
ARTICLE

VAMPnets for deep learning of molecular kinetics
Andreas Mardt1, Luca Pasquali1, Hao Wu1 & Frank Noé 1

There is an increasing demand for computing the relevant structures, equilibria, and

long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-

throughput molecular dynamics simulations. Current methods employ transformation of

simulated coordinates into structural features, dimension reduction, clustering the

dimension-reduced data, and estimation of a Markov state model or related model of the

interconversion rates between molecular structures. This handcrafted approach demands a

substantial amount of modeling expertise, as poor decisions at any step will lead to large

modeling errors. Here we employ the variational approach for Markov processes (VAMP) to

develop a deep learning framework for molecular kinetics using neural networks, dubbed

VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov

states, thus combining the whole data processing pipeline in a single end-to-end framework.

Our method performs equally or better than state-of-the-art Markov modeling methods and

provides easily interpretable few-state kinetic models.

Corrected: Author correction

DOI: 10.1038/s41467-017-02388-1 OPEN

1Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany. Andreas Mardt and Luca Pasquali

contributed equally to this work. Correspondence and requests for materials should be addressed to F.N. (email: frank.noe@ fu-berlin.de)

NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0

http://orcid.org/0000-0003-4169-9324
http://orcid.org/0000-0003-4169-9324
http://orcid.org/0000-0003-4169-9324
http://orcid.org/0000-0003-4169-9324
http://orcid.org/0000-0003-4169-9324
https://doi.org/10.1038/s41467-018-06999-0
mailto:frank.noe@fu-berlin.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications

T
he rapid advances in computing power and simulation
technologies for molecular dynamics (MD) of biomole-
cules and fluids1–4, and ab initio MD of small molecules

and materials5,6, allow the generation of extensive simulation data
of complex molecular systems. Thus, it is of high interest to
automatically extract statistically relevant information, including
stationary, kinetic, and mechanistic properties.

The Markov modeling approach7–12 has been a driving force in
the development of kinetic modeling techniques from MD mass
data, chiefly as it facilitates a divide-and-conquer approach to
integrate short, distributed MD simulations into a model of the
long-timescale behavior. State-of-the-art analysis approaches and
software packages4,13,14 operate by a sequence, or pipeline, of
multiple processing steps, that has been engineered by practi-
tioners over the last decade. The first step of a typical processing
pipeline is featurization, where the MD coordinates are either
aligned (removing translation and rotation of the molecule of
interest) or transformed into internal coordinates such as residue
distances, contact maps, or torsion angles4,13,15,16. This is fol-
lowed by a dimension reduction, in which the dimension is
reduced to much fewer (typically 2–100) slow collective variables,
often based on the variational approach or conformation
dynamics17,18, time-lagged independent component analysis
(TICA)19,20, blind source separation21–23, or dynamic mode
decomposition24–28—see refs 29,30 for an overview. The resulting
coordinates may be scaled, in order to embed them in a metric
space whose distances correspond to some form of dynamical
distance31,32. The resulting metric space is discretized by clus-
tering the projected data using hard or fuzzy data-based clus-
tering methods11,13,33–36,37, typically resulting in 100–1000
discrete states. A transition matrix or rate matrix describing the
transition probabilities or rate between the discrete states at some
lag time τ is then estimated8,12,38,39 (alternatively, a Koopman
model can be built after the dimension reduction27,28). The final
step toward an easily interpretable kinetic model is coarse-
graining of the estimated Markov state model (MSM) down to a
few states40–46.

This sequence of analysis steps has been developed by com-
bining physico-chemical intuition and technical experience
gathered in the last ~10 years. Although each of the steps in the
above pipeline appears meaningful, there is no fundamental
reason why this or any other given analysis pipeline should be
optimal. More dramatically, the success of kinetic modeling
currently relies on substantial technical expertise of the modeler,
as suboptimal decisions in each step may deteriorate the result. As
an example, failure to select suitable features in step 1 will almost
certainly lead to large modeling errors.

An important step toward selecting optimal models (para-
meters) and modeling procedures (hyper-parameters) has been
the development of the variational approach for conformation
dynamics (VAC)17,18, which offers a way to define scores that
measure the optimality of a given kinetic model compared to the
(unknown) MD operator that governs the true kinetics under-
lying the data. The VAC has recently been generalized to the
variational approach for Markov processes (VAMP), which
allows to optimize models of arbitrary Markov processes,
including nonreversible and non-stationary dynamics47. The
VAC has been employed using cross-validation in order to make
optimal hyper-parameter choices within the analysis pipeline
described above while avoiding overfitting34,48. However, a var-
iational score is not only useful to optimize the steps of a given
analysis pipeline, but in fact allows us to replace the entire
pipeline with a more general learning structure.

Here we develop a deep learning structure that is in principle
able to replace the entire analysis pipeline above. Deep learning
has been very successful in a broad range of data analysis and

learning problems49–51. A feedforward deep neural network is a
structure that can learn a complex, nonlinear function y = F(x). In
order to train the network, a scoring or loss function is needed
that is maximized or minimized, respectively. Here we develop
VAMPnets, a neural network architecture that can be trained by
maximizing a VAMP variational score. VAMPnets contain two
network lobes that transform the molecular configurations found
at a time delay τ along the simulation trajectories. Compared to
previous attempts to include “depth” or “hierarchy” into the
analysis method52,53, VAMPnets combine the tasks of featuriza-
tion, dimension reduction, discretization, and coarse-grained
kinetic modeling into a single end-to-end learning framework.
We demonstrate the performance of our networks using a variety
of stochastic models and data sets, including a protein-folding
data set. The results are competitive with and sometimes surpass
the state-of-the-art handcrafted analysis pipeline. Given the rapid
improvements of training efficiency and accuracy of deep neural
networks seen in a broad range of disciplines, it is likely that
follow-up works can lead to superior kinetic models.

Results
Variational principle for Markov processes. Molecular dynam-
ics can be theoretically described as a Markov process {xt} in the
full state space Ω. For a given potential energy function, the
simulation setup (e.g., periodic boundaries) and the time-step
integrator used, the dynamics are fully characterized by a tran-
sition density pτ(x, y), i.e., the probability density that a MD
trajectory will be found at configuration y given that it was at
configuration x a time lag τ before. Markovianity implies that the
y can be sampled by knowing x alone, without the knowledge of
previous time steps. While the dynamics might be highly non-
linear in the variables xt, Koopman theory24,54 tells us that there
is a transformation of the original variables into some features or
latent variables that, on average, evolve according to a linear
transformation. In mathematical terms, there exist transforma-
tions to features or latent variables, χ0(x) = (χ01(x), ..., χ0m(x))

⊤

and χ1(x) = (χ11(x), ..., χ1m(x))
⊤, such that the dynamics in these

variables are approximately governed by the matrix K:

E χ 1 xtþτð Þ½ � � K>
E χ 0 xtð Þ½ �: ð1Þ

This approximation becomes exact in the limit of an infinitely
large set of features (m → ∞) χ0 and χ1, but for a sufficiently large
lag time τ the approximation can be excellent with low-
dimensional feature transformations, as we will demonstrate
below. The expectation values E account for stochasticity in the
dynamics, such as in MD, but they can be omitted for determi-
nistic dynamical systems24,26,27.

To illustrate the meaning of Eq. (1), consider the example of
{xt} being a discrete-state Markov chain. If we choose the feature
transformation to be indicator functions (χ0i = 1 when xt = i and 0
otherwise, and correspondingly with χ1i and xt + τ), their
expectation values are equal to the probabilities of the chain to
be in any given state, pt and pt + τ, and K = P(τ) is equal to the
matrix of transition probabilities, i.e., pt + τ = P

⊤(τ)pt. Previous
papers on MD kinetics have usually employed a propagator or
transfer operator formulation instead of (1)7,8. However, the
above formulation is more powerful as it also applies to
nonreversible and non-stationary dynamics, as found for MD
of molecules subject to external force, such as voltage, flow, or
radiation55,56.

A central result of the VAMP theory is that the best
finite-dimensional linear model, i.e., the best approximation in
Eq. (1), is found when the subspaces spanned by χ0 and χ1 are
identical to those spanned by the top m left and right singular
functions, respectively, of the so-called Koopman operator47.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1

2 NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

For an introduction to the Koopman operator, please refer
to refs. 24,30,54.

How do we choose χ0, χ1, and K from data? First, suppose we
are given some feature transformation χ0, χ1 and define the
following covariance matrices:

C00 ¼ Et χ 0 xtð Þχ 0 xtð Þ>
h i

ð2Þ

C01 ¼ Et χ 0 xtð Þχ 1 xtþτð Þ>
h i

ð3Þ

C11 ¼ Etþτ χ 1 xtþτð Þχ 1 xtþτð Þ>
h i

; ð4Þ

where Et �½ � and Etþτ �½ � denote the averages that extend over time
points and lagged time points within trajectories, respectively,
and across trajectories. Then the optimal K that minimizes the
least square error Et χ 1 xtþτð Þ � K>

χ 0 xtð Þ
�

�

�

�

2
h i

is refs 27,57,47:

K ¼ C�1
00 C01: ð5Þ

Now the remaining problem is how to find suitable
transformations χ0, χ1. This problem cannot be solved by
minimizing the least square error above, as is illustrated by the
following example: suppose we define χ0(x) = χ1(x) = (1(x)), i.e.,
we just map the state space to the constant 1—in this case the
least square error is 0 for K = [1], but the model is completely
uninformative as all dynamical information is lost.

Instead, in order to seek χ0 and χ1 based on available simulation
data, we employ the VAMP theorem introduced in ref. 47, that
can be equivalently formulated as the following subspace version.

VAMP variational principle. For any two sets of linearly inde-
pendent functions χ0 (x) and χ1(x), let us call

R̂2 χ 0; χ 1½ � ¼ C
�1

2
00C01C

�1
2

11

�

�

�

�

�

�

2

F

their VAMP-2 score, where C00, C01, C11 are defined by Eqs. (2)–
(4) and Ak k2F¼ n�1

P

i;j A
2
ij is the Frobenius norm of n × n matrix

A. The maximum value of VAMP-2 score is achieved when the
top m left and right Koopman singular functions belong to span
(χ01, ..., χ0m) and span(χ11, ..., χ1m), respectively.

This variational theorem shows that the VAMP-2 score
measures the consistency between subspaces of basis functions
and those of dominant singular functions, and we can therefore
optimize χ0 and χ1 via maximizing the VAMP-2 score. In the
special case where the dynamics are reversible with respect to
equilibrium distribution the theorem above specializes to
variational principle for reversible Markov processes17,18.

Learning the feature transformation using VAMPnets. Here we
employ neural networks to find an optimal set of basis functions,
χ0(x) and χ1(x). Neural networks with at least one hidden layer are
universal function approximators58, and deep networks can
express strongly nonlinear functions with a fairly few neurons per
layer59. Our networks use VAMP as a guiding principle and are
hence called VAMPnets. VAMPnets consist of two parallel lobes,
each receiving the coordinates of time-lagged MD configurations
xt and xt+τ as input (Fig. 1). The lobes have m output nodes and
are trained to learn the transformations χ0(xt) and χ1(xt + τ),
respectively. For a given set of transformations, χ0 and χ1, we pass
a batch of training data through the network and compute the
training VAMP score of our choice. VAMPnets bear similarities
with auto-encoders60,61 using a time-delay embedding and are
closely related to deep canonical covariance analysis (CCA)62.

VAMPnets are identical to deep CCA with time-delay embedding
when using the VAMP-1 score discussed in ref. 47, however the
VAMP-2 score has easier-to-handle gradients and is more sui-
table for time series data, due to its direct relation to the Koop-
man approximation error47.

The first left and right singular functions of the Koopman
operator are always equal to the constant function 1(x) ≡ 147. We
can thus add 1 to basis functions and train the network by
maximizing

R̂2

1

χ 0

� �

;
1

χ 1

� �� �

¼ C
�1

2

00 C01C
�1

2

11

�

�

�

�

�

�

2

F
þ1; ð6Þ

where C00;C01;C11 are mean-free covariances of the feature-
transformed coordinates:

C00 ¼ ðT � 1Þ�1XX
> ð7Þ

C01 ¼ ðT � 1Þ�1
XY

> ð8Þ

C11 ¼ ðT � 1Þ�1
YY

>
: ð9Þ

Here we have defined the matrices X ¼ Xij

� �

¼ χ0i xj
	

2 R
m ´T

and Y ¼ Yij

� �

¼ χ1i xjþτ

	

2 R
m ´T with xj; xjþτ

	
� �T

j¼1

representing all available transition pairs, and their mean-free

versions X ¼ X � T�1X1, Y ¼ Y� T�1Y1. The gradients of R̂2

are given by:

∇XR̂2 ¼
2

T � 1
C

�1

00 C01C
�1

11 Y� C
T

01C
�1

00 X
 �

ð10Þ

∇YR̂2 ¼
2

T � 1
C
�1

11 C
T

01C
�1

00 X � C01C
�1

11 Y
 �

ð11Þ

and are back-propagated to train the two network lobes. See
Supplementary Note 1 for derivations of Eqs. (6), (10), and (11).

For simplicity of interpretation, we may just use a unique basis
set χ = χ0 = χ1. Even when using two different basis sets would be
meaningful, we can unify them by simply defining χ = (χ0, χ1)

⊤. In
this case, we clone the lobes of the network and train them using
the total gradient ∇R̂2 ¼ ∇XR̂2 þ ∇YR̂2.

Input x
t

χ
0
(x

t
) χ

1
(x

t+τ
)

x
t + τ

Network lobe I Network lobe II

Input layer

Hidden layers

Output layers

Output

Merged layer

VAMP score

Fig. 1 Scheme of the neural network architecture used. For each time step t

of the simulation trajectory, the coordinates xt and xt+τ are inputs to two

deep networks that conduct a nonlinear dimension reduction. In the present

implementation, the output layer consists of a Softmax classifier. The

outputs are then merged to compute the variational score that is

maximized to optimize the networks. In all present applications, the two

network lobes are identical clones, but they can also be trained

independently

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

After training, we asses the quality of the learned features and
select hyper-parameters (e.g., network size) while avoiding
overfitting using the VAMP-2 validation score

R̂val
2 ¼ C

val

00

 ��1
2

C
val

01 C
val

11

 ��1
2

�

�

�

�

�

�

�

�

2

F

þ1; ð12Þ

where C
val

00 ;C
val

01 ;C
val

11 are mean-free covariance matrices computed
from a validation data set not used during the training.

Dynamical model and validation. The direct estimate of the
time-lagged covariance matrix C01 is generally nonsymmetric.
Hence the Koopman model or MSM K given by Eq. (5) is typi-
cally not time-reversible28. In MD, it is often desirable to obtain a
time-reversible kinetic model—see39 for a detailed discussion. To
enforce reversibility, K can be reweighted as described in28 and
implemented in PyEMMA13. The present results do not depend
on enforcing reversibility, as classical analyses such as PCCA+63

are avoided as the VAMPnet structure automatically performs
coarse graining.

Since K is a Markovian model, it is expected to fulfill the
Chapman–Kolmogorov (CK) equation:

KðnτÞ ¼ KnðτÞ; ð13Þ

for any value of n ≥ 1, where K(τ) and K(nτ) indicate the models
estimated at a lag time of τ and nτ, respectively. However, since
any Markovian model of MD can be only approximate8,64, Eq.
(13) can only be fulfilled approximately, and the relevant test is
whether it holds within statistical uncertainty. We construct two
tests based on Eq. (13): in order to select a suitable dynamical
model, we proceed as for Markov state models by conducting an
eigenvalue decomposition for every estimated Koopman matrix,
K(τ)ri = riλi(τ), and computing the implied timescales9 as a
function of lag time:

tiðτÞ ¼ � τ

ln λiðτÞj j ; ð14Þ

We chose a value τ, where ti(τ) are approximately constant in τ.
After having chosen τ, we test whether Eq. (13) holds within
statistical uncertainty65. For both the implied timescales and the
CK test, we proceed as follows: train the neural network at a fixed
lag time τ*, thus obtaining the network transformation χ, and then
compute Eq. (13) or Eq. (14) for different values of τ with a fixed
transformation χ. Finally, the approximation of the ith eigenfunc-
tion is given by

ψ̂ e
i ðxÞ ¼

X

j

rijχjðxÞ: ð15Þ

If dynamics are reversible, the singular value decomposition
and eigenvalue decomposition are identical, i.e., σi = λi and
ψ i ¼ ψ e

i .

Network architecture and training. We use VAMPnets to learn
molecular kinetics from simulation data of a range of model
systems. While any neural network architecture can be employed
inside the VAMPnet lobes, we chose the following setup for our
applications: the two network lobes are identical clones, i.e., χ0 ≡
χ1, and consist of fully connected networks. In most cases, the
networks have less output than input nodes, i.e., the network
conducts a dimension reduction. In order to divide the work
equally between network layers, we reduce the number of nodes
from each layer to the next by a constant factor. Thus, the net-
work architecture is defined by two parameters: the depth d and

the number of output nodes nout. All hidden layers employ rec-
tified linear units (ReLU)66,67.

Here, we build the output layer with Softmax output nodes, i.e.,
χi(x) ≥ 0 for all i and

P

i χiðxÞ ¼ 1. Therefore, the activation of an
output node can be interpreted as a probability to be in state i. As
a result, the network effectively performs featurization, dimension
reduction, and finally a fuzzy clustering to metastable states, and
the K(τ) matrix computed from the network-transformed data is
the transition matrix of a fuzzy MSM36,37. Consequently, Eq. (1)
propagates probability distributions in time.

The networks were trained with pairs of MD configurations (xt,
xt + τ) using the Adam stochastic gradient descent method68. For
each result, we repeated 100 training runs, each of which with a
randomly chosen 90%/10% division of the data into training and
validation data. See Methods section for details on network
architecture, training, and choice of hyper-parameters.

Asymmetric double-well potential. We first model the kinetics
of a bistable one-dimensional process, simulated by Brownian
dynamics (Methods) in an asymmetric double-well potential
(Fig. 2a). A trajectory of 50,000 time steps is generated. Three-
layer VAMPnets are set up with 1-5-10-5 nodes in each lobe. The
single input node of each lobe is given the current and time-
lagged mean-free x coordinate of the system, i.e., xt − μ1 and xt + τ

− μ2, where μ1 and μ2 are the respective means, and τ = 1 is used.
The network maps to five Softmax output nodes that we will refer
to as states, as the network performs a fuzzy discretization by
mapping the input configurations to the output activations. The
network is trained by using the VAMP-2 score with the four
largest singular values.

The network learns to place the output states in a way to
resolve the transition region best (Fig. 2b), which is known to be
important for the accuracy of a Markov state model8,64. This
placement minimizes the Koopman approximation error, as seen
by comparing the dominant Koopman eigenfunction (Eq. (15))
with a direct numerical approximation of the true eigenfunction
obtained by a transition matrix computed for a direct uniform
200-state discretization of the x axis—see ref. 8 for details. The
implied timescale and CK tests (Eqs. (13) and (14)) confirm that
the kinetic model learned by the VAMPnet successfully predicts
the long-time kinetics (Fig. 2c, d).

Protein-folding model. While the first example was one-
dimensional, we now test if VAMPnets are able to learn reaction
coordinates that are nonlinear functions of a multi-dimensional
configuration space. For this, we simulate a 100,000 time step
Brownian dynamics trajectory (Eq. (17)) using the simple
protein-folding model defined by the potential energy function
(Supplementary Fig. 1a):

UðrÞ ¼ �2:5ðr � 3Þ2 r<3

0:5ðr � 3Þ3 � ðr � 3Þ2 r � 3

The system has a five-dimensional configuration space, x 2 R
5,

however the energy only depends on the norm of the vector
r ¼ xj j. While small values of r are energetically favorable, large
values of r are entropically favorable as the number of
configurations available on a five-dimensional hypersphere grows
dramatically with r. Thus, the dynamics are bistable along the
reaction coordinate r. Four-layer network lobes with 5-32-16-8-2
nodes each were employed and trained to maximize the VAMP-2
score involving the largest nontrivial singular value.

The two output nodes successfully identify the folded and the
unfolded states, and use intermediate memberships for the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1

4 NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

intersecting transition region (Supplementary Fig. 1b). The
network excellently approximates the Koopman eigenfunction
of the folding process, as apparent from the comparison of the
values of the network eigenfunction computed by Eq. (15) with
the eigenvector computed from a high-resolution MSM built on
the r coordinate (Supplementary Fig. 1b). This demonstrates that
the network can learn the nonlinear reaction coordinate mapping
r ¼ xj j based only on maximizing the variational score (Eq. 6).
Furthermore, the implied timescales and the CK test indicate that

the network model predicts the long-time kinetics almost
perfectly (Supplementary Fig. 1c, d).

Alanine dipeptide. As a next level, VAMPnets are used to learn
the kinetics of alanine dipeptide from simulation data. It is known
that the ϕ and ψ backbone torsion angles are the most important
reaction coordinates that separate the metastable states of alanine
dipeptide, however, our networks only receive Cartesian coordi-
nates as an input, and are thus forced to learn both the nonlinear
transformation to the torsion angle space and an optimal cluster
discretization within this space, in order to obtain an accurate
kinetic model.

A 250 ns MD trajectory generated in ref.69 (MD setup
described there) serves as a data set. The solute coordinates were
stored every ps, resulting in 250,000 configurations that are all
aligned on the first frame using minimal root mean square
deviation fit to remove global translation and rotation. Each
network lobe uses the three-dimensional coordinates of the 10
heavy atoms as input, (x1, y1, z1, ..., x10, y10, z10), and the network
is trained using time lag τ = 40 ps. Different numbers of output
states and layer depths are considered, employing the layer sizing
scheme described in the Methods section (see Fig. 3 for an
example).

A VAMPnet with six output states learns a discretization in six
metastable sets corresponding to the free energy minima of the ϕ/
ψ space (Fig. 4b). The implied timescales indicate that given the
coordinate transformation found by the network, the two slowest
timescales are converged at lag time τ = 50 ps or larger (Fig. 4c).
Thus, we estimated a Koopman model at τ = 50 ps, whose Markov
transition probability matrix is depicted in Fig. 4d. Note that
transition probabilities between state pairs 1↔ 4 and 2↔ 3 are
important for the correct kinetics at τ = 50 ps, but the actual
trajectories typically pass via the directly adjacent intermediate
states. The model performs excellently in the CK test (Fig. 4e).

Activations: Dropout:

p= 0%

p= 10%

Softmax

Relu

X1

Y1

Z1

ZN

YN

XN

Fig. 3 Representative structure of one lobe of the VAMPnet used for

alanine dipeptide. Here, the five-layer network with six output states used

for the results shown in Fig. 4 is shown. Layers are fully connected, have

30-22-16-12-9-6 nodes, and use dropout in the first two hidden layers. All

hidden neurons use ReLu activation functions, while the output layer uses

Softmax activation function in order to achieve a fuzzy discretization of

state space

10

5

0

–5

–10

1.0

0.8

State 1 2 3 4 5

0.6

0.4

0.2

0.0

–0.2

NN approx.

True eigenv

0.6

P
ro

b
a
b
ili

ty
 /

 a
.u

.

0.4

0.2

0.0

102

101

T
im

e
s
c
a
le

s
 /
 a

.u
.

100

0 1 2

Lag time / a.u.

Estimate

1–>1

2–>1

3–>1 3–>2 3–>3 3–>4 3–>5

4–>54–>44–>34–>24–>1

5–>1 5–>2 5–>3

Lag time / a.u.

5–>4 5–>5

2–>2 2–>3 2–>4 2–>5

1–>2 1–>3 1–>4 1–>51.0
0.5
0.0
1.0
0.5
0.0
1.0
0.5

P
ro

b
a
b
ili

ty
 /
 a

.u
.

0.0
1.0
0.5
0.0
1.0
0.5
0.0

0 4 8 0 4 8 0 4 8 0 4 8 0 4 8

Predict

3 4 5

–4 –2 0 2 4

–15
–4 –3 –2 –1 0

Position x / a.u.

Position x / a.u.

�NN = 1

P
o
t.

 e
n
e
rg

y
 /

 a
.u

.

1 2 3 4

a

b

c

d

Fig. 2 Approximation of the slow transition in a bistable potential. a

Potential energy function U(x)= x
4
− 6x2 + 2x. b Eigenvector of the slowest

process calculated by direct numerical approximation (black) and

approximated by a VAMPnet with five output nodes (red). Activation of the

five Softmax output nodes define the state membership probabilities (blue).

c Relaxation timescales computed from the Koopman model using the

VAMPnet transformation. d Chapman–Kolmogorov test comparing long-

time predictions of the Koopman model estimated at τ= 1 and estimates at

longer lag times. c, d report 95% confidence interval error bars over 100

training runs

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

Choice of lag time, network depth, and number of output
states. We studied the success probability of optimizing a
VAMPnet with six output states as a function of the lag time τ by
conducting 200 optimization runs. Success was defined as resol-
ving the three slowest processes by finding three slowest timescale
higher than 0.2, 0.4, and 1 ns, respectively. Note that the results

shown in Fig. 4 are reported for successful runs in this definition.
There is a range of τ values from 4 to 32 ps where the training
succeeds with a significant probability (Supplementary Fig. 2a).
However, even in this range the success rate is still below 40%,
which is mainly due to the fact that many runs fail to find the
rarely occurring third-slowest process that corresponds to the ψ
transition of the positive ϕ range (Fig. 4b, states 5 and 6).

The breakdown of optimization success for small and large lag
times can be most easily explained by the eigenvalue decomposition
of Markov propagators8. When the lag time exceeds the timescale of
a process, the amplitude of this process becomes negligible, making
it hard to fit given noisy data. At short lag times, many processes
have large eigenvalues, which increases the search space of the
neural network and appears to increase the probability of getting
stuck in suboptimal maxima of the training score.

We have also studied the success probability, as defined above,
as a function of network depth. Deeper networks can represent
more complex functions. Also, since the networks defined here
reduce the input dimension to the output dimension by a
constant factor per layer, deeper networks perform a less radical
dimension reduction per layer. On the other hand, deeper
networks are more difficult to train. As seen in Supplementary
Fig. 2b, a high success rate is found for four to seven layers.

Next, we studied the dependency of the network-based
discretization as a function of the number of output nodes
(Fig. 5a–c). With two output states, the network separates the
state space at the slowest transition between negative and positive
values of the ϕ angle (Fig. 5a). The result with three output nodes
keeps the same separation and additionally distinguishes between
the α and β regions of the Ramachandran plot, i.e., small and
large values of the ψ angle (Fig. 5b). For a higher number of
output states, finer discretizations and smaller interconversion
timescales are found, until the network starts discretizing the
transition regions, such as the two transition states between the α
and β regions along the ψ angle (Fig. 5c). We chose the lag time
depending on the number of output nodes of the network, using
τ = 200 ps for two output nodes, τ = 60 ps for three output nodes,
and τ = 1 ps for eight output nodes.

A network output with k Softmax neurons describes a (k − 1)-
dimensional feature space as the Softmax normalization removes
one degree of freedom. Thus, to resolve k − 1 relaxation
timescales, at least k output nodes or metastable states are
required. However, the network quality can improve when given
more degrees of freedom in order to approximate the dominant
singular functions accurately. Indeed, the best scores using k =
4 singular values (three nontrivial singular values) are achieved
when using at least six output states that separate each of the six
metastable states in the Ramachandran plane (Fig. 5d, e).

For comparison, we investigated how a standard MSM would
perform as a function of the number of states (Fig. 5d). For a fair

�
 (

ra
d
)

�
 (

ra
d
)

1

0
State 6

State 3

State 5

State 2

State 4

2 1
6

5

3

Max. transition probability: 41%

Min. transition probability: 0.5%0 0.02 0.04 0.06

Lag time (ns)

4

1.0

0.1

0.01

T
im

e
s
c
a

le
s
 (

n
s
)

State 1

0

–π

π

0

–π

π

0–π π 0–π π 0–π π

� (rad) � (rad) � (rad)

1–>11

0

1

0

1

0

1

0

1

0

1

0

2–>1

3–>1

4–>1

5–>1

6–>1

0.1 0.3 0.1 0.3 0.1 0.3 0.1

(ns)

0.3 0.1 0.3 0.1 0.3

1–>2

2–>2

3–>2

4–>2

5–>2

6–>2

1–>3

2–>3

3–>3

4–>3

5–>3

6–>3

1–>4

2–>4

3–>4

4–>4

5–>4

6–>4

1–>5

2–>5

3–>5

4–>5

5–>5

6–>5

1–>6

2–>6

3–>6

4–>6

5–>6

6–>6

�

�

a

b

c d

e

Fig. 4 VAMPnet kinetic model of alanine dipeptide. a Structure of alanine

dipeptide. The main coordinates describing the slow transitions are the

backbone torsion angles ϕ and ψ, however the neural network inputs are

only the Cartesian coordinates of heavy atoms. b Assignment of all

simulated molecular coordinates, plotted as a function of ϕ and ψ, to the six

Softmax output states. Color corresponds to activation of the respective

output neuron, indicating the membership probability to the associated

metastable state. c Relaxation timescales computed from the Koopman

model using the neural network transformation. d Representation of the

transition probabilities matrix of the Koopman model; transitions with a

probability lower than 0.5% have been omitted. e Chapman–Kolmogorov

test comparing long-time predictions of the Koopman model estimated at τ

= 50 ps and estimates at longer lag times. c, e report 95% confidence

interval error bars over 100 training runs excluding failed runs (see text)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1

6 NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

comparison, the MSMs also used Cartesian coordinates as an
input, but then employed a state-of-the-art procedure using a
kinetic map transformation that preserves 95% of the cumulative
kinetic variance31, followed by k-means clustering, where the
parameter k is varied. It is seen that the MSM VAMP-2 scores
obtained by this procedure is significantly worse than by
VAMPnets when <20 states are employed. Clearly, MSMs will
succeed when sufficiently many states are used, but in order to
obtain an interpretable model, those states must again be coarse-
grained onto a fewer-state model, while VAMPnets directly
produce an accurate model with few states.

VAMPnets learn to transform Cartesian to torsion coordi-
nates. The results above indicate that the VAMPnet has implicitly
learned the feature transformation from Cartesian coordinates to
backbone torsions. In order to probe this ability more explicitly,
we trained a network with 30-10-3-3-2-5 layers, i.e., including a
bottleneck of two nodes before the output layer. We find that the
activation of the two bottleneck nodes correlates excellently with
the ϕ and ψ torsion angles that were not presented to the network
(Pearson correlation coefficients of 0.95 and 0.92, respectively,
Supplementary Fig. 3a, b). To visualize the internal representation
that the network learns, we color data samples depending on the
free energy minima in the ϕ/ψ space they belong to (Supple-
mentary Fig. 3c), and then show where these samples end up in
the space of the bottleneck node activations (Supplementary
Fig. 3d). It is apparent that the network learns a representation of
the Ramachandran plot—the four free energy minima at small ϕ
values (αR and β areas) are represented as contiguous clusters
with the correct connectivity, and are well separated from states
with large ϕ values (αL area). The network fails to separate the
two substates in the large ϕ value range well, which explains the
frequent failure to find the corresponding transition process and
the third-largest relaxation timescale.

NTL9 protein-folding dynamics. In order to proceed to a
higher-dimensional problem, we analyze the kinetics of an all-
atom protein-folding simulation of the NTL9 protein generated
by the Anton supercomputer1. A five-layer VAMPnet was trained
at lag time τ = 10 ns using 111,000 time steps, uniformly sampled
from a 1.11 ms trajectory. Since NTL9 is folding and unfolding,
there is no unique reference structure to align Cartesian coordi-
nates to—hence we use internal coordinates as a network input.
We computed the nearest-neighbor heavy-atom distance, dij for
all non-redundant pairs of residues i and j and transformed them
into contact maps using the definition cij = exp(−dij), resulting in
666 input nodes.

Again, the network performs a hierarchical decomposition
of the molecular configuration space when increasing the
number of output nodes. Figure 6a shows the decomposition of
state space for two and five output nodes, and the corresponding
mean contact maps and state probabilities. With two
output nodes, the network finds the folded and unfolded state
that are separated by the slowest transition process (Fig. 6a,
middle row). With five output states, the folded state is
decomposed into a stable and well-defined fully folded
substate and a less stable, more flexible substate that is missing
some of the tertiary contacts compared to the fully folded
substate. The unfolded substate decomposes into three substates,
one of them largely unstructured, a second one with residual
structure, thus forming a folding intermediate, and a mis-folded
state with an entirely different fold including a non-native
β-sheet.

The relaxation timescales found by a five-state VAMPnet model
are en par with those found by a 40-state MSM using state-of-the-
art estimation methods (Fig. 6b, c). However, the fact that
only five states are required in the VAMPnet model makes it easier
to interpret and analyze. Additionally, the CK test indicates
excellent agreement between long-time predictions and direct
estimates.

2 states 8 states

3 states

V
A

M
P

-2
 s

c
o

re
 -

 v
a

lid
a

ti
o

n
 s

e
t

S
in

g
u

la
r

v
a

lu
e

 m
a

g
n

it
u

d
e

3.5

3.0

2.5

2.0

1.5

1.00

0.75

0.50

0.25

0.00
4 6 8 10 12 14 16 18

Mean VAMP-2 VAMPnet score

Mean VAMP-2 MSM score

4 6 8 10 12 14 16 18

Output states

Output states

a c d

b

e

Fig. 5 Kinetic model of alanine dipeptide as a function of the number of output states. a–c Assignment of input coordinates, plotted as a function of

ϕ and ψ, to two, three, and eight output states. Color corresponds to activation of the respective output neuron, indicating the membership probability

to this state (Fig. 4b). d Comparison of VAMPnet and MSM performance as a function of the number of output states/MSM states. Mean VAMP-2

score and 95% confidence interval from 100 runs are shown. e Mean squared values of the four largest singular values that make up the VAMPnets score

plotted in d

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

Discussion
We have introduced a deep learning framework for molecular
kinetics, called VAMPnet. Data-driven learning of molecular
kinetics is usually done by shallow learning structures, such as
TICA and MSMs. However, the processing pipeline, typically

consisting of featurization, dimension reduction, MSM estima-
tion, and MSM coarse-graining is, in principle, a handcrafted
deep learning structure. Here we propose to replace the entire
pipeline by a deep neural network that learns optimal feature
transformations, dimension reduction and, if desired, maps the

Unfolded

All states

100%

Folded 1 Folded 2 Intermediate Unfolded Misfolded

100.0

10.0

1.0

0.1

1 1–>1

2–>1

3–>1

4–>1

5–>1

1–>2

2–>2

3–>2

4–>2

5–>2

1–>3

2–>3

3–>3

4–>3

5–>3

1–>4

2–>4

3–>4

4–>4

5–>4

1–>5

2–>5

3–>5

4–>5

5–>5

0

1

0

1

0
1

0

1

0 0.3 0.6 0.9 1.2 1.5

Lag time (μs)

T
im

e
s
c
a
le

 (
μ

s
)

T
im

e
s
c
a
le

 (
μ

s
)

0 0.3 0.6 0.9 1.2 1.5

Lag time (μs)

0
1 20 1 20 1 20 1 20 1 20

100.0

10.0

1.0

0.1

(μs)

Folded

R
e
s
id

u
e
 n

o
.

1

5

10

15

20

25

30

35

5 10 15 20 25 30 351

Residue no.

5 10 15 20 25 30 351

Residue no.

R
e
s
id

u
e
 n

o
.

1

5

10

15

20

25

30

35

5 10 15 20 25 30 351

Residue no.

R
e
s
id

u
e
 n

o
.

1

5

10

15

20

25

30

35

5 10 15 20 25 30 351

Residue no.

5 10 15 20 25 30 351

Residue no.

5 10 15 20 25 30 351

Residue no.

5 10 15 20 25 30 351

Residue no.

5 10 15 20 25 30 351

Residue no.

R
e
s
id

u
e
 n

o
.

1

5

10

15

20

25

30

35

R
e
s
id

u
e
 n

o
.

1

5

10

15

20

25

30

35

R
e
s
id

u
e
 n

o
.

1

5

10

15

20

25

30

35

R
e
s
id

u
e
 n

o
.

1

5

10

15

20

25

30

35

R
e
s
id

u
e
 n

o
.

1

5

10

15

20

25

30

35

a

b c d

10.9%89.1%

83.7% 5.7% 0.6% 9.6% 0.4%

Fig. 6 VAMPnet results of NTL9-folding kinetics. a Hierarchical decomposition of the NTL9 protein state space by a network with two and five output

nodes. Mean contact maps are shown for all MD samples grouped by the network, along with the fraction of samples in that group. 3D structures are

shown for the five-state decomposition, residues involved in α-helices or β-sheets in the folded state are colored identically across the different states. b

Relaxation timescales computed from the Koopman model approximated using the transformation applied by a neural network with five output nodes. c

Relaxation timescales from a Markov state model computed from a TICA transformation of the contact maps, followed by k-means clustering with k= 40.

d Chapman–Kolmogorov test comparing long-time predictions of the Koopman model estimated at τ= 320 ns and estimates at longer lag times. b–d report

95% confidence interval error bars over 100 training runs

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1

8 NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

MD time steps to a fuzzy clustering. The key to optimize the
network is the VAMP variational approach that defines scores by
which learning structures can be optimized to learn models of
both equilibrium and non-equilibrium MD.

Although MSM-based kinetic modeling has been refined over
more than a decade, VAMPnets perform competitively or
superior in our examples. In particular, they perform extremely
well in the Chapman–Kolmogorov test that validates the long-
time prediction of the model. VAMPnets have a number of
advantages over models based on MSM pipelines: (i) they may be
overall more optimal, because featurization, dimension reduction,
and clustering are not explicitly separate processing steps. (ii)
When using Softmax output nodes, the VAMPnet performs a
fuzzy clustering of the MD structures fed into the network and
constructs a fuzzy MSM, which is readily interpretable in terms of
transition probabilities between metastable states. In contrast to
other MSM coarse-graining techniques, it is thus not necessary to
accept reduction in model quality in order to obtain a few-state
MSM, but such a coarse-grained model is seamlessly learned
within the same learning structure. (iii) VAMPnets require less
user expertise to train than an MSM-based processing pipelines,
and the formulation of the molecular kinetics as a neural network
learning problem enables us to exploit an arsenal of highly
developed and optimized tools in learning softwares such as
tensorflow, theano, or keras.

Despite these advantages, VAMPnets still miss many of the
benefits that come with extensions developed for the MSM
approach. This includes multi-ensemble Markov models that are
superior to single conventional MSMs in terms of sampling rare
events by combining data from multiple ensembles70–75, aug-
mented Markov models that combine simulation data with
experimental observation data76, and statistical error estimators
developed for MSMs77–79. Since these methods explicitly use the
MSM likelihood, it is currently unclear, how they could be
implemented in a deep learning structure such as a VAMPnet.
Extending VAMPnets toward these special capabilities is a chal-
lenge for future studies.

Finally, a remaining concern is that the optimization of
VAMPnets can get stuck in suboptimal local maxima. In other
applications of network-based learning, a working knowledge has
been established to find which type of network implementation
and learning algorithm are most suitable for robust and repro-
ducible learning. For example, it is conceivable that the VAMPnet
lobes may benefit from convolutional filters80 or different types of
transfer functions. Suitably chosen convolutions, as in ref. 81 may
also lead to learned feature transformations that are transferable
within a given class of molecules.

Methods
Neural network structure. Each network lobe in Fig. 1 has a number of input
nodes given by the data dimension. According to the VAMP variational principle
(Sec. A), the output dimension must be at least equal to the number of Koopman
singular functions that we want to approximate, i.e., equal to k used in the score
function R̂2 . In most applications, the number of input nodes exceeds the number
of output nodes, i.e., the network conducts a dimension reduction. Here, we keep
the dimension reduction from layer i with ni nodes to layer i + 1 with ni + 1 nodes
constant:

ni

niþ1
¼ nin

nout

� �1=d

; ð16Þ

where d is the network depth, i.e., the number of layers excluding the input layer.
Thus, the network structure is fixed by nout and d. We tested different values for d
ranging from 2 to 11; for alanine dipeptide, Supplementary Fig. 2b reports the
results in terms of the training success rate described in the Results section. Net-
works have a number of parameters that ranges between 100 and 400,000, most of
which are between the first and second layer due to the rapid dimension reduction
of the network. To avoid overfitting, we use dropout during training82, and select
hyper-parameters using the VAMP-2 validation score.

Neural network hyper-parameters. Hyper-parameters include the regularization
factors for the weights of the fully connected and the Softmax layer, the dropout
probabilities for each layer, the batch size, and the learning rate for the Adam
algorithm. Since a grid search in the joint parameter space would have been too
computationally expensive, each hyper-parameter was optimized using the VAMP-
2 validation score while keeping the other hyper-parameters constant. We started
with the regularization factors due to their large effect on the training performance,
and observed optimal performance for a factor of 10−7 for the fully connected
hidden layers and 10−8 for the output layer; regularization factors >10−4 frequently
led to training failure. Subsequently, we tested the dropout probabilities with values
ranging from 0 to 50% and found 10% dropout in the first two hidden layers and
no dropout otherwise to perform well. The results did not strongly depend on the
training batch size, however, more training iterations are necessary for large bat-
ches, while small batches exhibit stronger fluctuations in the training score. We
found a batch size of 4000 to be a good compromise, with tested values ranging
between 100 and 16,000. The optimal learning rate strongly depends on the net-
work topology (e.g., the number of hidden layers and the number of output nodes).
In order to adapt the learning rate, we started from an arbitrary rate of 0.05. If no
improvement on the validation VAMP-2 score was observed over 10 training
iterations, the learning rate was reduced by a factor of 10. This scheme led to better
convergence of the training and validation scores and better kinetic model vali-
dation compared to using a high learning rate throughout.

The time lag between the input pairs of configurations was selected depending
on the number of output nodes of the network: larger lag times are better at
isolating the slowest processes, and thus are more suitable with a small number of
output nodes. The procedure of choosing network structure and lag time is thus as
follows: First, the number of output nodes n and the hidden layers are selected,
which determines the network structure as described above. Then, a lag time is
chosen in which the largest n singular values (corresponding to the n − 1 slowest
processes) can be trained consistently.

VAMPnet training and validation. We pre-trained the network by minimizing
the negative VAMP-1 score during the first third of the total number of epochs,
and subsequently optimize the network with VAMP-2 optimization (Sec. B). In
order to ensure robustness of the results, we performed 100 network optimization
runs for each problem. In each run, the data set was shuffled and randomly split
into 90%/10% for training and validation, respectively. To exclude outliers, we then
discarded the best 5% and the worst 5% of results. Hyper-parameter optimization
was done using the validation score averaged over the remaining runs. Figures
report training or validation mean and 95% confidence intervals.

Brownian dynamics simulations. The asymmetric double well and the protein-
folding toy model are simulated by over-damped Langevin dynamics in a potential
energy function U(x), also known as Brownian dynamics, using an forward Euler
integration scheme. The position xt is propagated by time step Δt via:

xtþΔt ¼ xt � Δt
∇UðxÞ
kT

þ
ffiffiffiffiffiffiffiffiffiffiffi

2ΔtD
p

wt ; ð17Þ

where D is the diffusion constant and kT is the Boltzmann constant and tem-
perature. Here, dimensionless units are used and D = 1, kT = 1. The elements of the
random vector wt are sampled from a normal distribution with zero mean and unit
variance.

Hardware used and training times. VAMPnets were trained on a single NVIDIA
GeForce GTX 1080 GPU, requiring between 20 seconds (for the double-well
problem) and 180 seconds for NTL9 for each run.

Code availability. TICA, k-means and MSM analyses were conducted with
PyEMMA version 2.4, freely available at http://www.pyemma.org. VAMPnets are
implemented using the freely available packages keras83 with tensorflow-gpu84 as a
backend. The code can be obtained at https://github.com/markovmodel/deeptime.

Data availability. Data for NTL9 can be requested from the authors of ref. 1. Data
for all other examples is available at https://github.com/markovmodel/deeptime.

Received: 14 July 2017 Accepted: 22 November 2017

References
1. Lindorff-Larsen, K., Piana, S., Dror, R. O. & Shaw, D. E. How fast-folding

proteins fold. Science 334, 517–520 (2011).
2. Plattner, N., Doerr, S., Fabritiis, G. D. & Noé, F. Complete protein-protein

association kinetics in atomic detail revealed by molecular dynamics
simulations and Markov modelling. Nat. Chem. 9, 1005–1011 (2017).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications 9

https://github.com/markovmodel/deeptime
https://github.com/markovmodel/deeptime
www.nature.com/naturecommunications
www.nature.com/naturecommunications

3. Kohlhoff, K. J. et al. Cloud-based simulations on google exacycle reveal ligand
modulation of gpcr activation pathways. Nat. Chem. 6, 15–21 (2014).

4. Doerr, S., Harvey, M. J., Noé, F. & De Fabritiis, G. HTMD: high-throughput
molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12,
1845–1852 (2016).

5. Ufimtsev, I. S. & Martinez, T. J. Graphical processing units for quantum
chemistry. Comp. Sci. Eng. 10, 26–34 (2008).

6. Marx, D. & Hutter, J. in Modern Methods and Algorithms of Quantum
Chemistry of NIC Series Vol. 1, 301–449 Ab initio molecular dynamics: theory
and implementation (ed Grotendorst, J.) (John von Neumann Institute for
Computing, Jülich, 2000).

7. Schütte, C., Fischer, A., Huisinga, W. & Deuflhard, P. A direct approach to
conformational dynamics based on hybrid monte carlo. J. Comput. Phys. 151,
146–168 (1999).

8. Prinz, J.-H. et al. Markov models of molecular kinetics: generation and
validation. J. Chem. Phys. 134, 174105 (2011).

9. Swope, W. C., Pitera, J. W. & Suits, F. Describing protein folding kinetics by
molecular dynamics simulations: 1. Theory J. Phys. Chem. B 108, 6571–6581 (2004).

10. Noé, F., Horenko, I., Schütte, C. & Smith, J. C. Hierarchical analysis of
conformational dynamics in biomolecules: transition networks of metastable
states. J. Chem. Phys. 126, 155102 (2007).

11. Chodera, J. D. et al. Automatic discovery of metastable states for the
construction of Markov models of macromolecular conformational dynamics. J.
Chem. Phys. 126, 155101 (2007).

12. Buchete, N. V. & Hummer, G. Coarse master equations for peptide folding
dynamics. J. Phys. Chem. B 112, 6057–6069 (2008).

13. Scherer, M. K. et al. PyEMMA 2: a software package for estimation, validation
and analysis of Markov models. J. Chem. Theory Comput. 11, 5525–5542 (2015).

14. Harrigan, M. P. et al. Msmbuilder: statistical models for biomolecular
dynamics. Biophys. J. 112, 10–15 (2017).

15. Humphrey, W., Dalke, A. & Schulten, K. Vmd—visual molecular dynamics. J.
Mol. Graph. 14, 33–38 (1996).

16. McGibbon, R. T. et al. Mdtraj: a modern open library for the analysis of
molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

17. Noé, F. & Nüske, F. A variational approach to modeling slow processes in
stochastic dynamical systems. Multiscale Model. Simul. 11, 635–655 (2013).

18. Nüske, F., Keller, B. G., Pérez-Hernández, G., Mey, A. S. J. S. & Noé, F.
Variational approach to molecular kinetics. J. Chem. Theory Comput. 10,
1739–1752 (2014).

19. Perez-Hernandez, G., Paul, F., Giorgino, T., D Fabritiis, G. & Noé, F.
Identification of slow molecular order parameters for Markov model
construction. J. Chem. Phys. 139, 015102 (2013).

20. Schwantes, C. R. & Pande, V. S. Improvements in Markov state model
construction reveal many non-native interactions in the folding of ntl9. J.
Chem. Theory Comput. 9, 2000–2009 (2013).

21. Molgedey, L. & Schuster, H. G. Separation of a mixture of independent signals
using time delayed correlations. Phys. Rev. Lett. 72, 3634–3637 (1994).

22. Ziehe, A. & Müller, K.-R. in ICANN Vol. 98, 675–680 TDSEP—an efficient
algorithm for blind separation using time structure (Springer, London, 1998).

23. Harmeling, S., Ziehe, A., Kawanabe, M. & Müller, K.-R. Kernel-based nonlinear
blind source separation. Neural Comput. 15, 1089–1124 (2003).

24. Mezić, I. Spectral properties of dynamical systems, model reduction and
decompositions. Nonlinear Dynam. 41, 309–325 (2005).

25. Schmid, P. J. & Sesterhenn, J. Dynamic mode decomposition of numerical and
experimental data. In 61st Annual Meeting of the APS Division of Fluid
Dynamics (American Physical Society, 2008).

26. Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. & Kutz, J. N. On
dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1,
391–421 (2014).

27. Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. A data-driven
approximation of the koopman operator: extending dynamic mode
decomposition. J. Nonlinear Sci. 25, 1307–1346 (2015).

28. Wu, H. et al. Variational koopman models: slow collective variables and molecular
kinetics from short off-equilibrium simulations. J. Chem. Phys. 146, 154104 (2017).

29. Noé, F. & Clementi, C. Collective variables for the study of long-time kinetics
from molecular trajectories: theory and methods. Curr. Opin. Struc. Biol. 43,
141–147 (2017).

30. Klus, S. et al. Data-driven model reduction and transfer operator
approximation. Preprint at http://arXiv:1703.10112 (2017).

31. Noé, F. & Clementi, C. Kinetic distance and kinetic maps from molecular
dynamics simulation. J. Chem. Theory Comput. 11, 5002–5011 (2015).

32. Noé, F., Banisch, R. & Clementi, C. Commute maps: separating slowly-mixing
molecular configurations for kinetic modeling. J. Chem. Theory Comput. 12,
5620–5630 (2016).

33. Bowman, G. R., Pande, V. S. & Noé, F. in Advances in Experimental Medicine
and Biology Vol. 797 An introduction to Markov state models and their
application to long timescale molecular simulation (Springer, Heidelberg,
2014).

34. Husic, B. E. & Pande, V. S. Ward clustering improves cross-validated Markov
state models of protein folding. J. Chem. Theory Comput. 13, 963–967 (2017).

35. Sheong, F. K., Silva, D.-A., Meng, L., Zhao, Y. & Huang, X. Automatic state
partitioning for multibody systems (APM): an efficient algorithm for
constructing Markov state models to elucidate conformational dynamics of
multibody systems. J. Chem. Theory Comput. 11, 17–27 (2015).

36. Wu, H. & Noé, F. Gaussian Markov transition models of molecular kinetics. J.
Chem. Phys. 142, 084104 (2015).

37 Weber, M., Fackeldey, K. & Schütte, C. Set-free Markov state model building. J.
Chem. Phys. 146, 124133 (2017).

38 Bowman, G. R., Beauchamp, K. A., Boxer, G. & Pande, V. S. Progress and
challenges in the automated construction of Markov state models for full
protein systems. J. Chem. Phys. 131, 124101 (2009).

39 Trendelkamp-Schroer, B., Wu, H., Paul, F. & Noé, F. Estimation and
uncertainty of reversible Markov models. J. Chem. Phys. 143, 174101 (2015).

40 Kube, S. & Weber, M. A coarse graining method for the identification of
transition rates between molecular conformations. J. Chem. Phys. 126, 024103
(2007).

41 Yao, Y. et al. Hierarchical nyström methods for constructing Markov state
models for conformational dynamics. J. Chem. Phys. 138, 174106 (2013).

42 Fackeldey, K. & Weber, M. Genpcca—Markov state models for non-equilibrium
steady states. WIAS Rep. 29, 70–80 (2017).

43 Gerber, S. & Horenko, I. Toward a direct and scalable identification of reduced
models for categorical processes. Proc. Natl Acad. Sci. USA 114, 4863–4868
(2017).

44 Hummer, G. & Szabo, A. Optimal dimensionality reduction of multistate kinetic
and Markov-state models. J. Phys. Chem. B 119, 9029–9037 (2015).

45 Orioli, S. & Faccioli, P. Dimensional reduction of Markov state models from
renormalization group theory. J. Chem. Phys. 145, 124120 (2016).

46 Noé, F., Wu, H., Prinz, J.-H. & Plattner, N. Projected and hidden Markov
models for calculating kinetics and metastable states of complex molecules. J.
Chem. Phys. 139, 184114 (2013).

47 Wu, H. & Noé, F. Variational approach for learning Markov processes from
time series data. Preprint at http://arXiv:1707.04659 (2017).

48 McGibbon, R. T. & Pande, V. S. Variational cross-validation of slow dynamical
modes in molecular kinetics. J. Chem. Phys. 142, 124105 (2015).

49 LeCun, Y., Bengio, Y. & Hinton, G. E. Deep learning. Nature 521, 436–444
(2015).

50 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In NIPS'12 Proceedings of the 25th International
Conference on Neural Information Processing Systems Vol. 1, 1097–1105
(Curran Associates, Inc., 2012).

51 Mnih, V. et al. Human-level control through deep reinforcement learning.
Nature 518, 529–533 (2015).

52 Perez-Hernandez, G. & Noé, F. Hierarchical time-lagged independent
component analysis: computing slow modes and reaction coordinates for large
molecular systems. J. Chem. Theory Comput. 12, 6118–6129 (2016).

53 Nüske, F., Schneider, R., Vitalini, F. & Noé, F. Variational tensor approach for
approximating the rare-event kinetics of macromolecular systems. J. Chem.
Phys. 144, 054105 (2016).

54 Koopman, B. Hamiltonian systems and transformations in hilbert space. Proc.
Natl Acad. Sci. USA 17, 315–318 (1931).

55 Knoch, F. & Speck, T. Cycle representatives for the coarse-graining of systems
driven into a non-equilibrium steady state. New J. Phys. 17, 115004 (2015).

56 Wang, H. & Schütte, C. Building Markov state models for periodically driven
non-equilibrium systems. J. Chem. Theory Comput. 11, 1819–1831 (2015).

57 Horenko, I., Hartmann, C., Schütte, C., Noé, F. Data-based parameter
estimation of generalized multidimensional Langevin processes. Phys. Rev. E 76,
016706 (2007).

58 Cybenko, G. Approximation by superpositions of a sigmoidal function. Math.
Control Signals 2, 303–314 (1989).

59 Eigen, D., Rolfe, J., Fergus, R. & LeCun, Y. Understanding deep architectures
using a recursive convolutional network. Preprint at http://arXiv:1312.1847
(2014).

60 Ranzato, M., Poultney, C., Chopra, S. & LeCun, Y. in Advances in Neural
Information Processing Systems 18 (ed Platt, J. et al.) Efficient learning of sparse
representations with an energy-based model (MIT Press, 2006).

61 Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. in Advances in Neural
Information Processing Systems 19, Vol. 19, 153 Greedy layer-wise training of
deep networks (MIT Press, 2007).

62 Galen, A., Arora, R., Bilmes, J. & Livescu, K. Deep canonical correlation analysis.
In ICML'13 Proceedings of the 30th International Conference on International
Conference on Machine Learning Vol. 28, III-1247–III-1255 (2013).

63 Röblitz, S. & Weber, M. Fuzzy spectral clustering by PCCA+: application to
Markov state models and data classification. Adv. Data Anal. Classif. 7, 147–179
(2013).

64 Sarich, M., Noé, F. & Schütte, C. On the approximation quality of Markov state
models. Multiscale Model. Simul. 8, 1154–1177 (2010).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1

10 NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

65 Noé, F., Schütte, C., Vanden-Eijnden, E., Reich, L. & Weikl, T. R. Constructing
the full ensemble of folding pathways from short off-equilibrium simulations.
Proc. Natl Acad. Sci. USA 106, 19011–19016 (2009).

66 Hahnloser, R. L. T. On the piecewise analysis of networks of linear threshold
neurons. Neural Netw. 11, 691–697 (1998).

67 Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10) Vol. 27, 807–814 (ACM, New York, 2010).

68 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at
http://arXiv.org:1412.6980 (2014).

69 Nüske, F., Wu, H., Wehmeyer, C., Clementi, C. & Noé, F. Markov state models
from short non-equilibrium simulations—analysis and correction of estimation
bias. Preprint at http://arXiv:1701.01665 (2017).

70 Wu, H., Paul, F., Wehmeyer, C. & Noé, F. Multiensemble Markov models of
molecular thermodynamics and kinetics. Proc. Natl Acad. Sci. USA 113,
E3221–E3230 (2016).

71 Wu, H., Mey, A. S. J. S., Rosta, E. & Noé, F. Statistically optimal analysis of state-
discretized trajectory data from multiple thermodynamic states. J. Chem. Phys.
141, 214106 (2014).

72 Chodera, J. D., Swope, W. C., Noé, F., Prinz, J.-H. & Pande, V. S. Dynamical
reweighting: improved estimates of dynamical properties from simulations at
multiple temperatures. J. Phys. Chem. 134, 244107 (2011).

73 Prinz, J.-H. et al. Optimal use of data in parallel tempering simulations for the
construction of discrete-state Markov models of biomolecular dynamics. J.
Chem. Phys. 134, 244108 (2011).

74 Rosta, E. & Hummer, G. Free energies from dynamic weighted histogram
analysis using unbiased Markov state model. J. Chem. Theory Comput. 11,
276–285 (2015).

75 Mey, A. S. J. S., Wu, H. & Noé, F. xTRAM: estimating equilibrium expectations
from time-correlated simulation data at multiple thermodynamic states. Phys.
Rev. X 4, 041018 (2014).

76 Olsson, S., Wu, H., Paul, F., Clementi, C. & Noé, F. Combining experimental
and simulation data of molecular processes via augmented Markov models.
Proc. Natl Acad. Sci. USA 114, 8265–8270 (2017).

77 Hinrichs, N. S. & Pande, V. S. Calculation of the distribution of eigenvalues and
eigenvectors in Markovian state models for molecular dynamics. J. Chem. Phys.
126, 244101 (2007).

78 Noé, F. Probability distributions of molecular observables computed from
Markov models. J. Chem. Phys. 128, 244103 (2008).

79 Chodera, J. D. & Noé, F. Probability distributions of molecular observables
computed from Markov models. ii: Uncertainties in observables and their time-
evolution. J. Chem. Phys. 133, 105102 (2010).

80 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied
to document recognition. Proc. IEEE 86, 2278–2324 (1998).

81 Schütt, K. T. et al. Moleculenet: a continuous-filter convolutional neural
network for modeling quantum interactions. Preprint at http://arXiv:1706.08566
(2017).

82 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn Res. 15, 1929–1958 (2014).

83 Chollet, F. et al. Keras. https://github.com/fchollet/keras (2015).
84 Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous

systems. Preprint at http://arXiv.org:1603.04467 (2015).

Acknowledgements
We are grateful to Cecilia Clementi, Robert T. McGibbon, and Max Welling for valuable

discussions. This work was funded by Deutsche Forschungsgemeinschaft (SFB958/A04,

Transregio 186/A12, SFB 1114/A4, NO 825/4–1 as part of research group 2518) and

European Research Commission (ERC StG 307494 “pcCell”).

Author contributions
A.M. and L.P. conducted research and developed software. H.W. and F.N. designed

research and developed theory. All authors wrote the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

017-02388-1.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02388-1 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:5 |DOI: 10.1038/s41467-017-02388-1 |www.nature.com/naturecommunications 11

https://github.com/fchollet/keras
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1038/s41467-017-02388-1
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	VAMPnets for deep learning of molecular kinetics
	Results
	Variational principle for Markov processes
	VAMP variational principle
	Learning the feature transformation using VAMPnets
	Dynamical model and validation
	Network architecture and training
	Asymmetric double-well potential
	Protein-folding model
	Alanine dipeptide
	Choice of lag time, network depth, and number of output states
	VAMPnets learn to transform Cartesian to torsion coordinates
	NTL9 protein-folding dynamics

	Discussion
	Methods
	Neural network structure
	Neural network hyper-parameters
	VAMPnet training and validation
	Brownian dynamics simulations
	Hardware used and training times
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS

