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Abstract

Tunable materials are paving the way towards improved functionality of metamaterials. 
Vanadium oxide (VO

2
) with its prototypical near-room-temperature transition between 

phases featuring greatly contrasting electrical and optical behavior is an appealing can-
didate as an active component in metamaterials. However, it is seldom known that VO

2
 

in itself has metamaterial characteristics. VO
2
 under certain temperature conditions dem-

onstrates a phase coexistence enabling highly tunable electrical and optical properties. In 
this chapter, we describe how VO

2
 in its hysteretic region behaves as a smart responsive 

Metasurface with cutting edge applications.

Keywords: metasurfaces, smart metamaterials, vanadium oxide, semiconductor to 
metal transitions

1. Introduction

The ability to tune, alter and switch the properties of materials is rarely offered by nature. 
Smart materials are a special class of materials that have the ability to alter and change their 

behavior depending on external stimuli. Metamaterials are artificially engineered materials 
featuring properties that are not readily available in nature, and which might sound non-

intuitive. This includes surfaces with changing refractive index achieved by modifying the 

plasmon resonances of the nanostructures, or metal structures on thin dielectric layers, which 

the properties can be controlled by external stimuli. “Phase change” materials are the quintes-

sential part for such a smart switching behavior [1].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chalcogenides are used in optical recording media for several decades, providing efficient 
and reproducible changes in optical properties in response to phase transition. This function-

ality is the result of phase transitions from crystalline to amorphous states and is typically 

triggered by a thermal, electrical or optical stimulation. Nanoscale electro-optical metamate-

rial switch using chalcogenide materials has also been demonstrated [2–6].

Switchable metamaterials based on arrays of micro- and nanoelectromechanical (MEMS/

NEMS) systems were also being developed. Typical metamaterials consist of arrays of metal 

structures called as split ring resonators (SRR). These structures are typically much smaller 

than the desired operating wavelength and are embedded in a dielectric material. In simple 

terms, the unit cell of the SRR array is designed to be an inductor-capacitor (LC) circuit, where 

the gap between the two ends acts as a variable capacitor or inductor as a function of the 

frequency [1].

Active metamaterial designs are focused on changing the capacitance in the SRR gap to modu-

late the amplitude of the resonance. Integrating materials with tunable electrical or optical 

properties into SRR allows a further control over the resonant response in metamaterials [7–11]. 

Consequently, phase change materials are promising candidates as they exhibit a dramatic 

change in their electrical and optical properties resulting from a structural phase transition 

[12]. When paired with SRR like Metasurfaces, they can enhance the functionality multifold. 

Figure 1 shows a non-exhaustive list of phase change materials plotted against their phase 
transition temperatures. Interestingly oxides of vanadium form a significant number among 
them and VO

2
 in particular has the nearest transition to room temperature. This motivates 

the immense research and investigation over VO
2
 for its electrical and optical properties [13].

Figure 1. A non-exhaustive list of various phase change materials plotted against the temperature at which they undergo 
semiconducting to metallic phase transition (T

MI
).
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2. Semiconductor to metal transition in vanadium oxides

Many vanadium oxides show semiconductor to metal/metal to insulator transition SMT/

MIT characteristics. These include VO
2
, V

2
O

3
 and most of the so called magneli phases [14]. 

Figure 2(a) shows the electrical resistivity versus temperature for several oxides of vanadium, 

including VO
2
 and V

2
O

3
. While V

2
O

3
 has the biggest change in resistivity the low temperature, 

at which this transition takes place hinders its choice for practical applications. VO
2
 on the 

other hand is suited better and can be manipulated under ambient conditions, since its SMT is 

Figure 2. (a) Semiconductor to metal transition in several vanadium oxide phases and (b) changes in the electronic 

properties and lattice structure (V blue; O red) of VO
2
 during its SMT. Above 67°C (hot state), lattice vibrations (phonons) 

lead to a rutile tetragonal system with freed up electrons (yellow) making VO
2
 behave as a metal. Once the temperature 

is lowered (cold state), VO
2
 becomes insulating due to the localization of electrons in the distorted monoclinic structure.
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nearest to room temperature [15]. Figure 2(b) shows the schematic representation of the VO
2
 

crystal during the phase transition from semiconducting monoclinic to metallic rutile phase.

In single crystals, the resistivity change reaches a factor of 105 over a very short temperature 

range [16]. Hysteresis associated with this transition is of about 3 K. The large electrical con-

ductivity change and the narrow hysteresis are very good indicators of the VO
2
 quality. Small 

stoichiometry deviations affect substantially the sharpness of the transition and increase the 
hysteresis width. The crystalline state of the material has an influence as well; typically, poly-

crystalline materials have a broader transition than single crystals. The transition temperature 

also depends on the crystalline state and oxygen stoichiometry [17].

3. Responsive metamaterials with VO
2
 as an active component

The Split-ring resonators SRR are the most common and best characterized implementation of 

electromagnetic metamaterials. They respond resonantly to in-plane electric fields, and out-
of-plane magnetic fields. SRR’s are the basis for many metamaterial designs due to the ease 
of fabrication and modeling. Each SRR has a distributed inductance, and capacitance, arising 

from the built-up charge at the notch. The choice of materials and the resonator dimensions 

determine the resonant frequency of the metamaterial [18].

Tunability of metasurface and the ability to reconfigure metadevices have attracted an 
immense amount of research in recent years. While the hunt for new kinds of metamaterial is 

still ongoing, the ability to tune and reconfigure existing metamaterial devices has attracted a 
significant amount of interest. Tunable metamaterials based on nonlinear components depend 
on the aspect of tuning the constituent materials. Several nonlinear materials, like phase 

change materials, liquid crystals, and III–V semiconductors etc., are readily available for real 

world applications and some of them are compatible and complementary with the mature 

metal–oxide–semiconductor (CMOS) fabrication technology. The present article describes 

one such nonlinear phase change material VO
2
, and its application in tuning metadevices and 

later demonstrating that VO
2
 can act as a metamaterial in itself [19].

Recent developments in so called hybrid SRR configurations involving VO
2
 as a key com-

ponent has attracted a lot of attention (Figure 3a). The interaction of the VO
2
 and SRR layers 

makes this hybrid metamaterial interesting. The VO
2
 film, thus, becomes an integral part of 

this effective material layer, due to its close proximity to the SRRs and thin size compared 
to periodic nature of the array. Resulting in a hybrid metamaterial that mixes the proper-

ties of vanadium oxide with discrete SRR array. Hybrid metamaterial devices operating at 

THz frequencies were fabricated by combining double SRRs with phase changing VO
2
 films. 

By thermal triggering of the resistivity change of VO
2
, the behavior of the SRR gap can be 

adjusted from capacitive to resistive in order to modulate the THz beam transmission at their 

resonance frequencies [20–23].

The concept of Infrared adaptive camouflage, is an additional example of metamaterials-based 
on the infrared reflection property of VO

2
. Due to the negative thermal emittance property, 
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a heated VO
2
 coating above the transition temperature appears to be colder relative to the 

surroundings. This unique property was proposed to develop smart clothing when fabrics are 

weaved with VO
2
 networks as shown in Figure 3c [24, 25].

Another interesting advancement in the use of metasurface (Figure 3b) is the concept of pla-

nar metalens [26, 27], which are optically designed Metasurfaces for wave Front Engineering. 

These devices can provide local phase, amplitude and polarization control of light along 

the surface using optical resonators. With such metasurface a new class of flat, compact and 
broadband components such as lenses and polarizers can be realized beyond conventional 

diffractive optics. Patterned subwavelength metallic Nano antenna arrays can provide the 
basis for optical devices with sub-wavelength thicknesses.

4. Vanadium oxide (VO
2
): A metamaterial in itself

Considering VO
2
 as a classic metamaterial may appear inappropriate to a certain degree. 

However, if we draw the attention to the intermediate region near the vicinity of the SMT, 
there is a naturally occurring disordered state. This disordered state, which comprises both 

semiconducting and metallic phases, is highly tunable and responsive. The percentage or the 

Figure 3. (a) A hybrid metasurface with gold SRR fabricated on top of a phase change material (VO
2
). Here VO

2
 is the 

active component of the metasurface. (b) a planar meta lens that is made of precisely fabricated structures on size with 

the order of the wavelength of the incident radiation and (c) apparent cooling of the VO
2
 coated cloth on the right even 

after heating above the 70°C. Image reproduced with permissions form the original publisher.
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phase fraction of one in respect to the other is highly controllable and tunable via external 

stimuli. This particular state of VO
2
 is called the naturally occurring disordered metamaterial, 

and was previously termed differently by various authors.

One of the early descriptions of the nature of the material in the range of phase co- existence 

was proposed in 1996 [28]. Authors have described the transition state as an “Inhomogeneous 

composite medium” composed of metallic and insulating grains. Using a “composite medium 

model” authors simulated the formation and clustering of the metallic domains. When the 

temperature (T) exceeds the transition temperature (T
c
) the conducting clusters grow and 

form conducting paths throughout the film (percolation) as shown in Figure 4.

Later Kim et al. referred to the same region of phase co-existence as “monoclinic and corre-

lated metal” (MCM) in 2006 [29], while Qazilbash et al. named it “strongly correlated metal” 

(SCM) [30]. The shaded region in Figure 4(ii) represents this state in VO
2
 over a finite tem-

perature range in the transition region.

Kats et al. [31, 32] coined the term “naturally disordered metamaterial” and put forward the 

following arguments.

1. In the VO
2
 transitional state, the film comprises nanoscale structures of metallic- and insu-

lator-state VO
2
, and the resulting medium behaves as a “tunable disordered metamaterial.”

2. Metallic puddles of nanoscale dimensions emerge inside the dielectric phase of VO
2
, these 

puddles then grow and coalesce, eventually leading to a fully metallic state upon transi-

tion. The size of these metallic puddles is of the order of infrared frequencies. Temperature-

sensitivity of these metallic structures allows for a control of the ratio between metallic and 

semiconducting phases, thus VO
2
 can be viewed as a “natural, reconfigurable, disordered 

metamaterial” with variable effective optical properties across the phase transition”

Figure 4. (i) Schematic diagram of the phase change in the VO
2
 film. The metallic domains nucleate sporadically (a) 

and as the temperature approaches T
C
 (b), the domains grow larger and cluster. Percolation occurs above T

C
 (c). (ii) the 

phase diagram of VO
2
 and the resistance-temperature curve showing the insulator-to-metal transition. The shaded area 

highlights the strongly correlated metal (SCM) region. Image reproduced with permissions form the original publisher.

Metamaterials and Metasurfaces156



3. The co-existence of metallic and insulating phases during the phase transition results in 

widely tunable optical properties. Here manipulating the naturally occurring nanoscale 

metallic structures in the SMT region can be imagined as a “reconfigurable disordered 
metamaterial”. One key application for such transition is tunable optical switching in the 

NIR region.

Lastly Zhang et al. [33] described the growth of metal nanoparticles in a dielectric matrix 

as aperiodic or disordered yet still offering the functionality of near “perfect metamaterial 

absorbers” (PMA). Authors successfully show that neither ordered lithographical nanostruc-

tures nor self-assembled colloidal magnetic nanoparticles are necessary to attain “control-

lable metamaterials” as surfaces with controlled-reflectance or tunable PMAs (Figure 5).

The similarity between the surface structure of materials shown in Figures 4(i) and 5(ii) is 

striking. This and the most recent investigations legitimate, to our sense, the description of 

vanadium oxide operating in the narrow window of the phase co-existence as a disordered 

metamaterial. The following sections will emphasize few ways in which VO
2
 metamate-

rial region can be used to demonstrate some key application possibilities utilizing its high 

responsivity.

Figure 5. (i-a), Illustration of a near perfect metamaterial absorber (PMA) with random non-prefabricated metal nano 

particles. (i-b), Cross-sectional view of the PMAs with random Au-NPs layer constructed on the ZnO/Ag bi-layer 

structure [33]. (ii) Infrared images of VO
2
 undergoing phase transition in the metamaterial region, showing the 

formation, percolation and coalescence of the metallic puddles (blue dots). The emissivity of the surface decreases on 

phase transition due the IR reflecting property of the rutile VO
2
. Image reproduced with permissions form the original 

publisher.
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4.1. Temperature controlled electrical resistivity switching

The disordered metamaterial state of VO
2
 is very stable [34], as long as the surface is main-

tained at a constant temperature within the hysteresis region. The phase fraction of semicon-

ducting to metallic remains undisturbed. Subsequently, it is effectively conceivable to balance 
out the metamaterial at any level inside the hysteresis band by controlling the temperature. A 

useful utilization of this behavior could be a thermally triggered electrical switch [35], which 

may work by providing tiny yet instantaneous heat pulses as well as cooling pulses of small 

amplitudes of the order of (1–3 K). These temperature inputs convey the metamaterial to cycle 

between resistive “Off” and conductive “On” states while keeping a similar base temperature 
around the phase transition window.

Thermally controlled electrical resistivity switching behavior of VO
2
 is displayed in Figure 6. 

At a constant temperature of 67°C, VO
2
 films are stabilized at the disordered metamaterial 

structure. This temperature is provided using a heating stage while simultaneously moni-

toring the electrical resistance. This highly resistive state is considered as an “off” state. A 
quick heating pulse of ΔT ~ 3 K drives the coalescence of the metallic rutile domains, to make 

the film conducting. Soon after which it is retained by the stabilization of the temperature 
at 67°C. This difference in temperature arises from the hysteretic temperature difference 

Figure 6. Thermally-driven switching of the VO
2
 disordered metamaterial. The “off” and “on” states are determined 

by the sudden drop or increase in electrical resistance because of small changes in the temperature given in the form of 

thermal activation pulses as shown in the inset. Image reproduced with permissions form the original publisher.

Metamaterials and Metasurfaces158



between the forward and in reverse phase transition temperatures because of hysteresis 

width as detailed schematically in Figure 6. The metamaterial is driven to a high resistance 

“off” state by providing a cooling pulse, which encourages the shrinkage and confinement 
of the metallic domains. Consequently, the metamaterial features a resistive semiconducting 

behavior even when it relaxes back to 67°C. Hence, tiny accurate temperature inputs are reli-

ably implemented for abrupt resistivity switching of VO
2
. The strength of the thermal pulse 

has a direct impact on the response of VO
2
 metamaterial. This kind of temperature inputs in 

the form of short pulses allows VO
2
 to achieve a highly resistive “off” state or conducting “on” 

state at the same steady state temperature. Furthermore, the resistance switching profiles can 
be altered by providing the VO

2
 films with varying cold and hot temperature pulses as illus-

trated in Figure 7.

Using stronger thermal activation pulse as shown in Figure 7(i) allows the “on” and “off” 
states of the system at points (b) and (c) respectively, take benefit of enhanced resistivity 
change. Whereas a weaker thermal activation pulse as shown in Figure 7(ii) dampens the 

Figure 7. The schematic of thermal switching process based on the hysteresis curve. The result of implementing two 

different amplitudes of the thermal activation is illustrated in (i) and (ii). c → a → b: Cooling pulse; b → d → c: heating 

pulse. Image reproduced with permissions form the original publisher.
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amplitude of switching. This enables better control of the metamaterial to program almost 
any desired switching pattern. Such an extent of adaptability demonstrates the usability 
and unwavering quality of this thermally activated electrical resistivity switching in VO

2
 

metamaterial.

It is worth noting that sharp transition with a minimal hysteresis width of ΔT = 3 K is neces-

sary to attain high switching amplitude while implementing a small thermal activation. The 
effectiveness of such metamaterial will substantially enhance, provided a reliable approach 
is developed for the tuning of the SMT temperature without affecting its quality in terms of 
amplitude, sharpness, and hysteresis width.

4.2. Negative thermal emissivity control and smart cermet concept

Thermally triggered emissivity modulation is emphasized in this section. The low tempera-

ture semiconducting phase of VO
2
 features high thermal emissivity and infrared transmis-

sion. This transition occurs in a narrow temperature range of (64–68°C) where VO
2
 films 

have the coexistence of both metallic and semiconducting phases. This, kind of disordered 

metamaterial state is similar to a cermet. With the increase in temperature, metallic inclusions 

nucleate and grow inside the dielectric (Semiconducting) phase [30, 35, 36]. Therefore, a con-

cept of “smart cermet” with tunable optical properties based on disordered VO
2
 metamaterial 

is introduced.

The concept of tunability is addressed by accurate temperature dependent control of the 

dimension and density of metallic particles in the dielectric matrix, which result in the varia-

tion of emissivity of the coating. An interesting aspect of VO
2
-based smart cermet is that, 

both metallic and dielectric entities are composed of one and the same material albeit at two 

different phases. Hence, just a singular layer of VO
2
 can be engineered to express (i) a fully 

dielectric state, (ii) a variable state with metallic inclusions embedded in the dielectric matrix, 

or (iii) a complete metallic state by simple temperature adjustments. This kind of flexibility is 
unheard of with conventional cermet coatings.

A thermal camera was employed to investigate the phase transition from semiconducting 

monoclinic to the metallic rutile that occurs with thermal cycling. Upon heating, the sur-

face appears colder above the transition due to thermal emittance of the metallic phase. This 
behavior is termed as negative differential thermal emittance. During the heating step, VO

2
 

undergoes an abrupt semiconductor to metal transition (SMT) at 67.5°C resulting in a drop 

of emissivity from 0.8 to 0.1 within a narrow ΔT of 2°C. The images in Figure 8(i), (ii) and 

(iii) provide a visual representation of the material undergoing SMT, by formation of metallic 

puddles in the semiconducting phase, which grow in number and coalesce, thus converting 

the whole layer metallic. These metallic puddles lower the overall emissivity by reflecting the 
infra-red radiation.

While cooling, the emissivity abruptly rises and peaks up to 0.94 at 63.5°C marked as region 

(a) in Figure 8. This peculiar rise of emissivity is quite reproducible and is systematically 

observed in all our films. At 63.5°C the density and size of the metallic inclusions align in such 
a way that a near perfect thermal emittance is reached. This rise in emissivity from 0.8 to 0.1 
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(ΔƐ = 0.7), or 0.94 to 0.1(ΔƐ = 0.84) using VO
2
 coatings, is unprecedented with conventional 

variable emissivity coatings. Such a negative differential thermal emittance was previously 
reported and VO

2
 was shown to operate both as perfect emitter and absorber in a tunable 

phase change material. The short rise in the emissivity during the cooling cycle is correlated to 

the formation of nanoscale metallic inclusions in a configuration that enhances light absorp-

tion [37–41].

Perfectly reversible and reliable emissivity transition is recorded for VO
2
 films during 

extended thermal cycling tests. Furthermore, the transition characteristics were shown to be 

immune to the cycling rate. The stability of the metamaterial state was observed upon an 

extended Raman mapping of the mixed phase region over 100 hrs [34].

The reproducible behavior is in line with the ramp reversal memory effect in VO
2
 reported 

recently [42], where the nucleation of the metallic puddle during the heating cycle occurs at 

the same spot over successive cycles. Upon temperature cycling, IR imaging reveals the nucle-

ation of the metallic phase exactly at the same positions and confirms its systematic growth in 
an identical manner as the preceding heating cycle for consecutive cycles. This behavior is of 

paramount importance for a tunable and reliable light modulation.

VO
2
 metamaterial coatings provide enhanced flexibility versus traditional cermet coatings 

which have a fixed density and distribution of metal particles. Guo et al. [39] presented how 

metallic inclusions can be modified to impact light-matter interaction. Authors investigated 
the applications of metallic inclusions as light trapping sites for solar energy-harvesting. 

Figure 8. Temperature-dependent emissivity of VO
2
 across the SMT and the infrared images of three selected regions 

(a-i, b-ii and c-iii) on the hysteresis curve. Metamaterial region is shown as a shaded area on the hysteresis curve. Image 

reproduced with permissions form the original publisher.
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Hence by controlling the size, shape and density of metallic inclusions in the metamate-

rial state, VO
2
 coatings clearly presents itself as versatile and an attractive alternative. The 

property of tuneable emissivity opens up many possibilities for the design and integration of 

smart functionalities through innovative light modulation existing technologies.

Figure 9(i) shows tuning of emissivity by controlling the heating and cooling cycles. Choosing 

to limit the extent of cooling to the temperature that enables the maximum emissivity (marked 

by a blue circle in Figure 9(i-b) and restarting the heating stage in the subsequent cycle in 

Figure 9(i-c), one can take benefit of the observed emissivity spike to further enhance the 
amplitude of the emissivity. Such control of temperature cycles yields tunable emissivity 

of VO
2
 metamaterial between 0.94 and 0.1. Figure 9 (i-d, e and f) illustrates an example of 

how the emissivity can be controlled between 0.1 and ≤0.94, by selecting the temperature of 

cooling down at any intermediate value. Similar approach can be utilized to change emis-

sivity from 0.94 to 0.1 simply by adjusting the temperature in the heating cycle as shown 

in Figure 9(ii). The memory effect mentioned earlier, helps us to maintain the system at a 
set value of emissivity even after consecutive cycles. Therefore, the temperature is a reliable 

parameter to precisely control cermet architecture. Temperature cycles can be conveniently 

Figure 9. Variable emissivity as shown from (i-a) to (i-f) is achieved by adjusting the minimal temperature of cooling 

cycle and beginning the subsequent heating cycle immediately. Precise emissivity state can be reached by adjusting the 

cooling and heating temperature. Image reproduced with permissions form the original publisher.
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designed to adjust the upper and lower limit of emissivity values within the 0.1–0.94 range. 

In terms of application, a light modulating devise with rapid transitions can also be designed, 

since switching in VO
2
 occurs at picosecond time scale [43].

Thermally controlled switching of emissivity in VO
2
 films is demonstrated in Figure 10(a). 

Initially VO
2
 films are stabilized at a steady temperature of 68°C in the metallic state with 

low emissivity. A programmed cooling pulse of ΔT = 1.5°C decreases the temperature of the 

system to 66.5°C, driving the system to from a low emissivity state at Ɛ = 0.1 to a high emis-

sivity of Ɛ = 0.94.

Temperature increase via a programmable heating pulse of identical amplitude pushes the 

system to the lower emissivity. This way, VO
2
 metamaterial state can be used as an optical 

switch with controlled emissivity stages that correlate directly with the infrared reflection 
property. The concept of smart cermet could be envisaged for applications such as an infra-

red shutter and for emissivity modulation.

A slightly different switching profile is shown in Figure 10(b). Switching emissivity is 

achieved by providing tiny temperature inputs in either direction by maintaining the system 

at a steady temperature in the middle of the hysteresis loop. Small temperature inputs lead to 

large changes in emissivity, thereby leading to efficient and low power consuming alternative 
to already available emissivity control mechanisms.

Micro fabrication and additional processing challenges like multilayer deposition, MEMS 

fabrication and patterning coatings are requiring for coatings to have emissivity control and 
infrared modulation [44, 45]. Infrared reflection in VO

2
 coatings is an intrinsic one, which 

Figure 10. Thermally-controlled emissivity switching with double thermal pulses of ±1.5°C amplitude, without (a) and 

with (b) time delay. Image reproduced with permissions form the original publisher.
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means in order to achieve light modulation no further processing or fabrication steps are nec-

essary. Remarkable emissivity change is produced by tiny temperature inputs. These changes 

in emissivity are a direct result of the changes occurring in the topography of VO
2
 metasurface. 

Therefore, a tunable yet modular emissivity state is achieved by changing the dimension, den-

sity of metal inclusions into a semiconducting matrix, ultimately functioning as a smart cermet.

4.3. Localized phase change and IR reversible patterning

Now that we have established VO
2
 films when operating in the region of transition tempera-

ture (T
C
) behaves as a naturally disordered metamaterial. Physical properties related to the 

material like resistivity, reflectivity and emissivity can be altered depending on extent of 
phase transition. Through simple temperature control VO

2
 might exhibit contrasting behav-

iors depending on the state at which the metamaterial is set to operate. Figure 11 shows the 

three states namely, a high emissivity monoclinic state at 66°C, a reconfigurable emissivity 
metamaterial state around 66–69°C and lowered emissivity rutile state above 69°C.

As the metamaterial region manages to be stable as long as it is held at the required tempera-

ture, it’s viable to locally alter the phase of VO
2
 to either monoclinic or rutile depending on 

the nature of temperature stimulus. Such localized phase transition can be observed evidently 

with a thermal Infrared camera due to significant changes in the IR reflectivity and emissivity 
of between the two phases. Therefore, the metamaterial can be designed to have localized 

phase transformations by the usage of precise temperature changes in specific areas as shown 
in Figure 12.

Multitude of ways can be hypothesized to enforce a localized and restricted phase change in 

VO
2
. For the ease of understanding, we restrict these operations to those that result in local-

ized temperature manipulations that can trigger SMT in VO
2
 at the exact point of contact. 

However, in this discussion we will focus on localized laser heating for modification of 
metamaterial.

Local laser heating provides a contactless method to locally change the phase of the meta-

material. It is a non-invasive way of pattern transfer. By adjusting the power and focus of 
the laser one can achieve localized heating, this technique is easily scalable very convenient. 

As shown in Figure 13, patterns or words can be made by simply moving the laser across 
the VO

2
 meta state that is kept at a constant temperature on the edge of phase transition. 

Figure 11. Nature of VO
2
 metasurface in the three different temperature ranges.
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The localized heating provided by the laser results in the selective phase transition resulting 

in desired pattern or shapes. Although the patterns are invisible to naked eye, they however 
are clearly visible under infrared imaging. A simple temperature cycle of heating above the 

Tc and cooling back to the metamaterial state erases the pattern and reset the surface for next 
use. Thus, resulting in a so called Infrared black board.

Several concepts of achieving localized phase transition in VO
2
 metamaterial are presented 

in this article. Making patterns with contrasting electrical and optical properties on the same 
material whilst maintaining both of them stable with the use of temperature modulation will 

open numerous application possibilities for future Opto-electronic devices, that take advan-

tage of high speed optical switching and finds use in cutting edge applications such as emis-

sivity regulation, infrared camouflage, and infra-red tagging for identification.

Figure 12. Controlling the VO
2
 metasurface in hot or cold state by localized phase transformation.

Figure 13. Images from an IR camera showing the laser drawn pattern (LIST) undergoing the display erase and 
reset process, controlled by temperature cycling. The pattern disappears as the steady state temperature is above 
69°C. Lowering the temperature to 66°C resets the system and primes for new a pattern.
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5. Conclusions

In conclusion this article shows vanadium oxide as a versatile material that can be used in 

multiple applications. VO
2
 has the potential to be a suitable candidate for smart applications, 

thanks essentially to its SMT behavior. Functionality of conventional Metasurfaces can be 

improved multifold by incorporating a VO
2
 sublayer in the device. The variety and ease at 

which VO
2
 layers can be integrated to metamaterial makes it an ideal candidate for future 

optoelectronic devices and smart responsive metasurfaces.

Looking further deep into the mechanism of the SMT in VO
2
 reveals an interesting facet of 

these films. The narrow hysteretic region near phase transition, comprising electrically and 
optically contrasting media, makes VO

2
 by itself a promising metasurface. This naturally 

occurring disordered state can be controlled with accurate temperature inputs and the ratio 

of the semiconducting to metallic parts can be configured spatially over the whole surface or 
selectively on a part of the metasurface. The rich physics involved in this phenomenon will 

help to further understand the mechanisms of phase transitions in the fundamental point of 

view whereas, the unique properties displayed by the material will inspire application pos-

sibilities new generation of semiconducting devices.
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