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On massively parallel computer systems, performance analysis and debugging can be-
come an extremely complicated process. Over the years, experience has shown that
user-friendly tools supporting this process are extremely helpful and can drastically
shorten time-to-solution for a given problem. The complications arise because of the
fact that traditional methods used on sequential computers like profiling or debugging
step-for-step execution either deliver not enough information or present too much intru-
sion. A method that has proven usability to a certain degree is tracing. The structure

VAMPIR: Visualization and Analysis
of MPI Resources

W.E. Nagel, A. Arnold, M. Weber
Central Institute for Applied Mathematics
Research Centre Jiilich (KFA)
D-52425 Jiilich, Germany
({w.nagel,a.arnold,m.weber } @kfa-juelich.de)

H.-Ch. Hoppe, K. Solchenbach
PALLAS GmbH
Hermiilheimer Str. 10
D-50321 Briihl, Germany
({hch karls}@pallas.de)

Abstract

Performance analysis most often is based on the detailed knowledge of program
behavior. One option to get this information is tracing. Based on the research tool
PA Ruvis, the visualization environment VAMPIR was developed at KFA which now
supports the new message passing standard MPI. VAMPIR translates a given trace
file into a variety of graphical views, e.g., state diagrams, activity charts, time-line
displays, and statistics. Moreover, it supports an animation mode that can help to
locate performance bottlenecks, and it provides flexible filter operations to reduce
the amount of information displayed. The most interesting part of VAMPIR is the
powerful zooming feature that allows to identify problems at any level of detail.

Introduction

of a typical tracing system is shown in Fig. 1.
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Figure 1: Principle of tracing

Tracing is based on instrumenting a program before it is executed. Instrumentation
extends parts of the program specified by the user in a way that data records are
written into a protocol whenever these parts are executed. The records usually contain
a time stamp, the number of the processor that has generated the record, an event type
identifier, and a list of additional parameters depending on the event’s type. Events that
can be instrumented could be subprogram entries and exits or the sending or receiving
of a message. Intrusion is reduced by writing the data records into a buffer located on
the processor’s local memory. 1/0 activity only takes place when this buffer overflows
and has to be flushed to disk. After program end, the individual record streams are
merged into a single stream that is sorted chronologically. Analysis can then be done
off-line.

The problem of tracing is the large amount of data usually generated. Especially, when
a program is traced for the first time, it is not known which parts of the program will
be of interest; most people will enable all tracing options which quite often result in
very huge trace files. Therefore, there is a need for a flexible and powerful tool that
enables the programmer to quickly get an overview of the program run without disabling
analyzation on the level of single events.

This paper describes the X Window based visualization environment VAMPIR which has
been developed at KFA Jiilich to support performance analysis of parallel programs. Like
most of the other performance analysis tools available for parallel computers (Paragraph
[Int93] or Pablo [Ree92]), VAMPIR is used on a post-mortem basis, and it translates
a given trace file into a variety of graphical system views which provide a reasonable
basis for system understanding and program optimization. VAMPIR is based on the
visualization environment PARvis [Arn93, NaAr93, NaAr94, Mue95] running on a large
variety of workstation platforms. It has been extended to support additional panels and
filter functions for the new message passing standard MPI.



2 The Message Passing Interface (MPI)

The growing interest in parallel computing, and notably in the message—passing pro-
gramming model, pushes the demand for a standardized application programming in-
terface supported by all major parallel system vendors. Starting in 1993, a group of
computer vendors, library writers and application programmers from the US and Eu-
rope collaborated to design a standard portable message—passing interface called MPI.
The final specification of this interface was published in May 1994 and updated in June
1995 ([MPI95]); [GLS94] gives a good introduction from the application programmer’s
point of view.

A number of portable and vendor—specific MPI implementations have since been devel-
oped, showing that MPI can indeed be implemented efficiently on the currently available
parallel computer platforms. There are three public-domain implementations of MPI,
and most parallel system vendors have announced MPI implemetations of their own.
MPI draws from a number of other message—passing interfaces, including IBM’s EUI,
PVM, Intel’s NX, and PARMACS, adding some advanced features:

e Communication modes: MPI supports a multitude of point-to—point communica-
tion modes, some allowing to overlap communication and computation.

e Data types: in a message, MPI transmits objects of a specified datatype ranging
from predefined elementary types to complicated, non—contiguous user—defined
datatypes. Thus, programs do not need to know about datatype sizes, and auto-
matic type conversions can be done on heterogeneous systems.

e Communicators: to isolate different communication spaces, the concept of a com-
municator was introduced into MPI. Messages must be sent and received within
the same communicator, thus allowing to encapsulate the communication done by
a parallel library from the application.

e Collective communication: MPI contains a complete selection of global communi-
cation operations including broadcast, reduction, gather and scatter on arbitrary
datatypes.

Therefore, MPI enables portable programs and libraries to be written. Of course, mere
functional portability is not sufficient in practice: efficiency of an application or library
must be the second focus of interest. In spite of using a standardized interface, parallel
programs will not show equal performance on different hardware platforms — same
as with sequential programs. Thus, careful adjustments — performance tuning — are
necessary to optimize a parallel application for a given parallel system.

For parallel programs on massively parallel systems, performance tuning is much more
complicated than in the sequential case, because additional system parameters like the
ratio of computational power to communication speed come into play, and currently no
automatic tools analogous to optimzing compilers are available. To reap the maximum
benefit from MPI, powerful and easy to handle performance analysis and visualization
tools are of increasing importance.



Users working with different message-passing libraries on several parallel systems will
not have the time to fully understand and tune their message-passing codes for every
platform. With the dissemination of MPI this will probably change. The powerful
features of MPI will offer a range of flexibility that allows to get the maximum perfor-
mance from any kind of parallel hardware supporting message passing. To achieve this
in a convenient way users will ask for tools able to display the communication structure
of their programs at almost every time scale. VAMPIR will have the functionality to
satisfy these demands.

3 The VAMPIR Environment

Performance analysis and program optimization are often based on different categories
of system views (Fig. 2, [Mue95]):

e single time system snapshots: panels that show system activities at a particular
point of time;

e animation: option to look at a sequence of system snapshots to investigate the
dynamic behavior;

e statistics: the component that summarizes system behavior for the time under
investigation;

e time-line system view: detailed view of system activities, which are visualized on
a time axis.

Each category is supported by the VAMPIR environment; the current prototype can
generate traces on the Intel iPSC/860, Intel Paragon and CRAY T3D systems, whereas
the product version will work for any standard—compliant MPI implementation.

single time
system snapshot

time-line
system view

statistics

Figure 2: The VAMPIR visualization options



For user convenience, VAMPIR provides a configuration file where user preferences
(color, layout, fonts etc.) are stored between runs. This file enables the tool to come up
with the exact same settings of a previous session, and different configurations may be
saved and loaded at will. A detailed description of all VAMPIR features can be found
in [Arn93, ArRo95, Mue95].

VAMPIR is implemented in ANSI C and uses the OSF /Motif libraries. The current im-
plementation already supports a variety of different hardware platforms (IBM RS/6000,
Sun Sparc, DEC MIPS computers (Ultrix), DEC Alpha, HP, and Silicon Graphics).

4 Program Instrumentation

The MPT standard ([MPI95]) specifies a profiling interface that every standard—compliant
MPI implementation must provide. Using this interface, wrapper routines can be regis-
tered that trace the execution of every MPI routine.

VAMPIR provides a TraceGenerator library on top of this profiling interface to generate
traces of MPI communicator, point—to—point and collective communication routines.
This part of VAMPIR can work with each standard—compliant MPI implementation,
and supports both C and Fortran 77 applications.

To trace additional information like subroutine entry/exit, the PARvis.inst instrumen-
tation tool for Fortran 77 has been developed at KFA Jiilich based on the Paff [Ber89]
preprocessor. The command

PARvis.inst [options] file name [file name]

automatically instruments the Fortran 77 programs specified on the command line.
Flexible options are provided to generate wrapper routines for system and application
routines, and tracing of a particular routine can be switched off by just marking that
routine as non—traceable. Control directives are supported to start and stop the trace
gathering, and in addition an upper bound on the tracefile length can be specified by
the user. All directives start with the prefix CKFA$ TRACE.

For C applications, a library interface to the TraceGenerator will be supplied that al-
lows to insert instrumentation instructions either manually or with the help of the C
Preprocessor.

5 Visualization of System Activities

The system activities can be visualized in the Global_Display/Node Style display (Fig. 3).
Here, every processor is displayed as a box. The size and arrangement of the boxes de-
pend on the number of processors and the geometry of the window and are automatically
calculated by VAMPIR. Each box is partitioned into a lower and an upper part. The
lower part describes the current activity on the nodes, whereas the upper part (called
statistics field) shows the time portion (in percent) spent on a particular activity for the
period under investigation (here: Calculation). For monitoring reasons, the background
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Figure 3: System activity snapshot at a single point of time

color reflects the current value printed out, and the corresponding percentual values are
listed on the right.

Fig. 3 represents one example of an actual system snapshot at a special point of time.
The Step-button in the VAMPIR Move Control area can be used to show the system
activity changes. Typically, the number of events to be displayed is rather large, so
the animation mode can be used to animate the sequence of system snapshots. The
step width for the animation mode can be either an event or a given time period; the
time difference between two movements (i.e., the animation speed) and the number of
movements after which the animation should stop can be adjusted in the panel Set-
tings/Steppings. This animation feature can be used to analyze the program behavior
in time, to identify critical program sections, and to find the hot spots of the run.

6 Statistics

The Node display mode already contains a small statistics field, but due to its limited
size only the time portion of one state can be monitored. Quite often, one would like to
get a more detailed idea of how the time is spent on each of the nodes. To analyze the
complete state distribution, it is possible to switch the display mode to the statistics
display. Press F6 or select the menu option Global_Display/Chart Style, and another
window will come up (Fig. 4), which shows a statistics of the complete trace file in a
pie chart style. The colors chosen for the individual states are just the same as those
which are used as the background color for the state field in the CPU display. The
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Figure 4: Time distribution statistics for the program run

most important activities can be identified for all nodes, and differences in the node
behavior will be clear immediately. As can be seen from that panel, most time is spent
in Calculation on all nodes, and significant portions of time are also spent at a barrier.

When a lot of CPUs are involved in a parallel system, the individual statistics in this
display can become very small and uninformative. To relieve this unfortunate situation,
VAMPIR can open additional windows containing statistics for only one CPU. To select
the CPUs you want statistics for, simply click at them with the left mouse button, and
their frame color will be inverted. You can also drag over a couple of CPUs to select
several CPUs with one action. In the example shown in Fig. 4, the actual time distri-
bution spent in user subroutines (Calculation, pie chart in the left sub-window: most
time is spent in subroutine VELO) as well as for node communication (Communication,
histogram in the upper right sub-window), and Paragon emulation (Paragon, histogram
in the lower right sub-window) is shown for node 2. The user can toggle between ta-
ble, pie chart, and histogram in all chart windows. The histograms may be linear or
logarithmic, and zooming is supported.

7 Time-line Displays

Based on the data visualization options presented above, we now concentrate on the
interaction of parallel activities and possible bottlenecks. At this point, the user is



Trace file

What about

zooming??
Utilization Displays

Communication Displays

Task Displays

Figure 5: Zooming and the Replay Technique

interested in seeing a sequence of activities on all nodes, and the interdependences
between these different program parts.

The problem with most other visualization tools like Paragraph [Int93] or Pablo [Ree92]
is that these tools are based on the Replay Technique: Whenever the user wants to have
just another information about a special part of the program, the whole trace file is
analyzed once again, even if the file contains several hundreds of Mbytes (see Fig. 5).
The magnification glass has to scan the whole trace file several times whenever the user
would like to see a different information or just another time frame.

This is different in the VAMPIR-environment: here, the user can specify the size of
the magnification glass, and all details within the magnification glass can be seen with-
out any further I/O-activity (Fig. 6). For example, statistics for all activities inside
the chosen time window can be generated within milliseconds. Moreover, the user can
use a powerful zooming feature to analyze the program behavior on any level of detail,
each zoom-operation also takes only a few milliseconds, even if several Mbytes of trac-
ing information are under investigation. Of course, a hierarchical unzoom-operation is
provided for user convenience.

Trace file

- make magnification glass as huge

as you want (and memory allows)
- zoom in and out as you want

Figure 6: VAMPIR realization: Make zooming as easy as possible
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Figure 7: Time-line zooming and message identification



In VAMPIR, the Global_Display/Timeline panel is used to display this type of informa-
tion. As can be seen from the upper part of Fig. 7, colors are used to represent different
kinds of activities, and it is possible to show system activities over time on each of the
nodes. In this example, the program is running in phases where the subroutine VELO
is executed several times. The black parts are hundreds of messages (represented by one
line each) which are sent between the nodes. Based on the information displayed in this
window, it is quite easy to identify critical program sections where problems may have
occurred.

The zooming feature can now be used to go into detail. As shown in the middle part
of Fig. 7, the period of interest! (400 — 560 ms) was zoomed-in by just specifying the
time frame with the mouse. Here, one of the time-step iterations can be seen, and the
load imbalance causes long synchronization times at the barrier called GSYNC.

The zooming feature also can be used to get deeper and deeper into the analysis process,
to understand program behavior, and finally to identify problems. The lower part of
Fig. 7 shows a data communication exchange part of the program (at about 525 ms)
where different communication patterns inform the user about his communication ac-
tivities. In the message passing programming model, communication and data exchange
are solely based upon the sending and receiving of messages. Regardless of the network’s
topology (which is hidden to the application programmer in most cases), it is obvious
that the visualization of message transfers and patterns plays an important role in the
performance analysis and debugging of parallel programs. Therefore, VAMPIR includes
means to display and inquire information about message-passing transfers. These tools
are not isolated from the other part of VAMPIR: message events are read through the
same trace file interface into VAMPIR, and the message visualization tools work hand-
in-hand with the features described so far. It is possible to mouse-click a message that
pops up another panel showing all information related to that message, including the
transfer rate in MByte/s (i.e. about 20 MByte/s). The information for this message
is coming out of the wrapper of the MPI_.SEND/MPI_RECYV communication routine,
and the overhead involved is quite low. Depending on the instrumentation used, it is
also possible to visualize the communication patterns that higher-level communication
routines like reductions internally use. The ability to look into the implementation in
this way is a key feature to understand why programs that use a standardized message-
passing library like MPI behave differently on different machines.

Moreover, detailed information about the activities on one node or a selection of nodes
can be obtained. The lower left part of Fig. 7 documents that even calls to gdhigh (a few
microseconds inside the communication library routine) easily can be identified. A case
study on Intel Paragon [WiNa94] describes a situation where the VAMPIR environment
was extremely helpful in identifying performance bottlenecks in the communication li-
brary; based on the optimization process, the output performance (hippi-output) was
increased by a factor of more than five within a few hours.

In addition, the zooming operation can be used to identify typical communication pat-
terns. It is obvious that the visualization of such communication patterns gives knowl-

IThe time offset is specified in the lower left corner of the panel.
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edge about implementation aspects of the system and of your own program, and it is very
helpful to understand synchronization delays and related side effects which sometimes
significantly influence the performance of real applications.

To evaluate the overall message traffic that took place over a period of time, a matrix
of communication can be opened (Fig. 8) that shows different statistic values for the
messages that were passed between each pair of sender and receiver. Specifically, the
following parameters can be shown:
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Figure 8: Statistics of the message passing communication rate

The total number of messages passed between the processors

The total number of bytes passed between the processors

The maximum, minimum and average length of messages

The maximum, minimum and average data rate that was reached

This display simplifies the detection of unbalanced communication and performance
reductions because of too many short messages, what usually results in a low average
data rate.

8 Additional Features

VAMPIR accesses several external tools to perform some of its tasks. These tools must
be located in a directory included in your PATH environment variable:

e [pror Ip, the standard UNIX printing facilities, to print lists and window snapshots.

11



e import, a screen snapshot utility from the ImageMagick package to export or print
window contents. ImageMagick is delivered as part of VAMPIR; it can also be
downloaded from ftp.zam.kfa-juelich.de, directory pub/graphics/ImageMagick.

e If you have trace files compressed with gzip or compress, VAMPIR can extract
them automatically if their counterparts gunzip or uncompress, respectively, are
available.

There are quite a few other enhanced features that cannot be described in detail in this
paper; the most important ones are mentioned below:

e filter functions: VAMPIR allows to simultaneously display up to 512 nodes. Typi-
cally, this number is much too large to be handled meaningfully; therefore, power-
ful filter functions are available to reduce the number of nodes, either automatically
or manually by the user.

e movie support: after each animation step, control is optionally given back to a
user-command (i.e., a shell script). This allows to generate movies unattended by
the user, just by specifying a single command in a sub-panel.

9 Summary and Conclusions

This paper describes the VAMPIR-environment which provides some powerful features
to discover parallel program behavior on several parallel systems like Intel Paragon and
CRAY T3D. Experience has shown, that for debugging, as well as for performance op-
timization purposes, the supported time-line displays in combination with the statistics
features are the strength of the system. With the extremely flexible zooming function in
the time-line displays, analysis operations are supported which can drastically improve
the understanding of observed performance problems.

VAMPIR is available as a commercial product from PALLAS GmbH; for further infor-
mation, see the WWW page http://www.pallas.de or send mail to info@pallas.de.
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