical break-even PME of 1.30. While a PME

of 1.27 can be interpreted as PE outperforming the market, this outperformance may be just

sufficient to compensate the LPs for risk and illiquidity. This is consistent with standard

theories of competition and entry in financial markets (e.g., Berk and Green 2004). For a

less risk-averse LP, a PME of 1.27 implies positive economic performance.

14The studies include Ljungqvist and Richardson (2003), Kaplan and Schoar (2005), Jegadeesh et al.
(2009), Phalippou and Gottschalg (2009), Korteweg and Sorensen (2010), Metrick and Yasuda (2010), Robin-
son and Sensoy (2011), and Stucke (2011).
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Table 10: Break-even values of empirical performance measures and the equilibrium credit
spread for debt, implied by the break-even alphas for different levels of effective risk aversion,
γI0, and leverage, l. Other parameters are β = 0.5, m = 2%, k = 20%, and h = 8%. The
baseline case is in bold in Panel B.

Panel A. γI0 = 0+

Leverage (l) 0 1 3 6 9

Alpha (α) 2.61% 1.68% 1.01% 0.63% 0.46%
IRR (φ) 7.9% 9.6% 11.2% 12.3% 13.0%
PME 0.75 0.88 1.02 1.13 1.21
Credit spread N/A 1.05% 3.48% 5.69% 7.14%

Panel B. γI0 = 2

Leverage (l) 0 1 3 6 9

Alpha (α) 3.08% 2.46% 2.06% 1.86% 1.77%
IRR (φ) 8.4% 10.8% 13.8% 16.8% 19.1%
PME 0.78 0.98 1.30 1.74 2.17
Credit spread N/A 0.86% 2.63% 3.96% 4.66%

Panel C. γI0 = 5

Leverage (l) 0 1 3 6 9

Alpha (α) 3.74% 3.49% 3.33% 3.30% 3.28%
IRR (φ) 9.0% 12.3% 16.5% 20.6% 23.5%
PME 0.83 1.13 1.68 2.51 3.33
Credit spread N/A 0.66% 1.91% 2.70% 3.08%

Table 10 further shows that the credit spread increases with leverage and declines as

effective risk aversion increases. A more risk-averse LP requires a greater break-even alpha,

which reduces the required equilibrium credit spread. The magnitude of the equilibrium

spread is consistent with actual spreads. Table 10 shows that the equilibrium credit spread

decreases from 3.48% to 2.63%, due to the higher alpha, as the effective risk aversion γI0

increases from 0+ to 2. Ivashina and Kovner (2010) report average and median spreads (to

LIBOR) of 3.14% and 3.00% for syndicated loans used to finance PE transactions.
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Figure 3: PMEs at different levels of alpha. The circle indicates a PME of 1.3, which is
implied by an alpha of 2.06% annually. Other parameters are: m = 2%, k = 0.2, γI0 = 2,
β = 0.5, h = 8%, and l = 3.

6 Conclusion

To value PE investments, we develop a model of the asset allocation for an institutional

investor (LP). The model captures the main institutional features of PE, including: (1)

Inability to trade or rebalance the PE investment, and the resulting long-term illiquidity

and unspanned risks; (2) GPs creating value and generating alpha by effectively manag-

ing the fund’s portfolio companies; (3) GP compensation, including management fees and

performance-based carried interest; and (4) leverage and the pricing of the resulting risky

debt. The model delivers tractable expressions for the LP’s asset allocation and provides an

analytical characterization of the certainty-equivalent valuation of the PE investment.

An important benchmark is the full-spanning case where the risk of the PE asset is fully

spanned by publicly-traded assets. In this full-spanning case, we can value the individual

parts of the waterfall compensation structure, and we derive closed-form expressions for the

present value of the GP’s compensation, including both management and incentive fees. Our

pricing model differs from standard Black-Scholes option pricing, even under full spanning,

45



because our model must allow for the GP’s value-adding skill, which means that the under-

lying PE asset earns a positive alpha. In contrast, standard Black-Scholes pricing has no

room for risk-adjusted excess returns for any security. Quantitatively, we find that the costs

of both management fees and incentive fees are large, in present value terms. This finding

corroborates the existing findings for PE compensation from Metrick and Yasuda (2010).

The second important contribution is that our model allows us to evaluate the cost of

illiquidity of long-term PE investments. When the risk of the PE asset is not fully spanned by

the traded assets, the LP’s risk of the PE investments cannot be fully hedged by dynamically

trading in the public market. The additional non-spanned risk exposure increases the risk

of the LP’s overall portfolio. To evaluate the resulting costs of illiquidity and the GP’s

compensation with non-spanned risks, we calculate the alpha that the GP must generate

for the LP to break even, in certainty-equivalent terms. This break-even alpha can be

interpreted as the LP’s additional cost of capital in addition to the standard CAPM-implied

cost of capital, due to the costs of illiquidity and the GP’s compensation. Quantitatively,

we find that the cost of illiquidity is substantial. Evaluated in terms of break-even alphas,

it is comparable to the total cost of the GP’s compensation, including both management

fees and carried interest. Broadly speaking, the LP’s total costs of the PE investment in

present-value terms are 50% illiquidity, 25% management fees, and 25% carried interest.

Leverage reduces the break-even alpha. Intuitively, leverage increases the amount of asset

managed by the GP, and allows the GP to earn alpha on a greater asset base. Hence, holding

management fees fixed, leverage reduces the effective management fee per dollar of PE assets

under management by the GP. Additionally, leverage allows better-diversified creditors to

bear more of the risk of the underlying PE investment. Both forces cause the break-even

alpha to decrease with leverage, which may provide a new justification for the high levels of

debt used in PE transactions.

Finally, we use our model to evaluate actual PE performance. The performance of PE

funds is typically evaluated in terms of their internal rate of return (IRR) and public-market

equivalent (PME). Our model gives break-even values of these two performance measures,

and we find that the break-even values implied by our model are reasonably close to the

actual reported performance for buyout funds, suggesting that LPs in these funds may just

break even, on average, which is consistent with Berk and Green (2004). LPs with lower
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effective risk aversion and more skilled LPs, who can exploit the performance persistence of

PE firms, may still earn economic rents from PE investments.
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Appendices

In Appendix A, we derive preference-independent results for the full-spanning case. We

then sketch out the general incomplete-market solution in Appendix B. Finally, Appendix

C contains the main argument for the invariance result of Proposition 2 and some details for

performance measures.

A Full spanning

In this Appendix, we use the dynamic replicating portfolio approach to value a claim

with the contingent terminal payoff G(AT , T ). First, without loss of generality, we rewrite

the dynamics for At as

dAt
At

= µAdt+ σA

(
ρdBS

t +
√

1− ρ2dBS′

t

)
, (A.1)

where BS′ is a standard Brownian motion that is orthogonal to the standard Brownian mo-

tion BS representing the risk exposure via the public equity. By construction, the correlation

between BS
t and BS′

t is zero. Full spanning requires that the newly introduced tradable asset

whose risk is solely driven by BS′
t commands no risk premium. Let S ′t denote the market

value of this tradable asset with no risk premium, whose dynamic evolution is given by

dS ′t
S ′t

= rdt+ σS′dB
S′

t . (A.2)

Note that the expected growth rate of {S ′t : t ≥ 0} is the risk-free rate under the physical

measure as this asset carries no risk premium.

We construct a self-financing portfolio by dynamically trading in the public equity whose

value process St is given by (1), the newly introduced public asset whose value process S ′t is

given in (A.2), and the risk-free asset to replicate the claim whose terminal payoff is given

by G(AT , T ). Let ∆t and ∆′t denote the number of shares for the publicly traded assets

whose prices are St and S ′t, respectively. Let Θt denote the dollar amount invested in the

risk-free asset. The total value of this self-financing portfolio at time t is then given by

Qt = ∆tSt + ∆′tS
′
t + Θt. And the dynamic of the self-financing portfolio is

dQt = ∆tdSt + ∆′tdS
′
t + dΘt , (A.3)

= rQt dt+ ∆tSt(µS − r)dt+ ∆tStσSdB
S
t + ∆′tS

′
tσS′dB

S′

t . (A.4)
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Let G(At, t) denote the constructed shadow value process for the claim with the contin-

gent terminal payoff G(AT , T ). Using the Ito’s formula, we write the dynamic for the value

of contingent claims with terminal payoff G(AT , T ) as follows:

dG(At, t) =

(
Gt(At, t) +GA(At, t)µAAt +

σ2
AA

2
t

2
GAA(At, t)

)
dt

+GA(At, t)σAAt

(
ρdBS

t +
√

1− ρ2 dBS′

t

)
. (A.5)

For the self-financing portfolio to replicate the risk profiles for the contingent claim G(At, t),

we first match the diffusion parts:

∆tStσS = ρGA(At, t)σAAt , (A.6)

∆′tS
′
tσS′ =

√
1− ρ2GA(At, t)σAAt , (A.7)

which imply the following delta strategies:

∆t =
ρσA
StσS

AtGA(At, t) =
β

St
AtGA(At, t) , (A.8)

∆′t =

√
1− ρ2σA
S ′tσS′

AtGA(At, t) . (A.9)

We further equate the drift for G(At, t) with that for the self-financing portfolio,

rG(At, t) + ∆tSt(µS − r) = Gt(At, t) +GA(At, t)µAAt +
σ2
AA

2
t

2
GAA(At, t) . (A.10)

Substituting the delta strategies (A.8) and (A.9) into (A.10), we obtain the following PDE

for G(At, t):

rG(At, t) = Gt + (r + α)AtGA(At, t) +
1

2
σ2
AA

2
tGAA(At, t) , (A.11)

where we use the definition of α given in (6). Note that G(At, t) is an initial value problem

with the terminal boundary condition G(AT , T ) = max {AT −K, 0}.
Intuitively, if G(A0, 0) > Q0, then the LP will not hold the asset with terminal payoff

G(AT , T ) because the LP can acquire the identical payoff by the dynamic trading strategy

discussed above. Alternatively, if G(A0, 0) < Q0, then the LP is strictly better off by buying

the asset with the terminal payoff G(AT , T ). Therefore, G(A0, 0) is the valuation at which

the LP is indifferent between holding the asset with the terminal payoff G(AT , T ). and

choosing the replicating portfolio described above.
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By using the Feymann-Kac representation (e.g. see Duffie, 2001), we can write G(At, t)

as the conditional expectation specified in (36) under the risk-adjusted probability measure

P̃ , where P̃ is linked to the physical measure P via the following Radon-Nikodym derivative,

dP̃

dP
= exp

[
−
(
η̃ · η̃

2
T + η̃ ·

(
B̃T − B̃0

))]
, (A.12)

where η̃ can be interpreted as the market price of risk given by η̃ = (η, 0)>, and B̃ =

(B̃S, B̃S′)> is the standard Brownian motion 2× 1 under this new measure P̃ . It is straight-

forward to show that B̃ is related to the standard Brownian motion [BS, BS′ ]> under the orig-

inal physical measure, via dB̃t = d

(
BS
t

BS′
t

)
+

(
η
0

)
dt. Let dB̃A

t ≡ ρdB̃S
t +

√
1− ρ2dB̃S′

t . Note

that B̃A
t is the standard Brownian motion under this new measure P̃ and dB̃A

t = dBA
t +ρηdt.

And then using the Girsanov theorem, we may write the value of the PE asset At under this

new measure P̃ as:

dAt = (r + α)Atdt+ σAAtdB̃
A
t . (A.13)

Importantly, the risk-adjusted drift is r + α rather than r as in the Black-Scholes formula.

Finally, note that the systematic risk is fully captured by the change of measure, and we can

use the risk-free rate to discount the payoffs after making the appropriate adjustment of the

process for At from (3) to (A.13).

By integrating under the risk-adjusted measure P̃ , we obtain the following explicit solu-

tion:

Call(At, t;α,K) = Ẽt
[
e−r(T−t) max {AT −K, 0}

]
,

= eα(T−t)Ẽt
[
e−(r+α)(T−t) max {AT −K, 0}

]
,

= eα(T−t) [AtN(d1)−Ke−(r+α)(T−t)N(d2)
]
,

= Ate
α(T−t)N(d1)−Ke−r(T−t)N(d2) , (A.14)

where

d1 = d2 + σA
√
T − t , (A.15)

d2 =
ln
(
At

K

)
+
(
r + α− σ2

A

2

)
(T − t)

σA
√
T − t

. (A.16)
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B The general incomplete-markets solution

We solve the investor’s problem by using dynamic programming. First, we report the

results for the post-exit stage and then solve the pre-exit stage.

B.1 The post-exit stage and Proposition 1

After exiting from holding the illiquid asset, investors solve a classic Merton-type con-

sumption and portfolio allocation problem by investing in the risk-free asset and public

equity. The wealth dynamics is given by

dWt = (rWt − Ct) dt+ Πt

(
(µS − r)dt+ σSdB

S
t

)
, t ≥ T . (B.1)

Let J∗(W ) denote investors’ value function after time T , i.e.

J∗(W ) = max
Π, C

E
[∫ ∞

t

e−ζ(s−T )U (Cs) ds

]
, t ≥ T . (B.2)

Using the standard dynamic programming method, we have the following Hamilton-Jacobi-

Bellman (HJB) equation for J∗(W ):

ζJ∗(W ) = max
Π, C

U(C) + (rW + Π(µS − r)− C)J∗W (W ) +
1

2
Π2σ2

SJ
∗
WW (W ) . (B.3)

The FOCs for the portfolio allocation Π and consumption C are

U ′(C) = J∗W (W ) , (B.4)

Π = −(µS − r)J∗W (W )

σ2
SJ
∗
WW (W )

. (B.5)

We conjecture that J∗(W ) is given by (22). And then substituting (22) into (B.4) and

(B.5) respectively, we obtain the optimal consumption rule given by (24) and the portfolio

allocation rule given by (25) in Proposition 1. Finally, substituting (22), (24), and (25) into

the HJB equation (B.3), we obtain the explicit formula for b given in (23).

B.2 Pre-exit stage and details for the key valuation equation (31)

Before exiting from the PE investment, the LP is exposed to illiquidity risk. In this

general case, the LP’s value function J(W,A, t) solves the following HJB equation,

ζJ(W,A, t) = max
Π, C

U(C) + Jt + (rW + Π(µS − r)−mX0 − C)JW

+
1

2
Π2σ2

SJWW + µAAJA +
1

2
σ2
AA

2JAA + ρσSσAΠAJWA . (B.6)
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We conjecture that J(W,A, t) takes the exponential form as specified in (28). The FOCs for

C and Π are

U ′(C) = JW (W,A, t) , (B.7)

Πσ2
SJWW (W,A, t) = −(µS − r)JW (W,A, t)− ρσSσAAJWA(W,A, t) . (B.8)

Using the FOC (B.7) for C and the FOC (B.8) for Π, we obtain the consumption and

portfolio rules given in (29) and (30), respectively. And then substituting the conjectured

value function J(W,A, t) specified in (28) into the HJB equation (B.6), we obtain

− ζ

γr
= max

Π, C
−e
−γ(C−r(W+b+V ))

γ
+ Vt + rW + Π(µS − r)−mX0 − C

+µAAVA +
1

2
σ2
AA

2VAA −
γr

2

(
Π2σ2

S + 2ρσSσAΠAVA + σ2
AA

2V 2
A

)
. (B.9)

Finally, substituting the consumption and portfolio rules given in (29) and (30) into (B.9),

we obtain the nonlinear PDE (31) for V (A, t).

C Details for Proposition 2 and performance measures

Details for the invariance result in Proposition 2. Substituting V (A, t) = v(a, t)×I0

into (31) and using a = A/I0, x0 = X0/I0, we obtain (57). Substituting (13), (15), and (16)

into (17), we have

LP (AT , T ) = max{A− Z0, 0} − nmax{A− Z1, 0}+ (n− k) max{A− Z2, 0} . (C.1)

Substituting z0 = Z0/I0, z1 = Z1/I0, z2 = Z2/I0 into the maturity T -payoff condition (32),

we obtain (58). Finally, substituting V (A, t) = v(a, t) × I0 and x0 = X0/I0 into (33), we

obtain (59).

Details for performance measures. Let EC(A;K) denote the expected discounted pay-

off, not value, of a call option with strike price K under the physical measure,

EC(A;K) = E0

[
e−µAT max {AT −K, 0}

]
. (C.2)

Using the standard integration result involving normal random variables, we obtain

EC(A;K) = AN(p1(A;K))−Ke−µATN(p2(A;K)) , (C.3)
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where p1(A;K) and p2(A;K) are given by

p1(A;K) = p2(A;K) + σA
√
T , (C.4)

p2(A;K) =
ln(A

K
) +

(
µA −

σ2
A

2

)
T

σA
√
T

. (C.5)
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