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Abstract: Two-dimensional (2D) semiconductors provide a unique opportunity for 

optoelectronics due to their layered atomic structure, electronic and optical properties. To 

date, a majority of the application-oriented research in this field has been focused on field-

effect electronics as well as photodetectors and light emitting diodes. Here we present a 

perspective on the use of 2D semiconductors for photovoltaic applications. We discuss 

photonic device designs that enable light trapping in nanometer-thickness absorber layers, 

and we also outline schemes for efficient carrier transport and collection. We further provide 

theoretical estimates of efficiency indicating that 2D semiconductors can indeed be 

competitive with and complementary to conventional photovoltaics, based on favorable 

energy bandgap, absorption, external radiative efficiency, along with recent experimental 

demonstrations. Photonic and electronic design of 2D semiconductor photovoltaics 

represents a new direction for realizing ultrathin, efficient solar cells with applications 

ranging from conventional power generation to portable and ultralight solar power.     

*Corresponding author: haa@caltech.edu 

Keywords: Transition metal dichalcogenides, heterostructures, light-trapping, Shockley-

Quessier, nanophotonics, 2D materials 

        Since the isolation of graphene as the first free-standing two-dimensional (2D) material 

(from graphite), the class of layered 2D materials with weak van der Waals inter-planar bonding 

has expanded significantly. Two-dimensional materials now span a great diversity of atomic 

structure and physical properties. Prominent among these are the semiconductor 

chalcogenides of transition and basic metals (Mo, W, Ga, In, Sn, Re etc.)1-3, as well as layered 

allotropes of other p-block elements of the periodic table such as P, As, Te etc.4 The availability 

of atomic layer thickness samples of stable, passivated, and dangling bond free semiconductor 

materials ushers in a new phase in solid state device design and optoelectronics.1, 5-8 A notable 

feature of the metal chalcogenide 2D semiconductors is the transition from an indirect bandgap 

in bulk to direct bandgap (Eg) in monolayer form, resulting in a high photoluminescence 

quantum yield (PL QY)9-10 in turn corresponding to high radiative efficiency. This combined with 

the bandgap ranging from visible to near infrared part of the spectrum (1.1 to 2.0 eV)1 makes 
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 2

the chalcogenides attractive as candidates for photovoltaic applications. Likewise, small 

bandgap elemental 2D semiconductors such as black phosphorus and alloys of arsenic and 

phosphorus are attractive candidates for thermo-photovoltaic applications in their few layer to 

bulk form (Eg  ≤ 0.6 eV). In the ultrathin limit (<5 layers) the increase in bandgap to > 1 eV due to 

quantum confinement makes them attractive for conventional photovoltaic applications as 

well.11-13 However, the current inability to synthesize these materials in a scalable manner with 

precise control over thickness combined with their lack of air stability has restricted their 

investigation to preliminary photocurrent generating devices from mechanically exfoliated 

samples.   

        Owing to the above-mentioned attributes, 2D semiconductors have been used to 

demonstrate devices with photovoltaic effects.14-16 In most cases these have been proof-of-

concept devices reporting the basic feasibility of photovoltage generation in such material 

systems. At the same time, the field of photovoltaics is at an advanced stage, with GW-scale 

commercial production for silicon-based photovoltaics now a reality and cost of solar power 

expected to achieve parity with fossil fuel based power plants by 2020. Therefore, simply the 

demonstration of a photovoltaic effect in novel and emerging semiconductors is no longer by 

itself a requisite for sustained interest from the perspective of photovoltaics application. In this 

perspective, we argue that 2D semiconductors are indeed promising for photovoltaic 

applications and have the potential to not only match but also surpass the performance and 

complement the conventional photovoltaic technologies based on Si and GaAs. We present a 

detailed and comparative analysis based on optical and electronic properties of 2D 

semiconductors and conclude that it is feasible in principle to design photovoltaic devices with 

power conversion efficiencies exceeding 25%. We further present strategies for photonic and 

electronic device design to maximize light trapping/useful absorption and efficient extraction of 

photo-excited carriers, respectively. We also give a brief outlook for the prospects for tandem 

integration to enable a ‘2D-on-silicon’ dual junction tandem solar cell. Finally, we provide a 

roadmap for the advances needed to achieve high-performance photovoltaic devices with 

nanometer thick absorbers and provide a critical assessment for future research developments 

in this area.  

Absorption and Photonic Design: 

        Light absorption in the active layers of a photovoltaic cell is one of the key performance 

metrics that dictates device efficiency. For semiconductors, including 2D materials, the 

absorption is governed by the electronic band structure and energy bandgap. There is an 

inherent trade-off between bandgap (and voltage) with absorption (and photocurrent). In Fig. 

1a, we summarize the bandgap energies and absorption coefficients for all major photovoltaic 

materials investigated to date at the commercial and research scales. As is evident from Fig. 1a 

and the discussion above, most materials considered for photovoltaic applications have energy 

bandgaps close to the optimum value of 1.34 eV. 
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 3

       In modern photovoltaic devices, light trapping techniques are often employed to 

maximize incident light absorption and photocurrent generation in the active layer to increase 

the cell efficiency, which also has the benefit of reducing thickness and thus material use and 

device weight.17-19 The extent of light trapping in a medium in both the ray optic (bulk)20 and 

nanophotonic (sub-wavelength) regimes21 may be quantified by the ratio of imaginary and real 

parts of dielectric function, i.e., loss tangent. Figures 1b and 1c show spectral dependence of 

absorption coefficients and loss tangents in the sulfides and selenides of Mo and W compared 

with Si, GaAs, and the recently emerging hybrid organic-inorganic perovskites22-23. Owing to the 

high refractive indices of the transition metal dichalcogenides (TMDCs), they exhibit 

significantly higher absorption per unit thickness as compared to Si, GaAs, and even the 

perovskites. Thus, TMDCs are ideally suited for highly absorbing ultrathin photovoltaic devices.  

        Despite the large absorption coefficient values for TMDCs, a free-standing monolayer 

only absorbs ~10 % of the above bandgap, normally incident photons9, 24-25 (Figure 2a). In 

multilayers with bulk-like electronic structure up to ~25 nm thick, the absorption is less than 

40% ,26 and high surface reflectivity limits absorption. Therefore, light trapping designs and 

device architectures will play a critical role in enabling efficient 2D semiconductor photovoltaics 

in the ultrathin limit. Several strategies have been proposed and preliminary demonstrations 

have been reported including use of plasmonic metal particles, shells or resonators to enhance 

photocurrent and photoluminescence.27-37 More sophisticated and lossless dielectric optical 

cavities such as photonic crystals and ring resonators have also been used to enhance 

absorption, mainly aimed at emission applications in monolayer samples.38-41  

For large area photovoltaic applications, light trapping strategies that involve little or no 

micro- or nanofabrication and patterning are desirable to improve performance while 

minimizing cost.42-43 An interesting strategy towards this end is the use of thin film interference. 

Figures 2b and 2d show two common strategies for lithography-free absorption enhancement 

in ultrathin semiconductor films. In both of these designs, a highly reflective metal (e.g., Au or 

Ag) is used as a part of an “open cavity”, such that resonant light trapping conditions are met. 

Hence, even an atomically thin absorber spaced λ/4 away from a reflector (Figure 2b) enables 

destructive interference at the interface, resulting in significant absorption enhancement.44-45 

Another approach is to place an ultrathin absorbing layer in a direct contact with the back 

reflector46-47.  This strategy has worked well for TMDC devices with Au and Ag back reflectors, 

resulting in record broadband absorption (> 90%)26 and quantum efficiency (>70%) values48 in < 

15 nm thick active layer devices. Note that back reflectors are widely employed in conventional 

thin-film photovoltaic devices, where absorption enhancement is due to multi-pass light 

interactions within the semiconductor.   We also note that the light trapping may be further 

enhanced by the use of nanostructured resonators coupled to thin film absorbers,49-50 as is 

shown schematically in Figures 2c and 2e.  

        Overall, due to the large values n and α for TMDCs, trapping nearly 100% of the incident 

light may be achieved for few-nm thick active layers.  However, enabling broadband, nearly 
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perfect absorption in sub-nm thick monolayers is more challenging and less scalable, as 

currently-identified light trapping approaches are likely require fabrication of nanoscopic 

resonators or antennas on top of or etched into the monolayer.51-53  Thus an open challenge at 

present for atomically thin photovoltaics is the photonic design of  nanostructures that retain 

the electronic structure and photonic properties of monolayer 2D materials, while also 

exhibiting optical cross sections equivalent to multilayer/bulk samples.   

Carrier Collection and Electronic design: 

        While photon absorption represents one limit to photovoltaic efficiency, the collection 

of photo-excited charge carriers dictates the practical limitations on the maximum attainable 

current. Carrier collection is often quantified in terms of the probability of carrier collection per 

absorbed photon, often termed the internal photocarrier collection efficiency (IPCE) or internal 

quantum efficiency (IQE), and is sensitive to several factors, including device dimension and 

design, contacts and material quality. Frequently also reported is the external quantum 

efficiency (EQE) or probability of carrier collection per incident photon, which can 

asymptotically approach the IQE for perfect absorption. In reality, the device design and 

material quality plays a key role in determining the IQE, whereas EQE depends on these factors 

as well as photonic design.  

A 2D semiconductor absorber can be integrated into a photovoltaic device in several 

possible ways. Figure 3 details the schematic designs of some possible approaches. To separate 

the photo-excited carriers, one either requires a built-in potential within the absorber layer, 

often provided by a pn junction, or alternatively a uniformly doped absorber layer cladded by 

carrier selective contacts.54 This pn junction can either have an in-plane configuration spanning 

adjacent regions of different composition or doping in the covalently bonded 2D plane, or an 

out-of-plane configuration featuring vertically stacked van der Waals-bonded layers 

perpendicular to the 2D plane. In each case, the device structure can consist of a 

homojunction55-57 or a heterojunction58-61 design. Each of these concepts has advantages and 

limitations. As an example, for vertically stacked pn junctions, 2D semiconductors are uniquely 

positioned to achieve high QE37, 48, 62 owing to their atomic-scale thicknesses, ensuring < 10 nm 

excited carrier transit distances (Figure 3 b). Similarly, in-plane collection devices are well suited 

for forming junctions via substitutional,58-59 chemical,55 thickness variation63-65 or electrostatic 

doping66-69 , as in Figure 3 a, that can enable large open circuit voltages. Vertically-stacked 

junctions may also be more suitable for multilayer thick absorbers while lateral junctions may 

be more suitable for monolayer absorbers to maximize shunt resistance and avoid electrical 

shorts in the device. Likewise, it is also likely to be easier to integrate 2D semiconductor 

photovoltaics as the component sub-cells of a tandem photovoltaic structure integrated with or 

on conventional Si70-71, thin film CIGS, CdTe, or GaAs72 photovoltaics, or even organic 

semiconductors5, 73-74 , where the 2D semiconductor forms a van der Waals vertically stacked 

device. By contrast, a lateral junction would require in-plane integration of dissimilar materials. 
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 5

For lateral junctions, the absorber layer crystalline quality and minority diffusion length are 

critical, since carriers must be transported in-plane before reaching the contacts.  

        The junction design and junction type also dictates the configuration of contacts 

required for carrier collection. For vertically stacked junctions, one transparent, low-absorptive 

loss contact is essential for efficient optical absorption. Graphene has emerged as one 

alternative75-76; however, the sheet resistance of graphene still remains comparatively higher 

than for transparent conductive oxides. Metal contacts are attractive alternatives, particularly 

for lateral junction devices but metals typically result in loss of active area due to shadowing 

effects. Nonetheless, with appropriate photonic design one can achieve effectively transparent 

contacts composed of metallic structures.77 Carrier selective contacts are also highly desirable 

for ultrathin 2D absorber layers, where the excited-carrier transit distances are much less than 

the characteristic carrier diffusion lengths, enabling device design without a built-in potential or 

electric field to separate carriers within a nearly intrinsic absorber layer. To date, little 

knowledge or effort has been devoted to the design, optimization or demonstration of carrier 

selective contacts for 2D TMDC based photovoltaics, and this is an opportunity for further 

research.   

Progress, Challenges, and Outlook: 

        While stable semiconducting TMDCs have only been isolated and studied since 2011, 

scientific progress has been rapid and extensive. However, a majority of the scientific progress 

has been achieved using mechanically exfoliated 2D semiconductor layers which have allowed 

small prototype devices to be realized, but this synthesis method is not scalable to areas of 

relevance for large scale photovoltaics. Significant effort has also been devoted to large area 

synthesis of 2D semiconductors via chemical vapor deposition (CVD).78-79 However, it is only 

recently that the community has begun to develop an understanding of the issues pertaining 

growth, defects, and material quality using this method.80-81 Therefore, even though numerous 

results have been published demonstrating proof of concept photovoltaic devices, no 

systematic attempts have been made to address the fundamental issues that underlie 

development of efficient photovoltaics, i.e. optical absorption, carrier collection, and open-

circuit voltage. While several initial concepts for light management have been proposed for 

atomically thin semiconductors, including the concepts noted above, few approaches have 

immediate promise for integration into functional devices, and even fewer have the potential 

cost-effectiveness and scalability. One promising approach is the use of few-layer thickness 

TMDCs directly placed on reflective metal substrates as highlighted in Figure 2d above. This 

approach avoids any micro/nanofabrication requirements for enhancing absorption. Further, 

the 2D TMDC absorber can be directly grown on the metallic substrates over large areas, 

suggesting a potentially scalable fabrication approach.  

        To further assess the viability of 2D semiconductor photovoltaics, it is worth evaluating 

them i) in the context of commercial, mass-produced single junction photovoltaic technologies 

and  ii) to consider 2D semiconductor photovoltaics relative to detailed balance efficiency 
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limits.82 Figure 4a is a modified detailed balance model comparison of the maximum efficiency 

for a single junction photovoltaic cells as a function of the absorber layer bandgap, for different 

values of external radiative efficiency (ERE). In modified detailed balance models, ERE describes 

the fraction of total recombination current that results in radiative emission that ultimately 

escapes from a photovoltaic cell, and is assumed to have values ranging from much less than 

unity up to unity. External radiative efficiency is a function of several parameters, including 

intrinsic parameters such as material quality and electronic band structure, as well as extrinsic 

factors such as electronic and photonic design. Similarly, internal radiative efficiency (IRE) 

represents intrinsic material parameters and describes the fraction of recombination that is 

radiative internally within a photovoltaic device – a closely related concept to the figure-of-

merit known as photoluminescence quantum yield used for light emitters. In the asymptotic 

limit of perfect device design, the maximum ERE achievable is bounded by the IRE. Photovoltaic 

cells that reach the thermodynamic detailed balance efficiency limit for their bandgaps must 

have EREs approaching unity, but this is difficult to achieve in practice.83 Direct bandgap 

materials such as GaAs can exhibit EREs in the range of 1% < ERE < 20%, as compared to the 

typically <1% ERE achievable in an indirect bandgap material such as Si. Notably, organic–

inorganic hybrid perovskites are direct bandgap materials that have the potential for external 

radiative efficiencies comparable to those for the highest-quality direct bandgap 

semiconductors. In the 2D materials literature, ERE is not a commonly reported parameter and 

instead PLQY is generally reported. By assuming the PLQY to be approximately equal to the IRE, 

and therefore the maximum achievable ERE as the PLQY, we estimate the efficiency limits of 

TMDC-based photovoltaic devices as shown in Figure 4a.  Monolayer materials with direct 

bandgaps have recently been shown to exhibit much higher PLQY ( ~ 95% experimentally 

achieved)10 and thus also consequently ERE, compared to their indirect bandgap multilayer 

counterparts. Monolayer 2D semiconductors have relatively larger bandgap values (1.6-2.1 eV) 

and large exciton binding energies (0.6-0.9 eV)84-86 due quantum carrier confinement.  Large 

exciton binding energies are a priori a disadvantage for high photovoltaic efficiency, and thus 

‘exciton management’ is likely to be an important aspect for 2D semiconductor photovoltaics. 

For single-absorber devices, maximum attainable power conversion efficiencies in monolayer 

absorber devices are comparable to those for devices with multilayer absorber layers, which 

have more optimal bandgap values (1.1-1.3 eV) albeit with low PLQYs(~10-4–10-2) and therefore 

low ERE due to their indirect bandgap nature. This suggests that although monolayer TMDCs 

are exciting for photovoltaic power due to their direct bandgaps, even the highest quality 

monolayer materials with PLQY ~ 1 would only result in an overall detailed balance power 

conversion efficiency between 26-27% in single-junction devices, which can also be achieved 

with multilayer TMDCs which have PLQYs values that are 2-3 orders of magnitude lower. The 

above point is especially relevant, since for multilayer (10-15 nm) TMDCs broadband, angle 

insensitive light-trapping, efficient carrier collection and device fabrication are relatively 

straightforward and have been experimentally achieved to a large extent, in contrast to the 

situation for monolayer absorber layers. However, the bandgaps of monolayer TMDCs are in 

the range that would be nearly ideal for top cell structures in a two-junction tandem device 
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together with e.g., a Si bottom cell device (Figure 4b).  Monolayer photovoltaics might also be 

interesting for narrow-band light harvesting for colored and semi-transparent photovoltaics in 

architectural and indoor applications87 , and also applications where light weight or portability 

is highly desirable.  

        To date, power conversion efficiencies in ultrathin 2D semiconductor photovoltaic 

devices have remained below 5 %, as shown in Figure 4 c. The vast majority of reports of 2D 

semiconductor photovoltaic device demonstrations have used monolayer absorber layers. 

However, there are very few quantitative reports of power conversion efficiency under 1 sun 

AM1.5 or monochromatic illumination, spectral dependence of EQE and absorption in the 

active layers of the device. This lack of information makes it very challenging to compare 

literature reports and complicates the assessment of quantitative performance estimates for a 

reported photovoltaic device. The plots in Figure 4 c show a nearly linear dependence of power 

conversion efficiency on the external quantum efficiency for bandgap values ranging from 1.1-2 

eV and ERE values ranging from 1 to 10-4.  A key observation from this plot is that one can attain 

greater than 20% power conversion efficiencies, even with bulk-like TMDC absorber layers, 

provided that the absorption and EQE are nearly perfect, enabled by appropriate photonic and 

electronic design.  

Literature values for high EQE devices nonetheless still show less than 5% power 

conversion efficiencies. The quantity limiting further efficiency improvement is the open circuit 

voltage (VOC), whose importance as a key parameter has been largely overlooked, and thus 

paths to voltage improvement remain largely uninvestigated. Despite recent reports of high 

absorber material radiative efficiencies, an overwhelming majority of the reported VOC values 

for TMDC and other 2D semiconductors based photovoltaic devices are < 0.5 V1, 5, 14-15 with 

record values of only ~0.8-0.9 V in split gated, in-plane homojunction devices66, 68. This implies a 

bandgap-Voc offset (Woc = Eg – Voc) > 0.8 V for most 2D semiconductor photovoltaic structures 

reported to date. A number of these reports have been for devices exhibiting a photovoltaic 

effect dominated by the Schottky barrier between the semiconductor and a metal or graphene 

contact.37, 62, 88 Given that monolayer TMDC bandgaps lie generally in the range of 1.6-2.1 eV, 

whereas multilayer bandgaps range from 1.1-1.3 eV, there is still significant room to improve 

VOC. For the case of monolayer absorbers, the large exciton binding energy due to the extreme 

2D nature of carrier confinement, poses a challenge for the charge separation from bound 

excitons after absorption. To address the issue of charge separation and transport, it is useful to 

draw insights from concepts found in the literature for other excitonic devices, such as organic 

and dye sensitized solar cells.89-93 To separate bound excitons, one either needs a junction in 

the active layer or carrier-selective contacts with built-in potential that exceeds the exciton 

binding energy. The large binding energy will nonetheless result in a voltage penalty.94-95 

Strategies that may enable the voltage penalty and exciton binding energy to be reduced 

include increasing the carrier concentration96 or adding cladding layers with high static 

dielectric constants.86, 97 Achieving high VOC therefore remains a critical hurdle towards 

achieving high efficiency photovoltaic devices from atomically thin semiconductor absorber 
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 8

layers. Key strategies to address the low VOC include achieving control over doping and band 

alignment for pn homojunctions and heterojunctions, in addition to optimizing the band 

alignments, bandgaps and conductivity of materials and interfaces used to form carrier 

selective contacts. Progress will likely require a systematic interdisciplinary effort combining 

concepts from chemistry, physics, and materials science to achieve this goal. 

       In the future, atomically thin materials will continue to garner attention for ultrathin 

and ultralight weight photovoltaics. However, no new photovoltaic technology likely to have a 

large impact unless it offers attributes than are either superior to those for existing Si 

photovoltaics or which can be usefully combined with Si photovoltaics, in order to widen the 

adoption of photovoltaics by improving efficiency and lowering cost. Therefore, achieving high 

power conversion efficiencies should remain a prime objective for atomically thin photovoltaics 

in 2D materials. Notable however, is that the bandgaps for monolayer TMDCs are almost ideally 

suited for high-efficiency photovoltaics in a two-junction tandem photovoltaic design featuring 

a Si bottom cell as seen in Figure 4 b, especially considering the near-unity PLQY values recently 

observed. In addition to tandem designs combining 2D semiconductors with Si photovoltaics, 

the inherently lightweight and flexible nature of atomically thin absorbers may enable use of 

these materials in mobile and portable power applications as well as building integrated 

photovoltaic applications where design of semitransparent photovoltaics is desirable.  Also of 

interest are applications requiring high radiation hardness, such as space-based photovoltaics. 

The van der Waals bonded layered structure of TMDCs and 2D materials may facilitate easier 

integration with other substrates and active layers.  

Aside from practical, high-efficiency photovoltaic applications, TMDCs and other 2D 

semiconductors such as layered hybrid organic-inorganic perovskites98-99 are also of 

considerable fundamental scientific interest in light-matter interactions and energy conversion.  

The ability to create photovoltaic devices where photo-excited carrier transit distances are 

comparable to tunneling and hot carrier diffusion lengths presents opportunities to investigate 

and develop fundamentally novel mechanisms for energy conversion involving electromagnetic 

radiation.  In particular, the presence of highly stable excitons at room temperature in free 

standing, oxide free, van der Waals layers represents a distinctive class of materials that 

possesses the radiative efficiency attributes of both direct gap inorganic semiconductors 

(GaAs/AlGaAs, GaN/InGaN quantum wells) and organic quantum confined semiconductors 

(small aromatic molecules, semiconducting polymers and carbon nanotubes). Further, the 

ability to electrostatically and dynamically tune the environment around these quantum-

confined semiconductors, in order to influence their optical properties, presents new avenues 

for photonics and optoelectronics.  
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Figure 1: Semiconductor absorption figures of merit for photovoltaic applications: a. Comparison of 

energy bandgaps (eV) and absorption coefficients (cm-1) for a variety of semiconductor materials used 

for commercial as well as research-scale photovoltaics. The TMDCs (both bulk and monolayers) of Mo 

and W have some of the highest absorption coefficients among known materials. b. Spectral absorption 

coefficient for selected photovoltaic materials, including Si and GaAs, as well the newly emerging methyl 

ammonium lead iodide perovskites (MAPbI3) alongside the TMDCs. c. Loss tangent for the same 

materials in (b).  

 

 

Figure 2: Possible light trapping configurations for enhancing sunlight absorption: a. A freestanding 

TMDC monolayer absorbs only a fraction of the incident sunlight (~10%), necessitating the use of light 

trapping techniques to increase the absorption. b. Monolayer absorber in a Salisbury screen-like 

configuration where the spacer thickness is ~λ/4 and the reflector is a low loss metal such as Ag, Au, or 

Al. c. Schematic of a TMDC monolayer coupled with resonators/antennas to enhance light absorption. d. 

Schematic of ultrathin, multilayer van der Waals absorber directly placed on a smooth reflective metal, 

where absorption is due to thin film interference. e. Resonantly absorbing nanometer scale 

antennas/resonators etched into a multilayer van der Waals material.  
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Figure 3. Carrier collection schemes for Van der Waals materials and structures: a. Schematic in-plane 

junction concepts for photovoltaic devices. Heterojunctions can be formed between two TMDC layers, 

as well as within the same TMDC material in which the thickness varies, since the bandgap is a thickness-

dependent parameter in the ultrathin limit. Homojunctions can be created by electrostatic or 

modulation doping as well as substitutional doping. b. Schematic diagrams for out-of-plane junction 

concepts. The contacts between active layers are primarily van der Waals in nature. Heterojunctions can 

be formed by integrating two or more disparate TMDCs with different doping types and concentration. 

Van der Waals material heterostructures can also be integrated with conventional photovoltaic 

materials such as Si or III-V materials to make tandem cells. Graphene can effectively serve as 

transparent top contact material. Out-of-plane homojunctions can only be formed with substitutionally-

doped layers stacked on top of one another.  
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Figure 4. Photovoltaic efficiency analysis: comparing TMDCs with established photovoltaic 

technologies a. photovoltaic efficiency of a single junction cell using a modified Shockley-Queisser 

detailed balance model that assumes a non-unity external radiative efficiency (ERE) of the 

semiconductor absorber layer. Some of the 2D material absorbers have been included, based on known 

or estimated values of ERE from PLQY reported or achieved in literature. b. Detailed balance power 

conversion efficiency estimates for a tandem cell structure with monocrystalline Si as the bottom cell. 

The plot colors correspond to varying ERE values, as depicted in a. The materials parameters are based 

on known ERE values100 or record device performance.101-103  c. Plot of efficiency as a function of external 

quantum efficiency (EQE) for two different values of ERE (1 and 10-4) for materials with bandgaps ~1.1 

eV and 2 eV corresponding to upper and lower bounds in available TMDC bandgaps. The relevant 2D 

materials based devices have been appropriately mapped onto the plot based on literature reports.48, 59, 

61, 64, 66, 69   
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