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Vanishing native American dog lineages
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Abstract

Background: Dogs were an important element in many native American cultures at the time Europeans arrived.
Although previous ancient DNA studies revealed the existence of unique native American mitochondrial
sequences, these have not been found in modern dogs, mainly purebred, studied so far.

Results: We identified many previously undescribed mitochondrial control region sequences in 400 dogs from
rural and isolated areas as well as street dogs from across the Americas. However, sequences of native American
origin proved to be exceedingly rare, and we estimate that the native population contributed only a minor fraction
of the gene pool that constitutes the modern population.

Conclusions: The high number of previously unidentified haplotypes in our sample suggests that a lot of
unsampled genetic variation exists in non-breed dogs. Our results also suggest that the arrival of European
colonists to the Americas may have led to an extensive replacement of the native American dog population by
the dogs of the invaders.

Background
Dogs colonized the Americas with early human groups
from Asia [1] and were widespread by the time Eur-
opeans arrived late in the 15th century [2]. Most of the
dogs around the world today have mitochondrial DNA
(mtDNA) control region sequences that form a well-
defined phylogenetic clade (Clade I) [3]. Genetic charac-
terization of ancient American dogs (samples obtained
from human settlements that had not been in contact
with Europeans, hereafter referred to as native American
dogs) revealed a unique set of mtDNA sequences that
clustered within this clade, but have not been observed
in extant dogs [e.g. [3-6]]. Most notably, a subclade (Ia)
has so far only been identified in ancient American dogs
and had a frequency of 62% in ancient Latin American
animals [1]. However, most genetic studies are based on
purebred dogs, and since most internationally recog-
nized breeds today are primarily European or Asian in
origin, it is possible that American dog lineages have
been excluded.
To determine contemporary distribution and fre-

quency of the native American dog lineages in the

Americas (both North America and South America), we
analyzed the fragment of the mtDNA control region
comparable to available genetic data for ancient native
American dogs in 400 village and non-breed dogs from
Alaska to Patagonia. These included dogs living in small
isolated settlements in Canada, Mexico, Central Amer-
ica, the Caribbean, the Orinoco Llanos, the Andes, the
Amazon basin and Patagonia (Figure 1). This novel data
set allowed us to compare the genetic composition of
past and present populations, and to use statistical
population genetic models to estimate the maximum
possible contribution of pre-Columbian dogs to the
extant population.

Results and discussion
In the total sample of 400 modern American dogs (Gen-
bank numbers in Table S1), we identified 40 unique
mtDNA haplotypes, of which 23 (57.5%) had not been
identified in previous studies that included samples
from around the world. Haplotypes were widespread
across sampled localities and we did not detect any geo-
graphic pattern. This shows that significant undescribed
diversity is likely to be present in non-purebred dogs
[5]. In addition, the level of mtDNA nucleotide diversity
in the present Latin American population (θπ = 0.017,

N̂e = 40,000) indicates an effective population size simi-
lar to that in ancient America (θπ = 0.015, N̂e = 35,000).
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More than half of the haplotypes (23/40) and indivi-
duals (259/400) belonged to the common Clade I. How-
ever, none of the sequences was identical to nor
clustered within the ancient native American dog Clade
Ia (Figure 2). This striking difference in haplogroup fre-
quencies between ancient and modern dogs suggests
that very little of the mtDNAs present in the extant
population trace back to the native American population
This could be due to either genetic drift or population
discontinuity between the two time points.
We investigated the probability of this result under dif-

ferent demographic models and found that the observa-
tion of a private haplogroup in the ancient sample with a
frequency as high as Ia allows rejection of complete conti-
nuity between ancient and present populations for an
extensive range of assumptions. For the constant size
population model (see Methods), we found that all models
with an assumed Ne > 3,000 could be rejected at the 5%
significance level, and the population expansion scenario
was similarly rejected for initial Ne > 2,100 (P < 0.05).

However, complete continuity is not a realistic model
since introduction of European dogs is known to have
occurred. Thus, we also tested the possible contribution of
the ancient population under a model where the current
Latin American dog population is a mixture of Old- and
New World populations (Figure 3). The simulations indi-
cated that given the estimated mitochondrial N̂e, less than
10% of the ancestors of the modern American dog popula-
tion are ancient American dogs (Figure 4). While based on
inferences from a single genetic marker, this upper limit
for the average genetic contribution of the ancient popula-
tion is expected to apply also to the autosomal genomes of
extant dogs. However, we caution that the average gen-
ome-wide native American ancestry in the extant
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Figure 1 Map illustrating geographic distribution of modern
American dog samples included in the study. Numbers indicate
number sample size per country.
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Figure 2 Maximum likelihood phylogeny of Clade I haplotypes.
Ancient American dog haplotypes are on red branches. Clade Ia is
highlighted with a label and the dashed rectangle highlights the
only extant haplotype inferred to be derived from an ancient dog
sequence. Tip labels correspond to non-redundant haplotypes from
Table S1 or [1,3-5,7].
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population could be different if male and female dogs con-
tributed an unequal number of offspring to the population
(i.e. there was an unequal sex ratio), the mitochondrion
has been subject to selection, or if other assumptions in
the demographic model (see Methods) have been violated
in the recent history of the population.
We also examined if ancient American haplotypes other

than those in Clade Ia were present in the modern sample,
and identified a single modern haplotype derived from a
pre-Columbian haplotype (Figure 5). This previously unde-
scribed haplotype was found in two dogs from the Maya
villages of Pisté and Chan Kom, both in the State of Yuca-
tán, Mexico (M64, M76; Additional file 1: Table S1) and is
most closely related to the ancient Mexican haplotype

D32 [1], from which it differed by a single substitution.
Although these communities are in close contact with
modern life, they still live largely according to indigenous
traditions, including a lack of organized dog husbandry.
The mtDNA of these two individuals may be inherited
from the pre-Columbian population, and thus indicate that
not all ancient lineages went completely extinct.
Arrival by Columbus to the Americas in 1492 was

quickly followed by the arrival of conquistadors, mission-
aries and colonists from Europe with their livestock, pets,
commensals and pathogens, all of which had an impor-
tant impact on native American populations and culture
[7,8]. Our results show that native American dog popula-
tions were also impacted. The extent of this impact is
unexpected because of the large historical population size
of dogs in the Americas and the existence of potential
refugia (e.g. isolated human groups) where native lineages
could have survived. Several factors might have contribu-
ted to this replacement, including direct persecution
[7,9], preference for the often larger newly arrived dogs,
or susceptibility to introduced infectious diseases. Future
studies including more ancient and modern dogs and
more genetic markers, such as neutral autosomal mar-
kers, genes of known function and Y-chromosome mar-
kers, will contribute to a deeper understanding of the
causes of and extent to which the native American dog
population has changed since the arrival of Columbus.

Conclusions
Using molecular data and statistical modeling, we
demonstrate that an important amount of mitochondrial

Figure 3 Coalescent simulations used to investigate the
maximum possible genetic contribution of the native
American dog population to the living American dog
population. A) From genealogies generated under three different
models, we estimated the probability that at least 8 of 13 ancient
lineages coalesce to the exclusion of all modern samples.
B) Schematic illustration of the isolation-admixture model.

Figure 4 Maximum genetic contribution of native American
dogs under the isolation-admixture model. Lines represent the
95 percent limit under different assumptions about effective
population size (varying across the x-axis) and generation time. The
results assuming a two year generation time are shown with a solid
curve and the results assuming a three year generation time with a
dashed curve.

Clade Ia

Figure 5 Median joining network of Clade I haplotypes. Solid
ellipse highlights Clade Ia and dashed ellipse highlights the only
extant haplotype inferred to be derived from an ancient American
dog haplotype and that ancient haplotype. Node size is
proportional to haplotype frequency. Transversal lines indicate
mutations and black dots hypothetical haplotypes. Ancient
American haplotypes are red, contemporary American haplotypes
are yellow and contemporary dogs from elsewhere in the world are
blue. Photograph inset: dog from Chan Kom (M76 in Table S1), a
likely descendant of pre-Columbian native American dogs.
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haplotype diversity exists in undersampled non-breed
dog populations, and that the breadth of the impact of
post-Columbian colonization on the Americas has been
underestimated. The extensive replacement of the native
American dog population inferred from our data set
illustrates that even cultural and biological elements that
are not specific targets of invaders can be profoundly
affected at a continental scale and in a short period of
time.

Methods
We used published primers (ThrL and DLHc) and PCR
conditions [1] to amplify and sequence in both direc-
tions a fragment of 425 bp from the mitochondrial con-
trol region (Table S1). Sequences were compared to
available sequences in GenBank with megablast to check
for nuclear insertions and new haplotypes. Additional
published sequences from dogs [1,3,4,10] and wolves
[10-14] were included to place our study in a historical
and geographical framework (e.g. to root phylogenetic
trees) as in [1-4].
We used the E-INS-i option in MAFFT [15] to align

all sequences included in the study. We performed phy-
logenetic analysis of the complete dataset with and with-
out removing redundant haplotypes using MacClade
4.06 [16]. We ran 1000 searches and 2000 bootstrap
replicates in Garli0.96 [17] to search for a maximum
likelihood topology under the model TrN+I+G selected
by Modeltest 3.7 [18] using the Akaike information cri-
terion. Sequences that clustered in Clade I [3], were
further analyzed by constructing haplotype networks.
We focused on Clade I because all but one of the
ancient American dog sequences cluster within this
clade. We built median-joining [19] haplotype networks
in NETWORK 4.5 http://www.fluxus-engineering.com/
and a statistical parsimony network in TCS 1.21 [20]
with gaps as an informative fifth state. Both methods
yielded similar results and only the result of the former
analysis is shown.
We estimated mitochondrial effective population size

(N̂e) for the ancient sequences described by reference
[1] and a corresponding subset of our modern
sequences where all samples collected north of Mexico
were excluded in order to better match the geographical
range of the ancient dogs from reference [1] that died
before Columbus first arrived to the Americas. We used
nucleotide diversity π as a direct estimate of the popula-
tion-scaled mutation rate θπ and the expression θπ =
2Neμ where μ is the mutation rate per nucleotide and
generation (note that Ne will be affected by inclusion of
multiple clades). We computed π using DNAsp
v.5.00.07 [21], and used a conservative estimate of μ in
the dog mitochondrial control region that assumed a

divergence time between gray wolves and coyotes 2 mil-
lion years ago (2.13 × 10-7 per generation) [4]. We note
that assuming a 1 million year divergence time (e.g.
[22]) would result in higher estimates of N̂e and thus
decrease the probability of observing large differences
between samples from different time points even
further. We also note that mtDNA data is not optimal
for accurately estimating N̂e in natural populations, but
its use here is motivated by our interest for the possible
magnitude of genetic drift acting on American dog
mitochondria, particularly in the last ~1000 years (see
below), and by the fact that no autosomal sequence data
is currently available.
We investigated the probability of observing a private

haplogroup in the ancient sample with a frequency as
high as Clade Ia in a hypothesis-testing framework for
three different population genetic models for the demo-
graphic history of American dogs using Serial Sim-Coal
[23,24], the only coalescent simulator currently available
that allows modeling of both population structure and
samples from different time points. By simulating 10,000
independent genealogical histories and investigating the
resulting topologies with custom scripts, we approxi-
mated the probability that at least 8 of 13 lineages
sampled 1000 years ago (corresponding to the ancient
Latin American samples) [1] would be monophyletic
with respect to 299 lineages sampled at the present (cor-
responding to modern Latin American samples included
in the study; Figure 3A), given different assumptions
about Ne. The general approach of estimating the possi-
ble contribution of Native American dogs to the extant
gene pool in a simulation-based hypothesis-testing fra-
mework was chosen because few analytical tools (i.e.
mathematical models) have been developed to deal with
probabilities under the structured coalescent with tem-
poral samples. Simulations thus provide a flexible
alternative.
First, we tested a demographic model with a single

continuous population that either maintained a constant
size during all of its history or started growing exponen-
tially 200 generations ago to an Ne of 15,000. To investi-
gate the possible contribution of the native American
dog population to the current population, we con-
structed an isolation-admixture model more in agree-
ment with historical evidence (Figure 3B). Starting from
a single population at the present, the lineages in the
population were divided into two isolated populations
400 years ago (representing the post-Columbian coloni-
zation of the Americas by Europeans) with probability c
and 1-c, respectively. At 1000 years ago, 13 new samples
were taken from one of the subpopulations (New
World, representing the data available on ancient Latin
American dogs [1]). At 13,000 years further in the past
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the American population underwent a bottleneck,
implying a tenfold reduction on its effective size, and
was joined together again with the Old World popula-
tion at 14,000 years ago, representing the isolation of
American dogs from the Eurasian populations from
which they originated [1]. The exact time American and
Eurasian populations were isolated is the subject of
much controversy, so we use this conservative number
(14,000 years before present). However, we found that
the timing of this event and the severity of the bottle-
neck had only marginal effects on the probability of a
private ancient haplogroup compared to the admixture
proportions. We investigated the effect of assuming a
generation time of both 2 and 3 years.

Additional material

Additional file 1: Table S1: Table describing all samples used,
including GenBank number, collector, country of origin and clade
to which the haplotypes belongs, as defined in[3]and[4].
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