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Abstract

Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues,
including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into
disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In
this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the phys-
iological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and
transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological
aspects in animalmodels and humans are not understood completely, and thus, we introduced them in a physiological environment and
dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an
overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are
considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that
are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as
a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment
of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the
prevailing gaps between primary scientific data and information from animal models and human studies.

Keywords Vanadium . Biological action . Metabolic aspects . Metabolic implications . Metallopharmaceuticals . Diabetes
mellitus

Introduction and Background

The element vanadium is considered the twice discovered
element due to the circumstances by which Andrés Manuel
Del Río, a Spanish-Mexican mineralogist, first reported it in
1801 [1]. Renowned personalities such as Lavoisier,
Delhuyar, Von Humboldt, Berzelius, and Whöler were in-
volved directly or indirectly in its discovery. In 1791, Del
Río was an assistant at Lavoisier’s laboratory; unfortunately,
on November 8, 1793, Lavoisier was arrested and Del Río fled
from Paris to England as he was afraid of being arrested. In
that same year, Fausto Delhuyar, co-discoverer of tungsten,
offered him the chair of chemistry at the newly organized
Royal School ofMines inMexico City. However, he preferred
the chair of mineralogy, so he was appointed the chairman and
arrived in Mexico in December 1794. Among his duties, Del
Río had the task of organizing the mineral collection at the
College of Mines and carrying out chemical analysis of newly
discovered minerals. In 1801, in a mineral called brown lead
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from La Purísima del Cardenal mine near Zimapán in what is
now the Mexican State of Hidalgo, Del Río discovered a new
element. Initially, it was called panchromium and later
erythronium due to the red color of its salts with alkaline
and alkaline earth metals. The first publication of this new
element appeared in a Spanish journal in 1802 [2]. To popu-
larize his discovery, Del Río completed a full paper describing
his experiment and conclusions and addressed it to the French
chemist Jean Antoine Chaptal. Unfortunately, the ship carry-
ing it wrecked in Pernambuco, Brazil. In April 1803, a grad-
uate student from the Freiberg Mining Academie, where Del
Río also graduated from, arrived in Mexico. This student was
Alexander Von Humboldt. They resumed their friendship, and
Del Río told Humboldt about his newly discovered element.
Though skeptical, Humboldt agreed to take Del Río’s new
paper and samples of brown lead to describe the discovery
of erythronium in more detail on his way back to Europe.
However, news about the discovery of chromium by
Vauquelin in 1797 did not reach Mexico till 1803 and its
resemblance to chromium compounds convinced Del Río that
his discovery was chromium. After his arrival in Paris in
August 1804, Humboldt gave a sample of brown lead to
Hippolyte-Victor Collet-Descotils at the Institut de France.
He analyzed the sample and at the conclusion of his report,
Collet-Descotils wrote [3], BThe experiments that I have re-
ported appear to me sufficient to prove that this ore contains
nothing of a new metal.^ Unfortunately, Humboldt accepted
Collet-Descotils’ conclusion that erythronium was chromium,
and Del Río’s paper was never published. In 1831, Nils
Gabriel Sefström discovered a new element from an ore mined
in Taberg, Småland, Sweden. He named the element vanadi-
um after Vanadis, one of Freya’s names, the Norse goddess of
love and beauty. Friedrich Wöhler was simultaneously
reinvestigating the composition of brown lead from
Zimapán, working with a sample that Humboldt had given
him. Sefström gave some vanadium pentoxide to J. J.
Berzelius, who demonstrated that the new element was not
uranium. Berzelius sent some of the vanadium pentoxide to
Wöhler, who conclusively showed that vanadium was identi-
cal to Del Río’s erythronium. At a session of the French
Academy of Science on February 28, 1831, Alexader Von
Humboldt described the discovery of vanadium, granting
equal credit to Sefström, Wöhler, and Del Río [4].

Nowadays, the chemistry of vanadium is currently being
tested to be used in electrochemical storage systems such a
vanadium redox flow batteries. Also, as a photographic devel-
oper, drying agent in various paints and varnishes, reducing
agent, and the production of pesticides, as well as the black
dyes, inks, and pigments that are employed by the ceramics,
printing, and textile industries [5–7].

It is, however, in the biological sciences, that the unique
vanadium properties can be exploited. To date, the pharmaco-
logical behavior of several vanadium compounds has shown

very promising results, which has prompted their study from
numerous groups around the world. A brief search in PubMed
displays more than 8000 reports in which vanadium com-
pounds show an application in medicine or public health
problems.

(see Fig. 1). Additionally, more than 4000 patents of vana-
dium compounds have been filed for their use as anti-parasitic,
anti-viral, antibacterial, anti-thrombotic, anti-hypertensive,
anti-atherosclerotic, spermicidal, anti-HIV, and anti-
tuberculosis; however, the majority of the patents focus in
their use as anti-cancer and anti-diabetic drugs.

This review aims to give an update of the relevant aspects
of vanadium biochemistry with an emphasis in metabolic ac-
tions and its corresponding metabolic implications for the de-
velopment of new and potentially useful vanadium-based
pharmacological compounds.

Environmental Exposition and Toxicology
of Vanadium

Vanadium is the 22nd most abundant element on earth
(0.013% w/w), and it is widely distributed in all organisms.
In humans, the vanadium content in blood plasma is around
200 nM, while in tissues is around 0.3 mg/kg and mainly
found in bones, liver, and kidney. In vertebrates, vanadium
enters the organism principally via the digestive and respira-
tory tracts through food ingestion and air inhalation [8, 9]. The
estimated daily dietary intake in the USA is 10 to 60 μg/day,
where unprocessed foods have variable amounts up to 10 ppb,
but not exceeding 1 μg/g from animal or plant source foods.
Likewise in other countries, the dietetic vanadium concentra-
tions of dry weight fluctuate largely, e.g., Brazil (21.6–

Fig. 1 PubMed entries for vanadium and medicine in the last 50 years
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54.2 μg/g), Iran (32.6–135 μg/g), Italy (12.1–154 μg/g),
Spain (7.8–315 μg/g), Thailand (7.7–30.5), and Turkey
(18.7–78.9) [10–12]. Also, vanadium is found in potable wa-
ter in concentrations around 1 μg/L; thus, its intake by this
source depends on the daily ingested volume [13]. Therefore,
the typical daily dose consumed by humans corresponds to
10–30 μg of vanadium per day; however, most of the dietary
vanadium is usually excreted in the feces, meaning that the
vanadium accumulation in the body does not constitute a po-
tential hazard [14–17].

Vanadium Entrance via the Respiratory System

Ambient air concentrations of vanadium are naturally low.
Rural areas present vanadium concentrations around 0.8–
1.2 ng/m3, but urban areas tend to present higher concentra-
tions (3.0–3.7 ng/m3). In urban areas, vanadium contents in
the breathing air can go up to 103 ng/m3, namely two to three
orders of magnitude more than in rural areas. In places with
high density of oil-fired power plants using vanadium-rich
residual fuel oil, average vanadium air concentrations can go
up to 620 ng/m3 [9, 13]. Based on occupational exposure
studies, human experimental studies, and studies in laboratory
animals, the respiratory tract is one of the primary targets of
vanadium toxicity following inhalation exposure. Adverse re-
spiratory effects have been reported in humans and animals
exposed to vanadium compounds at concentrations much
higher than those typically found in the environment.
Although the available data in humans is limited, signs of
airway irritation (e.g., coughing, wheezing, and sore throat)
have been reported in subjects acutely exposed to 0.6 mg va-
nadium/m3 and in workers exposed to vanadium pentoxide
(V2O5) dust. The effects persist for days or weeks after expo-
sure termination and are often not associated with alterations
in lung function [13, 18–23]. On the other hand, a variety of
lung lesions including alveolar/bronchiolar hyperplasia, in-
flammation, and fibrosis have been observed in rats and mice
exposed to V2O5, VOSO4, or NaVO3, where the lesions se-
verity are in concordance to concentration and duration of the
exposition. The lung effects have been observed following
acute exposure to 0.56 mg vanadium/m3 and chronic expo-
sures to 0.28 mg vanadium/m3 and have been observed after
2 days of exposure. Longer duration exposures also result in
inflammation and hyperplasia in the larynx and hyperplasia in
the nasal goblet cells. The histological alterations result in
restrictive impairments of lung function and respiratory dis-
tress is observed at vanadium pentoxide concentrations ≥

4.5 mg vanadium/m3 [24–28]. The minimal risk level
(MRL) that is defined by the Agency for Toxic Substances
and Disease Registry (ATSDR) is an estimate of the daily
human exposure to a substance that is likely to be without
an appreciable risk of adverse effects. In the case of vanadium
inhalation in acute, intermediate, and chronic exposition, the

dosage of the no-observed-adverse-effect level (NOAEL) and
lowest-observed-adverse-effect level (LOAEL) is presented in
Table 1.

Vanadium Entrance via Digestive System

The digestive tract is another access way for vanadium. Studies
in animals have shown that less than 5% of the ingested vana-
dium is absorbed while the rest is excreted via the feces. In
concordance, human studies reported that vanadium is poorly
absorbed (0.2% to 1.0%). It is clear that fasting, dietary com-
position, and speciation may affect absorption [39–44].
Although subjects that consumed doses of 7.8–
10 mg vanadium/day/2 weeks do not show adverse symptoms,
higher doses (14–42 mg vanadium/day/2 weeks) cause gastro-
intestinal problems including abdominal discomfort, irritation,
cramping, diarrhea, nausea, and vomiting [45, 46]. There is no
evidence for extrapolation of the daily dose expressed per unit
of body weight. Using the NOAEL of 0.12 mg vanadium/kg/
day and an uncertainty factor of 10 for human variability, the
MRL would be 0.01 mg vanadium/kg/day. The LOAEL dose
has been identified a minimal value of 1.18 mg vanadium/kg/
day. Dividing the LOAEL dose by an uncertainty factor of 300
(3 for the use of a minimal LOAEL, 10 for the animal to human
extrapolation, and 10 for human variability), results in anMRL
of 0.004 mg vanadium/kg/day are obtained. However, the
Fawcett study was selected as the basis for the intermediate-
duration oral MRL because this was given to anMRL based on
a reliable human study [33]. Thus, the intermediate-duration
oral MRL is 0.01 mg vanadium/kg/day. To the best of our
knowledge, no studies of the chronic toxicity of vanadium in
humans have been done. Moreover, as a consequence, the
chronic-duration oral MRL for humans has not been
established, because recent reports do not exist (Table 1).

Meanwhile, significant increases in reticulocyte levels in
peripheral blood and polychromatophilic erythroblasts in the
bone marrow were observed in rats exposed to a dose of
27.72 mg vanadium/kg/day for 2 weeks [31]. The dose of
7.5–8.4 mg vanadium/kg/day during gestation reported devel-
opmental effects in the offspring of rats and mice that included
decreases in fetal growth and increases in resorption anoma-
lies as well as gross, visceral, and skeletal, malformations [34,
35, 47]. Thus, in this case, the identified LOAEL dose in the
animal for developmental effects corresponds to
7.5 mg vanadium/kg/day [35]. The NOAEL dose has been
established at 0.2 mg of vanadium/kg/day for an acute-
duration oral MRL. Long-term vanadium treatments observed
significant decreases in erythrocyte counts in rats exposed to
1.18 mg vanadium/kg/day in the form of ammonium
metavanadate in drinking water during 4 weeks [32] and a
decrease in hemoglobin which is compensated with reticulo-
cyte increase in peripheral blood [32, 48–53]. However, pre-
vious intermediate-duration studies did not found significant
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alterations in doses up to of 9.7 mg vanadium/kg/day [36, 37].
Notably, the consumption of 1.72 mg vanadium/kg/day
showed impaired performance on neurobehavioral tests (open
field and active avoidance tests) in rats exposed to sodium
metavanadate for 8 weeks [38]. BALB/c mice (4 weeks old)
administered with 3 mg vanadium/kg/day (sodium
metavanadate), thrice a week for 3, 6, 9, 12, 15, and
18 months, showed astrocytic and microglial activation after
6 months. Also, the cortical pyramidal cells showed morpho-
logical alterations including pyknosis, cell clustering, loss of
layering pattern and cytoplasmic vacuolation, dendritic arbor-
ization loss of the pyramidal cells of the dorsal hippocampal
CA1 region, and the Purkinje cell layer lost [54].

Absorption and Speciation In Vivo

There are two main routes for the absorption of vanadium in
the organism which, depending on the dose, can constitute
health hazards: breathing and ingestion. Lungs constitute the
main site of entry for environmental exposure of vanadium
through breathing (Fig. 2). The size of vanadium-containing
particles and the solubility of vanadium compounds are im-
portant factors in the determination of vanadium absorption
rate in the respiratory tract. For instance, lung clearance of the
insoluble vanadium pentoxide is relatively rapid in animals
after acute exposure, but substantially slower after chronic
exposure. This occurs because over time the metal is slowly
deposited in the lungs and tends to remain there. Soluble

compounds are also partly absorbed, but the extent of absorp-
tion in the respiratory tract has not been determined. After
breathing vanadium-containing compounds, vanadium acts
directly on human the bronchial smooth muscle promoting
the release of Ca2+ from the intracellular store via the produc-
tion of inositol phosphate secondmessengers and inhibition of
Ca2+-ATPase, causing spasms [55]. Wang et al. described the
mechanism of multiple reactive oxygen species induced by
vanadium absorption that involves activation of an NADPH
oxidase complex and the mitochondrial electron transport
chain, with hydrogen peroxide playing a major role in lung
inflammation and apoptosis [56]. The free radical redox cycle
of vanadium was studied in rat lungs and involves a one-
electron redox cycle in lung biomembranes and reduction of
vanadium V to vanadium IV (i.e., vanadium speciation),
which initiates lipid peroxidation and possibly contributes to
pulmonary toxicity [57]. Ingestion is the other important via
vanadium absorption. Based on the estimated daily vanadium
intake and levels in urine and feces, less than 5% of ingested
vanadium is intestinally absorbed (Fig. 2). One of the first
studies of vanadium absorption used the radioisotope 48V as
a tracer and found that about 15% of vanadium (as Na3VO4)
in a single bolus is absorbed [58]. However, that value is well
above of the 1–3% of absorption that most studies have found
[59, 60]. Also, it has been estimated that no more than 1% of
vanadium contained in the diet is absorbed [40]. Human stud-
ies agree well with animal studies and have stated that only
between 0.13 and 0.75% of ingested vanadium (i.e., ammoni-
um metavanadate) is retained in the body [41]. Oral ingestion

Table 1 Minimal risk level
(MRL) for vanadium inhalation
and oral ingestion

Acute-duration inhalation MRL 0.0008 mg of V2O5/m
3/14 days [24]

No-observed-adverse-effect level (NOAEL) 0.34–0.56 mg of vanadium/m3/13 days [24, 29]

Lowest-observed-adverse-effect level (LOAEL) 0.56 mg of vanadium/m3 [24, 29]

Intermediate-duration inhalation MRL 4.4 mg of V2O5/m
3 for 6 h/day, 5 days/week

for at least 4 weeks [29, 30]

No-observed-adverse-effect level (NOAEL) 0.56 mg of vanadium/m3 [29, 30]

Lowest-observed-adverse-effect level (LOAEL) 4.5 mg of vanadium/m3 in males [30]

2.2 mg vanadium/m3 in females [30]

Chronic-duration inhalation MRL 0.0001 mg of V2O5/m
3 for 6 h/day, 5 days/week

for at least 1 year [29]

No-observed-adverse-effect level (NOAEL) Undefined

Lowest-observed-adverse-effect level (LOAEL) ≥ 0.56 mg of vanadium/m3 [29]

Acute-duration oral MRL 0.009 mg of vanadium/kg/day [13]

No-observed-adverse-effect level (NOAEL) 0.2 mg of vanadium/kg/day [31, 32]

Lowest-observed-adverse-effect level (LOAEL) 0.35 mg of vanadium/kg/day [31, 33–35]

Intermediate-duration oral MRL 0.01 mg of vanadium/kg/day for 15–364 days [36–38]

No-observed-adverse-effect level (NOAEL) 0.12 mg of vanadium/kg/day for 365 days [37]

Lowest-observed-adverse-effect level (LOAEL) 1.18 mg of vanadium/kg/day [36]

Chronic-duration oral MRL Undefined

No-observed-adverse-effect level (NOAEL) Undefined

Lowest-observed-adverse-effect level (LOAEL) Undefined
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of vanadium mainly involves two species: vanadates (HVO4
2

−, oxidation state + 5; V5+) present in drinking water and
vanadyl (VO2+, oxidation state + 4; V4+). V5+ compounds
are partially reduced in the stomach and later precipitated in
the slightly alkalinemedium of the intestines to form sparingly
soluble VO(OH)2 (Fig. 2) [9, 18]. On the other hand, HVO4

2−

is more easily taken up in the gastrointestinal tract and is
absorbed 3 to 5 times more effectively than VO2+. Thus, the
speed at which the vanadium compounds are transformed in
the organism and the species in which it transforms effectively
affects the percentage of ingested vanadiumwhich is absorbed
[61].

Depending on the surrounding solvent, different of vanadi-
um species are favored. [62–65]. Each one of these species has
different chemical properties and therefore different biological
responses in fluids, tissues, or cells [15, 62, 66–75] and can
form different complexes. Moreover, the speciation of vana-
dium compounds and salts is also sensitive to their conditions
and environment, and as a result, their chemical bioprocessing
is essential to understand their mode of action [62, 68].
Several works have demonstrated the degree of transforma-
tion or speciation that vanadium compounds suffer under dif-
ferent environmental and biological conditions [76]. Routine
methods used for measurement of speciation in aqueous solu-
tion include nuclear magnetic resonance (NMR) and electron
paramagnetic resonance (EPR) spectroscopy, UV–Vis spec-
troscopy, potentiometry, and electrochemistry [65, 76–78].

Aqueous vanadyl can exist in both cationic and anionic
forms [66, 74, 79]. Cationic species tend to form at acidic pH,

while anionic species forms at neutral and basic pH (Fig. 2).
Little is known about the speciation of aqueous vanadyl at
neutral pH, mainly because at this pH there is no electron para-
magnetic resonance (EPR) signal, presumably because of the
dimerization/oligomerization of the vanadyl species or oxida-
tion to V5+ [68, 80]. Oxidation states of vanadium are of para-
mount importance in the development of new compounds with
biological applications because of the impact it will have in its
pharmacological and pharmacokinetic properties. For instance,
it has been considered that V4+ forms tend to form stable coor-
dination complexes with ligands, and the equilibration of these
systems is slower than those for V5+ systems [64, 80, 81].
However, recent work has demonstrated that this perception
does not hold for all types of ligands and that there are V5+

complexes which pharmacological characteristics render more
potent anti-diabetic agents than V4+ complexes [71, 72, 82, 83].
The vanadate HVO4

2− ion has rich chemistry (in part due to its
pKa of 12) that gives rise to a number of species that can be
formed at different pH. At pH below of 12, two HVO4

2− ions
can condense and release water to form the vanadate dimer,
V2O7

4−, which in turn can be protonated in a more acidic me-
dium. A further increase in acidity to near neutral conditions
promotes the formation of higher oligomers. Under those con-
ditions, the predominant species are tetramer or pentamer cyclic
oligomers, V4O12

4− or V5O15
5−. Other oligomers that are nor-

mally found as minor components of an equilibrated solution
are the cyclic hexamer and the linear trimer, tetramer, and
hexamer species [84–86]. The relative distribution of the differ-
ent species concentrations depends on the total vanadate

Fig. 2 Speciation and solubilization in pH dependence in different body cavities and tissues
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concentration in such a way that compounds of lower nuclearity
are favored at low concentrations. At pH of 6 or below and
concentrations of 0.2 mM and above, the vanadium decamer
(decavanadate) is formed and it is the predominant species;
however, a mixture of decavanadate, monoprotonated and
diprotonated decavanadate, and small amounts of tetravanadate
as well as free vanadate are present. Furthermore, the protein
interplay into cell leads to decavanadate stabilization, thus sug-
gesting that V10 interacts with specific locations within these
(e.g., alkaline phosphatase, adenylate kinase, P-type ATPases,
ABC ATPases, F-actin, myosin ATPase, and ribonuclease)
protecting the decameric species against conversion to the
structurally and functionally distinct lower oxovanadates (va-
nadium monomer, dimer, or tetramer) [86, 87]. Unlike other
vanadate oligomers, this oligomer undergoes successive pro-
tonation reactions with an increase in acidity, going from a
charge of − 6 to − 3, being the − 4 and − 5 anions the predom-
inant forms. Very strong acidic conditions (i.e., below a pH = 2)
will cause the decavanadate to be replaced by the cationic spe-
cies, [VO2(H2O4)]

+ (often referred to as VO2
+). Because of its

high proton stoichiometry compared to the other vanadate de-
rivatives, the cation is frequently the only compound in a sig-
nificant concentration in solution under strongly acidic condi-
tions, even in the presence of strong-binding ligands. Since
vanadium possesses a high ability to change oxidation states
or to exchange ligands depending on the environment, the
surrounding molecules will have a great impact on the vanadi-
um passage through cell membranes. There is, therefore a ne-
cessity to develop vanadium-based drugs containing ligands
that protect the compound from speciation to conserve its phar-
macological properties and to enhance its absorption.
Vanadium speciation is a relevant characteristic of vanadium
and impacted by the presence of biological or synthetic chela-
tors, biogenic ligands, or functional carriers [88, 89]. In our
laboratory, we work with counter-cations such as ammonium,
dimethylaminopyridine, and biguanides (metformin) to stabi-
lize charges and maintain the biological activity [86, 90–92].

Transport of Vanadium Species in Blood

Vanadium compounds are exposed to diverse environments
during their administration before reaching the bloodstream.
For instance, these can be solubilized by lung surfactant in
alveoli or be exposed to a highly acidic environment in the
stomach before suffering biotransformation into the biologi-
cally active forms that circulate the blood plasma. Once in the
bloodstream, vanadium species bind to serum proteins, partic-
ularly transferrin and albumin. Vanadyl displays a strong pref-
erence to bind not only proteins but also negatively charged
serum molecules of low molecular weight such as citrate,
oxalate, lactate, phosphate, glycine, and histidine [93]. At bi-
ologically relevant concentrations of vanadyl (i.e., V4+ <

5 mM), most of the vanadium in the bloodstream is bound
to transferrin, where the V4+ ion binds to the same binding site
as the Fe3+ ion [94]. The presence of a metal binding site in
transferrin makes it a more efficient vanadium carrier than
albumin; it is well established that vanadium can displace
30–70% of the original iron ion from the transferrin complex
[79, 95–100]. Interestingly, it has been shown that even
though V4+ displays a high affinity for the iron binding site
of transferrin, it is the V5+ the species capable of binding this
protein in the absence of the synergistic anion (e.g., carbonate)
that is required for the iron binding [101–103]. Lastly, at
higher concentrations, it has been shown that bloodstream
V4+ can even bind to immunoglobulin G [104–106]. Finally,
some vanadyl species with insulin-enhancing properties ex-
hibit a relatively long lifetime in the bloodstream that may
allow correlating the vanadium blood content with its binding
to the transport protein albumin [107].

In extracellular fluids, vanadium, in the form of vanadate
and vanadyl, is either reduced or oxidized respectively, de-
pending on the presence of different redox-active agents. In
the case of vanadate, due to the pKa at physiological pH, ionic
strength, low concentration, and potential ligands, the V5+ ion
exist in blood plasma mainly as either H2VO4

− and HVO4
−2,

and it is not expected to form oligovanadates [108].
Moreover, regarding the binding of vanadium to one of the

main carrier plasma proteins, transferrin, there is a significant
amount of experimental evidence indicating the binding of the
V5+ ion to the same binding site occupied by the Fe3+ ion [101,
102, 109–114]. Structural details indicate that vanadate binds
to both, the N- and C-terminal sites as VO2

+ where is coordi-
nated by Tyr, His, and Asp residues. Furthermore, it has been
found that significant amounts of the V5+ ion are bound to
transferrin in solutions containing the iron-bound protein, sug-
gesting that V5+ could either be located at a different binding
site or that it could act as a synergistic anion to the iron binding
site [103, 110]. Lastly and along these lines, competition bind-
ing experiments in apotransferrin between HCO3

− and
H2VO4

− for the site normally occupied for the synergistic an-
ion concluded that no competition between these two mole-
cules exist and that the V5+ ion can form (hydrogen)carbonate-
V5+ adducts, similarly to those form with phosphate (phos-
phate-V5+) [111].

Albumin plays a major role in the transport of metals in the
plasma. Structurally the protein contains two metal binding
sites, an N-terminal site (NTS or site I) that specifically binds
Cu+2 andNi+2 ions, and amultimetal binding site (MBS or site
II) that primary binds Zn+2 ions but also displays high affinity
for Cu+2 and Ni+2 ions [94, 115–119]. As for the interaction of
the protein with vanadium, particularly the VO2+ species,
studies have identified a high-affinity binding site (VBS1)
and at least five relatively low-affinity vanadium binding sites
(VBS2) [94, 120, 121]. In this context, competition studies
between Zn+2 and VO2+ ions showed that the latter is bound
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to albumin at two binding sites, one of them corresponding to
the MBS (or VBS1, which primarily binds a Zn+2 and thus
constitute a metal binding competition site between Zn+2 and
VO2+) and another (VBS2) where no metal binding competi-
tion occurs [122]. Additionally, EPR experiments suggest that
VO2+ ions formed a binary adduct that interacts with residues
located at the MBS (VBS1) [103, 122].

Since specific coordination sites like those of transferrin for
iron are lacking, albumin form mixed complexes with vana-
dium giving rise to pharmacologically active species [113,
123]. Therefore, some vanadyl species with the sufficiently
long lifetime in the bloodstream exhibit a good capacity to
lower plasma glucose in diabetic models associated with its
binding to human albumin [107]. Also, CD spectra suggest
more than two types of binding sites to albumin, in which at
physiological pH, the main (VOL2)n-albumin species can co-
exist with a minority (VOL)n-albumin mixed complex [120,
124].

The results obtained for the interaction of V+5-albumin
complexes are not so clear and straightforward as those ob-
tained for the V+5-apo-hTF system. However, different studies
agree that the interaction is weak and unspecific, some of them
suggesting that the binding sites probably involve surface car-
boxylic groups. Crans et al. proposed a relation V+5-albumin
of 1:1 [66]. Heinemann et al. concluded that V+5 is bound to
albumin in very low concentration (maximum 0.3–0.4%)
[125]. Kiss et al. by literature data, estimated a log K value
of 1.8 ± 0.3 for V+5-albumin complexes [68]. Castro et al.
showed evidence that some V+5 complexes can bind to drug
site I by 1H saturation transfer difference (STD) NMR spec-
troscopy and computational docking studies [125, 126].

Additionally, the interaction between vanadium and the
serum protein immunoglobulin IgG has been investigated.
At physiological conditions, interactions of VO2+ in three dis-
tinct superficial IgG binding sites, namely 1, 2, and 3, were
identified. Interacting features of site 2 resemble those ob-
served in VBS2 of albumin while in site 1 may be the most
probable candidate to established interactions with VO2+ [12,
104, 127].

The oxygen carrier protein, hemoglobin (Hb), has also
been involved in the vanadium bloodstream transport. Since
the erythrocyte environment presents a reducing environment
for vanadium, mainly driven by glutathione, the investigation
involved the V4+ oxidation state exclusively [88, 127–133].
Most of the experimental studies indicate that, inside the
erythrocytes, the VO2+ ion is mainly bound to hemoglobin
[88, 127–129, 132, 133], although possible competition for
vanadium may arise from some intracellular bioligands
[129]. Utilizing EPR spectroscopy, three non-specific pH-de-
pendent Hb binding sites for VO2+ have been identified,
namely α, β, and γ sites [88]. The vanadium α binding site
is only composed of carboxylate groups (from Asp and Glu)
while β and γ sites also contain imidazole groups (from His)

as part of the vanadium coordination sphere. Notably, at
pH 7.4, only the β and γ sites in Hb seem to be occupied.
The stability constant (binding constant) for the interaction
between VO2+ and plasma blood proteins is transferrin >>
hemoglobin ≈ immunoglobulin G > albumin [123].
However, it must be taken into account the type of vanadium
complexes and their decomposition grade, saturation, specia-
tion, and excretion to each ligand.

Vanadium Compounds Species at Physiological
Conditions

Although synthetic inorganic chemistry has developed different
kinds of oligovanadates, by considering the different physio-
logical conditions (e.g., absorption environment, concentration,
pH, ionic strength) it is unlikely the vanadate oligomers can last
inside the body for long periods of time based on their thermo-
dynamic instability. At pH ≈ 7, the only vanadate of relevance
is the monovanadate H2VO4

− compound; however, at higher
vanadate concentrations, the formation of tetravanadates be-
comes more feasible.

Decavanadate (V10O28)
6− is a particular vanadate oligomer

that is thermodynamically unstable at pH values above 6.
However, it decomposes slowly having a half-life of about
9 h at pH 7.5 and 25 °C. This rate of decomposition increases
substantially at higher pH values, for instance, at pH 12 and
25 °C, the decomposition of this compound is only about
1.5 h. In contrast, under acidic conditions, the stability of the
compound changes significantly since the polyanion can suf-
fer protonation. At pH around 1 and 25 °C, the half-life of
decavanadate drops to about 6 s. At such strongly acidic con-
ditions, the vanadate cation, VO2(H2O)4

+, is the thermody-
namically favorable species. The nature and concentration of
the counterion also have a significant influence on the stability
of the decavanadate polyanion along the pH range and the
medium conditions, as indicated by the change of its decom-
position rates in works of Soares et al. and Gândara et al.
[134–137].

Vanadate can also interact with phosphates forming
phosphovanadates such as HnVPO7

(4-n)−, (n can be 1 or 2) at
conditions of pH ≈ 7, where the pKa of the compounds at an
ionic strength of 0.15M is 7.2 [138, 139]. This phosphovanadate
compound is between one or two orders of magnitude less stable
than divanadate against hydrolysis, but six orders of magnitude
more stable than the diphosphate compound. Given the relative-
ly high serum phosphate concentrations of 2.3 mM,
phosphovanadates likely contribute to the physiological specia-
tion of vanadium.

Additionally, the bone structure can act as storage for van-
adate displaying a residence time of a month [77]. Other li-
gands, e.g., lactate (Lac), can promote the formation of coor-
dination complexes with vanadium species, but this phenom-
enon is only favored under acidic conditions; at physiological
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pH formation of the complex is very unfavorable. Still, at
slightly acidic conditions, the dominant lactatovanadium com-
plexes are the di- and tri-nuclear bis(ligand) complexes of
overall composition V2(Lac)2

2− and V3Lac2
3−[140], where

BV^ stands for the oxide or dioxide vanadium center. At the
physiological pH value (7.4), the VLac2 compound is the only
existent species. Interestingly under acidic conditions, the
mixed ligand system composed by vanadate, lactate, and cit-
rate (Cit), forms a bi-nuclear complex of composition
V2CitLac

n− (n = 2 or 3). Binary vanadate–citrate complexes
in the physiological range of pH are restricted to a species of
composition V2Cit

4− [77, 141].

Vanadium Tissue Distribution and Cellular
Uptake/Incorporation/Accumulation

Once in the bloodstream, vanadium is distributed and stored in
different tissues. The contents of vanadium in plasma, decline
in three phases: (i) The first phase is a rapid decline with a
half-life of about 1 h, followed by (ii) a second intermediate
phase where vanadium decline with a half-life ca 26 h, and
moreover, (iii) a third slow phase where, on average, the half-
life is approximately 10 days. Vanadium contents in blood are
thus reduced to about 30% within the first 24 h, and about
50% is recovered in urine after 12 days [106, 115, 135].
Although the body clearance occurs directly via urinary ex-
cretion, while as long as the vanadium stays in the blood-
stream, the distribution occurs towards different tissues such
as the heart, liver, kidney, spleen, brain, muscle, adipose tis-
sue, and bones. In this context, neutron activation analysis
(NAA) has been one of the most important techniques used
to determine the total vanadium levels in different organs.

Vanadium Tissue Distribution from Humans
and Animal Studies

The longer residence time of vanadium is in bones, where it
replaces phosphorus in the mineral hydroxyapatite,
Ca5(PO4)3OH, is over 1 month, which corresponds to a half-
life of 4–5 days [18]. Analyses done utilizing NAA have
found the following concentrations of vanadium in different
human tissues (in ng/g of wet weight): fat and muscle, 0.55;
heart, 1.1; kidney, 3.0; liver, 7.5; lung, 2.1; and thyroid, 3.1.
[40, 142]. Also, studies have identified that the human colos-
trum and breast milk generally contained less than 1.0 ng/g of
vanadium of dry weight [143]. Additionally, vanadium con-
centrations in scalp hair of healthy adults have been found in
the range of 433 pg/g to 90 ng/g [144–147]. In general, the
evidence has demonstrated that the most tissues contain less
than 10 ng vanadium/g wet weight.

Studies with animals under a high vanadium content diet
indicate a marked increase of the metal retention in various

tissues. In rats, vanadium content in the liver increases from
10 to 55 ng/g of wet weight when the vanadium diet was
increased from 0.1 to 25 μg/g [60]. Remarkably, the age of
the animals represents a variable factor that needs to be con-
sidered. For instance, in rats between 21 and 115 days old,
vanadium concentration decrease in the kidney, liver, lung,
and spleen, but it exhibits an increment in fat and bone; how-
ever, variations in the brain, heart, testes, and spleenwere small
or negligible [148]. Parker and Sharma reported that rats con-
tinuously administered with drinking water ad libitum, con-
taining 50 ppm of vanadyl sulfate and sodium orthovanadate
during a 3-month period, showed increased levels of vanadium
in the kidney, bone, liver, and muscle, and after 9 weeks of
suspension of the vanadium administration, the concentration
in tissues declined rapidly, except in bones [149]. Bone tissue
is well established as one of the major body pool for vanadium
retention [41, 58, 148, 150]. In this context, studies had found
that in sheep bones, vanadium increased from 220 to 3320 ng/g
of dry weight when dietary vanadiumwas increased from 10 to
220 μg/g [150].

Furthermore, studies in rats fed with VOSO4 showed the
following trend in vanadium tissue concentrations: kidney >
liver > bone > pancreas [151–153]. On the contrary, rats treated
with different vanadium compounds such as VO(5-ipa)2, dis-
plays the following trend in vanadium tissue concentrations:
bone > kidney > spleen > liver > pancreas > lung ≈ heart >
blood cell ≈ serum > brain [154, 155]. Such differences in the
organ distribution of vanadium between the animals fed with
VOSO4 and those fed with other vanadium compounds sug-
gest a distinct long-acting character of the different complexes.
Along these lines, vanadium levels after 2-week administration
of bis-maltolato oxovanadium (BMOV), 0.75mg/mL in drink-
ing water, were comparable with those obtained after 10 weeks
of VOSO4 intake, albeit the daily dose administration of
BMOV was about half of that of VOSO4, which vanadium
accumulation was observed in the bone, kidneys, liver, muscle,
and fat [156].

NAA and radioisotope determination studies found that for
streptozotocin (STZ) rats treated with VO(6-Mepic)2, vanadi-
um was accumulated in the majority of tissues with the fol-
lowing trend: kidneys > liver > bone > pancreas [157]. Also,
EPR studies have shown that VO2+ species incorporated into
the blood are first distributed to tissues that presented the
short-time accumulation (liver and kidneys) and then to the
tissues of long-time (bones) [140]. Real-time EPR analysis of
VO2+ species revealed that the vanadium clearance rates from
the bloodstream are distinct for different compounds. For in-
stance, when rats are fed on the VOSO4 compound, the vana-
dium clearance rate is faster than when exposed to VO(5-ipa)2
or any other halogenated vanadyl complex, with a clearance
rate of 5 min for VOSO4-treated rats and 7–30 min for other
vanadium compound-treated rats. The difference in vanadium
elimination rates from the circulating blood in rats indicates an
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important variation in the association between the vanadium
compounds and the blood components such as serum proteins
or erythrocytes [155].

Cellular Mechanisms for Vanadium Cellular
Incorporation

The carrier ligand (with the general equation VO(carrier))
largely influences the efficacy of a vanadium compound by
determining its transport, stability, and bioavailability to
different tissues. Particularly, the bioavailability of the va-
nadium compounds is of the utmost importance since it is
linked to their therapeutic effectiveness [82]. Vanadium
compounds reach cellular compartmentalization after the
recognition process of the specific carrier ligand by a par-
ticular cell surface receptor occurs (e.g., transferrin, albu-
min, IgG) and subsequent endocytosis (Fig. 3). Then, pro-
ton pumps acidify the intra-vesicular environment and spe-
cific cellular events produced conformational changes that
promote the vanadium release and cytoplasmic mobiliza-
tion, which probably involves the divalent metal
transporter-1 (DMT1) [158]. Once in the cytoplasm and
depending on the pH and vanadium concentration condi-
tions, oligovanadates may be formed. Additionally, vana-
dium species get into the cell by diffusion utilizing phos-
phate or sulfate channels, membrane citrate transporters,

lactate transporter (monocarboxylate transporter, MCT1),
and the organic anion transporter (OCT). After cellular
uptake, vanadium compounds can be again subject to spe-
ciation and redox modifications, which will impact their
subsequent bioavailability, site of interaction, and thera-
peutic or toxicity effects. Those effects will depend on
several factors, such as the amount of the uptake, the type
of body tissue, and the nature of the carrier ligand (if it is
still present or not). In any case, the final intracellular
breakdown of the complex most probably occurs to allow
the display of vanadium’s physiological effects [108].

Interconversion Between Vanadium Species
and Cellular Redox Balance

The complexity of biological systems, coupled with the
rich chemistry of vanadium in aqueous solutions, make
the study of vanadium compounds in living systems very
challenging. Within organisms, cells are divided into dif-
ferent organelles and vesicles by membranes, each com-
partment having different pH depending on the physio-
logical, physiopathological, or pathological states, and
different natural ligands hence different abilities to accu-
mulate vanadium. Combining the effects of cellular ar-
chitecture with the pH and concentration-dependent

Fig. 3 Vanadium species uptake and cellular compartmentalization. IgG,
immunoglobulin; MCT1, monocarboxylate transporter-1; OAT, organic
anion transporter, DMT1, divalent metal transporter 1; CTP,

mitochondrial citrate transport protein; DCT, dicarboxylate-
tricarboxylate carrier; ABC, ATP-binding cassette transporters; STEAP,
STEAP metalloreductase
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equilibria that govern vanadium chemistry can likely re-
sult in the formation of different oligomeric species with
varying oxidation states, each found in different parts of
the cell after an administration of a single vanadium
compound. Also, vanadium and vanadium compounds
inside the cells can interact with different proteins and
act as inhibitor or activator (analog) and influence differ-
ent signaling pathways. Several studies have demonstrat-
ed that vanadium can undergo speciation reactions in
living cells. EPR and 51V NMR have provided evidence
of the presence of vanadate tetramer formation and
vanadyl species after the cells were exposed to the mo-
nomeric vanadate [159, 160]. 51V NMR also evidenced
the formation of decavanadate (V10O28)

6− in cells at a
pH of 6.5 and 5 mM vanadate concentration, showing
that vanadium can be concentrated inside acidic cellular
organelles [161]. It has been demonstrated that the dis-
tribution of vanadium inside the cell depends on the va-
nad i um compound tha t i s adm in i s t e r ed . The
biodistribution of vanadium in fish red blood cells
(RBCs), plasma and cardiac cytosol were found to de-
pend upon the administration of either metavanadate or
decavanadate [162]. Also, the ratio of vanadium in the
plasma to vanadium in RBCs increased over time with
metavanadate administration but remained constant for
decavanadate administration [162, 163]. Although there
is still some disagreement regarding the extent of the
physiological importance of the decavanadate ion, multi-
ple recent studies have conclusively demonstrated that
decavanadate can induce changes in the biological activ-
ities of several enzymes, which underlines the impor-
tance decavanadate-based compounds in medicine [86,
87, 90–92, 134, 164–167].

Many of the beneficial or prejudicial physiological effects of
vanadate are, at least in part, due to the structural and chemical
similarities between orthovanadate and phosphate, HxPO4

(3-x)−.
However, a major difference between vanadium and phospho-
rous is the ease with which vanadium forms oligomeric
metavanadate rings, such as [V4O12]

4−, and polyoxovanadate
clusters such as [V10O28]

6−. Another significant difference is
the ability of V+5 to get reduced to V+4 in the form of vanadyl
in vivo by thiol-containing species such as cysteine and glutathi-
one. Indeed, various forms of vanadium that exert different bio-
logical functions undergo biotransformations [62, 68, 70, 168,
169]. Undoubtedly, the degree to which pentavalent V5+ is re-
duced to tetravalent V4+ is an important factor influencing how
much metal/compound is transported into/out of cells, the mag-
nitude of reactions involving the superoxide anion (·O2−) and
hydrogen peroxide (H2O2), and the key cellular processes that
are potentially impacted by those changes [170–172].

Interconversion between vanadium species (mostly V+4/V+5

and in less degree in V+3) is constantly occurring inside of cells.
Previous studies strongly suggest that vanadium-ligand complex

is not stable in the body. Thus, the vanadium administered will
seek the speciation required for an equilibrated distribution. This
behavior proves that vanadium complexation and speciation is a
dynamic process in an environmental hydraulically unstable
(Fig. 4). The ligands available for complexation with the dissoci-
ated vanadiumwill be determined by the cellular compartment or
body fluid in which the dissociation occurs. Therefore, under-
standing the oxidation-reduction interactions of vanadium is im-
portant to understand the effects of therapeutically. The natural
cellular reducing compounds glutathione (GSH) and ascorbic acid
interact and readily reduce vanadium fromV+5 toV+4. In oxygen-
depleted regions, reductionwill be complete but in the presence of
oxygen, a redox equilibrium will be established [173]. The GSH
system is part of the thiol cycle in mammalian cells that may
transduce oxidative stress redox signaling into the induction of
many genes involved in proliferation, differentiation, and apopto-
sis [174]. Although GSH is a rather ineffectual reducing agent,
redox interactions stabilize the oxidation state of vanadium
through the complexation with oxidized GSH (GSSG). A high
intracellular excess of GSH increases the possibility of VO2+

formation and its complexation with either GSH or GSSG.
Both GSH and GSSG have been shown to be reasonably potent
binders of VO+2 [129, 175–177]. Other effective reducing agents,
such as NAD+/NADH, NADP+/NADPH, FAD+/FADH, or
ascorbate, may interconvert V5+ and V4+, as well as V3+ species
[18, 178–180].

Reactive oxygen and hydrolytic degradation of VO2+ may
be responsible for the reoxidation to vanadate. The redox po-
tential for the H2VO4

−/VO+2 pair at pH 7 is − 0.34 V, which is
comparable to − 0.32 V for the NAD+/NADH. Vanadyl has
also been shown to stimulate NADH oxidation by a rapid
phase that involves the production of vanadate followed by
the production of H2O2 and (·O

2−) [161, 181–184]. EPR stud-
ies have implied that the vanadate-mediated hydroxyl radical
generation from superoxide in the presence of NADHwas due
to a Fenton mechanism rather than a Haber-Weiss reaction
[185].

The chemical mechanism of the reaction of NADPH oxi-
dation is a consequence of vanadate stimulation that generates
a free radical chain system, in which increases of O2

− are
generated [186, 187]. Decavanadate has been shown to be a
more potent stimulator of the vanadate-dependent NADH ox-
idation activity than orthovanadate [188, 189]. The reductase
activity of decavanadate is linked to the alternative activity of
an NADP specific isocitrate dehydrogenase [190]. The role of
these interesting plasma membrane-dependent, vanadate-
stimulated NADPH oxidation reactions in cellular metabolism
remains to be elucidated, although multiple interactions with
components of the cellular metabolism are possible including
interactions with xanthine oxidase and lipid peroxidation
[191]. Decavanadate has been shown to enhance cytochrome
c reduction [189], and cytochrome c release from mitochon-
dria is associated with initiation of apoptosis [192]. Although,

Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes... 77



it has shown a dependence on the concentration, cellular spe-
ciation, as well as antioxidant defense level or even of other
cellular protection systems.

The aqueous chemistry of vanadium allows vanadium to
participate in cellular redox reactions involving both reactive
species of oxygen and nitrogen (ROS and RNS). In different
systems, vanadium stimulates nitric oxide formation or in-
hibits the stimulation of nitric oxide by cellular effectors.
The final effect of increases of ROS and RNS on cell mem-
branes that are very sensitive to oxidation is lipoperoxidation
[192]. Lipid peroxidation reactions correlated with a decrease
in the V4+/V5+ redox potential and proceeded without forma-
tion of radicals. Vanadium compounds can form a vanadium
superoxide complex that acts as an active oxidizing species or
decomposes to form hydroxyl radicals, which are known ini-
tiators of lipid peroxidation. Acute and chronic exposure to
vanadium compounds causes oxidation of fatty acid lipids in
both human erythrocytes and animals [142, 193]. In leuko-
cytes, vanadium correlates with the formation of the ROS
and depends on the activity of calcium channels [194].
Neutrophils activated with (V4+) vanadium species showed
increased hydroxyl radical formation capacities and attenua-
tion of myeloperoxidase activity, whereas the species with
oxidation state + 5 did not show these effects [195]. There is
evidence that supports a linking to vanadium and the nitric
oxide signaling. Formation of radicals after addition of

vanadyl sulfate to isolated perfused lungs induced constriction
of pulmonary arteries accompanied by increased amounts of
NO via protein kinase C [196].

Vanadium and Intracellular Proteins
Interaction

Vanadium displays high affinity for iron-containing proteins
and, hence, a direct interaction with the intracellular protein
ferritin, which has a high capacity for storing iron, has been
suggested. In this context, vanadium is found naturally in
horse spleen ferritin at levels of 5 to 10 vanadium atoms per
protein, and interestingly, it exhibits a pH dependence with
decreasing VO2+/protein ratios as the pH increases (e.g.,
61%, 36%, and 27% at pH 6, 7, and 8, respectively), using a
ratio VO2+/protein of 16 [88, 93, 197]. By using EPR spec-
troscopy, V+5 and V4+ species were detected in rats fed under
vanadium-rich diets, particularly in the ferritin proteins from
the liver, kidney, and spleen [113, 115, 198]. The EPR exper-
iments indicate that the signals arise from the complex formed
in the ferritin’s interior between iron and the VO2+ species.
Moreover and due to the interaction above, VO2+ has been
used as a spin probe to identify the binding sites not only for
the natural substrates Fe2+ and Fe3+ but also to characterize the
iron deposition inhibitors, Zn2+ and Tb3+. During the

Fig. 4 Vanadium interconversion species, redox balance, and oxidative
stress. NADPH, reduced form of nicotinamide adenine dinucleotide
phosphate; NADP, the oxidized form of nicotinamide adenine
dinucleotide phosphate; NADH, the reduced form of nicotinamide

adenine dinucleotide; SOD, superoxide dismutase; GSH, the reduced
form of glutathione; GSSG, the oxidized form of glutathione; NOX/
COX, NADPH oxidase system
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formation of the VO2+
–apoferritin complexes, an average

stoichiometry of 0.5–0.6 VO2+/subunit is observed, which
corresponds to 12–16 VO2+ ions bound per 24-subunit pro-
tein. Metal ion hydrolysis decreases the concentration of the
VO2+

–apoferritin complex when the pH ranges from 6.0 to
7.0. While VO2+ binding to the specific metal sites of other
metalloproteins suppressed the hydrolysis of vanadium,
apoferritin is unique in allowing the hydrolysis process to
occur; the analogous reaction with Fe3+ is a requirement of
the formation of the iron core. Regarding its susceptibility to
hydrolysis and its EPR properties, the VO2+

–apoferritin com-
plex behaves similarly to VO2+ complexes [199, 200].

On the other hand, ATPases are enzymes that catalyze the
hydrolysis of phosphate–anhydride bonds with many important
roles in biology namely in cellular energy metabolism. A wide
range of affinities for vanadate are observed depending on the
type of ATPases [87, 168, 201, 202]. The inhibitory effect of
vanadate on some ATPases may vary from those corresponding
to nM inhibition constants for the Na+, K+-ATPases [203]. The
Na+-K+-ATPase is very tightly inhibited by vanadate with an
association constant of 2.4 × 108 M−1 [203, 204]. The inhibitory
effect of vanadium also has been observed in ion pumps such as
the H+/K+-ATPase or Ca2+-ATPase [168, 205–207].
Interestingly, decavanadate [V10O28]

6− is a more potent
Ca2+ATPase inhibitor than monomeric vanadate [207–209].
The oxidation of a cysteine residue through reduction of the
vanadate apparently is the inhibitionmechanism of decavanadate
to Ca2+-ATPase [205–209]. Myosin is considered as an ATPase
because contains a motor domain comprising two binding sites
responsible for interacting with the actin and ATP hydrolysis (the
head); meanwhile, the intermediate domain arm increases the
conformational change caused by ATP hydrolysis and is respon-
sible for the binding of regulatory light chains like calmodulin.
The tail contains a coiled coil and a targeting domain contributing
to the enzyme specificity [210, 211]. Experiments of myosin
inhibition have been demonstrated with vanadate [210].
Myosin type II binds vanadium in Ser236, a critical residue for
the protein activity [211]. Vanadium also is related to myosin
type I and type IV [212]. Monomeric vanadate mimics the tran-
sition state for the phosphate hydrolysis [213], blocking myosin
by the ADP–phosphate intermediate state. Decavanadate also
inhibits myosin ATPase and Ca2+-ATPase [205–208].
Decavanadate induces the formation of the intermediate myo-
sin–MgATP–V10 complex blocking the contractile cycle, most
probably in the pre-hydrolysis state [211]. In fact, by blocking the
Ca2+ release, the contraction of the calcium pump and/or the
actomyosin release of the metabolites prevents the relaxation of
the muscle [211, 212].

Vanadate and Phosphate

Most of the investigation done so far with vanadium and
metalloproteins is directed towards the exploitation of the

similarity between the phosphate and vanadate groups. The
inhibition and stimulation of phosphate-metabolizing en-
zymes are commonly, and convincingly, traced back to what
is termed Bthe vanadate–phosphate antagonism,^ due to the
similar physiological behavior of the two anions. In general
terms, the vanadate and phosphate groups are indeed very
similar to each other: with a tetrahedral morphology and
almost-spherical outer-sphere charge distribution. The net ion-
ic charge of the main species present at pH 7 is, however,
different, − 2 in the case of phosphate and − 1 in the vanadate,
and this can result in distinct interactions with electrophilic
groups. There are other important differences, which are, at
least in part, responsible for the inhibitory effect of vanadate
towards phosphate-metabolizing enzymes. The main differ-
ences lie in the susceptibility of vanadate to (one-electron)
reduction as a consequence of the presence of energetically
low-lying d orbitals and coordination numbers larger than 4,
usually 5 and 6. This has a consequence of generating five- or
six-coordinated anions, the fixation of vanadate by coordina-
tion to functional groups provided by amino acid side chains
of the proteins [214, 215]. Structurally, vanadate can be a
competitor in sites commonly occupied by phosphate [216].
However, due to the different pKa, at physiological pH and
ionic strengths, vanadate is mostly present as either H2VO4

−

or HVO4
2−, depending on the pH (6.8–7.4), while phosphate

favors the HPO4
2− and H2PO

4− forms that exist in approxi-
mately equal amounts at the same pH range.

Kinases and phosphatases are enzymes that perform the
addition or removal of a phosphate group, respectively.
These enzymes modulate intracellular signaling pathways
triggering a cascade of different physiological effects. In bio-
logical systems, the level of phosphorylation in proteins works
as a balance resulting from the action of kinases and phospha-
tases. Thus, both types of enzymes have important roles in the
regulation of cellular processes.

Phosphatases

Phosphatases catalyze the hydrolysis of phosphate esters and
can be classified into two groups: serine-threonine phosphate
proteins (PSPases) and tyrosine-phosphate proteins
(PTPases), depending on the identity of the amino acid residue
in the catalytic site. The alkaline phosphatases, which have a
serine residue in the active site, hydrolyze phosphate mono-
esters groups from small molecules and proteins and catalyze
the transfer of phosphate to hydroxyl groups of organic mol-
ecules. In acid phosphatases, a histidine residue at the active
site is phosphorylated by the substrate and the phosphate
group also catalyzes the reaction. In both types, the reaction
mechanism of hydrolysis carried out by phosphatases in-
volves the formation of a 5-coordinate high-energy transition
state. These enzymes are inhibited by vanadate, which is often
considered to act as a transition state analog (TSA) of
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phosphatase-catalyzed reactions [217–220]. Vanadate is not a
specific inhibitor of all phosphatases but can be a potent in-
hibitor of the activity, because it can mimic the 5-coordinate
transition state of phosphate formed during the phosphatase
catalytic cycle. Vanadate can also cause cysteine oxidation at
the active site, thus, affecting the function of several PTPases
that require thiol-reducing agents for optimal activity
[221–224]. Likewise, it is accepted that during the dephos-
phorylation process, the cysteine of the active site is in the
thiolate state (RS-) and very susceptible to oxidation. This
phenomenon can occur by reaction with neighboring peptide
backbone atoms, inducing important conformational changes
in the active site. In both cases, the outcome is the inactivation
of the enzyme. The vanadate anion also shows a trigonal bi-
pyramidal geometry, coordinated by His in the apical position,
previously implicated in the hydrolysis with hydrogen bonds
between vanadate O-atoms and His-Asp (257 and 258 posi-
tion, respectively) suggesting that the former is involved in the
stabilization of the negatively charged transition state interme-
diate while the latter is assuring protonation of the substrate
during reaction mechanism. V5+ compounds form vanadate
complexes with both acid and alkaline phosphatases and
much of them act as enzymatic inhibitors [71, 225–228].

The PTPase proteins can dephosphorylate a large variety of
tyrosine–phosphoryl bonds, independently of the overall
structure of the substrate protein, so vanadate has been widely
used to study the reaction mechanism of these enzymes. Even
though some authors claim that vanadate is not a true substrate
analog [229, 230], several crystal structures of V5+

–PTP com-
plexes have been determined to provide important information
regarding transition state conformations and structural deter-
minants for catalysis [230–234]. Particularly, the protein tyro-
sine phosphatese 1B (PTP1B), a key enzyme in the insulin
signaling pathway, possesses two relevant TSA, a tyrosine site
where vanadate is bound similarly to the active site as the
phosphorylated tyrosine substrates (i.e., adopting a trigonal
bipyramidal geometry with the nucleophilic cysteine and the
tyrosyl oxygen in apical positions) [235] and a Cys-bound
vanadate [230]. Similar to the phosphoenzyme before the in-
organic phosphate release [236, 237], the oxoanion exhibits a
double distorted trigonal bipyramid containing a cyclic [VO]2
core [231]. However, as recently reported, vanadium bound to
phosphatases also shows a square pyramidal geometry [238].
The application of X-ray crystallographic data to map out the
structures and geometries in the phosphatase active site along
the energy surface of the phosphate ester hydrolysis has been
described. Hengge et al. collected the available structures to
investigate the reaction pathway for PTP1B using the CShM
method [231]. Briefly, the enzyme begins the catalytic cycle
as a free cysteine in the protein [239]. After binding the sub-
strate analog, in the form of a phosphorylated amino acid Tyr,
a Michaelis complex containing an unusually long bond be-
tween the cysteine and the vanadate is formed [231]. This

corresponds to the first 5-coordinate transition state on the
pathway where vanadium adopts a trigonal bipyramidal ge-
ometry. Some computational results suggest that in the transi-
tion state of the V–PTP1B complex, the V–S, and V–O bonds
adopt the 2.5 Å and 2.1 Å bond lengths, respectively [238].
The fact that vanadium forms protein complexes with these
unusual bond distances supports the possibility that the tran-
sition states may also present distortions to the umbrella con-
formations that are particularly favorable to catalyzing the
monoesters hydrolysis [240]. This may be related to the mech-
anism of phosphatases, where the explored transition states
are more prevalent than in enzymes catalyzing phosphotriester
or diester hydrolysis [241]. Inhibition of PTP1B by vanadate
has been demonstrated in vitro and in vivo studies and sub-
stantiated by using single-crystal X-ray diffraction and two-
dimensional 1H-15N NMR spectroscopic techniques. The
compounds that are mostly used for these inhibitory studies
are vanadyl sulfate or bis(maltolato)oxovanadium (BMOV)
[241]. Irrespective of the nature of the administered vanadium
species, the same compound with incorporated vanadate was
obtained, which adequately demonstrates that the active spe-
cies is the vanadate ion, formed by the elimination of the
ligands and the oxidation of V4+ to V5+. Likewise, EPR stud-
ies made evident the reaction between VO2+ and the residues
at the PTP1B active site that coordinate the vanadyl ion with-
out a coupled redox interaction. The preferred coordination
site of vanadium depends on the pH. Thus, the preferential
phosphatase binding site in an acid environment is via a his-
tidine residue, whereas in alkaline conditions, the coordination
occurs via a cysteine residue [240, 241].

The inhibition or activation of some phosphatases occurs
by the formation of analog compounds to phosphate esters as
in the case of vanadate esters. Vanadate esters are readily
formed in aqueous solutions. However, they are not particu-
larly stable species in these conditions since they are not only
readily hydrolyzed but also displayed formation constants in
the order of 10−1–1 M−1. The position of these equilibria de-
pends on vanadate concentration, ionic strength, and pH.

Kinases

Another important enzyme group where the effects of vanadi-
um have been extensively investigated are kinases, which are
responsible for the transfer of a phosphate group. In 1995,
Arvai and coworkers reported the complex formation of van-
adate and a human regulatory subunit of the cyclin-dependent
kinases (CDK) [242, 243]. Subsequent studies indicated that
vanadium compounds could also indirectly inhibit the activity
of CDK2 in cyclin-A and cyclin-B complexes inducing G2/M
phase arrest [244]. Mitogen-activated protein kinases
(MAPK), mainly ERK and p38, are also activated by vanadi-
um compounds resulting in G2/M phase arrest [245, 246].
Additionally, vanadate treatment triggers the phosphorylation
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of the retinoblastoma protein (pRb) and the release of the
transcription factor E2F1 that is a component of the down-
stream proliferative machinery regulated by protein kinase B
(PKB also known as Akt), which impacts cell growth, surviv-
al, and metabolism. Furthermore, vanadate increases Akt ki-
nase activity and causes its phosphorylation at Ser473 and
Thr308, consequently increasing the number of cells at the
synthesis (S) phase and transition from gap 1 (G1) to S phase
through the E2F-pRb pathway in normal C141 cells [247].
Other studies show that vanadium compounds stimulate ki-
nases in the signal transduction pathways used by insulin be-
yond the insulin receptor (IR) and the substrate IRS-1, and
secondarily, the phosphoinosidide 3 kinase (PI3K), Akt,
MAPK pathways (mainly, ERK pathways) together with the
activation of the S6 kinases, hence playing an anti-diabetic
and anti-lipolytic role, with concomitant insulin-like effects
[248–256]. Vanadate also stimulates the IRS-1 phosphoryla-
tion, the PI3K activity, the ERK signaling pathway, and the
p70s6k and p90rsk kinases independently of IR-tyrosine
phosphorylation, which in turn phosphorylate and regulate
the activity of several transcription factors related with cell
proliferation and glycogen synthesis [257–259]. Moreover,
the activation of the ras-MAP kinase signaling pathways by
the VOSO4 compound seems to depend on the activity of
PI3K [257, 260]. Vanadate may also cause some of the
insulin-like effects through the activation of a cytosolic kinase
(CytPTK) that stimulates lipogenesis and glucose oxidation
(via glycolysis and the pentose phosphate pathway) [253,
254]. The oxidation from V4+ to V5+ promotes the generation
of the pervanadate compound as an intermediate that triggers
glucose uptake by increasing autophosphorylation of the IR to
prevent its dephosphorylation. The pervanadate species also
acts as insulin enhancer, because it has the unique ability to
markedly increase the maximal cell responsiveness in the
stimulation of the glucose transport achieved at a saturating
insulin concentration [261–263].

Vanadium Signal Transduction Cascades
and Therapeutic Implications

The metabolic disorders of lipids and carbohydrates are
strongly linked to obesity development, insulin resistance,
type 2 diabetes mellitus (T2DM), dyslipidemia, hepatic
steatosis, and cardiovascular disease. All these complications
contribute to the puzzle called metabolic syndrome, which is a
series of conditions that when occurring together, increase the
risk of heart disease, stroke, and diabetes. Metabolic syn-
drome is a major problem of public health and an important
clinical challenge worldwide. The International Diabetes
Federation estimates that one-quarter of the world’s adult pop-
ulation has metabolic syndrome associated with overweight
and a high bodymass index that it is reflected in a higher body

fat mass, mainly distributed in the visceral adipose tissue
[264–267].

Vanadium Anti-diabetic Compounds in Animal
and Human Models

In this regard, vanadium compounds have emerged as possible
therapeutic alternatives to the current treatment of diabetes. The
first clinical trials using simple inorganic vanadium compounds
to treat diabetic individuals were performed in the 1990s
[268–270]. Subsequently, studies done to test the therapeutic
properties of more complex vanadium compounds such as
bis(2-ethyl-3-hydroxy-4-pyronato)oxovanadium(IV) (BEOV)
and bis(3-hydroxy-2-methyl-4-pyronato)oxovanadium(IV)
(BMOV) in streptozotocin-diabetic rats showed interesting
anti-diabetic benefits and improved efficacy when compared
to common inorganic vanadium salt such as vanadyl sulfate
[271–274]. Over time, BMOV has become the benchmark
compound against whichmany vanadium-based hypoglycemic
agents have been compared [271, 275]. Although very prom-
ising, diabetes-related studies of vanadium have some issues.
For instance, since BEOV and BMOV were described, the
literature frequently refers to vanadium compounds as insu-
lin-mimetics. However, the majority of the studies have only
shown hypoglycemic or hypolipemic effects. Moreover, dia-
betic models are mainly (STZ) induced, which are not always
able to attain complete insulin depletion, making the vanadium
therapeutic efficacy dependent on the severity of hyperglyce-
mia and residual insulin in the pancreas. Also, the STZ-induced
model causes not only beta cell necrosis but also DNA alkyl-
ation in different tissues. Furthermore, this murine model
causes severe cytotoxic effects related with the transport capac-
ity of glucose through the glucose transporters GLUT-2 and
GLUT-1 in the pancreas, liver, kidney, and brain, producing
tissue-specific cell death and structural and metabolic changes.
All these issues complicate the correct anti-diabetic evaluation
of vanadium compounds using this model [276–279]. The hy-
poglycemic potential of various vanadium compounds has also
been examined in models that present features similar to those
observed in types 1 and 2 diabetes mellitus. In models that
resemble type 1 diabetes, administration of polyoxovanadates
(e.g., decavanadate) improves serum glucose levels and glu-
cose tolerance, albeit the insulin deficiency improvement has
been demonstrated in a limited number of studies [92,
280–286]. Indeed, decavanadate has demonstrated to be more
efficient than BMOV in inducing glucose uptake in rat adipo-
cytes [287]. Vanadium therapy has also been investigated in
diabetic humans. In type 1 diabetes patients, oral administration
of sodium metavanadate and vanadyl sulfate in doses of 50–
125 mg/day during 2 to 4 weeks, improves fasting plasma
glucose levels and daily insulin requirements in type 1 diabetic
patients. Similar doses administrated to type 2 diabetes subjects
showed an increase in insulin sensitivity, reduction in fasting
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plasma glucose levels and glycosylated hemoglobin (HbA1c),
and alleviation insulin resistance, besides suppressing endoge-
nous hepatic glucose production [45, 268, 269, 288–291].

Physiological Determinants of Vanadium
Anti-diabetic Action/Effects

Vanadium and Type 1 Diabetes Mellitus

Remarkably, important elements in the vanadium mechanism
associated with glucose regulation are the glycogen synthesis
recovery, the uptake enhancement, and the utilization of glu-
cose; type 1 diabetes models treated with vanadium have
shown glycogen increase in muscle and heart, which suggest
an improvement in the insulin signaling pathway associated
with the reestablishment of the GLUT-4 expression; however,
the therapeutic dose must be finely managed [292, 293].
Studies in STZ-induced diabetic rats treated orally with either
vanadium coordination compounds (i.e., III-, IV-, and V-
chlorodipicolinate (Vdipic-Cl)) or inorganic vanadium salts
(i.e., vanadyl sulfate or sodium metavanadate) via drinking
water during 28 days showed significantly improved hyper-
glycemia and glucose intolerance. The animals also showed
increased hepatic glycogen synthesis and restored mRNA
levels of glycolytic enzymes in the liver such as phosphoenol-
pyruvate carboxykinase (PEPCK), glucokinase (GK), and L-
pyruvate kinase (L-PK), which are frequently altered in dia-
betic animals. While both types of vanadium salts and com-
pounds elicited anti-diabetic effects, the best results were ob-
served in rats administered with Vdipic-Cl [281].

Vanadium and Carbohydrates Homeostasis in Type 2

Diabetes Mellitus

In type 2 diabetes models (e.g., db/dbmice, sucrose-fed rats, fa/
fa Zucker rats), the administration of vanadium salts and vana-
dium compounds normalizes the glycogen synthase activity,
while in the non-diabetic controls, no alterations in the enzy-
matic activities were observed [294–297]. On the other hand, in
genetically modified mice (ob/ob), hepatic glycogen and gly-
cogen synthase activity was not restored, despite the normali-
zation of serum glucose level, which strongly suggests that
vanadium treatment in this particular model favors the de novo
lipogenesis because of an increase in body weight [298]. In this
context, BMOV treatment during 7 weeks in STZ-diabetic rats
failed to improve insulin-stimulated glycogen synthase activa-
tion in the skeletal muscle [299], whereas similar treatment
enhanced it in fa/fa Zucker rats [300]. Treatment during 4 and
8 weeks with the metformin-decavanadate compound in
alloxan-diabetic rats did not show significant amelioration in
the glycogen levels, while similar treatment in diabetic rats
induced by a hypercaloric diet displayed improvement in gly-
cogen concentration in the liver, muscle, and renal cortex (but

not in the heart and renal medulla) [91, 92]. Cell culture exper-
iments using mouse diaphragm, rat hepatocytes, rat diaphragm,
rat adipocytes, Chinese hamster ovary cells overexpressing in-
sulin receptor (CHO-HIR), and 3T3-L1 adipocytes showed that
the addition of vanadium salts and compounds also enhances
the glycogen synthesis [17, 249–251, 258, 301–304]. In
humans, vanadyl sulfate treatment (150 mg/day for 6 weeks)
caused a 1.5-fold enhancement of glycogen synthase fractional
velocity but failed to alter either basal or insulin-stimulated
glycogen synthase activity, which suggests that vanadium
could activate the kinases involved in the glycogen synthesis
without the necessity of insulin stimulus [45]. In addition to the
stimulatory action on glucose uptake and utilization, vanadium-
induced suppression of hepatic glucose output also improves
glucose homeostasis. Vanadium treatment decreases the over-
expression PEPCK and glucose-6-phosphatase (G6Pase) main
gluconeogenic enzymes [305–311].

Therefore, in both diabetic animals and humans, the admin-
istration of vanadium decreases the hepatic glucose produc-
tion [284, 285, 312], although discrepancies in this respect still
exist [45, 268, 269, 288, 289]. Finally, the direct biochemical
control of glucose homeostasis for vanadium treatments is
associated with the enhancement in glycolysis and glucose
oxidation as observed in isolated rat adipose tissue and hepa-
tocytes HepG2 cells [17, 281, 301, 313]. These effects are
attributed to selective stimulation of the pentose phosphate
pathway and concomitant production of fructose-2,6-
bisphosphate (Fru-2,6-P2), the main regulatory metabolite of
this pathway.

The effect of vanadate on the Fru-2,6-P2 levels displayed a
time and dose dependency [314]. Likewise, vanadate does not
modify the 6-phosphofructo-2-kinase and pyruvate kinase ac-
tivities, and it does counteract the inactivation of these en-
zymes induced by glucagon. Lastly, vanadate can increase
the production of both lactate and CO2 in hepatocytes from
STZ-induced diabetic rats; hence, behaving as a glycolytic
effector in these cells, this effect may be related to its ability
to normalize blood glucose levels in diabetic animals [315].

Vanadium and Lipids Homeostasis in Type 2 Diabetes

Mellitus

The novo lipogenesis is a natural pathway to control of glucose
levels, encouraging the triglycerides biosynthesis in the liver,
which is dependent on a correct insulin signaling on lipogenic
pathways. However, in insulin resistance, obesity, dyslipidemia
state, and diabetes mellitus, the hypertriglyceridemia and break-
ing of the balance between lipogenesis and lipolysis have been
observed as a common factor. Lipolysis in isolated adipose tis-
sue was normalized in vanadyl-treated diabetic animals [316,
317]. On the other way, in genetically modified type 2 diabetes
models, vanadium has demonstrated inconsistent results, prob-
ably linked to the genetic background. In Zucker fa/fa rats with
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vanadium treatment, the FFA levels did not change [318]. In a
systematic investigation of the anti-diabetic properties and anti-
lipolytic effect of non-oxide V4+ complexes, results showed that
vanadium compounds did not cause any inhibition of free
fatty acid (FFA) fluxes [81]. Along these lines, the water-
soluble 3-hydroxy-4-pyridinonato oxidovanadium(IV)
complexes proved to be insufficient to inhibit FFA release;
however, the complex bis(3-hydroxy-1(H)-2-methyl-4-
pyridonato)oxidovanadium(IV) was able to inhibit FFA re-
lease to a larger extent than vanadyl sulfate [319].
Bis(allixinate)oxovanadium(IV) which contains allixin, a
garlic component, has demonstrated a high in vitro
insulin-mimetic activity regarding FFA release in isolated
adipocytes from type 1 diabetic mouse model, after both
intraperitoneal injections and oral administrations [320]. Yet,
the decavanadate administration has shown the best lipid regula-
tion. Previous studies showed that hexaquis(benzylammonium)
decavanadate ((C7H10N)6[V10O28]·2H2O or B6V10 for short), a
conjugate salt of benzylamine and decavanadate, can normalize
the plasma concentration of non-esterified fatty acids after a
chronic administration in severe diabetes rat or mouse
models [17]. Moreover, the putative anti-lipolytic actions
of B6V10 in murine and human adipocytes tested with in-
creasing doses of 0.1 to 100 μmol/L on the triglyceride
breakdown (lipolysis releasing of FFA and glycerol) dem-
onstrated its efficient anti-lipolytic activity. Lipid-lowering
and metabolic regulation activity of metforminium
decavanadate (H2Metf)3[V10O28]·8H2O (MetfDeca) was al-
so observed in insulin-requiring and non-insulin-requiring
animal models [91, 92]. Lipid metabolism behavior sug-
gested an improvement in tissues, specifically about
energy-obtaining mode because the rates of hepatic triglyc-
eride synthesis from fatty acid esterification are dependent
on substrate flux and independent of the circulating plasma
insulin concentrations. Thus, when serum FFA diminishes
liver lost flux of prime matter to build triglycerides, results
strongly suggest that MetfDeca induced lipidic burning, as
in T2DM model [321, 322]. Furthermore, sodium
metavanadate and vanadyl sulfate decreased plasma choles-
terol levels in humans without alteration of either plasma
free fatty acid or triglyceride fractions [45, 268, 288, 289].
Vanadate has also been shown to reduce total and free cho-
lesterol levels in normal subjects, which may be due to in-
hibition of the steps involved in cholesterol biosynthesis
[323, 324]. In isolated hepatocytes [325] and adipocytes
[158], sodium metavanadate modulated lipid metabolism
by stimulating lipogenesis and suppressing lipolytic
activity.

Vanadium and Insulin Signaling in Diabetes Mellitus

One of the most studied signaling cascades linked to vanadi-
um compounds is the insulin-activated pathway associated

with phosphatase inhibition, mainly PTPases. In healthy sub-
jects, the receptor and specific insulin-response substrates are
phosphorylated after insulin binding, but in diabetes mellitus
(type 1 or type 2), there is an insufficient or anomalous re-
sponse of the cellular insulin receptors to the hormone and
therefore to the signal transduction cascades. At the molecular
level, most of the effects observed in the presence of vanadi-
um occur through IRS-1 phosphorylation due to the potent
PTPases inhibitory properties of vanadium salts (Fig. 5)
[229–234, 326]. A major intracellular target for vanadium is
the PTP1B, which regulates the phosphorylation process be-
tween the insulin receptor and its substrate IRS. Inhibition of
PTP1B activity allows the insulin receptor (IR) to remain ac-
tivated, that is, to retain the tyrosine phosphorylation of the
IR-β subunit [278, 327, 328]. Therefore, it has been suggested
that by preventing dephosphorylation of the IR-β subunit,
vanadium may ameliorate the activity of IR protein tyrosine
kinase (PTK).

Vanadium treatment has also been proposed as a modulator
of mitogen-activated protein kinases (MAPK) pathways (see
Fig. 5). Pandey and coworkers demonstrated that vanadyl sul-
fate treatment resulted in an increased level of tyrosine phos-
phorylation of ERK 1/2, stimulation of MAPK kinase (MEK)
and C-raf-1 activities, and activation of p21ras and ribosomal
protein 6 kinase (S6K). Also, wortmannin and LY294002, two
structurally and mechanistically different inhibitors of PI3K, can
block the vanadyl sulfate-mediated increase in MAPK activity
and phosphorylation of ERK 1/2 and S6K. These results sug-
gested that the vanadyl sulfate mechanisms are mediated by the
PI3K-dependent stimulation of the ras-MAPK and S6K path-
ways [258, 329, 330]. Isolated rat adipocytes treated with 1 mM
sodium vanadate displayed a rapid stimulation of the MAPK
activity, through both a PI3K- and MEK-dependent pathway.
However, if the cells were previously treated for 5 min with
1 M okadaic acid, an effective inhibitor of MEK and MAPK
through the inactivation of PP2A, a poor stimulation of MAPK
was observed after vanadate treatment. Simultaneous addition of
insulin and vanadate does not result in an additive effect, neither
on MAPK nor in MEK, strongly suggesting that insulin and
vanadate use the same signaling pathway from PI3K to MEK
andMAPK [253, 254, 331]. There is only one study that reports
possible inhibition of MAPK-specific tyrosine phosphatases by
vanadium compounds. An oxovanadium glutamate complex,
Na2[V(IV)O(Glu)2(CH3OH)]·H2O, showed potent inhibition
against four human PTPs (PTP1B, TCPTP, HePTP, and SHP-
1)with IC50 in the 0.21–0.37μMranges. However, only PTP1B
presented a typical competitive inhibition. The vanadium inhi-
bition mechanism for other phosphatases remains not clear
[332]. It has been found that the proliferation of certain cells
(chondrocytes VSa13 cells) is stimulated by vanadate through
the activation of the MAPK pathway, even in the presence of
wortmannin or PD98059 [333]. However, in fish preosteoblast
cells, vanadate treatment did not stimulate cell proliferation
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through the MAPK pathway, but vanadate inhibited cell
differentiation/ECM mineralization through the same mecha-
nism that IGF-1 [333]. Decavanadate exhibited less efficiency
than vanadate, but in longer treatments, similar effects were
produced for both metavanadate and decavanadate solutions,
stimulation of cell proliferation, and strong impairment (75%)
of extracellular matrix (ECM) mineralization [334]. MAPK
pathway in humans, animal models, or cells has been poorly
studied; however, as it has been exposed, these pathways are
strongly linked to insulin resistance, metabolic syndrome, car-
diovascular diseases, and diabetes mellitus. Due to its effective
activity as phosphatases inhibitor, it is possible that vanadate
treatment stimulates both MEK and MAPK phosphorylation.

Vanadium: Inflammation and Redox Balance in Diabetes

Mellitus

Vanadium compounds can interconvert into different species
in living systems. This will occur primarily in the presence of
reactive oxygen species and redox balance due to a Fenton
mechanism [185]. Likewise, slight-generation of ROS is
linked to the insulin signal transduction pathway [335].
Therefore, vanadium complexes could produce small amounts
of ROS and enhance insulin signaling. The mimic insulin
activity has been observed in some peroxovanadium

complexes through ROS generation [14, 336–338].
However, if the ROS generation is too high, a decrease in
insulin signaling might occur and its insulin mimic activity
can be lost [336, 338, 339]. Vanadium itself may trigger oxi-
dative stress at the cellular level, commonly by excessive ad-
ministration of vanadium (higher than 5.0 mg/kg) [338–342].
Oxidovanadium (+ 4) and (+ 5) act as ROS generators such as
peroxide, superoxide, hydroxyl radicals, and singlet oxygen
[343]. Vanadate-dependent NADH oxidation associated with
plasma membranes has been found to generate H2O2 [191].
Formation of H2O2 induced by vanadate has been shown to
mediate apoptosis through the activation of p53 [344]. In p53-
defective cells (tumor cells or non-tumor p53-knock out cells),
vanadium compounds inhibit the cell cycle and induce apo-
ptosis [345]. Activation of NF-κB by ROS generated by va-
nadium compounds enhances the apoptotic effect [346]. In
contrast, in p53-functional cells, apoptosis is not shown [347].

Additionally, when cells or tissues are suffering from
oxidative stress, MAPK can mediate the phosphorylation
of nuclear factor erythroid 2 like 2 (Nrf2l2) and cause a
disruption of Kelch-like ECH-associated protein 1 (Keap1)
[348], which increases the expression of detoxifying en-
zymes, such as glutamate-cysteine ligase catalytic subunit
(GCLC), heme oxygenase-1 (HO-1), and NAD(P)H qui-
nine dehydrogenase 1 (NQO1) [349, 350], thus alleviating

Fig. 5 Insulin resistance mechanism and potential sites of vanadium
activity. Red dashed arrows indicate changes in phosphorylation
sequence of the insulin signaling cascade. Red solid lines imply
inhibition of the signaling or actions. Red crosses indicate loss of
action. Purple boxes represent gluconeogenesis activation. Yellow

boxes depict the free fatty acid uptake. Blue boxes indicate over-
stimulation of SREBP1c. Orange boxes represent the MAPK pathway.
Red boxes are critical phosphatases. Blue boxes show inflammation path-
ways. Black boxes with yellow V are critical points or potential sites of
vanadium activity
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oxidative stress. Accumulating evidence indicate that va-
nadium compounds modulate the extent and duration of
phosphorylation of some proteins, such as MEK-1, ERK
1/2, JNK, TNF-α, and NF-κB [251, 260, 351, 352], key
effector proteins of the signaling pathways linked to the
production of ROS and DNA damage. Activation of cell
signaling pathways is mediated through regulating phos-
phorylation and dephosphorylation of proteins critical for
signal transduction. Both, inactivation of phosphatases and
activation of phosphokinases, lead to the generation of
second messengers, the activation of downstream kinases.
Inorganic salts of vanadium can activate phosphotyrosine
phosphorylases of the ERK, c-Jun N-terminal kinase/
stress-activated protein kinase (JNK/SARK), and p38,
mainly by the oxidative stress increase, which is activated
by a variety of stimuli and different cellular stresses such
as insulin resistance, metabolic syndrome and diabetes
mellitus [260, 351, 353, 354]. Both the ERKs and the
JNK/SARK signaling pathways have also been implicated
in NF-κB activation [355]. In type 1 diabetes mellitus
NF-κB activity leads to β-cell dysfunction and death by
apoptosis. Some studies have revealed that more than 66
genes are modified in the β-cell upon exposure to these
cytokines. The activation of NF-κB can trigger pro- or
anti-apoptotic cascades [356], but in β cells, the action is
predominantly pro-apoptotic [357, 358]. NF-κB first be-
came a chief suspect in the development of insulin resis-
tance and type 2 diabetes after the milestone discovery that
the anti-inflammatory agent, aspirin, inhibits NF-κB and
prevents degradation of the NF-κB inhibitor, IκB [359, 360].
Although NF-κB is not directly involved, its participation is
very important in metabolic disorders, because NF-κB is in-
volved in increases in chronic liver inflammation, mimics
high-fat diet or obesity-induced insulin resistance, and in-
creases pro-inflammatory cytokines such as TNF-α, IL-1,
and IL-6 levels, which are critical in the development of insu-
lin resistance or survival cell signaling [361]. In this way,
vanadium compounds such as bis(maltolato)-oxovanadium
(IV) induce NF-κB nuclear translocation and apoptosis in B
lymphocyte cell lineages but enhances the activation and sur-
vival of Tcells [362]. Meanwhile, vanadate (V), vanadyl (VI),
bis(maltolato)oxovanadium (IV), and bis(maltolato)dioxo-va-
nadium (V), all being promoters of MAPK and NF-κB, stim-
ulated cell growth at low concentrations, but inhibited it at
high concentrations, and induced distinct changes in cellular
mo rpho l ogy, f o l l ow ing ove r n i gh t i n cuba t i on .
Bis(maltolato)dioxo-vanadium (V) is the least cytotoxic and
the weakest inducer of morphological changes at low concen-
trations (10 μM), displaying a phosphorylation pattern similar
to that of insulin [363]. Also, the bis-peroxovanadium (bpV),
a potent PTPs inhibitor, activates NF-κB in human T lympho-
cytes without cell death [364]. Therefore, the results suggest
that a balance between tyrosine kinases and tyrosine

phosphatases establishes whether a cell will survive or under-
go apoptosis. Moreover, the activation of cellular signaling
pathways seemsmainly to converge into NF-κB nuclear trans-
location and the transcription of either apoptotic (lethal) or
anti-apoptotic genes. Researchers must provide substantial ev-
idence for the chemical properties and biochemical effects of
vanadium compounds in different cells or tissues in which
vanadium has selective effects on metabolic control, survival,
proliferation or apoptosis.

Final Remarks

A large number of vanadium compounds have been syn-
thesized and characterized as potential therapeutic agents
for the treatment of diabetes mellitus, cancer, and diseases
caused by parasites, viruses, and bacteria and are also
proposed as anti-thrombotic, anti-hypertensive, anti-ath-
erosclerotic, and spermicidal agents. In the present work,
we focused on no transmissible chronic and degenerative
diseases such as dysglycemia, dyslipidemia, insulin resis-
tance, metabolic syndrome, and diabetes mellitus, because
of its relevance worldwide. However, until now, no vana-
dium compound has proven to be efficacious for long-
term use in humans, and only the bis(2-ethyl-3-hydroxy-
4-pyronato)oxovanadium(IV) (BEOV) reached phase II in
clinical trials. Consequently, the therapeutic dose of vana-
dium compounds is not well defined yet. The BEOV
doses planned for a phase II clinical trial were 20 and
40 μg/day in patients with type 2 diabetes. Still, the min-
imal and maximal therapeutic dosage remain without be-
ing defined, which establishes a problem because of few
works present an effective dose 50 (ED50), maximal dose,
toxicological dose, and lethal dose which are key param-
eters to define the feasibility of a pro-drug could become
a medicine. In animal models, the therapeutical dose in
which vanadium acts as insulin-mimetic is high (0.5–
1 mM). Importantly, the decavanadates show an important
reduction in the level to a μM range. There are still many
challenges in the use of vanadium compounds to treat
diabetes. To date, not many investigations about action
mechanisms, pharmacokinetics, pharmacodynamics, and
posology have been generated. Likewise, the research
model used in each study complicates the dosage, since
each model possesses some features related to the meta-
bolic diseases but not all of them. In this sense, the re-
searchers must establish frameworks and restrictions if the
model was induced by STZ, alloxan, high diets in carbo-
hydrates or lipids, genetic modifications, or simply no
diabetic animals. Some studies with vanadium compounds
in cell cultures can help to elucidate with precision the
potential sites of vanadium action. However, in vivo, be-
cause the microenvironment does not provide all
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metabolic pathways, toxicology, and detoxification be-
tween tissues, the effects observed are not necessarily
the same. Additionally, the dosage used in cell cultures
is not scalable because it would be in toxic ranges for
its administration.

Another issue is that most of the time less than 5% of
vanadium ingested orally is absorbed. In humans, it is es-
timated that only 0.13% to 0.75% of ingested vanadium is
absorbed, while around 2.6% is absorbed in rats. Also, the
effect of other dietary components, the form of vanadium
in the stomach, and the speed at which it is transformed
into V4+ probably affect the percentage of vanadium
ingested/absorbed. In this sense, several works have dem-
onstrated that vanadium compounds may result in other
compounds or forms under different physiological condi-
tions. Vanadium speciation is a matter of stability in bio-
logical media, due to synthetic chelators, biogenic ligands,
or functional carriers. Thus, vanadium possesses a high
ability to change oxidation states or ligands depending on
the physiological environment (aqueous conditions, ligand
concentration, pH, oxidative or reductive agents, and com-
petition with other metals). However, most studies that
approach the biological activity of vanadium compounds
omit the possible speciation in the stomach, gut, and se-
rum, as well as the concentration in blood of the original
pro-drug. One way to solve this issue could be the use of
nanomaterial-based platforms (nanomedicine) that could
improve the dosage, selectivity, mechanism of action,
posology, toxicological effect, etc., of vanadium-based
therapeutics. Intracellular speciation is another critical
point of the biological actions of vanadium. Vanadium spe-
ciation has been linked to redox balance and oxidative
stress of cell and tissues. The redox properties of vanadium
are determinant to its pharmacological effects because it
can inhibit or stimulate proteins (mainly enzymes), traced
back to what is termed Bthe vanadate–phosphate
antagonism.^ The enzymes most studied are phosphatases,
such as PSPases and PTPases, but in metabolic diseases
also affects glucose-6-phosphate dehydrogenase, nicotine
adenine dinucleotide, adenosine diphosphate, nucleoside
triphosphate diphosphohydrolases, phosphodiesterases,
phosphoglucomutases, and ATPases. PTP1B has been
deeply studied since this enzyme is directly involved in
the insulin signaling and vanadium compounds are com-
petitive inhibitors, which makes it a potential therapeutical
target. Furthermore, as was exposed, insulin has multiple
biological actions and different convergence pathways
with other hormones, biogenic peptides, neurotransmitters,
cytokines, and interleukins. Therefore, to study the vana-
dium activity on PTPB1 is just a Breductionist^ way since
there are multiples options for the inhibition or activation
of vanadium on kinases and phosphatases that take part in
the metabolic and signaling cascades routes.

Although there are skeptical views on the role of vanadium
compounds in the treatment of diabetes, mainly due to long-
term toxicity [35], it is, without doubt, a fascinating field of
research.

Finally, the investigations into vanadium chemistry (after
almost 200 years of its discovery) are not completely under-
stood. From the biological perspective, we know that vanadi-
um compounds have a great potential in the treatment of many
types of diseases. However, we must first understand in detail
the mechanisms of transport, therapeutical targets, pharmaco-
kinetics, and pharmacodynamics, for the better and more effi-
cient design of the vanadium-based drugs.
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