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We consider the process of flux insertion for ground states of almost local commuting projector Hamiltonians
in two spatial dimensions. In the case of finite dimensional local Hilbert spaces, we prove that this process
cannot pump any charge and we conclude that the Hall conductance must vanish.

Introduction.— A local commuting projector Hamiltonian
(LCPH) is a special kind of quantum lattice model of the form
H =

∑
rHr, where each Hr is a projection operator sup-

ported on a finite collection of nearby lattice sites, and where
the different Hr’s commute with one another. Lattice models
of this kind, such as the toric code model[1], have proven to
be powerful tools for studying interacting topological phases
of matter. Given the many applications of these models[2–6],
it is important to understand their limitations: that is, what
phases cannot be realized by LCPHs? In two dimensions, it
is known[7] that one class of such phases are those with a
nonzero thermal Hall conductance[8]. In this work, we show
that another class of such phases are those with a nonzero elec-
tric Hall conductance ν. This claim was first proved in Ref. 9
using algebraic geometry. Here, we give a simple and physi-
cally motivated proof based on the idea of flux insertion. Our
techniques are closely related to those of Refs. 10–12. Our
argument has the additional advantage that it extends to al-
most local CPHs (ALCPHs), a generalization of LCPHs that
includes Hamiltonians with interactions that decay faster than
any power.

Physical argument.—We first present an intuitive, but non-
rigorous, argument for our no-go result. This argument is sim-
ilar to our main argument, but not as general, since it applies
only to strictly local commuting projector Hamiltonians. It
also assumes the “local topological quantum order” (LTQO)
property (6), which is stronger than the property (7) used in
the main argument.

Imagine starting in a ground state |Ω〉 of a two dimensional
LCPH and then adiabatically inserting ±2π flux at two punc-
tures. This process can be implemented by a string operator U
localized along a line between the two punctures, as illustrated
in Fig. 1. By the Laughlin argument [13, 14], the amount of
charge pumped by this process from one puncture to the other
is equal to 2πν. Let B be a region surrounding one of the two
punctures, and let QB be the operator that measures the total
charge in region B. The charge pumped by the flux insertion
is then 〈Ω|U†QBU −QB |Ω〉, so the Hall conductance is

ν =
1

2π
〈Ω|U†QBU −QB |Ω〉, (1)

Since the system is charge conserving and the current flows
only along the string, the operator T ≡ U†QBU − QB is lo-
calized near the point where the string intersects the boundary

QBTU

Φ = 2π

FIG. 1. Setup for physical argument. A string operator U inserts
±2π flux at its endpoints. This operation pumps charge from one
puncture to the other, increasing the total charge QB within region
B (solid circle). The operator T = U†QBU − QB measuring the
change in QB is supported in the small dotted circle. For an LCPH,
U commutes exactly with all Hamiltonian terms that are supported
away from the two punctures.

of B, as indicated in Fig. 1.
Now consider the charge pumped by inserting many units

of flux, written as a telescoping sum:

〈Ω|U†nQBUn −QB |Ω〉 =

n−1∑

k=0

〈Ω|U†kTUk|Ω〉. (2)

Crucially, for an LCPH, the operator U commutes exactly
with all Hr terms away from the two punctures (we justify
this claim below). This means, in particular, that Uk|Ω〉 does
not contain any excitations away from the two punctures, i.e. it
is a “local ground state” in this region. Then, assuming that
the Hamiltonian obeys the local TQO condition (6), we de-
duce that Uk|Ω〉 must have the same expectation values as
|Ω〉 for any local observable supported away from the punc-
tures. In particular, specializing to the observable T , we de-
duce that 〈Ω|Uk†TUk|Ω〉 = 〈Ω|T |Ω〉. We conclude that all
of the terms in the sum in (2) give the same quantity 2πν, so
the right hand side evaluates to 2πnν.

At the same time, the absolute value of the left hand side
of (2) is bounded by |qmax − qmin| where qmax and qmin are
the largest and smallest eigenvalues of QB . Hence, we have
the bound 2πn|ν| ≤ |qmax − qmin|. Since n can be made
arbitrarily large, we conclude that ν = 0.

To complete the argument, we now explain why U com-
mutes with all theHr terms away from the two punctures. The
key point is that all theHr terms that are supported away from
the two punctures remain commuting projectors throughout
the flux insertion process[9]. Therefore, if the system starts
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in an eigenspace of some Hr away from the punctures, it will
stay in this eigenspace throughout the flux insertion, since all
the terms in the Hamiltonian commute withHr(t) at all times,
and the process is adiabatic. In particular, the system is in the
same eigenspace at the end of the process as at the beginning,
implying that U commutes with Hr.

This behavior should be contrasted with that of non-
commuting Hamiltonians: in that case, U does not commute
withHr, so there is no reason thatUk|Ω〉 has to be in a ground
state away from the two punctures for arbitrarily large k. In-
stead, every time we apply U , we create additional (possibly
charged) excitations, that spread outward from the two punc-
tures as k increases. When k is large enough, the excited re-
gion in Uk|Ω〉 reaches the support of T and the total pumped
charge stops growing linearly. Hence ν can be nonzero with-
out contradiction.

An important loophole in the above no-go argument is that
it assumes that QB has a bounded spectrum. This assumption
can break down if the Hilbert space on each lattice site is in-
finite dimensional. This explains how the LCPH in Ref. 15
can realize a state with ν 6= 0: the example given there uses a
system built out of infinite dimensional rotor degrees of free-
dom. In such a system, a finite regionB can absorb an infinite
amount of charge, so ν can be nonzero.

We now turn to a rigorous version of this argument based on
infinitesimal flux insertion. This argument applies to a more
general class of almost local commuting projector Hamiltoni-
ans (ALCPHs).

Setup—We consider a sequence of two dimensional lattice
spin systems of increasing linear size L, defined on a torus ge-
ometry. We denote the lattice by Λ = {−L/2+1, · · · , L/2−
1, L/2}2 where we take L to be even for convenience. Each
site r ∈ Λ corresponds to a finite dimensional local Hilbert
space, where the dimension is fixed and does not depend on
L. In the following, all constants are uniform in the system
size; the notation O(L−∞) means ≤ CkL

−k for all k, for
some constant Ck.

We consider Hamiltonians that are sums of commuting pro-
jectors of the form

H =
∑

r∈Λ

Hr, [Hr, Hr′ ] = 0, H2
r = Hr = H†r . (3)

Each projector Hr is “almost local” in the sense that Hr com-
mutes with operators Or′ , supported on a single site r′, up to
error superpolynomially small in the distance |r − r′|:

‖[Hr, Or′ ]‖ ≤ ‖Or′‖ · O(|r − r′|−∞). (4)

We also assume each Hr is charge conserving:

[Hr, QΛ] = 0 ∀r ∈ Λ, (5)

whereQΛ =
∑
r∈Λ qr is a sum of Hermitian charge operators

qr, each supported on site r, with an integer spectrum and
a uniformly bounded norm. In addition, we assume that the
number of ground states of H remains bounded as L → ∞

and that these ground states are simultaneous eigenstates of
the projectors {Hr : r ∈ Λ} with eigenvalue 0 (i.e. H is
frustration-free).

To state our final assumption, we first need to introduce
some notation. For any region R, we define the correspond-
ing “local ground state subspace” VR to be the set of all states
that are annihilated by the projectors {Hr : r ∈ R}. We
denote the projector onto VR by PR, and we denote the ex-
pectation value of an observable O, averaged over VR, by
〈O〉R = 1

Tr(PR)Tr(PRO). We use the abbreviation P ≡ PΛ

to denote the projector onto the global ground state subspace,
and likewise we use the notation 〈O〉 ≡ 〈O〉Λ to denote the
average over the global ground state subspace.

Our final assumption is a weaker version of the local topo-
logical order (LTQO) condition of Refs. 16 and 17. The usual
LTQO condition states that for any region R, and any local
observable OR̃ supported in a smaller region R̃ ⊂ R, the ex-
pectation value of OR̃ in (any) local ground state |ΨR〉 ∈ VR
is approximately the same as the expectation value in (any)
global ground state |Ω〉:

〈ΨR|OR̃|ΨR〉 = 〈Ω|OR̃|Ω〉+ ‖OR̃‖ · O(dist(R̃, Rc)−∞),
(6)

where Rc is the complement of R in Λ. In this paper, we
will only need the weaker property that the average expecta-
tion value of OR̃ over the local ground state subspace VR is
approximately equal to the average expectation value of OR̃
over the global ground state subspace:

〈OR̃〉R = 〈OR̃〉+ ‖OR̃‖ · O(dist(R̃, Rc)−∞). (7)

Note that (7), unlike (6), does not require local indistin-
guishability of ground states. Rather, it can be interpreted as
a local response condition: it says that local observables OR̃
have approximately the same (zero temperature) expectation
values in the full system as they do in a subsystem R ⊃ R̃.
One difference between (7) and the usual LTQO condition (6)
is that (7) can be satisfied by systems with spontaneous sym-
metry breaking, while such systems generally violate (6).

Hall conductance.—To define the Hall conductance within
this setting, we consider a geometry consisting of two over-
lapping disks A and B of radius L

4 , centered at (−L8 , 0) and
(L8 , 0) respectively (see Fig. 2).

Our definition involves a string operatorK−A that runs along
the lower half boundary of A and that inserts an infinitesimal
flux into the center of B. To construct K−A , we assume the
existence of an operator KA with two properties. First, KA

satisfies

[QA −KA, P ] = 0. (8)

Second, KA is supported “near” the boundary of A. More
precisely, KA can be approximated, up toO(L−∞), by a sum
of terms of the form

KA =
∑

r∈∂αLA
Kr,A +O(L−∞) (9)
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QA QB

r−

R−

K∗−
A

FIG. 2. Geometry of main argument. Two disks A,B with charge
QA, QB , intersect in the lower half torus at point r−. The operators
K∗−A and [K∗−A , QB ] are supported in the blue strip and the dot-
ted circle respectively. The operator QA − K∗−A commutes (up to
O(L−∞)) with PR− , the projector into the local ground state sub-
space of the (shaded) region R−.

where ∂αLA = {r ∈ Λ : max (dist(r,A),dist(r,Ac)) ≤
αL} is a strip of width 2αL along the boundary of A, with
0 < α ≤ 1

32 . Here, each Kr,A is a strictly local charge
conserving operator, with a uniformly bounded norm, sup-
ported in DαL(r), a disk of radius αL centered at r. It
has been shown that an operator KA with these two prop-
erties can be constructed for all gapped, charge conserving
Hamiltonians[10, 18].

Given a KA with these properties, we construct a corre-
sponding string operator K−A by restricting the sum in (9) to
sites in the lower half torus, which we denote by Λ− = {r ∈
Λ : ry ≤ 0}:

K−A =
∑

r∈(∂αLA)∩Λ−

Kr,A. (10)

To see why K−A inserts an infinitesimal flux, note that for
θ � 1, the operator eiθKA has the same action on ground
states as the gauge transformation eiθQA by (8); likewise,
the restricted operator eiθK

−
A acts like a gauge transformation

along the lower boundary of A but acts trivially along the up-
per boundary of A, exactly as one expects for an infinitesimal
flux insertion operator.

With these preliminaries, we can now define the Hall con-
ductance in a form that is most convenient for our purposes:

ν = −i lim
L→∞

〈[K−A , QB ]〉. (11)

This expression can be interpreted as the charge pumped into
B by an infinitesimal flux insertion.

Note that (11) can be related to the more familiar Kubo for-
mula for the Hall conductance. Using (8) but with B instead
of A, we see that 〈[K−A , QB ]〉 = 〈[K−A ,KB ]〉 by cyclicity of
the trace. KB can then be replaced by K−B , up to O(L−∞),
giving ν = −i limL→∞〈[K−A ,K−B ]〉. This is the adiabatic
curvature [18, 19], which is well-known [20] to express the
Kubo linear response coefficient in the QHE.

Importantly, anyKA satisfying (8) and (9) is valid for com-
puting ν. We will leverage this non-uniqueness of KA in this
work, by constructing a KA with special properties.

Main result.—We now use (11) to compute the Hall con-
ductance for ALCPHs. Our main result is the following:

Theorem 1. Let H be a charge conserving ALCPH. There is
a choice of KA, which we call K∗A, satisfying (8,9) such that
the corresponding operator K∗−A , defined as in (10), obeys

〈[K∗−A , QB ]〉 = O(L−∞). (12)

In particular, ν = 0.

Proof. Let K∗A be defined by

K∗A = QA −
∫
DΛ[θ]ei(θ,H)QAe

−i(θ,H), (13)

where DΛ[θ] =
∏
r∈Λ

dθr
2π , (θ,H) =

∑
r∈Λ θrHr, and we in-

tegrate over {0 ≤ θr ≤ 2π}. With this definition, the operator
QA−K∗A is simply an average of UQAU† over all unitary op-
erators U = ei(θ,H) generated by the commuting projectors,
Hr. Therefore, by construction,QA−K∗A commutes with ev-
ery unitary operator ei(θ,H), and hence it also commutes with
the generators, Hr:

[QA −K∗A, Hr] = 0, (r ∈ Λ) (14)

This ensures that K∗A satisfies (8).
In fact, K∗A also satisfies (9), i.e. it can be approximated by

a sum of local terms supported along the boundary of A. In-
tuitively, this is because the above averaging procedure only
modifies QA near its boundary since the Hamiltonian is com-
muting and charge conserving. This claim is encapsulated in
the following lemma:

Lemma 1. K∗A can be approximated, up to O(L−∞), by a
sum of the form

K∗A =
∑

r∈∂αLA
K
∗
r,A +O(L−∞) (15)

where K
∗
r,A is a strictly local charge conserving operator,

with a uniformly bounded norm, supported in DαL(r).

The proof of Lemma 1 is particularly simple for the spe-
cial case of strictly local commuting projector Hamiltonians.
In fact, in this case, Eq. (15) holds without any error terms.
To see this, notice that in (13) we only need to include Hr

within a finite distance of the boundary of A because all other
Hr’s commute with QA exactly. We can then write K∗A as
K∗A =

∑
r∈AK

∗
r,A where K∗r,A is defined just like K∗A in

(13) except with QA replaced by qr and with the averaging
restricted to Hr’s within a finite distance of the boundary of
A. Eq. (15) then follows immediately sinceK∗r,A vanishes ex-
actly except for r within a finite distance of the boundary ofA.
A similar proof holds in the more general case of almost lo-
cal commuting projector Hamiltonians; see the Supplemental
Material for details[21].
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We now assume Lemma 1 and proceed with the proof of
the theorem. First, we define K∗−A as in (10):

K∗−A =
∑

r∈(∂αLA)∩Λ−

K
∗
r,A. (16)

We then make two observations. The first observation, which
follows immediately from the definition (16) and charge con-
servation, is that

supp([K∗−A , QB ]) ⊂ D2αL(r−), (17)

where r− is the point in the lower half torus where the bound-
aries ofA andB intersect (see Fig. 2). The second observation
is that

[QA −K∗−A , PR− ] = O(L−∞), (18)

where R− = {r ∈ Λ : ry < −2αL}. To see this, it suffices
to show that [QA − K∗−A , Hr] = O(L−∞) for any r ∈ R−

since PR− =
∏
r∈R−(1−Hr). From (14),

[QA −K∗−A , Hr] = [K∗A −K∗−A , Hr].

The right hand side isO(L−∞). Indeed, K∗A−K∗−A can be
approximated, up to O(L−∞), by a sum of local terms K

∗
r,A

strictly supported in {r ∈ Λ : ry ≥ −αL}, and each of these
O(L) terms commutes with the almost local terms Hr up to
O(L−∞) according to (4).

We now use (17,18) to complete the proof. First, by cyclic-
ity of the trace,

〈[QA −K∗−A , QB ]〉R− = 〈{QB , [PR− , QA −K∗−A ]}〉R− ,
(19)

where {·, ·} denotes the anticommutator. By (18), the right
hand side is O(L−∞); therefore since [QA, QB ] = 0, we de-
duce that

〈[K∗−A , QB ]〉R− = O(L−∞). (20)

At the same time, using (7) together with (17) and the fact
that the distance from D2αL(r−) to the complement of R− is
proportional to L, we have

〈[K∗−A , QB ]〉 = 〈[K∗−A , QB ]〉R− +O(L−∞). (21)

Theorem 1 then follows immediately from (20,21).
It is instructive to compare this proof with the physical ar-

gument we presented earlier. To make this comparison, we
think of QA − K∗−A as the infinitesimal analog of the flux
insertion operator U . Specifically, we note that the unitary
U corresponding to a 2π flux insertion is given by U =

e−2πi(QA−K∗−A )[10]. We can then see that the two observa-
tions (17, 18) that underlie our proof have close parallels with
the physical argument. In particular, (17) is analogous to our
previous claim that U†QBU −QB is localized near the point
where the support of U intersects B. Likewise, (18) is analo-
gous to our claim that U preserves the ground state away from

the punctures. One difference between the two arguments is
that the above argument requires that the site Hilbert space is
finite dimensional, e.g. when we cyclically permute the trace
in (19), while the physical argument only uses the weaker as-
sumption that QB has a bounded spectrum.

Discussion.—While we have focused on Hamiltonians
built out of commuting projectors, our results apply to a
broader class of commuting Hamiltonians. For example, we
can replace the projector assumption with a weaker gap as-
sumption: the lowest eigenvalue of Hr is 0 and it is isolated
from the rest of its spectrum by a local gap gr ≥ g > 0 with
g independent of r, L. To see why our results apply in this
case, note that we can pick a smooth function χg such that
χg(E) = 0 if E ≤ 0 and χg(E) = 1 if E ≥ g. We can then
spectrally flatten Hr to the projector χg(Hr). Smoothness of
χg translates to a rapid decay in real space and so χg(Hr)

remains almost local. It follows that H̃ =
∑
r χg(Hr) is an

ALCPH with the same ground state space as H . Hence, the
Hall conductance vanishes for ground states of such almost
local, locally gapped, commuting Hamiltonians.

Our results can also be readily extended to fermionic sys-
tems. Indeed, while the setup for our proof was explicitly
bosonic, all results continue to hold in the fermionic setting,
provided that we restrict to operators with even fermion parity.
This restriction ensures that the locality expressed by (almost)
commutation continues to hold in the fermionic setting.

One application of our results is that they provide a short
proof that any system of non-interacting electrons with lo-
calized Wannier functions has a vanishing Hall conductance.
To prove this, let the projector into the lowest band be
P =

∑
r,µ |ψr,µ〉〈ψr,µ| and let the projector into the other

bands be 1 − P =
∑
r,µ′ |ψ̃r,µ′〉〈ψ̃r,µ′ |. Here, {|ψr,µ〉} and

{|ψ̃r,µ′〉} are pairwise orthogonal, superpolynomially local-
ized Wannier functions. A parent Hamiltonian with lowest
band projector P is given by H =

∑
r,µ a(ψr,µ)a†(ψr,µ) +∑

r,µ′ a
†(ψ̃r,µ′)a(ψ̃r,µ′), where a†(ψr,µ) creates a ψr,µ exci-

tation from the Fock vacuum. It is clearly a commuting pro-
jector Hamiltonian, and the decay of the Wannier functions
implies that the terms are almost localized. Hence H is an
ALCPH and our theorem implies that the Hall conductance
vanishes. In fact, Ref. 22 already proved a stronger version
of this result, but our proof has the advantage of applying to a
much larger class of interacting systems.

One direction for future work is to investigate which two
dimensional topological phases can be realized by ALCPHs
in the absence of any symmetries. In this case, a reasonable
conjecture is that ALCPHs can realize precisely those topo-
logical phases that support gapped boundaries. Assuming this
conjecture, it is particularly interesting to consider topological
phases that have a vanishing thermal Hall conductance, but do
not support gapped boundaries [23]. These phases presum-
ably do not have an ALCPH realization, but there is no direct
proof of this, to our knowledge.
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In this Supplemental Material, we prove Lemma 1 from the
main text. First, we introduce some notation. For any operator
O and any subset S of lattice sites, we define a corresponding
“averaged” operator ES(O) by averaging O over the unitaries
generated by {Hr : r ∈ S}:

ES(O) =

∫
DS [θ]ei(θ,H)SOe−i(θ,H)S . (1)

where DS [θ] =
∏
r∈S

dθr
2π , (θ,H)S =

∑
r∈S θrHr, and we

integrate over {0 ≤ θr ≤ 2π}. In this notation, K∗A can be
written as

K∗A = QA − EΛ(QA) (2)

The averaging operation ES has several important proper-
ties that we will use below. We note first of all that ES is
a contraction, i.e. ‖ES(O)‖ ≤ ‖O‖, and second of all that,
since the Hamiltonian is commuting, ES = ES\S′ ◦ ES′ =
ES′ ◦ ES\S′ for any S′ ⊂ S where S \ S′ is the complement
of S′ in S. It follows in particular that

‖ES(O)− ES′(O)‖ ≤ ‖ES\S′(O)−O‖. (3)

Another useful bound is that

‖ei(θ,H)SOe−i(θ,H)S −O‖ ≤ 2π
∑

r∈S
‖[Hr, O]‖ . (4)

This bound follows from the fact that
∥∥∥∥
d

dt
(e−it(θ,H)SOeit(θ,H)S )

∥∥∥∥ ≤ 2π
∑

r∈S
‖[Hr, O]‖ ,

together with the fundamental theorem of calculus. Integrat-
ing (4) over all θr’s gives yet another property of ES :

‖ES(O)−O‖ ≤ 2π
∑

r∈S
‖[Hr, O]‖. (5)

Finally, combining (3, 5), we deduce the bound

‖ES(O)− ES′(O)‖ ≤ 2π
∑

r∈S\S′

‖[Hr, O]‖. (6)

We now apply the above bound (6) to the case O = QA.
In that case, charge conservation guarantees that [Hr, QA] =
−[Hr, QAc ] and therefore, by the almost locality of Hr,

[Hr, QA] = O
(
max(dist(r,A),dist(r,Ac))−∞

)
. (7)

In other words, only Hr with r near the edge of A fail to
commute with QA. Combining this with (6), we see that we
can restrict the average in (2) to a strip along the boundary of
A with superpolynomially small error:

K∗A = QA − E∂αL/2A(QA) +O(L−∞). (8)

Next, we split QA =
∑
r∈A qr in two contributions, Qbdry

and Qint, according to to whether r ∈ ∂αLA or not. From (5),
we can see that the contribution to K∗A from Qint is O(L−∞)
since the distance between ∂αL/2A and Qint is proportional
to L. Therefore, we can replace QA by Qbdry in (8):

K∗A = Qbdry − E∂αL/2A(Qbdry) +O(L−∞).

To proceed further, we write Qbdry as a sum of qr’s and
we use (6) to approximate E∂αL/2A(qr) = ED̃αL/2(r)(qr) +

O(L−∞) where D̃αL/2(r) = DαL/2(r) ∩ ∂αL/2A. In this
way, we derive

K∗A =
∑

r∈(∂αLA)∩A
K∗r,A +O(L−∞)

where

K∗r,A = qr − ED̃αL/2(r)(qr) (9)

All that remains is to show that K∗r,A can be approximated
by a strictly local, uniformly bounded, charge conserving op-
erator K

∗
r,A supported within DαL(r). To show this, we need

one more property of ES , namely the inequality

‖[ES(O1), O2]‖ ≤ 4π‖O1‖ ·
∑

r∈S
‖[Hr, O2]‖ (10)

which holds for any two operators O1, O2 with [O1, O2] = 0.
To derive this inequality, note that

‖[ES(O1), O2]‖ ≤
∫
DS [θ] ‖[O1, e

−i(θ,H)SO2e
i(θ,H)S ]‖

(11)

Combining (4, 11) and using [O1, O2] = 0 gives (10).
We are now ready to complete the argument and show that

K∗r,A is localized near r. To do this, we consider the commu-
tator [K∗r,A, Ox] where Ox is an operator supported on some
site x outside ofDαL(r). Using the above inequality (10) with
O1 = qr and O2 = Ox, and S = D̃αL/2(r), we deduce that

‖[K∗r,A, Ox]‖ ≤ 4π‖qr‖ ·
∑

r∈D̃αL/2(r)

‖[Hr, Ox]‖

≤ ‖Ox‖ · O(L−∞) (12)
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where the last line follows from the almost locality of Hr.
Since Ox is an arbitrary single site operator supported out-
side of DαL(r), the bound (12) implies our claim: K∗r,A can
be approximated up to O(L−∞) by an observable, K

∗
r,A, that

is strictly supported inside of DαL(r). [For example, K
∗
r,A

can be defined by simply taking the partial trace of K∗r,A over
all the lattice sites outside of DαL(r)]. It is also clear by
construction that these K

∗
r,A operators are charge conserving,

and they are uniformly bounded because the norm of K∗r,A
is bounded by 2‖qr‖ by (9). This completes the proof of
Lemma 1 from the main text.


